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ABSTRACT

Building a single generalist agent with zero-shot capability has recently sparked
significant advancements in decision-making. However, extending this capability
to multi-agent scenarios presents challenges. Most current works struggle with
zero-shot capabilities, due to two challenges particular to the multi-agent settings:
a mismatch between centralized pretraining and decentralized execution, and vary-
ing agent numbers and action spaces, making it difficult to create generalizable
representations across diverse downstream tasks. To overcome these challenges,
we propose a Masked pretraining framework for Multi-agent decision making
(MaskMA). This model, based on transformer architecture, employs a mask-based
collaborative learning strategy suited for decentralized execution with partial ob-
servation. Moreover, MaskMA integrates a generalizable action representation by
dividing the action space into actions toward self-information and actions related
to other entities. This flexibility allows MaskMA to tackle tasks with varying
agent numbers and thus different action spaces. Extensive experiments in SMAC
reveal MaskMA, with a single model pretrained on 11 training maps, can achieve
an impressive 77.8% zero-shot win rate on 60 unseen test maps by decentralized
execution, while also performing effectively on other types of downstream tasks
(e.g., varied policies collaboration and ad hoc team play).

1 INTRODUCTION

Foundation model is a large model trained on vast data and can easily generalize across various down-
streaming tasks in natural language processing, called emergent behavior. The powerful foundation
models (Ouyang et al., 2022; Touvron et al., 2023; Brown et al., 2020; Ramesh et al., 2022; Rombach
et al., 2022; Radford et al., 2021) bring artificial intelligence techniques to the daily life of people,
serving as the assistant to boost the development of various industries. The reinforcement learning
community (Chen et al., 2021; Carroll et al.; Liu et al.; Janner et al., 2021; 2022) has shown a
growing interest in designing simple yet effective foundation models and training strategies tailored
to decision-making. A natural follow-up question is how to build a foundation model that serves as a
single generalist agent with strong zero-shot capability for multi-agent decision-making.

Compared to single-agent scenarios, directly utilizing transformers for centralized pretraining in
multi-agent settings encounters two primary challenges. (1) Mismatch between centralized pretraining
and decentralized execution. Multi-agent decision-making typically follows centralized training with
a decentralized execution approach. However, transformers, as a centralized training architecture,
utilize all units as inputs. This misaligns with the decentralized execution phase where each agent’s
perception is limited to only nearby units, significantly impacting performance. (2) Varying numbers
of agents and actions. Downstream tasks have different numbers of agents, resulting in varying
action spaces. Most existing methods treat multi-agent decision-making as a sequence modeling
problem and directly employ transformer architectures, often overlooking or inadequately addressing
the aforementioned challenges. For instance, MADT (Meng et al., 2021) circumvents the mismatch
challenge by transforming multi-agent pretraining data into single-agent pretraining data and adopting
decentralized pretraining with decentralized execution, but this comes at the expense of not fully
utilizing the information from all agents during the pretraining stage. Regarding the issue of different
action spaces caused by varying agent numbers, MADT takes a simplistic approach by setting a
large action space and muting the unavailable actions using an action mask. However, this method
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Figure 1: Win rate on training and test maps. The dashed line (blue) separates the 11 training maps
on the left from the 60 test maps on the right. The orange line represents the performance difference
between MaskMA and MADT, showcasing how MaskMA outperforms MADT by up to 92.97%.

suffers from poor generalization because the same component of the action vector represents different
physical meanings in tasks with different numbers of agents.

In response, we propose two scalable techniques: a Mask-based Collaborative Learning Strategy
(MCLS) and a Generalizable Action Representation (GAR). The two techniques form the basis of a
new masked pretraining framework for multi-agent decision-making, named MaskMA. To address
the first challenge, we present a transformer with MCLS by incorporating random masking into
the attention matrix of the transformer, effectively reconciling the discrepancy between centralized
pretraining and partial observations and bolstering the model’s generalization capabilities. To handle
the second challenge, MaskMA integrates GAR by categorizing actions into those directed toward
the environment and those involving interactions with other units. The former relies solely on
self-information, and the latter depends on their interrelationships, respectively. This approach allows
MaskMA to excel across tasks with varying agent numbers and action spaces.

We evaluate MaskMA’s performance using the StarCraft Multi-Agent Challenge (SMAC) benchmark.
To validate the potential of zero-shot, we provide a challenging setting, using only 11 maps for
training and 60 maps for testing. Extensive experiments demonstrate that our model significantly
outperforms the previous state-of-the-art in zero-shot scenarios. We also provide various downstream
tasks to further evaluate the strong generalization of MaskMA, including varied policies collaboration,
teammate malfunction, and ad hoc team play. This work lays the groundwork for further advancements
in multi-agent fundamental models, with potential applications across a wide range of domains.

Our main contributions are as follows:

1. We introduce the masked pretraining framework for multi-agent decision-making (MaskMA),
which pre-trains a transformer architecture with a mask-based collaborative learning strategy
(MCLS) and a generalizable action representation (GAR).

2. To test MaskMA’s performance, we set up 1) a challenging zero-shot task: training on only 11 maps
and testing on 60 different maps in the SMAC (Samvelyan et al., 2019), and 2) three downstream
tasks including varied policies collaboration, teammate malfunction, and ad hoc team play.

3. MaskMA is the first multi-agent pretraining model for decision-making with strong zero-shot
performance. MaskMA, using a single model pre-trained on 11 training maps, achieves an
impressive 77.8% zero-shot win rate on 60 unseen test maps by decentralized execution.

