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ABSTRACT

This work addresses the problem of active 3D mapping, where an agent must
find an efficient trajectory to exhaustively reconstruct a new scene. Previous
approaches mainly predict the next best view near the agent’s location, which
is prone to getting stuck in local areas. Additionally, existing indoor datasets
are insufficient due to limited geometric complexity and inaccurate ground truth
meshes. To overcome these limitations, we introduce a novel dataset AiMDoom
with a map generator for the Doom video game, enabling to better benchmark
active 3D mapping in diverse indoor environments. Moreover, we propose a new
method we call next-best-path (NBP), which predicts long-term goals rather than
focusing solely on short-sighted views. The model jointly predicts accumulated
surface coverage gains for long-term goals and obstacle maps, allowing it to effi-
ciently plan optimal paths with a unified model. By leveraging online data collec-
tion, data augmentation and curriculum learning, NBP significantly outperforms
state-of-the-art methods on both the existing MP3D dataset and our AiMDoom
dataset, achieving more efficient mapping in indoor environments of varying com-
plexity.

1 INTRODUCTION

Autonomous 3D mapping of new scenes holds substantial importance for vision, robotics, and
graphics communities, with applications including digital twins. In this paper, we focus on the
problem of active 3D mapping, where the goal is for an agent to find the shortest possible trajectory
to scan the entire surface of a new scene using a depth sensor.

This task is extremely challenging as the agent has to identify an efficient trajectory without knowing
the scene in advance. Existing works can be broadly categorized into rule-based and learning-based
approaches. Rule-based approaches, such as frontier-based exploration (FBE) (Yamauchi, 1997),
utilize heuristic rules to select optimal frontiers at the boundaries of the already-known space for
the next movement. Though being simple and generalizable, they fail to leverage data priors to
develop more efficient planning strategies. To address this, learning-based methods, often referred
to as next-best-view planning (NBV), train parametric policies for action prediction. Although NBV
approaches have demonstrated promising results, most of them only are evaluated on single-object
datasets or outdoor scenes (Guédon et al., 2022; Chang et al., 2015; Peralta et al., 2020), ignoring a
critical but more difficult setting of indoor environments for active 3D mapping applications.

Existing indoor datasets (Xia et al., 2018; Chang et al., 2017), however, offer limited geometry com-
plexity and often include imperfect ground truth meshes, making them inadequate to fully evaluate
model performance in complex indoor environments. In this work, we automatically construct a new
indoor dataset called AiMDoom for active 3D mapping. AiMDoom is built upon a map generator
for the Doom video game, and features a wide range of indoor settings of four difficulty levels: Sim-
ple, Normal, Hard and Insane. As illustrated in Figure 1a, even in relatively simple indoor settings
of our dataset, the state-of-the-art NBV approach MACARONS (Guédon et al., 2023) is frequently
trapped in a limited area and misses substantial portions of the scene. This limitation arises because
most NBV methods only look one step ahead to identify the next best view in neighbouring regions,
making it difficult to explore under-reconstructed areas at far distances.

Some recent works (Chen et al., 2024; Feng et al., 2024; Zhan et al., 2022; Georgakis et al., 2022) at-
tempt to overcome this limitation by searching for the next optimal view across a broader range. For
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(a) MACARONS (simple scene). (b) Our NBP (simple scene). (c) Our NBP (hard scene).

Figure 1: Reconstruction results and trajectories of MACARONS (Guédon et al., 2023) and our
NBP model. Guédon et al. (2023) fails to fully map the environment in simple scenes (a), while our
NBP model manages to capture the full scene (b), even in much more complex geometry (c).

example, Georgakis et al. (2022) utilizes a strategy that relies on averaging predicted uncertainties
at each point along every sampled path, and uses a trained point-goal navigation model. However,
training separate uncertainty map prediction and navigation models is less efficient, and the scene
uncertainty does not directly align with the ultimate objective of 3D mapping.

