Under review as a conference paper at ICLR 2025

COMPLEXITY-AWARE DEEP SYMBOLIC REGRESSION
WITH ROBUST RISK-SEEKING POLICY GRADIENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper proposes a novel deep symbolic regression approach to enhance the
robustness and interpretability of data-driven mathematical expression discovery.
Despite the success of the recent break-through, DSR, it is built on recurrent neural
networks, purely guided by data fitness, and potentially meet tail barriers, which
can zero out the policy gradient and cause inefficient model updates. To overcome
these limitations, we use transformers in conjunction with breadth-first-search to
improve the learning performance. We use Bayesian information criterion (BIC)
as the reward function to explicitly account for the expression complexity and op-
timize the trade-off between interpretability and data fitness. We propose a mod-
ified risk-seeking policy that not only ensures the unbiasness of the gradient, but
also removes the tail barriers, thus ensuring effective updates from top performers.
Through a series of benchmarks and systematic experiments, we demonstrate the
aforementioned advantages of our approach.

1 Introduction

Interpretability is an essential measure of machine learning models. Although large complex mod-
els, such as those with billions of parameters, have become standard practice in many fields, these
models are typically black-box and provide little insight about the data. This can raise severe con-
cerns regarding the reliability of deploying such models, particularly in scientific and engineering
domains. Symbolic regression (SR) Jobin et al.| (2019); Rudin| (2019) is an important research di-
rection to achieve interpretability in machine learning. Given a dataset that measures the input and
output of a complex system of interest, symbolic regression aims to find a simple, concise equation
to reveal the underlying mechanism of the system as to improve the understanding of the system and
ensure reliability of the model.

For a long time, genetic programming (GP) Kozal (1994)); Randall et al.|(2022); Burlacu et al.|(2020)
has been the mainstream approach for symbolic regression. However, GP is known to be compu-
tationally costly and time consuming due to the its evolutionary nature. The recent break-through,
Deep Symbolic Regression (DSR) [Petersen et al|(2019), instead uses a recurrent neural network
(RNN) to generate expression trees, and employs a risk-seeking policy to train the RNN via rein-
forcement learning. While DSR is successful in many SR benchmarks, the RNN-based architecture
might cause learning bottlenecks, such as vanishing gradients [Hochreiter] (1998)), especially in large
tree structures. In addition, DSR uses data fitness as the reward, which can tend to generate com-
plex expressions to overfit the data, especially with the presence of noise. Furthermore, due to the
usage of the reward difference as the weights in the policy gradients, DSR takes the risk of meeting
tail barriers, namely, zero policy gradients, which can render the learning to be only driven by the
entropy term, leading to over-exploration and inefficient model updates.

To overcome these limitations, we propose a novel approach, complexity-aware deep symbolic re-
gression (CADSR). The major contributions of our work are summarized as follows.

* Expression Model. We use transformers [Vaswani et al.| (2023) to build the expression
generation model, which can fully leverage the contextual information of each node in the
expression tree and overcome RNN learning bottlenecks to improve the performance. To
obtain a good representation, we design tree node encodings based on both the depth and
horizontal position. We couple with breadth-first-search (BFS) to sample the expression
tree, which is not only computationally efficient but also straightforward to implement.

Under review as a conference paper at ICLR 2025

* Reward Design. We design a Bayesian Information Criterion (BIC) as the reward function,
for which we use the number of nodes and constant tokens in the expression tree to indicate
the model complexity. BIC is justified by Bayesian model selection (Wasserman,|[2000) and
strongly connects to the minimum description length (MDL) (Rissanen, [1978)), making it
a principled and robust approach. In this way, our reward function considers not only the
data fitness but also the expression complexity. The reinforcement learning can then seek
to optimize the trade-off between the interpretability and data fitness of the expressions,
avoiding producing over-complicated expressions that overfit the data, especially at present
of noises.

* Policy Gradient. We propose a modified risk-seeking policy gradient for our BIC-based
reward. Instead of using the reward difference as the weight to compute the gradient, we use
a simple step reward mapping, which gives a constant weight. We show that this guarantees
to prevent the learning from meeting any tail barrier or partial tail barrier. Accordingly,
we can effectively leverage all the top performers for model updating, avoiding wild, less
useful exploration.