2 RELATED WORK

Decision Making as Sequence Modeling Problem and Pretraining In recent years, the integration
of sequence modeling into decision-making paradigms has emerged as a promising avenue for
enhancing reinforcement learning strategies. DT (Chen et al., 2021) casts the reinforcement learning
as a sequence modeling problem conditioned on return-to-go, using a transformer to generate
optimal action. MaskDP (Liu et al.) utilizes autoencoders on state-action trajectories, learning the
environment’s dynamics by masking and reconstructing states and actions. Uni[MASK] (Carroll
et al.) expresses various tasks as distinct masking schemes in sequence modeling, using a single
model trained with randomly sampled maskings. In this paper, we explore the design of sequences in
MARL and how it can be made compatible with the mask-based collaborative learning strategy.
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Figure 2: MaskMA. MaskMA employs the transformer architecture combined with generalizable
action representation trained using a mask-based collaborative learning strategy. It effectively
generalizes skills and knowledge from training maps into various downstream tasks, including unseen
maps, varied policies collaboration, teammate malfunction, and ad hoc team play.

MARL as Sequence Modeling Problem Recently several works collectively contribute to the
understanding of MARL as a sequence modeling problem. MADT (Meng et al., 2021) introduces
Decision Transformer (Chen et al., 2021) into MARL, significantly improving sample efficiency and
achieving strong performance in both few-shot and zero-shot cases in SMAC. MAT (Wen et al., 2022)
leverages an encoder-decoder architecture, incorporating the multi-agent advantage decomposition
theorem to reduce the joint policy search problem into a sequential decision-making process. Tseng
et al. (2022) utilize the Transformer architecture and propose a method that identifies and recombines
optimal behaviors through a teacher policy. ODIS (Zhang et al., 2023) trains a state encoder and an
action decoder to extract task-invariant coordination skills from offline multi-task data. In contrast, our
proposed MaskMA adapts the Transformer architecture to MARL by designing a sequence of inputs
and outputs for a generalizable action representation. This approach offers broad generalizability
across varying actions and various downstream tasks.

Action Representation. Recent works have explored semantic action in multi-agent environments.
ASN (Wang et al.) focuses on modeling the effects of actions by encoding the semantics of actions to
understand the consequences of agent actions and improve coordination among agents. UPDeT (Hu
et al., 2021) employs a policy decoupling mechanism that separates the learning of local policies
for individual agents from the coordination among agents using transformers. In contrast, MaskMA
emphasizes sequence modeling and masking strategies, focusing on the correlation between agents
taking actions. While UPDeT concentrates on policy decoupling for improved coordination among
agents and ASN is centered on modeling the effects of actions and their interactions in multi-agent
environments, MaskMA aims to learn more generalizable skills from training maps, which can be
applied to a wide range of downstream tasks. This unique approach allows MaskMA to excel in
scenarios involving varied policies collaboration, teammate malfunction, and ad hoc team play.

3 METHOD

To achieve zero-shot generalization in multi-agent decision-making tasks, where the agents need
to cooperate and learn effective strategies to adapt to various scenarios, we propose MaskMA, a
masked pretraining framework for multi-agent decision-making, by leveraging the transformer with
generalizable action representation to capture the underlying correlations among agents and their
actions while maintaining adaptability to dynamic scenarios.

Agents are subject to partial observation in multi-agent tasks, i.e., each agent has limited sight and can
only observe part of other agents and other units (e.g., enemy to defeat) in the environment. Existing
works, such as those proposed in (Liu et al.) and (Hu et al., 2021), typically train each agent’s
policy independently. Specifically, the input to each agent’s policy is its own observation. Such
an independent learning pipeline leads to an increase in computational complexity of O

(
N3

)
w.r.t

agent numbers N . To address these challenges, we introduce Mask-based Collaborative Learning,
which employs random masking to train the policies collaboratively, aligning well with the partial
observation.
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Table 1: Win rate on training maps. The offline datasets consist of 10k or 50k expert trajectories
per map collected by specific expert policies. With the mask-based collaborative learning strategy,
MaskMA consistently demonstrates high performance in both centralized execution (CE) and decen-
tralized execution (DE) settings. Furthermore, MaskMA’s generalizable action representation allows
it to easily adapt and converge on maps with diverse characteristics. In contrast, MADT struggles to
handle different action spaces and achieves a win rate of only 51.78% even after extensive training.

Map name # Episodes Return Distribution Ours MADT

CE DE DE

3s vs 5z 50k 19.40±1.89 85.94±3.49 82.81±7.81 73.44±3.49
3s5z 10k 18.83±2.48 98.44±1.56 99.22±1.35 15.62±6.99

1c3s5z 10k 19.51±1.40 94.53±4.06 95.31±1.56 54.69±8.41
3s5z vs 3s6z 10k 19.69±1.27 85.94±6.44 85.16±5.58 14.84±9.97

5m vs 6m 10k 18.37±3.69 86.72±1.35 84.38±4.94 85.94±5.18
8m vs 9m 10k 19.12±2.57 88.28±6.00 86.72±4.06 87.50±2.21
MMM2 50k 18.68±3.42 92.97±2.59 86.72±4.62 62.50±11.69