Therefore, we further propose a novel approach called next-best-path (NBP) planning, which shifts
from NBV approaches that predict a single nearby view, to predicting an optimal path in a unified
model. Our model is composed of three key components: a mapping progress encoder, a coverage
gain decoder and an obstacle map decoder. The mapping progress encoder efficiently encodes the
currently reconstructed point cloud along with the agent’s past trajectory. Based on the encoded
representation, the coverage gain decoder predicts a value map over a large spatial range centred on
the agent’s current location. Each cell in the map represents the surface coverage gain accumulated
along the optimal trajectory from the agent’s location to the cell, which corresponds to the final
metric for active mapping. The cell with the highest value score is viewed as a long-term goal. The
obstacle map decoder predicts obstacles in both seen and unseen regions by leveraging the agent’s
current knowledge of the scene. This allows us to compute the shortest path to the long-term goal
while avoiding obstacles. To train the model, we collect data online and iteratively improve the
model. We also propose a data augmentation method that exploits a property of shortest paths and a
combined curriculum and multitask learning strategy to enhance training efficiency.

We evaluate our methods on the existing indoor benchmark MP3D (Chang et al., 2017) and our
dataset AiMDoom. The proposed NBP model significantly outperforms state-of-the-art methods on
both datasets from simple (Figure 1b) to more complex indoor environments (Figure 1c).

Our key contributions can be summarized as follows:

• We introduce AiMDoom, the first benchmark to systematically evaluate active mapping in indoor
scenes of different levels of difficulties.

• We propose a novel next-best-path approach that jointly predicts long-term goals with optimal
reconstruction coverage gains, and obstacle maps for trajectory planning.

• Our approach achieved state-of-the-art results on both the AiMDoom and MP3D datasets.

We will release the dataset, codes and trained models publicly upon acceptance.

2 RELATED WORK

Active Mapping. Active mapping aims to exhaustively reconstruct a 3D scene in the shortest pos-
sible time with a moving agent. Unlike SLAM (Chaplot et al., 2020; Placed et al., 2023; Matsuki
et al., 2024), which addresses both localization and mapping, active mapping focuses on recon-
struction, continuously selecting viewpoints to cover the entire scene, assuming the pose is known.
Early methods often relied on frontier-based exploration (FBE) approaches (Yamauchi, 1997). The
key idea is to move the agent toward a heuristically selected frontier along the boundary between
reconstructed and unknown regions of the scene. Among different strategies (Bircher et al., 2016;
Cieslewski et al., 2017; Zhou et al., 2021; Tao et al., 2023) for frontier selection, moving to the near-
est frontier serves as a strong baseline. Additionally, there are efforts (Cao et al., 2021; Xu et al.,
2024) combining global FBE and local planning strategies within a hierarchical optimization frame-
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Table 1: Comparison between AiMDoom and prior indoor 3D datasets. Navigation complexity
is the maximum ratio of geodesic to euclidean distances between any two navigable locations in the
scene. Universal accessibility means whether windows and doors are accessible.

Dataset Replica RoboTHOR MP3D Gibson
(4+ only) ScanNet HM3D AiMDoom (Ours)

Simple Normal Hard Insane

Number of scenes 18 75 90 571 (106) 1613 1000 100 100 100 100
Floor space (m2) 2.19k 3.17k 101.82k 217.99k (17.74k) 39.98k 365.42k 63.33k 134.84k 321.38k 548.85k
Navigation complexity 5.99 2.06 17.09 14.25 (11.90) 3.78 13.31 11.31 18.38 36.05 45.25
Universal accessibility ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Easy expansion ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

work to enhance exploration efficiency. However, these FBE-based approaches are heuristic-based
and cannot exploit prior learned from data to explore more efficiently, restricting their performance
in complex environments.

To address this limitation, learning-based approaches have been explored to select the next-best
views (NBV) for efficient 3D mapping. The NBV-based methods train models to select the optimal
pose from nearby camera poses (Guédon et al., 2022; 2023; Lee et al., 2023) or from a limited
predefined view space such as a hemisphere (Zhan et al., 2022; Lee et al., 2022; Peralta et al., 2020;
Zeng et al., 2020; Mendoza et al., 2020). While these methods show promising results to reconstruct
single objects, their performance remains limited in large environments. Due to the narrow search
space for the next pose, NBV methods behave like a greedy policy and thus can easily get stuck in
local regions. To mitigate this, some works Ramrakhya et al. (2022); Chen et al. (2023) use imitation
learning to learn from human demonstrates which prioritize unseen exploration but with the cost of
heavy labelling. More recently, efforts have been made to enlarge the search range for the next best
view (Chen et al., 2024; Ran et al., 2023; Pan et al., 2022; Georgakis et al., 2022). However, these
methods are still primarily evaluated on single-object datasets with small moving steps, and often
rely on optimizing indirect metrics like reconstruction uncertainty (Georgakis et al., 2022), which
are not directly aligned with the goal of exhaustive 3D reconstruction. In this work, we extend the
evaluation to more complex indoor environments and also introduce a new surface coverage gain
criterion that optimizes the coverage gain along the best trajectory towards a long-term goal.

