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ABSTRACT

In many consensus-based actor-critic multi-agent reinforcement learning (MARL)
strategies, one of the key components is the MARL policy evaluation (PE) prob-
lem, where a set of N agents work cooperatively to evaluate the value function
of the global states under a given policy only through communicating with their
neighbors. In MARL-PE, a critical challenge is how to lower the communica-
tion complexity, which is defined as the rounds of communication between neigh-
boring nodes in order to converge to some ϵ-stationary point. To lower com-
munication complexity in MARL-PE, there exist two “natural” ideas: i) using
batching to reduce the variance of TD (temporal difference) errors, which in turn
improves the convergence rate of MARL-PE; and ii) performing multiple local
TD update steps between each consecutive rounds of communication, so as to
reduce the communication frequency. While the effectiveness of the batching ap-
proach has been verified and relatively well-understood, the validity of the local
TD-steps approach remains unclear due to the potential “agent-drift” phenomenon
resulted from various heterogeneity factors across agents. This leads to an inter-
esting open question in MARL-PE: Does the local TD-steps approach really work
and how does it perform in comparison to the batching approach? In this pa-
per, we take the first attempt to answer this fundamental question. Our theoretical
analysis and experimental results confirm that allowing multiple local TD steps
is indeed a valid approach in lowering the communication complexity of MARL-
PE compared to vanilla consensus-based MARL-PE algorithms. Specifically, the
local TD steps between two consecutive communication rounds can be as large
as O(

√
1/ϵ log (1/ϵ)) in order to converge to an ϵ-stationary point of MARL-

PE. Theoretically, we show that in order to reach the optimal sample complexity
up to a log factor, the communication complexity is O(

√
1/ϵ log (1/ϵ)), which

is worse than TD learning with batching, whose communication complexity is
O(log(1/ϵ)). However, the experimental results show that the allowing multiple
steps can be as good as the batch approach.

1 INTRODUCTION

1) Background and Motivation: With the recent success of reinforcement learning (RL) (Sutton
& Barto, 2018) techniques in the dynamic decision making process where the underlying model
is unkown, MARL, a natural extension of RL to multi-agent systems, has also found increasing
applications. Compared to traditional RL, the richness of multi-agent systems has given rise to far
more diverse problem settings in MARL, including cooperative, competitive, and mixed MARL (see
(Zhang et al., 2021a) for an excellent survey). In this paper, we are interested in cooperative MARL,
which has found a wide range of applications in the field of networked large-scale systems, such as
power networks (Chen et al., 2022; Riedmiller et al., 2000), autonomous driving (Yu et al., 2019;
Shalev-Shwartz et al., 2016) and so on. A defining feature of cooperative MARL is that all agents
in the system collaborate to learn a joint policy to maximize long-term system-wide total reward
through communicating with each other. However, due to the decentralized nature (i.e., lack of a
centralized infrastructure) of cooperative MARL, the collaboration between the agents can only rely
on some algorithmic designs to induce a “consensus” that can be reached by the agents.
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In many consensus-based actor-critic MARL strategies, one of the key components is the MARL
policy evaluation (PE) problem, where a set of N agents work cooperatively to evaluate the value
function of the global states for a given joint policy. Just as in the PE problem of conventional RL,
temporal difference (TD) learning (Sutton, 1988) has been the prevailing method for MARL-PE
thanks to its simplicity and empirical successes in real-world applications. Simply speaking, the key
idea of TD learning is to learn the value function by using the Bellman equation to bootstrap from
the current estimated value function. However, as mentioned earlier, the decentralized nature of the
MARL-PE problem necessitates communication among agents for TD learning. Hence, a critical
challenge in consensus-based MARL-PE is how to lower the communication complexity, which is
defined as the required rounds of communication between neighboring agents in order to converge
to some ϵ-stationary point of the MARL-PE problem.

To lower communication complexity for solving MARL-PE problems, there exist two “natural”
ideas: i) using batching of trajectory samples to reduce the variance of TD errors, which in turn im-
proves the convergence rate of MARL-PE; and ii) using an “infrequent communication” approach
where we perform multiple local TD update steps between each consecutive rounds of communica-
tion to reduce the communication frequency. While the effectiveness of the “batching” approach has
been verified and relatively well-understood (Hairi et al., 2022; Chen et al., 2021), the validity of the
“local TD-step” approach remains unclear due to the potential “agent-drift” phenomenon resulted
from various heterogeneity factors across agents (more on this soon). This leads to two interesting
open questions: 1) Can the local TD-steps approach really lower the communication complexity for
solving MARL-PE? 2) If the answer to 1) is “yes,” how does the local TD-steps approach perform
in comparison to the batching approach? Answering these two questions from both theory and in
practice constitutes the main goal of this paper.

2) Technical Challenges: Answering the above questions is highly non-trivial due to several tech-
nical challenges in the convergence analysis of the local TD-steps approach. Notably, it is easy
to see that the structure of TD learning in consensus-based cooperative MARL resembles that of
decentralized stochastic gradient descent (DSGD) method in consensus-based decentralized opti-
mization(Nedic & Ozdaglar, 2009; Lian et al., 2017; Pu & Nedić, 2021). Thus, it is tempting to
believe that one can borrow convergence analysis techniques of DSGD and apply them in TD learn-
ing. However, despite such similarities, there also exist significant differences between TD learning
in MARL and DSGD.
• Structural Differences: First, we note that TD learning is not a true gradient-based method, since

TD error is not a gradient estimator of any static objective function as in DSGD, which is well
defined in a consensus-based decentralized optimization problem. Also, in decentralized opti-
mization, the gradient terms are often assumed to be bounded. However, in TD learning, the
TD-errors can not be assumed to be bounded without further assuming that the value function
approximation parameters lie in some compact set.

• Markovian Data in TD Learning: In RL/MARL problem, there exists an underlying Markovian
dynamic process across time steps, where the state distribution may differ at different time steps.
By contrast, in decentralized optimization, it is often safe to assume that the data at each agent
are independently distributed. Thus, it is not applicable to directly use convergence analysis tech-
niques of decentralized optimization in TD learning for MARL-PE. The coupling and dependence
among samples renders the convergence analysis of TD learning in MARL far more challenging.

• “Agent-Drift” Phenomenon: Due to heterogeneity nature of the rewards across agents, executing
multiple local TD update steps would inevitably pull the local function approximation parameters
toward the direction of approximating local value functions rather than the global value function,
leading to the “agent-drift” phenomenon. Hence, it is unclear whether such local steps help or
hurt the convergence of TD learning in MARL. Intuitively, if the agent-drift is too large, then the
low communication-complexity benefit of infrequent communication might be offset by the errors
in aligning the local model parameters at each agent to the true global value function parameters.
Because of the agent-drift effect, the number of local TD update steps has to be chosen judiciously
to mitigate the potentially large divergence of the function approximation parameters between
each communication round.

3) Main Results and Contribution: The main contribution of this paper is that we overcome the
above challenges in analyzing the communication complexity of the local TD-steps approach for
cooperative MARL-PE. By doing so, we are able to shed light on the feasibility and effect of local
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TD steps in the consensus-based TD learning in the MARL-PE problem. We summarize our main
results in this paper as follows:

• Both theoretically and empirically, we show that allowing multiple local TD steps is indeed a
valid approach that can significantly lower the communication complexity of MARL-PE com-
pared to vanilla consensus-based decentralized TD learning algorithms Doan et al. (2021; 2019);
Zhang et al. (2018). Specifically, we show in theory that to under the condition of achieving
O(1/ϵ log2(1/ϵ)) sample complexity (which differs from the state-of-the-art sample complexity
only by a log factor), the local TD-steps approach can allow up to O(

√
1/ϵ log(1/ϵ)) local steps

and the communication complexity is O(
√

1/ϵ log(1/ϵ)). Compared to vanilla algorithms, this
improves the communication complexity by a factor of O(

√
1/ϵ).