2c vs 64zg 10k 19.87±0.48 99.22±1.35 92.97±2.59 34.38±9.11
corridor 10k 19.44±1.61 96.88±3.83 94.53±2.59 21.88±11.48
6h vs 8z 10k 18.72±2.33 75.00±5.85 76.56±6.44 27.34±6.77

bane vs bane 10k 19.61±1.26 96.09±2.59 98.44±1.56 91.41±4.62

average ∼ 19.20±2.04 90.91±3.56 89.35±3.92 51.78 ±7.27

3.1 FORMULATION

We exploit a decentralized partially observable Markov decision process (Oliehoek & Amato, 2015)
to define a cooperative multi-agent task, denoted as G =< S,U,A, P,O, r, γ >. Here S represents
the global state of the environment, and U ≜ {u1, u2, ..., uN} denotes the set of N units, where
the first M units are the agents controlled by the policy and the rest N −M units are uncontrolled
units in the environment. A = A1 × A2 × ... × AM is the action space for controllable units. At
time step t, each agent ui ∈ {u1, u2, ..., uM} selects an action ai ∈ Ai, forming a joint action
a ∈ A. The joint action a at state s ∈ S triggers a transition of G, subject to the transition function
P (s′ | s,a) : S × A × S → [0, 1]. Meanwhile, a shared reward function r (s,a) : S × A → R,
with γ ∈ [0, 1] denoting the discount factor. We consider a partially observable setting in which each
agent ui makes individual observations oi to the observation function oi = O(s, ui).

3.2 MASK-BASED COLLABORATIVE LEARNING

We utilize a standard causal transformer with only encoder layers as our model backbone. The input
is the recent L global states st−L+1, st−L+2, ..., st. We define st = {st (u1) , s

t (u2) , ..., s
t (uN )},

i.e., st is the union of the states of all units at t-th time step. At the input, the state st (ui) of each
unit ui at each time step t corresponds to a token, resulting in total L×N tokens. Note that st (ui)
only contains the state of the entity itself and does not include any information about other entities.
For example, in SMAC, st (ui) includes unit type, position, health, shield, and so on.

We define the local observation oti of each unit ui as the states of all units observed by unit ui at t-th
step, namely oti = {st (ui) | i ∈ pti}, with pti denoting the indexes of units observable to ui. Previous
methods independently learn the policy of each unit ui with their corresponding oti as the input. On
the contrary, in this paper, we propose to randomly mask part of the units in st and collaboratively
learn the policies of unmasked units. Formally, we randomly select part of the units in st for each
step t of the L input steps of states, represented by ŝt = {st (ui) | i ∈ mt}, and learns the policies of
the units ui in mt with supervised learning.

Specifically, we utilize the attention matrix to implement mask-based collaborative learning. We
define the original attention mask matrix mo, the mask matrix mr with elements that have a certain
probability of being 1, the final mask matrix m used by MaskMA, as well as some intermediate
matrices m1, m2, R and J2. The shape of these mask matrices is (LN × LN), corresponding to
L×N input tokens. We will proceed with the following steps to obtain m.
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Table 2: Win rate on test maps. We assessed the performance of MaskMA and other baseline
models on a collection of 60 unseen test maps. These models were trained using a set of 11 training
maps. The term “Entity” denotes the number of entities present in each individual map, while “Map
Numbers” represents the number of maps that fulfill certain conditions. The results demonstrate that
MaskMA is an excellent zero-shot learner.

Entity Map Numbers Ours MADT

CE DE DE

≤ 10 23 76.26±3.30 74.38±3.57 43.55±3.94
10 ∼ 20 22 83.81±2.85 80.08±2.98 46.77±3.67
> 20 15 79.01±5.02 79.48±3.84 39.53±3.61
All 60 79.71±3.56 77.75±3.42 43.72±3.76

For multi-agent sequential modeling, the mask is casual in the timestep dimension and non-casual
within each timestep. Therefore, we have m1 = Diag(J1, J1, ..., J1), where J1 is an N ×N matrix
filled with ones, and Diag constructs a diagonal matrix m1. Then we get m2 = Tri(J2), where
J2 is a matrix filled with ones, and Tri represents the operation of extracting the lower triangular
part. Finally, we get mo = m1 ∨ m2. Define the mask ratio as r, and generate the mask matrix
mr = R >= r, where R is a matrix obtained by uniform sampling elements from 0 to 1. Then we
get the final mask matrix m = mo ∧mr. We explore different types of masks, including a set of
fixed mask ratios, environment mask, and random mask ratios chosen from (0, 1) for units at each
time step. We observe that the implementation of the random mask strategy, which encompasses
different fixed ratios and mask types, leads to the acquisition of meaningful skills and knowledge
applicable to various downstream tasks.

Execution We can efficiently shift between centralized and decentralized execution by adjusting the
attention mask matrix m. For decentralized execution we alter m so that each agent only considers
surrounding agents during self-attention, while for centralized execution we set m as mo.

3.3 GENERALIZABLE ACTION REPRESENTATION

We harnessed the transformer’s capability to handle variable-length tokens, i.e., the architecture of
MaskMA naturally generalizes to tasks with variable numbers of agents. However, as most multi-
agent tasks involve actions that represent interaction among units, e.g., the healing and attacking in
SMAC. Therefore each action length also grows up with the unit number.

We propose Generalizable Action Representation (GAR) to enable the capacity of MaskMA in dealing
with the action space that varies according to unit number. Given an action ati that involves interaction
between two units ui and uj , we define ui as the executor of ati and uj the receiver. The embedding
E (ati) of ati is defined as E (ati) = ht

i ⊕ ht
j , where ht

i and ht
j are the output embedding of ui and uj

from the encoder, and ⊕ denotes the concatenation operation. With the E (ati) defined above, we
generate the logits of interactive action by FC (E (ati)), with FC denoting a fully-connected layer,
and use FC (ht

i) for actions that do not involve interaction. These logits are then combined and fed
into a softmax function to obtain the final action.