3D mapping datasets. Existing datasets for 3D mapping mainly focus on single isolated objects
such as those in ShapeNet (Chang et al., 2015) and OmniObject3D (Wu et al., 2023), or outdoor
scenes (Lu et al., 2023; Hardouin et al., 2020), where the agent only needs to move around the
scene to achieve full reconstruction. These datasets are comparatively less complex than indoor en-
vironments where the agent must enter into the scene. The indoor scenes contain unique challenges
such as dead ends and tight corners, which often force the agent to backtrack without significantly
improving its objective.

While some works (Yan et al., 2023; Georgakis et al., 2022; Ramakrishnan et al., 2020) incorporate
indoor scene datasets such as Gibson (Xia et al., 2018) and MP3D (Chang et al., 2017), these often
exhibit significant limitations. Existing synthetic datasets (Straub et al., 2019; Deitke et al., 2020)
often lack scene complexity, whereas real-world scans (Dai et al., 2017; Ramakrishnan et al., 2021),
despite offering greater representational fidelity, are constrained by limited structural and map diver-
sity and often suffer from substantial noise artifacts. This lack of reliable datasets prevents compre-
hensive evaluation in active 3D mapping tasks. In this work, we propose a new dataset - AiMDoom,
designed for benchmarking active mapping in indoor environments of different complexities.

3 THE AIMDOOM DATASET

In this section, we introduce AiMDoom, a new dataset for Active 3D Mapping in complex indoor
environments based on the Doom video game 1. As Doom features a wide variety of indoor settings,
we use its map generator to create four sets of maps of increasing geometric complexity: Simple,
Normal, Hard, and Insane. In the following, we first detail how we built these maps and then discuss
the key challenges presented in our AiMDoom dataset.

1https://en.wikipedia.org/wiki/Doom_(franchise)
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(a) Bird-eye views of samples from the Simple, Normal, Hard, and Insane levels (from left to right).

(b) Representative images showing the internal structural composition of the scene.

Figure 2: Maps from our AiMDoom dataset. The AiMDoom dataset includes four levels of
geometric complexity with various textures.

Dataset construction. We used the open-source software Obsidian 2 to automatically generate
Doom maps as our indoor environments. Four sets of hyperparameters are proposed to control
architectural complexity and texture styles in Obsidian. By varying these hyperparameters, we pro-
duced maps categorized into Simple, Normal, Hard and Insane difficulty levels. Each difficulty level
is made of 100 maps with 70 for training and 30 for evaluation.

The maps include doors and windows, all of which are configured to be open. This allows the agent
to see and pass through the doors and windows. We converted the maps to the widely used OBJ
format, and used Blender (Community, 2018) to consolidate the texture images of each map into
a single texture image. This makes the maps compatible with Pytorch3D (Ravi et al., 2020) and
Open3D (Zhou et al., 2018). Further details are presented in the supplementary material.

Key challenges. The AiMDoom dataset presents three key challenges for active 3D mapping.
Firstly, the dataset features environments with intricate geometries and layouts as shown in Fig-
ure 2, making it challenging to determine the optimal exploration direction for effective mapping.
Secondly, the maps have small doors and narrow corridors, requiring careful path planning to nav-
igate. Finally, the map diversity requires the reconstruction system to generalize across different
scenes. Table 1 compares AiMDoom with existing indoor 3D datasets (Straub et al., 2019; Deitke
et al., 2020; Chang et al., 2017; Dai et al., 2017; Xia et al., 2018; Ramakrishnan et al., 2021), high-
lighting our dataset’s strengths in scene area and navigation complexity.

We will release the dataset along with a comprehensive toolkit to generate the data, which enables
easy expansion of the dataset for future research.

4 LEARNING ACTIVE 3D MAPPING

4.1 OVERVIEW

Problem definition. Active 3D mapping aims to control an agent, such as an unmanned aerial
vehicle (UAV) or wheeled robot, to efficiently and exhaustively reconstruct a 3D scene. The agent
starts at a random location within the scene, and at each time step t, it receives an RGB-D image It
and must predict the next one ct = (cpos

t , crot
t ) in the immediate surrounding of the agent. Here, cpos

t
denotes the position coordinates, and crot

t represents the orientation angles. The agent continually
predicts successive ct until a predefined time limit T is reached. The final output is the reconstructed
3D point cloud of the explored environment.