• Moreover, we show in theory that although executing multiple local TD steps improves the com-
munication complexity significantly, its improvement may not be as good as that of the batch
approach under the same sample complexity condition Hairi et al. (2022); Chen et al. (2021).
Specifically, by choosing the batch size to beO(1/ϵ), the communication complexity of the batch-
ing approach can achieve O(log(1/ϵ)). This indicates that the local TD-steps approach “helps,”
but may not as much as the batch approach.

• Although the communication complexity bound is relatively worse, the extensive empirical re-
sults show that the performance of the local TD approach can be comparable to that of batching
approach both in synthetic and real-world setting.

The rest of the paper is organized as follows. In Section 2, we review the literature to put our work in
comparative perspectives. In Section 3, we present the system model and formulation of the MARL-
PE problem. In Section 4, we introduce the decentralized TD learning algorithm with multiple
local TD steps for MARL-PE. In Section 5, we provide the theoretical convergence analysis for the
decentralized TD learning algorithm with multiple local TD steps. Section 6 presents numerical
results and Section 7 concludes this paper. Due to space limitation, some proof details are relegated
to the supplementary material.

2 RELATED WORK

In this section, we provide an overview on two lines of research that are related to this work: i)
MARL-PE and ii) single-agent RL policy evaluation.

1) Multi-agent reinforcement learning policy evaluation: To our knowledge, the work in (Zhang
et al., 2018) proposed the first fully decentralized multi-agent actor-critic algorithm using TD learn-
ing in the critic step, which solves the PE problem. However, the convergence results for both its
critic and actor steps are asymptotic. Finite-time analysis of MARL-PE problem using distributed
TD learning algorithm has been first studied in (Doan et al., 2019) under the i.i.d. sampling assump-
tion, later the work in (Doan et al., 2021) generalized the result to Markovian sampling assumption.
In (Lin et al., 2019), a compressed algorithm is proposed where, instead of sending a vector, only a
single entry is sent during communication is proposed. However, their communication complexity
(i.e., the number of communication rounds) remains the same as sample complexity and the con-
vergence is only asymptotic. In (Chen et al., 2018), a lazy communication algorithm is proposed
assuming a central controller, which is different from the fully decentralized setting we consider in
this paper. There exists another class of approaches (Zhang et al., 2021b; Macua et al., 2014; Lee
et al., 2018; Wai et al., 2018; Ren & Haupt, 2019) that solve MARL-PE problem by formulating
it into optimizing projected Bellman error or its variants, where the proposed algorithms require
frequent communication. This class of algorithms do not use the on-policy TD learning approach as
we do in our paper. In (Kim et al., 2019), the paper optimizes communication in order to comply the
bandwidth restriction and minimize the collision between pair-wise channels. However, the work
adopts centralized learning and distributed execution paradigm, where in our paper, the learning
process is fully decentralized.

However, most of the existing distributed TD learning algorithms (Zhang et al., 2018; Doan et al.,
2019; 2021) for MARL perform frequent consensus rounds (i.e., one round of communication per
local TD update) to share the approximation parameters among neighbors. Specifically, in these
algorithms, agents share the parameters to their neighbors in every time step, which causes the

3



Under review as a conference paper at ICLR 2023

communication complexity to be the same as the sample complexity. In this paper, we consider
an infrequent communication framework that allows the agents to do multiple local TD learning
steps and share the value function approximation parameters one every K(> 1) rounds. In (Hairi
et al., 2022; Chen et al., 2021), complete actor-critic algorithms have been proposed and batching
approach has been used in the critic step, which corresponds to MARL-PE. In such batch approach,
consensus is performed in every M = ∞/ϵ batch samples, which in turn only requires O(log 1/ϵ)
communication complexity. To investigate the effect of such local steps solely, we do not consider
further modifications of batching as in (Xu et al., 2020; Hairi et al., 2022; Chen et al., 2021).

2) Single-agent reinforcement learning policy evaluation: For single-agent RL, policy evaluation
problems have been extensively studied in terms of asymptotic convergence (Tsitsiklis & Van Roy,
1997; 1999; 2002), finite-time convergence under i.i.d. sampling assumption Lakshminarayanan &
Szepesvari (2018) and under Markovian sampling assumption using different techniques (Srikant
& Ying, 2019; Bhandari et al., 2018). Further, using batched TD learning (Xu et al., 2020) yields
state-of-the-art sample complexity O((1/ϵ) log(1/ϵ)). However, there is no notion of “communi-
cation with other agents” due to the single-agent nature. Thus, results in this area are not directly
comparable to our work.

3 DISTRIBUTED POLICY EVALUATION IN MULTI-AGENT REINFORCEMENT
LEARNING

Throughout this paper, ∥ · ∥ denotes the ℓ2-norm for vectors and the ℓ2-induced norm for matrices.
∥ · ∥F denotes the Frobenius norm for matrices. (·)T denotes the transpose for a matrix or a vector.

3.1 SYSTEM MODEL

Consider a multi-agent system with N agents, denoted by N = {1, · · · , N}, operating in a net-
worked environment. Let E be the edge set for a given network G = (N , E). To formulate our
MARL problem and facilitate our subsequent discussions, we first define the notion of networked
multi-agent Markov decision process (MDP) as follows.
Definition 1 (Networked Multi-Agent MDP). Let G = (N , E) be a communication network
that connects N agents. A networked multi-agent MDP is defined by following six-tuple
(S, {Ai}i∈N , P, {Ri}i∈N ,G, γ), where S is the global state space observed by all agents, Ai is
the action set for agent i, P : S × A × S → [0, 1] is a global state transition function, Ri : S × A
is the local reward function for agent i, and γ ∈ (0, 1) is the discount factor. Let A =

∏
i∈N Ai be

the joint action set of all agents.

In this paper, we assume that the global state space S is finite. We also assume that at time step
t ≥ 0, all agents can observe the current global state st. However, each agent can only observe
its own reward rit, i.e., agents do not observe or share rewards with other agents at time t. The
reward function Ri(s, a) is an expectation given s and a, and the instantaneous reward is denoted
by ri(s, a), i.e., Ri(s, a) = E[ri(s, a)].

We consider policies that are stationary. In our MARL system, each agent chooses its action follow-
ing its local policy πi that is conditioned on the current global state s, i.e., πi(ai|s) is the probability
for agent i to choose an action ai ∈ Ai. Then, the joint policy π : S ×A → [0, 1] can be written as
π(a|s) =

∏
i∈N πi(ai|s).

The global value function for all s ∈ S is defined as follows:

V (s) = E

[ ∞∑
t=0

γt

N

∑
i∈N

ri(st, at)
∣∣∣s0 = s

]
.

3.2 TECHNICAL ASSUMPTIONS

We now state the following assumptions for the MARL system described above.
Assumption 1. For the given policy π, we assume the induced Markov chain {st}t≥0 is irreducible
and aperiodic.
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Assumption 2. The instantaneous reward rit is uniformly bounded by a constant rmax > 0 for any
i ∈ N and t ≥ 0.
Assumption 3. Let A be a consensus weight matrix for a given communication network G. There
exists a positive constant η > 0 such that A ∈ RN×N is doubly stochastic and Aii ≥ η, ∀i ∈ N .
Moreover, Aij ≥ η if i, j are connected, otherwise Aij = 0.
Assumption 4. The global value function is parameterized by linear functions, i.e., V (s;w) =
ϕ(s)Tw where ϕ(s) = [ϕ1(s), · · · , ϕd(s)]

T ∈ Rd is the feature associated with the state s ∈ S and
d < |S|. The feature vectors ϕ(s) are uniformly bounded for any s ∈ S . Without loss of generality,
we assume that ∥ϕ(s)∥ ≤ 1. Furthermore, the feature matrix Φ ∈ R|S|×d is full column rank.