4 EXPERIMENTS

In this section, we design experiments to evaluate the following features of MaskMA. (1) Zero-shot
and convergence of MaskMA. We conduct experiments on SMAC using only 11 maps for training
and up to 60 maps for testing, assessing the model’s ability to generalize to unseen scenarios. In
SMAC tasks, agents must adeptly execute a set of skills such as alternating fire, kiting, focus fire, and
positioning to secure victory. These attributes make zero-shot transfer profoundly challenging. (2)
Effectiveness of mask-based collaborative learning strategy and generalizable action representation for
different multi-agent tasks. We conduct ablation studies to find out how the sequence modeling forms
of MaskMA affect performance and how the training strategy and generalizable action representation
boost the generalization of MaskMA. (3) Generalization of MaskMA to downstream tasks. We
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Table 3: Varied Policies Collaboration on 8m vs 9m. Cooperating with a different performance
player who achieves a 41% win rate, MaskMA demonstrates excellent collaborative performance in
diverse scenarios with varying numbers of agents with varied performance.

# Agents with varied performance 0 2 4 6 8

Win rate 86.72±4.06 89.84±2.59 79.69±5.18 62.50±7.33 41.41±6.00

Table 4: Teammate Malfunction on 8m vs 9m. ”Marine Malfunction Time” indicates the time of a
marine malfunction during an episode. For instance, a value of 0.2 means that one marine begins
to exhibit a stationary behavior at 1/5th of the episode. Entry 1.0 signifies the original 8m vs 9m
configuration without any marine malfunctions.

Marine Malfunction Time 0.2 0.4 0.6 0.8 1.0

Win Rate 1.56±1.56 37.5±6.99 71.09±6.77 86.72±2.59 86.72±4.06

evaluate the model’s performance on various downstream tasks, such as varied policies collaboration,
teammate malfunction, and ad hoc team play. This helps us understand how the learned skills and
strategies can be effectively adapted to different situations.

Setup. In SMAC (Samvelyan et al., 2019), players control ally units in StarCraft using cooperative
micro-tricks to defeat enemy units with built-in rules. Our approach differs from existing methods that
only consider grouped scenarios, such as Easy, Hard, and Super-Hard maps. Instead, we extend the
multi-agent decision-making tasks by combining different units with varying numbers. We include
three races: Protoss (colossus, zealot, stalker), Terran (marauder, marine, and medivac), and Zerg
(baneling, zergling, and hydralisk). Note that since StarCraft II does not allow units from different
races to be on the same team, we have designed our experiments within this constraint. Firstly, we
collect expert trajectories as offline datasets from the 11 training maps by utilizing the expert policies
trained with a strong RL method named ACE (Li et al., 2022) This yields 11 offline datasets, most of
which contain 10k episodes with an average return exceeding 18. Then, we employ different methods
to pretrain on the offline dataset and evaluate their zero-shot capabilities on 60 generated test maps.
As shown in Table 1, we run 32 test episodes to obtain the win rate and report the average win rate as
well as the standard deviation across 4 seeds. In the results we present, ‘CE‘ stands for centralized
execution, and ‘DE’ denotes decentralized execution. In cases where no specific notation is provided,
the results are based on DE. We take the MADT method as our baseline for comparison which utilizes
a causal transformer to consider the history of local observation and action for an agent.

4.1 PERFORMANCE ON PRETRAINING DATASETS

We assess MaskMA and baselines on offline datasets including 11 training maps. As shown in
Table 1, MaskMA achieves a 90% average win rate in 11 maps both for CE and DE, while MADT
only achieves a 51.78% win rate for DE and struggles in more challenging maps, even reaching a 14%
win rate. One key observation from the results is that MaskMA consistently performs well in both
centralized training centralized execution (CTCE) and centralized training decentralized execution
(CTDE) settings, highlighting its flexibility and adaptability in various execution paradigms.

Figure 3a represents the testing curve of MaskMA and the baseline in 11 training maps. MaskMA
significantly outperforms the baseline with lower variance and achieves more than 80% win rate in
most maps within 0.5M training steps, showing the robustness and efficiency of MaskMA. While
the mask-based collaborative learning strategy introduces a level of complexity that can cause a
performance degradation compared to MaskMA without masking during the pretraining phase, it
effectively forces MaskMA to adjust to varying ranges of observation, including both global and
partial observations and learn robust representations that are beneficial for generalization.

4.2 MASKMA AS EXCELLENT ZERO-SHOT LEARNERS

We present the results of our MaskMA and the baseline on zero-shot learning tasks in multi-agent
scenarios. Specifically, we evaluate different methods by the win rate on the 60 unseen test maps.
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Table 5: Ad hoc Team Play on 7m vs 9m. ”Marine Inclusion Time” indicates the time of adding an
additional marine during an episode. For example, a value of 0.2 represents adding one marine at
1/5th of the episode. Entry 1.0 signifies the original 7m vs 9m setup without any additional marine.

Marine Inclusion Time 0.2 0.4 0.6 0.8 1.0

Win Rate 80.47±7.12 78.12±2.21 50.00±8.84 10.94±6.81 0±0

Table 6: Ablation over mask-based collaborative learning strategy (MCLS) and generalizable
action representation (GAR). Baseline utilizes a transformer architecture. Each row adds a new
component to the baseline, showcasing how each modification affects the overall performance.