2https://obsidian-level-maker.github.io/
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Figure 3: Overview of the proposed next-best-path (NBP) framework. The model (left, see
Section 4.2) predicts a value map of coverage gain and an obstacle map, which are used for decision
making (right, see Section 4.3) to obtain a next-best path.

Overview of our approach. Existing approaches for active mapping (Guédon et al., 2022; 2023)
typically predict the next camera pose ct in a greedy manner, which often suffers from getting stuck
in limited areas. To address this limitation, we propose a novel approach that predicts a long-term
goal camera pose and uses it to guide the next camera pose selection. Given all past observations and
camera poses, our model predicts two key components centred on the agent’s current pose ct: (1) a
value map Mct , which estimates the surface coverage gain of candidate poses c in the surrounding
of ct, and (2) an obstacle map Oct , which accounts for both visible and predicted unseen obstacles
in the environment. From the value map Mct , we derive the long-term goal pose cg and combine
it with the obstacle map Oct to compute an optimal path τt = (ct, ct+1, · · · , cg) that navigates the
agent from its current pose ct to the goal pose cg . This long-term goal-driven strategy helps the
model avoid the pitfalls of short-sighted decisions and enhances coverage efficiency.

In the following, we first describe the model for Mct and Oct prediction in Section 4.2, then fol-
lowed by the decision-making process to determine the next best path τt in Section 4.3. Finally, in
Section 4.4, we introduce the training algorithm for our model.

4.2 COVERAGE GAIN AND OBSTACLE PREDICTION MODEL

Figure 3 depicts the deep model we use to predict the coverage gains and the obstacle map. We
detail this model below.

Mapping Progress Encoder. Let’s denote Pt the reconstructed point cloud at each time step t,
obtained by adding the back-projected depth image It to the previously accumulated point cloud
Pt−1. Directly encoding the point cloud via 3D neural networks can be complex and inefficient.
Therefore, we convert the 3D point cloud into multiple 2D images as inputs to a 2D-based encoder.

To be specific, we first centre and crop the point cloud based on the agent’s current position ct.
Centering the input on the agent makes the model invariant to the agent’s position and thus improves
generalization. Then, the point cloud is divided into K horizontal layers along the gravity axis. For
each layer, we average the occupancy value along the gravity axis to transform each 3D data into a
2D image. In this image, each pixel encodes the density of 3D points within a specific height range.
The stack of K point cloud projected images provides a simplified yet informative representation of
the 3D structure.

Similarly, we project the 3D trajectory of the agent’s past camera poses onto a 2D plane where each
pixel denotes the frequency of visits to that location. This plane serves to mitigate the exploratory
value of previously traversed regions. We define Ect to include the K point cloud projected images
and a single historical trajectory image.

Given the stacked 2D images of Ect , we employ an Attention UNet (Oktay et al., 2018) encoder with
4 downsampling convolutional blocks to extract mapping progress features ect .

Coverage Gain Decoder. This decoder predicts from ect a 3D value map Mct ∈ RHc×Wc×Nc

centered on the agent. It is composed of two upsampling convolutional blocks with an attention
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mechanism. The first two dimensions of the predicted value map, Hc and Wc, correspond to the
camera’s 2D position in the environment, while the third dimension Nc represents different camera
orientations. Each value in Mct quantifies the estimated coverage gain achievable by moving the
camera along the shortest trajectory from its current pose to the specific camera pose. The value map
Mct guides the selection of both long-term goal poses cg and intermediate poses along the trajectory,
enabling a two-stage optimization for efficient exploration, which will be discussed in Section 4.3.

Obstacle Map Decoder. This decoder predicts the geometric layout Oct ∈ RHo×Wo of the current
moving plane, also from the encoder output ect . Oct is a binary map representing potential obstacles
around the current agent location, which is used for path planning. To be noted, Oct includes not
only visible obstacles but also anticipated unseen obstacles based on the structure of the partially
reconstructed point cloud, providing useful priors for navigation. This decoder is implemented using
Attention U-Net with 4 upsampling convolutional blocks, and the output is passed through a sigmoid
activation function to generate the binary obstacle map.