Assumption 1 guarantees that there exists a unique stationary distribution over S for the induced
Markov chain by the given policy π. Assumption 2 is common in the RL literature (see, e.g., (Zhang
et al., 2018; Xu et al., 2020; Doan et al., 2019)) and easy to be satisfied in many practical MDP
models with finite state and action spaces. Assumption 3 is standard in the distributed multi-agent
optimization literature (Nedic & Ozdaglar, 2009). This assumption says that non-zero entries of
the weight matrix A needs to be lower bounded by a positive value η. Assumption 4 on features
is standard and has been widely adopted in the literature, e.g., (Tsitsiklis & Van Roy, 1999; Zhang
et al., 2018; Qiu et al., 2021; Srikant & Ying, 2019). The goal of this assumption is to approximate
the value function as follows:

V (s) ≈ V (s;w) = ϕ(s)Tw

where ϕ(s) is the feature associated with state s ∈ S. As a result,∇wV (s;w) = ϕ(s) for all s ∈ S.

4 DECENTRALIZED TD LEARNING WITH LOCAL STEPS FOR MARL

In this section, we introduce the decentralized TD learning algorithm with local TD steps (i.e., in-
frequent communication), which is illustrated in Algorithm 1. Given a policy π, the goal of the
MARL-PE in the decentralized setting is to collaboratively characterize the value function. Specifi-
cally, each agent i maintains a value function approximation parameter wi locally, which estimates
the global value function as follows:

V (s;wi) = ϕ(s)Twi.

Our algorithm is designed with two loops. The outer loop is the communication rounds, where
consensus update (Line 11 in Algorithm 1) is performed for L rounds. The inner loop is local TD
update steps, which consists of K steps. Locally, each agent performs local TD learning updates
within each communication round 0 ≤ l ≤ L− 1 as follows:

wi
l,k+1 = wi

l,k + β · δil,k · ϕ(sl,k), (1)

where β > 0 is the step size and δil,k is the local TD error, which is defined as follows

δil,k := ril,k+1 + γϕ(sl,k+1)w
i
l,k − ϕ(sl,k)w

i
l,k.

We note that equation 1 is considered one local TD learning step. Within each inner loop, this local
TD update step is done K times.

Due to the privacy of the reward signals in the fully decentralized setting, the agents are unable
to access the rewards of any other agents, let alone the average rewards. Therefore, communi-
cation/sharing of the value function approximation parameters among the neighbors is necessary
(Zhang et al., 2018; Doan et al., 2019; Chen et al., 2021; Hairi et al., 2022). This step is also referred
to as consensus update, which can be typically done as follows:

wi
l+1,0 =

∑
j∈Ni

Aijw
i
l,K . (2)

In other words, after performing K local TD steps, each agent shares its parameter to the neighbors,
receives the ones from the neighbors, and then updates its own parameter in a weighted aggregation
as shown in equation 2. We note that in our algorithm, the infrequent communication is done by
agents communicating only periodically with the period being K. The decentralized TD learning
with periodic local steps is concluded in Algorithm 1. We also note that when K = 1, our algorithm
reduces to the vanilla distributed TD learning algorithm (Doan et al., 2019; 2021; Zhang et al., 2018).
Hence, the vanilla distributed TD learning can be viewed as a special case of our algorithm.

5



Under review as a conference paper at ICLR 2023

Algorithm 1: Decentralized TD Learning with periodic local steps

Input : Initial state s0, π = {πi|i ∈ N}, feature map ϕ, initial parameters {wi
0,0|i ∈ N}, step

size β, communication round number L, local step number K

1 for l = 0, · · · , L− 1 do
2 for k = 0, · · · ,K − 1 do
3 sl,0 = sl−1,K (when l = 0 and k = 0 , sl,k = s0);
4 for all i ∈ N do
5 Execute action ail,k ∼ πi(·|sl,k);
6 Observe the state sl,k+1 and reward ril,k+1;
7 Update δil,k ← ril,k+1 + γϕ(sl,k+1)

Twi
l,k − ϕ(sl,k)

Twi
l,k;

8 end
9 Local TD Step: wi

l,k+1 ← wi
l,k + βδil,k · ϕ(sl,k);

10 end
11 Consensus Update: wi

l+1,0 ←
∑

j∈Ni
A(i, j) · wj

l,K ;
12 end

Output: wL,0

5 CONVERGENCE ANALYSIS OF DECENTRALIZED TD LEARNING WITH
LOCAL STEPS

In this section, we present the convergence results for Algorithm 1, which further imply both the
sample and communication complexities of Algorithm 1.

To characterize the convergence, we define the following quantities:

Ψ := E[(γϕ(s′)− ϕ(s))ϕT (s)] and b :=
1

N
E[ϕ(s)

∑
i∈N

ri(s, a)]. (3)

The expectations in equation 3 are taken over the steady state distribution induced by the policy,
which is guaranteed to exist due to Assumption 1, stationary action policy a ∼ π(·|s), state transition
probability s′ ∼ P (·|s, a), and the reward distributions. Furthermore, we define

w∗ = Ψ−1b, (4)
where the invertibility is due to Ψ being negative definite (Tsitsiklis & Van Roy, 1997). Conse-
quently, we define mixing time τ(β) as follows

∥Ψ− E[(γϕ(sk+1)− ϕ(sk))ϕ
T (s)|s0 = s]∥ ≤ β ∀s,∀k ≥ τ(β) (5a)∥∥∥∥b− 1

N
E[ϕ(sk)

∑
i∈N

ri(sk, ak)|s0 = s]

∥∥∥∥ ≤ β ∀s,∀k ≥ τ(β), (5b)

where the expectation is state distribution at the k-th time step, stationary action policy ak ∼
π(·|sk), state transition probability sk+1 ∼ P (·|sk, ak) and reward distribution. We note that under
the Assumption 1, by (Levin & Peres, 2017, Theorem 4.9), the Markov chain mixes at a geometric
rate, which implies τ(β) = O(log 1

β ).

The choice of step size β on the right-hand-side (RHS) of the definition of mixing time in equation 5
is for simplicity. From (Srikant & Ying, 2019), we know that the error level at the steady state is
order-wise proportional to the step size up to a log factor (see the second term in the RHS of Eq. (12)
of Srikant & Ying (2019)), which is due to the geometric mixing time property.

Before presenting our main theorem, we introduce two useful lemmas. Our analysis is to divide
the convergence error into two parts, the consensus error, which is defined as the agent’s parameters
deviation from the average parameter, and convergence error of the average parameter to the solution
of the ODE in equation 4.

First, we define the average of the parameters to be w̄l,k = 1
N

∑
i∈N wi

l,k for any communication
round 0 ≤ l ≤ L− 1 and local step 0 ≤ k ≤ K − 1. Then, we define the consensus error as:

Qi
l,k := wi

l,k − w̄l,k (6)
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and the matrix form is Ql,k = [Q1
l,k, · · · , QN

l,k] ∈ Rd×N .

We provide an upper bound for the consensus error generated by Algorithm 1 in the following
lemma.