Setting CE DE

Transformer 44.67±3.35 8.03 ±1.44
+ MCLS 39.49±3.05 39.91±3.97
+ GAR 91.26±4.21 41.55±4.38
MaskMA (full model) 90.91±3.56 89.35±3.92

Table 2 shows that MaskMA outperforms the baseline method in zero-shot scenarios by a large
margin, successfully transferring knowledge to new tasks without requiring any additional fine-tuning.
Specifically, MaskMA achieves a 79.71% win rate for CE and a 77.75% win rate for DE, while MADT
only achieves a 43.72% win rate. These results indicate that MaskMA’s mask-based collaborative
learning strategy and generalizable action representation effectively address the challenges of partial
observability and varying agent numbers and action spaces in multi-agent environments.

Furthermore, we can observe that MaskMA consistently performs well across varying levels of
complexity, as demonstrated by the win rates in different entity groups. In contrast, MADT achieves
limited performance with high variance across different entity groups. This highlights the ability of
MaskMA to generalize and adapt to diverse scenarios, which is a key feature of a robust multi-agent
decision, making it a versatile and reliable choice for multi-agent tasks.

4.3 PERFORMANCE ON DOWNSTREAM TASKS

In this section, we provide various downstream tasks to further evaluate the strong generalization of
MaskMA, including varied policies collaboration, teammate malfunction, and ad hoc team play.

Varied Policies Collaboration. In this task, partial agents are controlled by the best policy, and other
agents are controlled by other policies with varied performance, as it requires generalized policies to
coordinate with different operations at various levels. We conducted simulations using a model with
average performance (win rate of 41%) to represent a player with a different policy in the 8m vs 9m
map, where our team controlled 8 marines to defeat 9 enemy marines. As shown in Table 3, MaskMA
exhibits seamless collaboration with other agents under different scenarios where varying numbers
of agents have different operations and performance. MaskMA dynamically adapts to the strategies
of other players and effectively coordinates actions. Furthermore, when the number of agents with
different performance is 8, MaskMA itself does not control any agents. Therefore, the win rate in this
case can represent the win rate of the players controlled by different policies and humans.

Teammate Malfunction. In this task, teammates may get out of order or die due to external factors
during inference. MaskMA is designed to handle such situations gracefully by redistributing tasks
among the remaining agents and maintaining overall performance. As shown in Table 4, MaskMA
exhibits robustness and adaptability in the face of unexpected teammate malfunction.

Ad hoc Team Play. In this task, agents need to quickly form a team with new agents during the
execution of the task. The challenge lies in the ability of the model to incorporate new agents into the
team and allow them to contribute effectively without disrupting the ongoing strategy. As shown in
Table 5, MaskMA demonstrates excellent performance in ad hoc team play scenarios, adjusting its
strategy to accommodate new agents and ensuring a cohesive team performance.
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Table 7: Mask type ablation. We compare various mask types for pretraining with fixed ratios from
0 to 0.8 and random ratios. Env represents using the local visibility of the agent in the environment.

Mask Type 0 0.2 0.5 0.8 Env Random (0, 1)

CE 91.26±4.21 89.70±3.81 88.21±3.78 82.81±4.83 55.97±4.67 90.91±3.56

DE 41.55±4.38 58.03±5.70 71.52±4.23 82.03±5.01 83.59±8.08 89.35±3.92

Overall, the results in this section demonstrate the versatility and generalization capabilities of
MaskMA across various downstream tasks. These findings highlight the potential of MaskMA to
advance the field of multi-agent and its applicability in real-world scenarios.

4.4 ABLATION STUDY

We perform ablation studies to access the contribution of each individual component: mask-based
collaborative learning strategy and generalizable action representation. Our results are reported in
Table 6 where we compare the performance of removing each component from MaskMA along with
our modifications to the architecture. Furthermore, we conduct ablation studies to understand the
influence of hyperparameters including timestep length and sight mask ratio.

Generalizable Action Representation. We ablate the generalizable action representation by com-
paring our proposed action space to an alternative action space, which aligns the maximum action
length with a specific action mask for each downstream task. As shown in Table 6, removing the
generalizable action space leads to significant performance degradation (row 4th and row 2nd),
emphasizing its importance in improving the model’s generalization capabilities.

Mask-based Collaborative Learning Strategy. Table 6 (row 4th and row 3rd) shows that the model
without masked training struggles to generalize to new settings, exhibiting significant performance
degradation. The mask-based collaborative learning strategy employed in MaskMA, while posing
a challenging pretraining task, helps the model learn permanent representations that are useful for
generalization. This is evident from the performance improvement in the CE setting, where MaskMA
demonstrates a better capacity to adapt to local observation situations compared to the one without
the mask-based collaborative learning strategy. Intuitively, the random mask ratio is consistent with
the inference process, where the number of enemies and allies gradually increases in an agent’s local
observation due to cooperative micro-operations, such as positioning, kiting, and focusing fire.

It is important to note that our “Transformer” column in Table 6 essentially represents behavior cloning
and our method outperforms behavior cloning by a significant margin. Furthermore, we provide
mask ratio analysis as shown in Table 7. The results show that as the masking ratio increases, the
performance of the model improves for decentralized execution (DE) while decreasing for centralized
execution (CE). This suggests that an appropriate masking ratio helps strike a balance between
learning useful representations and maintaining adaptability to dynamic scenarios in the agent’s local
observation. In conclusion, a random ratio mask is a simple yet effective way, considering the CE
and DE, to absorb the advantages of various fixed ratio masks and env masks. This approach allows
MaskMA to demonstrate strong performance in both centralized and decentralized settings while
maintaining the adaptability and generalization necessary for complex multi-agent tasks.