4.3 DECISION MAKING FOR NEXT-BEST-PATH PREDICTION

We derive both a long-term goal cg and next-best-path τt = (ct, ct+1, . . . , cg) from the predicted
Mct and Oct , employing different decision making strategies for training and inference. During
training, we balance exploitation and exploration, while we prioritize exploitation during inference.

Training phase. We rely on the Boltzmann exploration strategy (Cesa-Bianchi et al., 2017) to
sample a camera pose as the goal cg based on the value map Mct . The probability of selecting a
camera pose c as the goal is given by:

P (cg = c) =
exp(Mct [c]/β)∑

c′∈C exp(Mct [c
′]/β)

, (1)

where C represents all possible camera poses within Mct , β is the temperature parameter that bal-
ances exploration and exploitation, and Mct [c] denotes the value of the cell for candidate c.

Once the long-term goal cg is sampled, we use the Dijkstra algorithm to find the shortest obstacle-
free path from the current position cpos

t to goal position cpos
g with a ground truth obstacle map. To

select camera orientation along the path, we also leverage Mct to sample one orientation from Nc

potential orientations at each position. This strategy enhances data diversity and alleviates the risk
of converging to local optima.

Algorithm 1 Training procedure.
N : number of training iterations
Ne: number of iterations using easy data
Sn: the number of trajectories per scene
Initialize memoryM← ∅ and model parameters θ
for n← 1 to N do

Initialize training set T ← ∅
for each scene in training set do

for s← 1 to Sn do
Collect training data {dl}Ll=1

if n ≤ Ne then T ← T ∪ {dl : t ≥ 10}Ll=1

else T ← T ∪ {dl}Ll=1 endif
end for

end for
M←M∪ T
T ← T ∪ RandomSample(M\ T , |T |)
for e← 1 to E do

Update θ with loss in Eq. (3) over T
end for

end for
return θ

Inference phase. At inference, we take
cg as the pose with the maximum value
in Mct , and the path planning is based
on the predicted obstacle map Oct instead
of ground truth. Each position in the tra-
jectory is assigned the optimal orientation
from the heatmap Mct for its location. In
practice, the predicted obstacle map may
not be entirely accurate. Encountering an
unexpected obstacle requires halting the
trajectory and initiating a new decision-
making phase.

4.4 MODEL TRAINING

Algorithm 1 outlines the training proce-
dure for our model. We first gather train-
ing data from all training scenes using the
current model, and then update the model
with the new data. This process is repeated
iteratively until the model achieves con-
vergence. We detail below the data col-
lection, training objectives to update the
model, and the training strategy.
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Training data collection. After sampling the goal pose cg and the trajectory τt, we generate ground
truth labels to train the value map Mct and obstacle map Oct .

For Mct , we compute the coverage gain for the cell that corresponds to cg as the ground truth label.
Let Pt and Pg denote the reconstructed point clouds at pose ct and cg respectively, where Pg is
the result of accumulating depth information into Pt as the agent moves along the trajectory τt. By
comparing the reconstructed point clouds with the ground truth point cloud PGT, we can obtain the
coverage gain ∆Covct→cg :

∆Covct→cg =
1

NGT

NGT∑
i=1

[
1

(
min
y∈Pg

∥xGT
i − y∥ < ϵ

)
− 1

(
min
y∈Pt

∥xGT
i − y∥ < ϵ

)]
, (2)

where NGT is the number of points in PGT, ∥·∥ denotes the Euclidean distance, and ε is a predefined
distance threshold. Consequently, we set ∆Covct→cg as the ground truth value for Mct [cg].

For Oct , we use the 3D mesh of the scene to derive the ground truth obstacle map OGT
ct . Specifically,

we intersect the 3D mesh with a plane at the agent’s height, and project this intersection onto a 2D
grid. This 2D grid is binarized to distinguish between obstacles and free space. Finally, we centre
the 2D grid around the agent’s current position as OGT

ct .

To enhance the efficiency of data generation, we further perform a data augmentation by leveraging
the property of Dijkstra’s algorithm, where every sub-path of a shortest path is also a shortest path.
From a given path τt = (c0 = ct, . . . , cm = cg), we compute the coverage gain ∆Covci→cj for
each segment of the path (ci, cj) where 0 ≤ i < j ≤ m. More specifically, we update the ground
truth values along the Dijkstra path MGT

ci [cj ] = ∆Covci→cj . We also collect the input Eci and the
ground truth of surrounding obstacles OGT

ci for each ci ∈ τt. This significantly increases the number
of training samples derived from a single trajectory.