Lemma 1. Suppose that Assumptions 2–4 hold. For the consensus error generated by Algorithm 1,
if βK ≤ min{ 12 ,

ηN−1

4(1−ηN−1)
}, it holds that

∥QL,0∥ ≤ κ1ρ
L∥Q0,0∥+

κ2βK

1− ρ
, (7)

where κ1 = 2N2(1+η−(N−1))
1−ηN−1 , κ2 = 4(1 + η−(N−1))N

5
2 rmax and ρ := (1 + 4βK)(1− ηN−1). By

the condition on βK, we have 0 < ρ < 1.

Lemma 1 shows that even if the parameters are not set to be the same initially, the effect of the initial
consensus error will converge to 0 exponentially fast as the round of communication goes to infinity.
The second term is linear with respect to βK, which resembles the constant term in optimization
using constant step size SGD. This product term will dictates the consensus error and the error level
that the algorithm converges to, see Section A.3 for detail. The proof for the lemma is relegated to
Section C.2.

Next, we provide a lemma that characterizes the convergence of the average parameter w̄l,k. Note
that, here we utilize the Theorem 7 in (Srikant & Ying, 2019), which has the state-of-the-art non-
batch sample complexity for TD learning.

Lemma 2. Suppose Assumptions 1-4 hold. For the parameters generated by Algorithm 1, we have
following result for the average of them

E[∥w̄L,0 − w∗∥2] ≤ c2(1− c1β)
KL−τ(β)(∥w̄0,0 − w∗∥+ rmax

3
)2 + c3βτ(β), (8)

where c1, c2, c3 > 0 are constants that are independent of step size β, local steps K and commu-
nication round L and τ(β) is the mixing time. See the specified expressions of the constants and
discussion in Section C.3.

The average parameter w̄L,0 = 1
N

∑
i∈N wi

L,0 corresponds to the updates after K × L iterations
(samples). Lemma 2 shows that the average of the parameters converges to solution of the ODE
with the rate given by the RHS of equation 8.

Now, we state the main convergence result of Algorithm 1:

Theorem 1. Suppose that Assumptions 1-4 hold. For the given policy, consider the iteration gener-
ated by Algorithm 1. If βK ≤ min{ 12 ,

ηN−1

4(1−ηN−1)
}, it then follows that:

E
[ N∑

i=1

∥wi
L,0 − w∗∥2

]
≤2d

(
κ1ρ

L∥Q0,0∥+
κ2βK

1− ρ

)2

+ 2N
(
c2(1− c1β)

KL−τ (∥w̄0,0 − w∗∥+ rmax

3
)2 + c3βτ

)
, (9)

where κ1, κ2, c1, c2, c3 > 0, 0 < ρ < 1 are constants, and w̄0,0 = 1
N

∑
i∈N wi

0,0 and Q0,0 is
the initial consensus error defined in equation 6. Furthermore, by letting β = Θ(ϵ log−1(1/ϵ)),
K = Θ(

√
1/ϵ log(1/ϵ)) and L = Θ(

√
1/ϵ log(1/ϵ)), we have E[

∑N
i=1 ∥wi

L,0 − w∗∥2] = O(ϵ).
The sample complexity is KL = O(1/ϵ log2(1/ϵ)) and the communication complexity is L =

O(
√
1/ϵ log(1/ϵ)).

Note that since we use double loops in Algorithm 1, the parameter wi
L,0 corresponds to the iteration

result after K×L samples (iterations). We remark that the sample complexity ofO((1/ϵ) log2(1/ϵ))
is the state-of-the-art sample complexity for non-batching single agent RL policy evaluation problem
Srikant & Ying (2019). The sample complexity of our algorithm in distributed multi-agent setting,
which is also a non-batching approach, matches this sample complexity. In addition, compared
with single-agent policy evaluation (Xu et al., 2020), which is a batching method and its multi-agent
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counterpart (Hairi et al., 2022; Chen et al., 2021), this sample complexity only differs by a log factor.
We note that, in (Xu et al., 2020; Hairi et al., 2022; Chen et al., 2021), the algorithms are complete
actor-critic algorithms. Thus, we only compare our results with their critic steps, which solve the
policy evaluation problem.

In our proposed algorithm, between consecutive communication rounds, the number of local TD
steps for each agent can be K = O(

√
1/ϵ log(1/ϵ)). This improved the communication complexity

of vanilla distributed TD algorithms (Zhang et al., 2018; Doan et al., 2019; 2021) by a factor of K =

O(
√
1/ϵ log(1/ϵ)). The communication complexity of our algorithm is L = O(

√
1/ϵ log(1/ϵ)),

which, interestingly, equals to K order-wise.

6 EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments to compare our proposed local TD-update algo-
rithm, TD learning with local steps, with vanilla TD learning (Zhang et al., 2018; Doan et al., 2019;
2021) and the batch TD learning (Hairi et al., 2022; Chen et al., 2021) in both synthetic settings as
in (Zhang et al., 2018) and cooperative navigation tasks as in (Lowe et al., 2017). Due to the page
limit, we relegate the experiment setups and rigorous definitions of the performance metrics in the
Appendix A.1 and B.1.

6.1 CONVERGENCE PERFORMANCE ON SYNTHETIC SETTING

In the synthetic experiment, we show that the function approximation parameter in the proposed
local TD algorithm converges and the convergence with respect to the number of communication
round for all algorithms. In Figure 1, the y-axis is the normalized convergence error of the left
hand side of equation 9 and the axes are the numbers of communication rounds in Figure 1a,1c
and sample numbers in Figure 1b, 1d. For extensive experimental details, discussions and results
of experiment setup, convergence performance, the impact of local steps and linear convergences,
please see Appendix A.
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(c) K = 100, L = 100
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Figure 1: Convergence with respect to Communication Rounds and Sample Number

We considered 20 agents over a ring network. In Figure 1a, we provide the convergence results with
respect to the communication rounds for all three algorithms, where the local step K = 50 for local
TD algorithm and the batch size is 50 for batch algorithm. Under such a setting, both local TD algo-
rithm and batch TD algorithm only performs consensus communication every 50 samples. To keep
the comparison fair, we keep the local step number and batch size to be the same for the majority
of the comparisons except Figure 4. We can see that within 200 communication rounds, both batch
algorithm and local TD algorithm converge to a very similar level, yet vanilla TD algorithm doesn’t
converge even after 400 rounds of communication. Between the local TD algorithm and batch al-
gorithm, the batch algorithm converges slightly faster, which means requiring slightly fewer rounds
of communication among the agents. In Figure 1c when local step K = 100 for local TD algo-
rithm and batch size is 100 for batch algorithm, the local TD algorithm requires the least amount of
communication rounds to converge, even compared to batch algorithm. On the other hand, local TD
algorithm performs significantly better compared to vanilla algorithm. Note that in these parameter
settings, our algorithm has the same number of communication rounds as the batched TD algorithm.
In Figures 1b and 1d, we present the corresponding convergence results with respect to sample num-
bers. We can see that vanilla TD eventually converges but requires consensus operation after each
sampling. For more detailed discussion on the convergence with respect to sample numbers, please
see Section A.2 and A.4.
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(a) Cooperative Navigation Task
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(b) Bellman Error over Commu-
nication Rounds
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(c) Bellman Error over Sample
Number

Figure 2: Convergence with respect to Communication Rounds and Sample Number

Figure 1 verifies the theoretical analysis that allowing local steps does help with the communication
rounds compared to vanilla algorithm. In addition, even though the theoretical sample complexity
of local TD algorithm is worse than batch algorithm, in practice, the communication rounds are
comparable between these two approaches. This may be because the sample complexity is derived
from the upper bound of the finite time analysis in Theorem 1 and this upper bound is not only an
order-wise result with respect to some ϵ criteria, the tightness of the upper bounds depends on the
analysis techniques. This may indicate that there is room to improve for the finite time analysis of
the local TD algorithm.