Timestep Length. To assess the importance of access to previous states, we ablate on the timestep
length K. As shown in Figure 3b, MaskMA performance is better when using a longer timestep length.
One hypothesis is that the POMDP property of the SMAC environment necessitates that policies
in SMAC take into account sufficient historical information in order to make informed decisions.
Considering the balance between performance and efficiency, we use K=10 in other experiments. This
choice allows MaskMA to leverage enough historical information to make well-informed decisions
while maintaining a reasonable level of computational complexity.

Zero-Shot Capability with Pretraining Map Numbers Figure 3c demonstrates the relationship
between zero-shot capability and the number of pretrained maps in MaskMA. As the number of
training maps increases, the win rate also improves, indicating that the model is better equipped
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Figure 3: (a) Learning curve. MaskMA consistently outperforms MADT on average win rate
in 11 training maps. (b) Ablation on timestep length. MaskMA performs better when using a
longer timestep length. (c) Ablation on pretraining map numbers. With the increasing number of
training maps, especially from 5 to 8, the model’s performance on various unseen maps also improves,
indicating better generalization to new tasks.

to tackle new situations. A marked uptick in win rate is observed when the map count rises from
5 to 8, underlining the value of training the model across varied settings. This trend in MaskMA
offers exciting prospects for multi-agent decision-making. It implies that by augmenting the count
of training maps or integrating richer, more intricate training scenarios, the model can bolster its
adaptability and generalization skills.

Training Cost and Parameter Numbers MaskMA processes the inputs of all agents concurrently,
achieving a notable degree of parallelism superior to MADT, which transforms multi-agent pretraining
data into single-agent data. Consequently, MaskMA is considerably more time-efficient than MADT
when trained over identical epochs. Specifically, MaskMA completes pretraining on 11 maps in 31
hours, whereas MADT requires 70 hours. For an equitable comparison, both MaskMA and MADT
employ transformers of the same architecture. The sole distinction is in the final fully connected (FC)
layer responsible for action output, making the parameter count for both models nearly identical.

5 LIMITATIONS AND FUTURE WORK

Comparison to More Specialized Models In our study, we focused on utilizing sequence modeling
and masking strategies for Multi-Agent decision-making. Although we achieved promising results,
comparing MaskMA with specialized models designed for specific tasks or environments could offer
deeper insights. In the future, we aim to conduct a comprehensive evaluation of MaskMA against
these specialized models to better understand the strengths and weaknesses of MaskMA.

More Data with Different Quality Our current evaluation was based on a limited dataset, which
may not fully represent the diverse range of possible agent interactions and environmental conditions.
We plan to explore the impact of different data qualities on the performance of our method. By
including datasets with varying levels of noise, complexity, and agent behavior, we aim to gain a
better understanding of our model’s robustness and sensitivity to data quality. This will help us further
refine MaskMA and enhance its performance in real-world scenarios with diverse data sources.

6 CONCLUSION

In this paper, we have addressed the challenges of zero-shot generalization and adaptability in multi-
agent decision-making. To tackle these challenges, we introduced MaskMA, a masked pretraining
framework for multi-agent decision-making that employs a transformer architecture, mask-based
collaborative learning strategy, and generalizable action representation. Our proposed framework
enables the model to learn effective representations and strategies by capturing the underlying correla-
tions among agents and their actions while maintaining adaptability to dynamic scenarios. Extensive
experiments on SMAC demonstrate the effectiveness of MaskMA in terms of zero-shot performance,
generalization, and adaptability to various downstream tasks, such as varied policies collaboration,
teammate malfunction, and ad hoc team play. Our findings encourage further exploration of more
sophisticated masking strategies and efficient pretraining techniques for multi-agent decision-making.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu, Mingfei Sun, David Bignell, Stephanie
Milani, Katja Hofmann, Matthew Hausknecht, Anca Dragan, et al. Uni [mask]: Unified inference
in sequential decision problems. In Advances in Neural Information Processing Systems.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent rein-
forcement learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001,
2021.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In
Proceedings of the AAAI conference on artificial intelligence, 2022.

Fangchen Liu, Hao Liu, Aditya Grover, and Pieter Abbeel. Masked autoencoding for scalable and
generalizable decision making. In Advances in Neural Information Processing Systems.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le, Xiyun Li, Weinan Zhang, Ying Wen,
Haifeng Zhang, Jun Wang, and Bo Xu. Offline pre-trained multi-agent decision transformer: One
big sequence model tackles all smac tasks. arXiv e-prints, pp. arXiv–2112, 2021.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized pomdps, 2015.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2186–2188, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

10



Under review as a conference paper at ICLR 2024

Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent
reinforcement learning with knowledge distillation. Advances in Neural Information Processing
Systems, 35:226–237, 2022.

Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action semantics network: Considering the effects of actions in
multiagent systems. In International Conference on Learning Representations.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling problem. Advances in Neural Information
Processing Systems, 35:16509–16521, 2022.

Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang. Discover-
ing generalizable multi-agent coordination skills from multi-task offline data. In The Eleventh
International Conference on Learning Representations, 2023.

11



Under review as a conference paper at ICLR 2024

In this Supplementary Material, we provide more elaboration on the implementation details and
experiment results. Specifically, we present the implementation details of the model training in
Section A and additional results and visualization in Section B.

A ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide a detailed description of the required environment, hyperparameters, and
the specific composition of the entity’s state for the SMAC. We will release our code, dataset, and
pretrained model after this paper is accepted.

A.1 ENVIRONMENT.

We use the following software versions:

• CentOS 7.9

• Python 3.8.5

• Pytorch 2.0.0

• StarCraft II 4.10

We conduct all experiments with a single A100 GPU.