* Experiments. We evaluated the performance of our method, CADSR, on the standard SR
benchmark and ablation studies. In addition to DSR, we compared with seventeen other
popular and/or state-of-the-art SR methods and several commonly used machine learning
approaches. The performance of CADSR in both symbolic discovery and prediction accu-
racy is consistently among the best. In particular, the symbolic discovery rate of CADSR
is the highest when data includes significant noises. In all the cases, CADSR generates
the most interpretable expressions, while maintaining a high level of accuracy. CADSR
outperforms the most comparable model, DSR, in all categories showing that it is a di-
rect improvement. Extensive ablation studies further demonstrate the effectiveness of each
component of our method.

2 Background

Given a set of input and output examples collected from the target system, denoted as D =
{(xi,y:)}¥.,, symbolic regression aim to identify a concise mathematical expression that character-
izes the input-output relationship, such as y = sin(27z1) + cos(2wx3). Deep symbolic regression
(DSR) Petersen et al.|(2019) discovers equations via an RNN-based reinforcement learning approach
Sutton & Barto| (2018)), which can be broken down into four parts: environment, actor, reward, and
policy.

The environment is designed to be the creation of an expression tree that represents a specific equa-
tion. Expression trees are directed trees where each node holds a token from the available list of op-
erations and variables. For example, a common list of tokens would be {+, —, X, /, sin, cos, z1, 1 }.
Expression trees are built by selecting nodes in a preorder traversal of the tree with each tree starting,
with only the root node. After a token for a node is selected, empty children will be added to node
based on the token. Binary functions will have two empty children added, unary functions will only
have one child, and variables will have no children. These trees are many-to-one mappings to the
mathematical expressions, which causes an increase in the search space but prevents the generation
of any invalid expression.

The actor is an RNN that predicts a categorical distribution of the available tokens for each node in
the expression tree based on the hidden state of the RNN and the sibling and parent of the current
node. Each token is randomly sampled from the categorical distribution. Additional rules are applied
to the sampling process to prevent the selection of redundant operations or variables. Since the RNN
builds the expression trees in a preorder traversal (POT) ordering, there can be a significant delay
between the prediction of sibling tokens.

The reward function and policy drive the actor to explore and exploit the complex environment. In
DSR, the reward function is a direct measurement of the data fitness of the generated expression,

1

R(r)= ——
(7) = T NRMSE’

(D

Under review as a conference paper at ICLR 2025

where 7 denotes the expression, NRMSE represents the normalized root-mean-square error, and is
defined as NRMSE = - /L 3™ (y; — 7(x;))? where o, is the standard deviation of the training

Ty

output in the dataset.

Once each expression tree has an associated reward, DSR applies a risk-seeking policy to update
the actor according to its best predictions. Specifically, at each step, DSR samples a large batch of
expressions, ranks their rewards, and selects the top a% expressions to compute a policy gradient,

1 B ; ,
Viis(:0) = — > [R(T") = Ra] - 1pir)2 r, Vo log(p(77]6)),)

where B is the batch size, 1, is an indicator function, 7(*) is the i-th expression in the batch, 0

denotes the RNN parameters, log(p(7(?|)) is the probability of 7(*) being sampled by the current
RNN, R, is the 1 — /100 quantile of the rewards in the batch. Accordingly, all the equations
below top a% will not influence the update of the actor. Via such policy, the actor is able to generate
worse-performing equations without it affecting the actor’s overall performance — we only care
about the top performed expressions. This allows for more unrestrained exploration and targeted
exploitation of the top performers.

In addition to the policy gradient (2)), DSR also introduces an “entropy bonus”, to update the RNN
actor parameters 6. The entropy bonus is the average entropy gradient for the token distributions
associated with the top a% expression trees. Denote the entropy bonus as V Jengopy (65 @), the RNN
parameters 6 are updated via

0—06—-1- (VJrisk(‘g; Oé) + v=]enlr()py(‘9§ 05))7 3)

where [> 0 is the learning rate.

3 Method

We now present CADSR, our new deep symbolic regression approach.
3.1 Transformer Actor

First, we design a transformer|Vaswani et al.[(2023)) as the actor in the reinforcement learning frame-
work. RNNs rely on a single hidden state that summarizes the information across all the previous
nodes, which can be insufficient and is known to cause the vanishing gradient issue [Hochreiter
(1998) in larger structures. By contrast, the transformer explicitly integrate information of all the
nodes to extract representations and make predictions, and hence can overcome the vanishing gradi-
ent issue and more effectively capture the nodes’ relationships.