6.2 CONVERGENCE PERFORMANCE ON COOPERATIVE NAVIGATION TASK

In the cooperative navigation task, the agents (blue circles) are trained to cover the landmarks
(crosses) as illustrated in Figure 2a. Agents observe positions and velocities of all agents and collab-
oratively cover the landmarks while avoiding collisions. The rewards for agents are defined through
the proximity to the nearest landmarks. Unlike the synthetic experiment, the fixed point of the cor-
responding ODE as in equation 4 can’t be calculated, so we use the squared Bellman error as the
performance metric. For extensive simulation results, which include discussions on various net-
work topologies, local steps/batch sizes, different step sizes, and consensus error metrics, please see
Appendix B.

For the results in Figure 2b and 2c, we consider N = 9 agents over an Erdos-Renyi (ER) network
and set local step K to be 20 for local TD algorithm and batch size to be 10 for batch algorithm and
appropriate step sizes for the algorithms. Similar to the synthetic experiment, we can see that all
algorithms converge to a very similar Bellman error. This again verifies the theoretical analysis that
allowing local steps and performing infrequent communications is feasible and can converge. More-
over, in this setting, our local TD algorithm converges much faster in terms of the communication
round. Specifically, local TD algorithm requires much less than 500 rounds of communication to
converge, and both batch algorithm and vanilla algorithm perform similarly and require more than
500 rounds of communication to converge.

7 CONCLUSION

In this paper, we answer the questions of whether local TD steps can lower the communication
complexity of distributed TD learning and, if so, how is the performance in comparison with batch
TD learning. Our theoretical analysis and experimental results show that the local TD steps can
significantly lower the communication complexity compared to vanilla TD learning. In addition,
our theoretical analysis also shows that the local step can be as large as K = O(

√
1/ϵ log(1/ϵ)) to

converge to ϵ close to the solution of the corresponding ODE. However, in order to achieve the same
(up to a log factor) sample complexity as in batch TD learning, the communication complexity may
also be significantly worse than that of batch TD learning in theory. But experimental results show
a comparable performance of local TD algorithm with batch algorithm in terms of communication
rounds.
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Figure 3: TD with local steps vs. vanilla TD and batched TD.

A.1 SYNTHETIC EXPERIMENT SETUP

We consider the same setting as in Section 6.1 of (Zhang et al., 2018). There are N = 20 agents, each
of which has a binary-valued action space, i.e.,Ai = {0, 1} for all i ∈ N . There are |S| = 10 states.
The entries in the transition matrix are uniformly sampled from the interval [0, 1] and normalized
to be stochastic. For each agent i and global state action pair (s, a), the mean reward Ri(s, a) is
sampled uniformly from [0, 4] and the instantaneous rewards {rit} are sampled uniformly within the
set [Ri(s, a)− 0.5, Ri(s, a) + 0.5]. The policy considered in the simulation is πi(·|s) = 0.5 for all
i ∈ N , s ∈ S. The entries of feature matrix Φ are sampled uniformly at random from [0, 1] with
feature dimension d = 5 and ensured to be full rank. In addition, we set each feature vector to be
unit length. The discount factor γ is set to be 0.99. The network topology is chosen as a ring network
with diagonal elements being 0.4 and off-diagonal elements being 0.3. The simulation results are
averaged over 10 trials. We choose the step sizes for our algorithm to be 0.005, vanilla TD to be 0.1,
and batched TD to be 10. We note that these step sizes are chosen to be best for the corresponding
algorithms.

The objective error is defined as the normalized version of convergence term (LHS of the equation 9),
i.e., the empirical sample mean errors divided by the number of agents N and the dimension number
d:

Objective Error := sample average of

√∑N
i=1 ∥wi

l,k − w∗∥2

dN
for 10 trials.

We remark that due to the fact that the transition matrix is not dependent on joint action, the steady
state distribution can be computed and so is the value of w∗, whose definition is in equation 4.

A.2 CONVERGENCE PERFORMANCE

First, we show that the local TD-update algorithm exhibits similar empirical convergence perfor-
mances as the other algorithms.

In Fig. 3, we choose the number of local steps to be K = 50 and communication rounds to be
L = 200 for the local TD-update algorithm. We choose batch size to be 50 and communication
rounds to be 200 for batched TD algorithm in Fig. 3(a). In Fig. 3(b), we increase the number of
local steps to K = 100 and decrease the communication rounds to L = 100 for the local TD-update
algorithm, and we also increase batch size to be 100 and decrease the communication rounds to be
100 for batched TD algorithm. Note that in these parameter settings, our algorithm has the same
number of communication rounds as the batched TD algorithm.

From both Figure 3(a) and (b), we can see that all algorithms converge to similar low objective error
levels. This verifies the theoretical analysis that allowing local steps and performing infrequent
communications is feasible and can converge. Then, we look at the number of samples needed to
reach the low objective error. From Figure 3(a), we see that when local steps are relatively small,
i.e., K = 50, the vanilla TD algorithm requires the most samples, while batched TD requires the
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least, and our local TD algorithm with local steps requires somewhere in between. In Figure 3(b),
when we increase the local steps to be K = 100, the number of samples of the local TD-update
algorithm requires is the least compared to the other two algorithms. On the other hand, when the
batch size increases, the number of samples required for batched TD to converge to low objective
error is very similar to that of vanilla TD. However, we note that both our algorithm and batched TD
requires less than 200 rounds of communication to reach that level of objective error in Figure 3(a)
and less than 100 rounds of communication in Figure 3(b). Moreover, these results show that the
local TD-update approach can effectively lower communication complexity of MARL-PE compared
to the vanilla TD method.
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Figure 4: Additional TD with local steps vs. vanilla TD and batched TD.

In addition, we compare different pairs of local step K and communication round L of our proposed
algorithm with different pairs of batch size M and communication round L in Figure 4. In general,
local TD learning performs at a comparable level with batch TD algorithm, especially for the case
K = M = 50 and L = 200, red curve for local TD algorithm and blue curve for the batch TD
algorithm respectively. When increasing the local steps for local TD algorithm, it converges faster
but to a higher error level. In comparison, when increasing the batch size for batch TD algorithm,
the convergence is slightly slower but to a smaller error level.

A.3 IMPACTS OF THE NUMBER OF LOCAL STEPS ON CONVERGENCE

Next, we illustrate the effect of the number of local steps on the convergence for our proposed
algorithm. In Figure 5, we vary the number of local steps from K = 40 to K = 250. There are two
interesting observations from this result. First, the number of samples needed to reach a low level
objective error decreases as the number of local steps increases. For example, when K = 100 or
larger, the curves drop much more rapidly in the beginning compared to the curves with smaller local
steps. Second, the level of objective error that the algorithm converges to increases as the number of
local steps increases. For example, when K ≤ 100, the objective error is relatively low and stable,
but as K increases to 200 or 250, the objective error is large and oscillates around a relatively higher
level. This observation is consistent with our theoretical analysis. Recall the second term on the
RHS of equation 7 in Lemma 1 that is proportional to the product of step size β and local step K.
This term says the objective error will converge to neighborhood of zero, for which the size of the
neighborhood depends on βK. As a result, for a larger K-value the objective error will oscillate
with a larger magnitude. This resembles the constant step size term in the convergence of the SGD
method in the distributed optimization problem (Nedic & Ozdaglar, 2009). Also intuitively, the
agent-drift phenomenon will exacerbate with larger local steps, so the results for K ≥ 200 in Figure
5 agree with such intuitions. In summary, empirically, when the step size is fixed, larger local steps
helps the convergence speed, but it will also result in converging to a higher objective error level.
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Figure 5: Impact of local steps K on convergence.