A.2 HYPERPARAMETERS

As shown in Table 8, our experiments of MaskMA and baseline MADT utilize the same hyperparam-
eters.

Table 8: Hyperparameters of MaskMA and baseline MADT. It should be noted that both models
utilize the exact same set of hyperparameters.

Hyperparameter Value

Training

Optimizer RMSProp
Learning rate 1e-4

Batch size 256
Weight decay 1e-5

Architecture

Number of blocks 6
Hidden dim 128

Number of heads 8
Timestep length 10

A.3 STATE OF UNITS

In the original StarCraft II Multi-Agent Challenge (SMAC) setting, the length of the observation
feature fluctuates in accordance with the number of agents. To enhance generalization, MaskMA
directly utilizes each unit’s state as input to the transformer architecture. As depicted in Table 9,
within the SMAC context, each unit’s state comprises 42 elements, constructed from nine distinct
sections. Specifically, the unit type section, with a length of 10, represents the nine unit types along
with an additional reserved type.

B ADDITIONAL RESULTS AND ANALYSIS

B.1 WIN RATE OF ALL MAPS

As shown in Table 10, we present the win rate of MaskMA and MADT on 11 training maps and 60
testing maps.
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Table 9: The composition of the state.

State name dim

ally or enemy 1
unit type 10

pos.x and y 2
health 1
shield 2

cooldown 1
last action 7

path 9
height 9
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Figure 4: Performance comparison across different sizes of the pretraining dataset on the 3s vs 5z
Map.

B.2 COMPARITION OF PRETRAINING DATASET SIZE

The scale of the pretraining dataset significantly impacts the eventual performance. In the multi-agent
StarCraft II environment, SMAC, we investigated the optimal size for the pretraining dataset. We take
the 3s vs 5z map as an example and solely use the pretraining dataset of this map to train MaskMA,
and then test it on the same map. As illustrated in Figure 4, a dataset encompassing 1k episodes was
found insufficient, leading to a progressive decline in win rates. In contrast, a dataset comprising 50k
episodes demonstrated exceptional performance. Specifically, for the 3s vs 5z and MMM2 maps,
a pretraining dataset containing 50k episodes proved appropriate. For the remaining nine maps, a
dataset consisting of 10k episodes was found to be suitable.

B.3 VISUALIZATION

In this section, we provide visualizations of MaskMA’s behavior on three downstream tasks: varied
policies collaboration, teammate malfunction, and ad hoc team play. Figure 5, 6, 7 evaluate the
strong generalization of MaskMA. Additionally, we offer replay videos for a more comprehensive
understanding of MaskMA’s behavior and strategies.
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Table 10: Win rate of MaskMA and MADT on 11 training maps and 60 testing maps.

Map Ours MADT

CE DE DE

3s vs 5z 85.94 ±3.49 82.81 ±7.81 73.44 ±3.49
3s5z 98.44 ±1.56 99.22 ±1.35 15.62 ±6.99

1c3s5z 94.53 ±4.06 95.31 ±1.56 54.69 ±8.41
3s5z vs 3s6z 85.94 ±6.44 85.16 ±5.58 14.84 ±9.97

5m vs 6m 86.72 ±1.35 84.38 ±4.94 85.94 ±5.18
8m vs 9m 88.28 ±6.00 86.72 ±4.06 87.50 ±2.21
MMM2 92.97 ±2.59 86.72 ±4.62 62.50 ±11.69

2c vs 64zg 99.22 ±1.35 92.97 ±2.59 34.38 ±9.11
corridor 96.88 ±3.83 94.53 ±2.59 21.88 ±11.48
6h vs 8z 75.00 ±5.85 76.56 ±6.44 27.34 ±6.77

bane vs bane 96.09 ±2.59 98.44 ±1.56 91.41 ±4.62

2s vs 1z 100.00±0.00 100.00±0.00 70.31 ±10.00
3z vs 3s 71.88 ±3.83 53.91 ±9.47 0.00 ±0.00

1c2s 44.53 ±5.58 41.41 ±6.39 2.34 ±2.59
4z vs 3s 99.22 ±1.35 97.66 ±1.35 4.69 ±2.71

4m 99.22 ±1.35 100.00±0.00 28.91 ±6.00
1c3s 54.69 ±3.49 48.44 ±4.69 17.19 ±4.69

5m vs 4m 100.00±0.00 100.00±0.00 100.00±0.00
5m 100.00±0.00 100.00±0.00 98.44 ±1.56

2s3z 10.94 ±5.18 8.59 ±2.59 0.00 ±0.00
1s4z vs 1ma4m 91.41 ±4.62 88.59 ±3.41 35.16 ±3.41

3s2z vs 2s3z 9.38 ±5.85 11.72 ±2.59 0.00 ±0.00
2s3z vs 1ma2m2me 92.97 ±4.06 82.03 ±14.04 35.16 ±9.73
2s3z vs 1ma3m1me 90.62 ±3.12 93.75 ±3.83 37.50 ±7.97
1c3s1z vs 1ma4m 100.00±0.00 99.22 ±1.35 98.44 ±1.56
1s4z vs 2ma3m 83.59 ±7.12 77.66 ±3.41 73.44 ±6.44
1c3s1z vs 2s3z 100.00±0.00 100.00±0.00 78.12 ±5.85
2s3z vs 1h4zg 96.88 ±3.12 96.09 ±3.41 71.88 ±7.16
3s2z vs 2h3zg 95.31 ±5.18 93.75 ±4.42 75.00 ±3.83
1c4z vs 2s3z 100.00±0.00 100.00±0.00 71.88 ±6.63