We store all augmented pairs {dl}Ll=1, dl = (Eci ,MGT
ci , OGT

ci ) in memory for training, where L is the
length of the trajectory.

Multi-task training. We jointly train the coverage gain and obstacle map prediction using data
stored in memory. We use the mean squared error (MSE) loss for training the coverage gain predic-
tion, and the binary cross-entropy (BCE) loss for training the obstacle map prediction. To balance
these two tasks effectively, we apply learnable uncertainty weights for each task, following Kendall
et al. (2018). Our multi-task loss function for sample dl is formulated as follows:

L(θ; dl) =
1

2σ2
1

LMSE(M
GT
ci , M̂ci) +

1

σ2
2

LBCE(O
GT
ci , Ôci) + log σ1 + log σ2 , (3)

where θ represents the model parameters, σ1 and σ2 are learnable uncertainty weights, M̂ci and Ôci
are the model’s predictions for the coverage gain and obstacle maps respectively.

Training strategy. We adopt a curriculum training strategy (Liu et al., 2017; Yuan et al., 2022;
Yan et al., 2021; De Lange et al., 2021) to train our model, starting with easier-to-predict samples
and gradually incorporating the entire dataset. In particular, we consider that the initial steps of a
trajectory are more challenging since the agent has limited observations. Therefore, during the first
Ne training iterations, we exclude samples from the first 10 steps in a trajectory. After Ne iterations,
all samples in a trajectory are used in training.

During each training iteration, we use a balanced combination of previously stored data from the
memory and newly collected data generated by the current model (Wulfmeier et al., 2018; Mnih,
2013; Rolnick et al., 2019; Aljundi et al., 2019), which helps prevent catastrophic forgetting. Each
training phase is limited to E epochs to balance between enhancing performance and preventing
overfitting on sub-optimal data.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset and simulation setup. We evaluate our model on the Matterport3D (MP3D) dataset (Chang
et al., 2017) and our own AiMDoom dataset.

7
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Table 2: Evaluation results on AiMDoom Dataset. For each difficulty level, all baseline models,
including ours, are trained from scratch on the corresponding training set to ensure a fair comparison.

Simple Normal Hard Insane

Final Cov. AUCs Final Cov. AUCs Final Cov. AUCs Final Cov. AUCs

Random 0.323±0.156 0.270±0.135 0.190±0.124 0.152±0.103 0.124±0.082 0.088±0.060 0.074±0.048 0.050±0.035

FBE 0.760±0.174 0.605±0.171 0.565±0.139 0.415±0.109 0.425±0.114 0.311±0.080 0.330±0.097 0.239±0.079

SCONE 0.577±0.173 0.483±0.138 0.412±0.114 0.313±0.087 0.290±0.093 0.210±0.072 0.196±0.079 0.140±0.060

MACARONS 0.599±0.200 0.479±0.172 0.418±0.120 0.314±0.088 0.302±0.097 0.218±0.070 0.192±0.078 0.139±0.058

NBP (Ours) 0.879±0.142 0.692±0.156 0.734±0.142 0.526±0.112 0.618±0.153 0.432±0.115 0.472±0.095 0.312±0.073

For MP3D, we use the same setting as prior work (Yan et al., 2023) for fair comparison. The input
posed depth images have a resolution of 256 × 256 with a horizontal field of view (hFOV) of 90◦.
The mobile agent starts in the traversable space at a height of 1.25m and chooses its next camera
pose by moving forward by 6.5cm or turning left/right by 10◦. Depending on the size of each scene,
the agent can take a maximum of 1000 or 2000 steps. We focus only on single-floor scenes following
Yan et al. (2023) with 10 and 5 scenes in training and evaluation respectively.

For AiMDoom, we utilize a 70/30 train/test split for scenes in each difficulty level. The input RGB-
D images are rendered at the resolution of 456 × 256 with hFOV of 90◦. The agent navigates in a
traversable space of height 1.65m. The moving step includes 4 position movements (move forward,
backward, left, or right by 1.5m) and 8 rotation movements (turn left or right by increments of 45◦,
covering the full 360◦). The maximum steps for Simple, Normal, Hard, and Insane levels are set to
100, 200, 400, and 500 respectively, to adapt to their different complexity.