A.4 LINEAR CONVERGENCE WITH RESPECT TO SAMPLE NUMBER
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Figure 6: Convergence in Log Scales

In Figure 6, we provide the log scaled objective error with respect to sample number for all three
algorithms. All algorithms behave similarly. Specifically, there are two phases in the convergences,
roughly a linear convergence phase at first and oscillation phase at a relatively low objective error
level. At the linear convergence phase, the objective error quickly decreases as the number of sample
increases and reaches a relatively low objective error phase; at the oscillation phase, the objective
error oscillates. This oscillation is likely caused by both the randomness in sample and the consensus
error. For the local TD algorithm, as we increase the local step K from 50 to 100, the only difference
is the oscillation phase, where when K = 100, the objective error is higher due to the effective step
sizes βK becomes larger, as indicated by the second term in Equation equation 7. This constant error
term that is linear with respect to step size is common in the constant step size learning scheme.

B COOPERATIVE NAVIGATION TASK

B.1 EXPERIMENT SETUP AND PERFORMANCE METRICS

We consider a cooperative navigation task that is adapted from one of Multi-Agent Environments
(Lowe et al., 2017). There are N = 9 agents in total, and the goal is to cover 9 landmarks collab-
oratively. Each agent can choose from the action space, Ai ={no action, move left, move right,
move down, move up}, in order to reach the goals based on the policy. The policy considered in the
simulation is πi(·|s) = 0.2 for all actions and i ∈ N , s ∈ S, i.e. uniformly random policy. The local
rewards are given by the distance between the agents and goal landmarks. However, if they collide
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with each other, there would be a penalty given. The agents are trained to cover landmarks and reach
the destination while avoid colliding with other agents, and the entire training process is fully decen-
tralized. Figure 2a illustrates the task that agents are going to accomplish. As shown in the figure,
the blue circles are the agents, and the black crosses are the landmarks. Agents should learn to cover
goal landmarks, for example, following the arrows to finish the task. The feature dimension here is
36, i.e. d = 36, which includes all agents’ self velocity, self position, landmark relative positions,
other agent relative positions, and corresponding values are ranged within (−∞,∞). Discount fac-
tor γ is set to be 0.95. We choose step size β for our algorithm to be 0.05, for vanilla TD algorithm
to be 0.1, and for batch TD algorithm to be 0.1 as well. We note that these step sizes are chosen for
the best performance for the corresponding algorithms.

The performance metrics are mean squared Bellman error (MSBE) and consensus error (CE). The
empirical squared Bellman error is defined as

SBE
({

wi
k

}N
i=1

, sk, sk+1

)
:=

1

N

∑
i∈N

(
ϕ(sk)

Twi
k − r̄k − γϕ(sk+1)

Twi
k

)2
,

where r̄k = 1
N

∑
i∈N rik. Then, mean squared Bellman error is computed by averaging all squared

Bellman error in the history, which is defined as

MSBE :=
1

k

k∑
κ=1

SBE
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κ
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)
.

The consensus error is defined as

CE
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∥∥2 .

(a) Ring Network (b) 4-Regular Network (c) 6-Regular Network

(d) ER Network (e) Complete Network

Figure 7: Network Topology

B.2 NETWORK TOPOLOGY

We compare all algorithms under five different network typologies. These are ring network, 4-
regular network, 6-regular network, Erdos-Renyi(ER) network with 0.5 connection probability, and
fully connected network. These network topologies are illustrated in Figure 7. For simplicity, the
local aggregation is the average of neighboring nodes for all networks.

B.3 CONVERGENCE PERFORMANCE

First, we show that the local TD-update algorithm exhibits similar empirical convergence perfor-
mances as the other algorithms while using less communication rounds among agents. Here we

15



Under review as a conference paper at ICLR 2023

choose the number of local steps to be K = 20 for the local TD-update algorithm, the batch size
to be 10 for the batched TD algorithm. For all of these algorithms, we set the total sample number
to be 10000. The comparison among the algorithms is shown in Figure 9-13 over various network
topologies.
We can see that all algorithms converge to very similar low squared Bellman error and consensus
error level based on these figures. This verifies our analysis that allowing local steps and performing
infrequent communications is feasible and can converge. In this case, vanilla TD algorithm performs
10000 communication rounds, which is the most, batch TD algorithm performs 1000 communication
rounds, while local TD-update algorithm only performs 500 communication rounds. Left columns
of the Figure 9-13 demonstrate the mean squared Bellman error, and right columns demonstrate the
consensus error. For the mean squared Bellman error, the curve of local TD-update algorithm and
the curve of vanilla TD algorithm has similar dropping rates, while the curve of batched TD algo-
rithm drops slower. In terms of error level, all algorithms converge to a comparable mean squared
Bellman error, which is around 2. On the other hand, the consensus errors in the right column of
Figure 9-13, of all algorithms are close to 0, although local TD-update algorithm may have a rel-
atively high error level depending on the network topology. In Figure 8, we present the topology
effect on our proposed algorithm. It is, in general, as the network becomes more and more connected
the consensus error fluctuates less. Intuitively, with better connected network, after local consensus
aggregation, the parameter can be closer to the global average of the network.
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Figure 8: Topology on Local TD Algorithm
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Figure 9: Comparison among Algorithms in Ring Network
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Figure 10: Comparison among Algorithms in 4-Regular Network
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Figure 11: Comparison among Algorithms in 6-Regular Network
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Figure 12: Comparison among Algorithms in ER Network
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Figure 13: Comparison among Algorithms in Complete Network

In addition, we have compared different pairs of local step and communication round for our pro-
posed algorithm and different pairs of batch size and communication round for batch TD algorithm
in Figure 14 for cooperative navigation task. In this setting, all algorithms converge to a similar
Bellman error level. However, the convergence for local TD algorithm is faster than batch TD al-
gorithms in all parameter settings. Moreover, with the increase of batch size, batch TD algorithm
seems to converge slower while with the increase of local step, local TD algorithm convergence
increases in general but not significantly.
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Figure 14: Additional Comparisons

B.4 CONVERGENCE PERFORMANCE WITH RESPECT TO COMMUNICATION ROUNDS

In Figure 15, we provide the convergence results with respect to the communication rounds for
all algorithms, where the local step K = 20 for local TD-update algorithm and the batch size is
10 for batch TD algorithm. We can see that within 500 communication rounds, local TD-update
algorithm converges faster than batched TD algorithm and vanilla TD algorithm to a very similar
error level. Within 1000 communication rounds, batched TD algorithm and vanilla TD algorithm
performs similarly. The performance of these algorithms is not affected by the network topology
being used.
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Figure 15: Convergence Respect to Communication Rounds

B.5 IMPACTS OF THE NUMBER OF LOCAL STEPS ON CONVERGENCE

Next, we illustrate the effect of the number of local steps K on the convergence for our proposed
algorithm. In Figure 16, we vary the number of local steps from K = 10 to K = 200. The right
column is the consensus error of first 2000 samples, which displays a better view. As the number of
local steps increases, the mean squared Bellman error converges to a higher error level, on the other
hand, the consensus error oscillates more. In summary, larger local steps helps with saving more
communication cost while it also result in converging to a higher mean squared Bellman error and a
greater fluctuation of the consensus error. This conclusion also echoes with the synthetic experiment
results in A.3.
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Figure 16: Comparison among Different Local Steps in 4 Regular Network