2ma3m vs 2ma2m1me 46.09 ±12.57 39.06 ±9.24 0.00 ±0.00
2s3z vs 1b1h3zg 100.00±0.00 96.88 ±2.21 67.19 ±4.06

1s4z vs 5z 3.12 ±2.21 5.47 ±4.06 0.00 ±0.00
1c1s3z vs 1c4z 64.06 ±7.16 76.56 ±5.63 35.94 ±6.44

6m 97.66 ±2.59 99.22 ±1.35 47.66 ±5.12
1s3z vs 5b5zg 93.75 ±3.83 87.50 ±2.21 58.59 ±1.35

8z vs 6h 93.75 ±2.21 98.44 ±1.56 38.28 ±4.06
2s5z 17.97 ±4.06 7.03 ±3.41 0.78 ±1.35

1c3s1z vs 1b1h8zg 100.00±0.00 100.00±0.00 57.81 ±0.00
1c3s1z vs 1h9zg 100.00±0.00 100.00±0.00 60.94 ±0.00
2c1s2z vs 1h9zg 100.00±0.00 100.00±0.00 49.22 ±0.00

3ma6m1me vs 3h2zg 100.00±0.00 100.00±0.00 23.44 ±0.00
3s2z vs 1b1h8zg 97.66 ±1.35 85.94 ±4.69 52.34 ±2.59

5ma4m1me vs 1b3h1zg 100.00±0.00 100.00±0.00 98.44 ±2.71
4ma5m1me vs 5zg 100.00±0.00 100.00±0.00 85.94 ±8.12

1s5z vs 4ma6m 39.06 ±10.00 16.41 ±3.41 4.69 ±4.69
4ma7m vs 2s3z 98.44 ±1.56 100.00±0.00 35.16 ±13.07
2ma9m vs 3s2z 89.06 ±2.71 80.47 ±6.00 51.56 ±9.50
5s2z vs 2ma8m 48.44 ±9.24 29.69 ±11.16 8.59 ±4.06
2s5z vs 9m1me 99.22 ±1.35 99.22 ±1.35 46.09 ±4.94
1c3s vs 3h10zg 85.94 ±5.63 89.84 ±5.58 43.75 ±4.94

3s7z vs 5ma2m3me 99.22 ±1.35 96.88 ±3.83 60.94 ±2.59
1c3s6z 58.59 ±7.12 61.72 ±7.77 14.84 ±6.77

2c2s6z vs 1c3s6z 100.00±0.00 100.00±0.00 97.66 ±1.35
1c2s7z 25.00 ±9.63 25.78 ±5.12 7.81 ±3.49

1c4s5z vs 5ma3m2me 100.00±0.00 83.59 ±8.08 84.38 ±0.00
10s1z vs 1b2h7zg 96.09 ±4.06 96.88 ±2.21 68.75 ±1.56

10m vs 11m 79.69 ±6.44 78.91 ±7.45 0.00 ±0.00
1b10zg 85.16 ±5.58 89.06 ±7.16 60.16 ±5.12
2b10zg 92.19 ±4.69 98.44 ±1.56 30.47 ±5.58

1c vs 32zg 59.38 ±9.38 55.47 ±7.77 1.56 ±2.71
32zg vs 1c 92.97 ±3.41 94.53 ±3.41 53.91 ±3.12

1b20zg 74.22 ±10.91 82.81 ±2.71 66.41 ±7.45
2b20zg 100.00±0.00 97.66 ±1.35 71.09 ±4.94
3b20zg 96.09 ±3.41 88.28 ±4.62 85.94 ±4.69

16z vs 6h24zg 97.66 ±2.59 97.66 ±2.59 71.09 ±4.06
5b20zg 99.22 ±1.35 100.00±0.00 32.03 ±2.59

64zg vs 2c 55.47 ±6.39 56.25 ±2.21 48.44 ±8.41
1c8z vs 64zg 89.06 ±7.16 85.94 ±5.18 2.34 ±2.59

1c8z vs 2b64zg 61.72 ±7.77 65.62 ±5.85 0.00 ±0.00
1c8z vs 5b64zg 6.25 ±2.21 4.69 ±3.49 0.78 ±1.35
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(a) (b)

Figure 5: Varied Policies Collaboration on 8m vs 9m with 4 Agents with different policies. The
agents within the green box are controlled by other policies (replaced with a network trained with
a 41% win rate), while the agents within the red circle are controlled by MaskMA. (a): Initial
distribution of agents’ positions. (b): MaskMA dynamically adapts to the strategies of players by
different policies and effectively coordinates actions, resulting in a victorious outcome.

(a) (b)

Figure 6: Teammate Malfunction on 8m vs 9m with Marine Malfunction Time = 0.6. The agent
within the red circle suddenly malfunctions in the middle of the episode, remaining stationary and
taking no actions. (a): The agent within the red circle starts malfunctioning. (b): Despite the
malfunctioning teammate, other agents continue to collaborate effectively and eventually succeed in
eliminating the enemy.
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(a) (b)

(c) (d)

Figure 7: Ad hoc Team Play on 7m vs 9m with Marine Inclusion Time = 0.8. This experiment
demonstrates that when new Marines are added near the end of an episode, MaskMA still can quickly
incorporate them into the team and enable them to contribute effectively. (a): Initial distribution
of agents’ positions. (b): Prior to the addition of the new Marine, our team is left with only three
severely wounded agents, on the brink of defeat. (c): The new agent (indicated by the red arrow)
joins our team and immediately engages the enemy. (d): With the assistance of the newly added
agent, our team successfully defeats the enemy.
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