Evaluation metrics. We follow prior works (Chen et al., 2024; Guédon et al., 2023) and adopt two
key metrics to evaluate the performance of active 3D reconstruction: (1) Final Coverage measures
the scene coverage at the end of the trajectory, and (2) AUCs evaluates the efficiency of the recon-
struction process by calculating the area under the curve of coverage over time. The surface coverage
is computed using ground truth meshes, consistent with prior work (Guédon et al., 2023). We evalu-
ate five trajectories per scene using identical random initial camera poses for different methods. We
report the mean and standard deviation for each metric across all testing trajectories.

For a fair comparison with prior work in MP3D, we employ another set of metrics to evaluate
coverage: (1) Comp. (%), the proportion of ground truth vertices within 5cm of any observation,
and (2) Comp. (cm), the average minimum distance between ground truth vertices and observations.

Implementation details. Our model takes a stack of K = 4 projected 2D images and one previous
trajectory projected image as inputs, each with a resolution of 256 × 256 covering a 40m × 40m
exploration area centred on the camera’s current position. The extracted feature ect from the encoder
is of size 16 × 16 × 1024. The output value map Mct is of size 64 × 64 × 8 and an obstacle map
of 256 × 256 × 1, both representing the same 40m × 40m area. The model is trained for at most
N = 15 iterations, with the first Ne = 1 iterations using easier samples and Sn = 2 trajectories
per scene. For subsequent iterations, we use all samples and reduce the trajectory count to Sn = 1
per scene. Each trajectory has a length of 100 steps and starts at a random location. During the first
data collection iteration, we randomly sample 1,000 validation examples from memory and exclude
them from training. Gradient accumulation is used in training which results in an effective batch
size of 448. The learning rate is set to 0.001 and is decayed by a factor of 0.1 if the validation loss
plateaus. We apply early stopping to terminate training when validation loss no longer decreases.
The training is performed on a single NVIDIA RTX A6000 GPU, with an average completion time
of 25 hours.

5.2 COMPARISON WITH STATE OF THE ART METHODS

MP3D. We compare our method with five baselines on the MP3D dataset, including: 1) Random,
which randomly selects a camera pose among all candidates for the next step; 2) Frontier-based
Exploration (FBE) (Yamauchi, 1997), which heuristically moves the agent to the nearest frontier;
3) OccAnt (Ramakrishnan et al., 2020), which predicts the occupancy status of unexplored areas
and rewards the agent for accurate predictions; 4) UPEN (Georgakis et al., 2022), which utilizes
an ensemble of occupancy prediction models to guide the agent towards paths with the highest un-
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(a) Results of MACARONS. It generates complicated trajectories and often gets trapped in local areas.

(b) Results of our NBP method. It efficiently travels in the scene and reconstructs the scene well.

Figure 4: Comparison of our NBP method with the state-of-the-art MACARONS method. Both
methods start from the same initial pose, marked in deep blue. For a clearer visualization, please
refer to the video in the supplementary materials.
certainty; 5) ANM (Yan et al., 2023), which guides exploration through a continually-learned neural
scene representation. Table 3 presents the results. Our NBP method achieves the best performance,
with a 6.23 absolute gain for the completion ratio compared to the previous best ANM (Yan et al.,
2023) model.

Table 3: Comparison on the MP3D dataset.

Method Comp. (%) ↑ Comp. (cm) ↓
Random 45.67 26.53
FBE 71.18 9.78
UPEN 69.06 10.60
OccAnt 71.72 9.40
ANM 73.15 9.11
NBP (ours) 79.38 6.78

AiMDoom. The proposed AiMDoom dataset
is more challenging than MP3D dataset for ac-
tive 3D mapping. We mainly benchmark our
approach against state-of-the-art Next-Best-
View (NBV) approaches, including: SCONE
(Guédon et al., 2022) which employs volu-
metric integration to sum the potential visibil-
ity points for each candidate camera pose in
the subsequent step and is trained using su-
pervised learning; and MACARONS (Guédon
et al., 2023) which quantifies the coverage
gains of potential next camera poses to select

the best one and utilizes a self-supervised online learning paradigm. Both approaches select the
next camera pose in a greedy manner. Unfortunately, we were unable to include UPEN (Georgakis
et al., 2022) and ANM (Yan et al., 2023) in our comparison. These methods rely on the navigation
policy DD-PPO (Wijmans et al., 2019) trained on their environments (Savva et al., 2019), which
requires extensive GPU hours and thus is infeasible to retrain it on our dataset. However, we imple-
mented FBE (Yamauchi, 1997) on our dataset, a recognized strong baseline in reconstruction and
exploration tasks.