B.6 IMPACTS OF STEP SIZE ON CONVERGENCE

Here, we illustrate the effect of step size β on the convergence for our proposed algorithm and
batched TD algorithm over a 4-regular network. First of all, we can take a look at batch TD algorithm
displayed on Figure 17-19 over various batch sizes. The brown line shows the performance of our
proposed algorithm to help compare with batch TD algorithm. In general, in terms of mean squared
Bellman error, larger step size β leads to faster convergence speed and larger error level. Smaller
step size β leads to slower convergence speed, but could eventually converge to a smaller error level.
Also, larger step size β results in a greater consensus error. Thus, we set step size β = 0.1 and batch
size to be 10 for batch TD algorithm.
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Figure 17: Comparison among Different step sizes β for TD Learning with Batch Size 5 in 4 Regular
Network
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Figure 18: Comparison among Different step sizes β for TD Learning with Batch Size 10 in 4
Regular Network

0 2000 4000 6000 8000 10000
Sample Number

0

5

10

15

20

25

30

35

40

M
ea

n 
Sq

ua
re

d 
Be

llm
an

 E
rro

r

= 0.01
= 0.05
= 0.1
= 0.2
= 0.5

TD with local step

(a) Mean Squared Bellman Error

0 2000 4000 6000 8000 10000
Sample Number

0.0

0.1

0.2

0.3

0.4

0.5

Co
ns

en
su

s E
rro

r

= 0.01
= 0.05
= 0.1
= 0.2
= 0.5

TD with local step

(b) Consensus Error

Figure 19: Comparison among Different step size β for TD Learning with Batch Size 20 in 4 Regular
Network

As shown in Figure 20-22, similar to batch TD algorithm, larger step size β leads to faster conver-
gence speed and larger mean squared Bellman and consensus error level in local TD-update algo-
rithm. However, the error differences among different step sizes β are not that significant compared
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to batch TD algorithm. In order to balance among convergence speed, error level, and communica-
tion cost, we decide to use step size β = 0.05 and local step K = 20. In this way, we could have a
fast convergence speed, low communication cost, and a relatively low error level.
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Figure 20: Comparison among Different step sizes β for TD Learning with Local Step K = 10 in 4
Regular Network
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Figure 21: Comparison among Different step sizes β for TD Learning with Local Step K = 20 in 4
Regular Network
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Figure 22: Comparison among Different step sizes β for TD Learning with Local Step K = 50 in 4
Regular Network
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C PROOFS OF LEMMAS AND THEOREM

In this section, we provide the derivation for the consensus error. Then, we prove the Lemma 1,
provide detailed discussion for Lemma 2 and the proof of Theorem 1.

C.1 THE DERIVATION OF CONSENSUS ERROR

Within each communication round 0 ≤ l ≤ L − 1, the parameter update wi
l,k for agent i at local

step k can be written as follows

wi
l,k+1 = wi

l,k + βδil,k · ϕ(sl,k)
=
(
I + βϕ(sl,k)[γϕ(sl,k+1)− ϕ(sl,k)]

T
)
wi

l,k + βril,k+1ϕ(sl,k)

= Bl,kw
i
l,k + cil,k (10)

where Bl,k := I + βϕ(sl,k)[γϕ(sl,k+1) − ϕ(sl,k)]
T and cil,k := βril,k+1ϕ(sl,k). Then, from local

step 0 to K − 1, we have

wi
l,K =

K−1∏
k=0

Bl,kw
i
l,0 +

K−1∑
k=0

K−1∏
n=k+1

Bl,nc
i
l,k.

After a consensus update, the parameter for agent i will be

wi
l+1,0 =

∑
j∈Ni

A(i, j) · wj
l,K

=
∑
j∈Ni

A(i, j) ·

(
K−1∏
k=0

Bl,kw
j
l,0 +

K−1∑
k=0

K−1∏
n=k+1

Bl,nc
j
l,k

)

=
∑
j∈Ni

A(i, j) ·
K−1∏
k=0

Bl,kw
j
l,0 +

∑
j∈Ni

A(i, j) ·
K−1∑
k=0

K−1∏
n=k+1

Bl,nc
j
l,k.

The equation above shows the parameter update between two consecutive communication rounds.
Now we consider the average dynamics of the parameters across all agents. Recall w̄l,k =
1
N

∑
i∈N wi

l,k, then within each communication round 0 ≤ l ≤ L − 1, using equation 10 we
have

w̄l,k+1 =
1

N

∑
i∈N

wi
l,k+1

=
1

N

∑
i∈N

(Bl,kw
i
l,k + cil,k)

= Bl,kw̄l,k +
1

N

∑
i∈N

cil,k

= Bl,kw̄l,k + c̄l,k (11)

where c̄l,k := 1
N

∑
i∈N cil,k. Hence, the average dynamics from local step 0 to K − 1 will be

w̄l,K =

K−1∏
k=0

Bl,kw̄l,0 +

K−1∑
k=0

K−1∏
n=k+1

Bl,nc̄l,k.

After a consensus update, we have

w̄l+1,0 = w̄l,K . (12)

Note that the equation above means that consensus step will not change the average dynamics and
average dynamic will only be updated during local steps.
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For an agent i ∈ N , we consider the consensus error at communication round l and local step k,
where 0 ≤ k ≤ K − 1 and recall Qi

l,k = wi
l,k − w̄l,k. Then, we have

Qi
l,k+1 =wi

l,k+1 − w̄l,k+1

=Bl,kw
i
l,k + cil,k −Bl,kw̄l,k − c̄l,k

=Bl,k(w
i
l,k − w̄l,k) + cil,k − c̄l,k

=Bl,kQ
i
l,k + cil,k − c̄l,k.

Then, for the matrix form Ql,k = [Q1
l,k, · · · , QN

l,k] ∈ Rd×N , we have

Ql,k+1 =Bl,kQl,k + Cl,k(I −
1

N
11T )

where Cl,k := [c1l,k · · · cNl,k] and 1 denotes the all-1 column vector. Then, for communication round
l, we have

Ql,K =

K−1∏
k=0

Bl,kQl,0 +

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,k(I −
1

N
11T )

After a consensus update, we have

wi
l+1,0 − w̄l,k =

∑
j∈Ni

A(i, j)wj
l,K − w̄l,K

=
∑
j∈Ni

A(i, j)(wj
l,K − w̄l,K) =

∑
j∈Ni

A(i, j)Qj
l,K .

As a result, we have

Ql+1,0 = Ql,KAT

=

K−1∏
k=0

Bl,kQl,0A
T +

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t(I −
1

N
11T )AT .

After L communication rounds, we have

QL,0 =

L−1∏
l=0

K−1∏
k=0

Bl,kQ0,0(A
T )L+

L−1∑
l=0

L−1−l∏
j=1

K−1∏
k=0

Bl+j,k

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t(I −
1

N
11T )(AT )L−l

Note that for the second term when l = L − 1, inside the summation, the summand becomes∑K−1
t=0

∏K−1
t̃>t BL−1,t̃CL−1,t(I− 1

N 11T )AT . In other words, the matrix multiplier in front becomes
an identity matrix.

C.2 PROOF OF LEMMA 1

The norm of the consensus error is following

||QL,0||

=||
L−1∏
l=0

K−1∏
k=0

Bl,kQ0,0(A
T )L +

L−1∑
l=0

L−1−l∏
j=1

K−1∏
k=0

Bl+j,k

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t(I −
1

N
11T )(AT )L−l||

≤||
L−1∏
l=0

K−1∏
k=0

Bl,kQ0,0(A
T )L||

+ ||
L−1∑
l=0

L−1−l∏
j=1

K−1∏
k=0

Bl+j,k

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t(I −
1

N
11T )(AT )L−l||. (13)
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Before obtaining bounds on the terms of the consensus error in equation 13, we first provide some
useful bounds on Bl,k and Cl,k. First, we have

||Bl,k|| = ||I + βϕ(sl,k)[γϕ(sl,k+1)− ϕ(sl,k)]
T ||

≤ 1 + β||ϕ(sl,k)||(γ||ϕ(sl,k+1)||+ ||ϕ(sl,k)]T ||)
≤ 1 + β(1 + γ) < 1 + 2β

where the second inequality is due to Assumption 4. Then, we have ||Ck,l|| ≤ β
√
Nrmax, where

rmax = supi,s,a r
i(s, a) by Assumption 2. This is because

||Ck,l|| = ||βϕ(sk,l)(r1k,l+1, · · · , rNl,k+1)||
≤ β||ϕ(sk,l)|| · ||(r1k,l+1, · · · , rNl,k+1)||

= β
√
Nrmax.

Next, inspired by Srikant & Ying (2019), we want to use the following bound

(1 + x)K ≤ 1 + 2xK

for small x. Note that

(1 + x)K |x=0 = 1 + 2xK|x=0

and when x ≤ log 2
K−1 ,

∂

∂x
(1 + x)K = K(1 + x)K−1 ≤ Kex(K−1) ≤ 2K =

∂

∂x
(1 + 2xK)

where the first inequality is due to the fact log(1 + x) ≤ x for x ≥ 0 and the second inequality is
due to the fact x ≤ log 2

K−1 . Let 2β = x and β ≤ 1
2K ≤

log 2
2(K−1) .

For the first term in equation 13, when β ≤ 1
2K , we have that

||
L−1∏
l=0

K−1∏
k=0

Bl,kQ0,0(A
T )L|| ≤ ||

L−1∏
l=0

K−1∏
k=0

Bl,k|| · ||Q0,0(A
T )L||

≤ κ(1 + 2β)KL(1− ηN−1)L

≤ κ(1 + 4βK)L(1− ηN−1)L

= κρL

where we define ρ := (1 + 4βK)(1 − ηN−1). When 0 < βK < min{ 12 ,
ηN−1

4(1−ηN−1)
}, we have

0 < ρ < 1. The second inequality comes from the following two results.

First, consider the case where A is a symmetric matrix for simplicity, then we have

||Q0,0A
L
1,:|| = ||Q0,0A

L
1,: −Q0,0

1

N
1||

= ||
∑
i∈N

(AL
1,i −

1

N
)Qi

0,0||

≤
∑
i∈N
|AL

1,i −
1

N
| · ||Qi

0,0||

≤ N · 21 + η−(N−1)

1− ηN−1
(1− ηN−1)L ·max

i∈N
||Qi

0,0||

≤ 2N
1 + η−(N−1)

1− ηN−1
(1− ηN−1)L · ||Q0,0||,

where the second inequality is from Nedic & Ozdaglar (2009) (Proposition 1). Hence, ||Q0,0A
L|| ≤

2N2 1+η−(N−1)

1−ηN−1 (1 − ηN−1)L · ||Q0,0|| = κ1(1 − ηN−1)L||Q0,0||, where κ1 = 2N2 1+η−(N−1)

1−ηN−1 .
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Second, we have

||
L−1∏
l=0

K−1∏
k=0

Bl,k|| ≤
L−1∏
l=0

K−1∏
k=0

||Bl,k||

≤
L−1∏
l=0

K−1∏
k=0

(1 + 2β) = (1 + 2β)KL.

To bound the second term of equation 13, we have

||(I − 1

N
11T )AL−l|| = ||AL−l − 1

N
11T || ≤ 2N2(1 + η−(N−1))(1− ηN−1)L−l−1.

where the inequality is also from Nedic & Ozdaglar (2009) (Proposition 1). Then, we also have
K−1∑
t=0

K−1∏
t̃>t

||Bl,t̃|| · ||Cl,t||

≤
K−1∑
t=0

(1 + 2β)K−1−t · β
√
Nrmax

=β
√
Nrmax

K−1∑
t=0

(1 + 2β)K−1−t

≤2βK
√
Nrmax.

Then, for the multipliers, we have

||
L−1−l∏
j=1

K−1∏
k=0

Bl+j,k|| ≤ (1 + 2β)(L−l−1)K ≤ (1 + 4βK)L−l−1.

Finally, for the second term in consensus error equation 13, we have

||
L−1∑
l=0

L−1−l∏
j=1

K−1∏
k=0

Bl+j,k

K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t(I −
1

N
11T )(AT )L−l||

≤
L−1∑
l=0

||
L−1−l∏
j=1

K−1∏
k=0

Bl+j,k|| · ||
K−1∑
t=0

K−1∏
t̃>t

Bl,t̃Cl,t|| · ||(I −
1

N
11T )(AT )L−l||

≤
L−1∑
l=0

(1 + 4βK)L−l−1 · 2βK
√
Nrmax · 2N2(1 + η−(N−1))(1− ηN−1)L−l−1

≤κ2βK

L−1∑
l=0

ρL−l−1

≤κ2βK

1− ρ

where κ2 = 4(1 + η−(N−1))N
5
2 rmax.

As a result, we have the results consensus bound of equation 7 in Lemma 1.

C.3 DETAILS ON LEMMA 2

Recall the average parameter dynamic from equation 11, which is in among consecutive communi-
cation rounds, and equation 12, after a consensus update. The average parameter is signaled by the
true average of the rewards, i.e. r̄l,k = 1

N

∑
i∈N ril,k during both the local TD steps and consensus

steps. Therefore, it behaves like conventional TD update in a single agent setting. By Theorem 7 in
Srikant & Ying (2019), we have following results

E[||w̄L,0 − w∗||2] ≤ c2(1− c1β)
KL−τ (||w̄0 − w∗||+ rmax

3
)2 + c3βτ.
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where τ is a mixing time. Under Assumption 1, τ = O(log 1
β ). To specify the constants c1, c2, c3,

we introduce the Lyapunov equation. Recall the definition of Ψ in equation 3, which is negative
definite Tsitsiklis & Van Roy (1997). So we have a symmetric matrix U > 0 Srikant & Ying (2019)
such that

ΨTU + UΨ+ I = 0

which is called the Lyapunov equation. For symmetric matrix U , there exist largest and smallest
eigenvalues λmax and λmin respectively. In addition, λmax and λmin are both positive. So, the
constants are

c1 =
0.9

λmax
,

c2 = 2.25
λmax

λmin
,

c3 =
2λ2

max(r
2
max + 55(1 + rmax)

3)

0.9λmin
.

C.4 PROOF OF THE THEOREM 1

For the mean square error, we have

E[
N∑
i=1

∥wi
L,0 − w∗∥2]

=E[
N∑
i=1

∥wi
L,0 − w̄L,0 + w̄L,0 − w∗∥2]

≤2E[
N∑
i=1

∥wi
L,0 − w̄L,0∥2] + 2E[

N∑
i=1

∥w̄L,0 − w∗∥2]

≤2dE[∥QL,0∥2] + 2NE[∥w̄L,0 − w∗∥2] (14)

where the first inequality is due to ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 and the second inequality ∥X∥F ≤√
d∥X∥ for X ∈ Rd×N . Then, the stated result in equation 9 follows from Lemmas 1 and 2, and

equation 14.

This concludes the proof.
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