As shown in Table 2, our method significantly outperforms the baselines across all metrics on four
levels of AiMDoom. While NBV approaches such as SCONE and MACARONS excel in outdoor
or single-object scenarios, their performance deteriorates in complex indoor environments. As illus-
trated in Figure 4, MACARONS struggles to escape local areas due to its short-term focus. It only
selects the next best pose in nearby regions, and once these areas - such as the interior of a single
room - are fully reconstructed, it has difficulty moving out of the room to explore under-explored,
distant regions. In contrast, our approach overcomes this limitation by incorporating long-term goal
guidance to determine the next-best path. In addition, our method surpasses the strong baseline FBE.
Although FBE enables better exploration compared to state-of-the-art NBV methods on our dataset,
its simple heuristic of moving to the nearest frontier leads to sub-optimal scene reconstruction as it
lacks strategic planning for efficient coverage.

9
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Despite the superior performance of our model, the results in hard and insane environments are still
unsatisfactory, highlighting the significant challenges posed in our dataset.

5.3 ABLATION STUDY

Figure 5: Comparisons of different spatial ranges
for value map prediction.

In this section, we perform ablation experi-
ments to demonstrate the effectiveness of dif-
ferent components in our model. All the ex-
periments below are conducted on the Normal
level of AiMDoom.

Spatial range of long-term goal. We com-
pare the impact of different spatial ranges for
the prediction of the value map Mct and ob-
stacle map Oct , which in turn determines the
maximum distance of the long-term goals cg .
Specifically, we experiment with map sizes of
20m×20m to 50m×50m. The results are pre-
sented in Figure 5. When the value map covers
a smaller area, the goal cg is close to the agent’s
current position, leading to behaviour similar to
existing NBV methods that struggle with explo-
ration. On the other hand, if the map size is too large, predicting Mct and Oct becomes much more
challenging. Our findings demonstrate that selecting an appropriate spatial range for the value map
is crucial for balancing exploration efficiency and prediction accuracy.

Table 4: Ablation study on using the oracle map
for obstacle avoidance at inference.

Obstacle Map Final Cov. AUCs
Predicted 0.734 ±0.142 0.526 ±0.112

Oracle 0.808 ±0.115 0.580 ±0.105

Oracle obstacle map. In Table 4, we replace
the predicted obstacle map with the ground truth
obstacle map for path planning during inference,
while maintaining to use the predicted value map
for long-term goals. Using the oracle obstacle
map improves the performance by 0.074 on final
coverage and 0.054 on AUCs, but is far from per-
fect. This suggests that the major bottleneck is
the value map prediction.

Table 5: Comparison of single-task and
multi-task learning for the value map
and obstacle map prediction.

Strategy Final Cov. AUCs
Single-task 0.712 ±0.136 0.501 ±0.101

Multi-task 0.734 ±0.142 0.526 ±0.112

Multi-task training. We also explore the influence of
multi-task learning in predicting the value map Mct and
the obstacle map Oct . For comparison, we train two sep-
arate models that use the same input to predict Mct and
Oct respectively. The results show that multi-task learn-
ing raised the precision of obstacle prediction to 0.805,
surpassing the single-task’s 0.754. Table 5 further demon-
strates that multi-task learning enhances performance, in-
dicating that the two tasks are complementary with each

other to enhance learning.

6 CONCLUSION

In this paper, we tackle the challenging problem of active 3D mapping of unknown environments.
We introduce a new dataset, AiMDoom, designed to benchmark active mapping in indoor scenes
with four difficulty levels. Our evaluations of existing methods on the AiMDoom dataset reveal
shortcomings of short-sighted next-best-view prediction in complex large indoor environments.
Hence, we propose the next-best-path (NBP) method, which integrates a mapping progress encoder,
a coverage gain decoder and an obstacle map decoder. The NBP model can efficiently reconstruct
unseen environments guided by predicted long-term goals, achieving state-of-the-art performance
on both the MP3D and AiMDoom datasets. However, we observe considerable room for improve-
ment in more difficult levels of our dataset, and the major limitation lies in long-term goal prediction
rather than obstacle map prediction.
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