Specifically, to represent the expression tree nodes, we design a positional encoding (PE) to reflect
their location information. Given a particular node, we consider both the depth, d, and horizontal
position, h, in the tree. To align the horizontal positions of the nodes across different layers, we
propose the following design. Denote the horizontal position of the parent node by h,, if the node
is the left child, we assign its horizontal position as h = h, — h, /2%, otherwise we assign h =
hy + hy / 27, In this way, the parent node will be in between its two children horizontally, which
naturally reflects the tree structure. The horizontal position for the root node is set to 1/2. See Fig.
for an illustration. We develop a recursive algorithm to efficiently calculate the horizontal positions
of all the nodes, as listed in Appendix Algorithm|3| Given d and h, we then create a 2D-dimensional
encoding,

‘ : d
PE(d, h, 27,) = SHI(W), (4)

. d
PE(d, h, 2Z + 1) = COS(W), (5)
PE(d, h,2j + D) = sin(h), (6)
PE(d,h,2j + 1+ D) = cos(h), (7

where 0 < 4,5 < |D/2|. The embedding of each tree node is the positional encoding plus the
one-hot encodings of the tokens associated with the parent and sibling nodes (if these nodes exist).
By default, every tree node — when created — is assigned an empty token.

Under review as a conference paper at ICLR 2025

To predict a token distribution for each node (according to which we can sample new tokens to
generate expressions), we use multiple self-attention layers across all the nodes in the tree, followed
by a linear layer, and then apply softmax to the output to produce the token distribution for each
node.

Expression Sampling. To generate an expression,
we need to dynamically grow the expression tree and
sequentially sample the token for each node, since

Token

we do not know the tree size and structure before- oE I

hand. DSR uses a preorder traversal to sample the (1, 1/2)

token for each node. Since the order indexes of the POT: BFS 1:1

nodes can vary with tree growth, one needs to re-

vectorize the whole tree at every step, and hence it

can be inefficient. To overcome this problem, we A sin
use the breadth-first-search (BFS) order. Since the (2, 1/4) (2,3/4)
tree is expanding layer by layer, the ordering of the 2:2 5.3
previous nodes will never change, and therefore we

only need to perform vecotrization once before per-

forming any sampling. This is not only efficient X1 Cl1 X2

but straightforward to implement. Given the token 3, 1/8) 3, 3/8) 3. 5/8)
distribution, we first fill out invalid tokens and then 34 4:5 6: 6

sample from the remaining. Whenever the tokens
have formed an valid expression, we stop the sam-
pling and return the expression. The expression tree
sampling is summarized in Algorithm 2] of the Ap-
pendix.

Figure 1: Expression tree for y = z7! +sin(x2).
POT and BFS denote the node order for preorder
traversal and breadth-first-search, respectively.

3.2 BIC Reward Function

Interpretability is a key motivation for symbolic regression. However, if one uses data fitness as
the reward to guide the learning, like in DSR, it will tend to learn lengthy, complex expressions to
overfit the data, especially when data contains noise, which is common in practical applications. This
can hurt the interpretability of the learned expressions. To address this problem, we use Bayesian
information criterion (BIC) (Schwarz, [1978)) to construct a new reward function. As a principled
and robust approach, BIC is derived by maximizing the model evidence through integrating out the
model parameters, and is thus justified by Bayesian model selection (Wasserman, 2000). BIC has
a known similarity to minimum description length (MDL) Rissanen| (1978), allowing BIC to be
interpreted as an approximation of MDL.

To reflect the complexity of a sampled expression, we set k to the number of nodes in the expression
tree plus the number of constant tokens. The inclusion of the number of constant tokens is twofold:
first, since the values of the constant tokens are unknown apriori — we need to estimate their val-
ues from data, they actually sever as unknown model parameters (like those in neural networks)
and introduce extra degrees of freedoms, which increase the model complexity. Second, this can
also prevent the actor from selecting an unnecessary number of constant tokens, which can cause a
significant increase in runtime for optimizing their values. Our BIC reward is given below,

BIC(7) = klog(N) — 2log(L(7)) (8)

where log(L(7)) = Zfil log N (yi|7(x;),0?) is a (log) Gaussian likelihood, o2 is the variance of
the training outputs, and N denotes the number of training points.

3.3 Robust Risk-Seeking Policy

While our BIC reward can account for expression complexity, applying it to the risk-seeking policy
presents several challenges. The first challenge is that, because BIC is unbounded, directly incorpo-
rating it into equation (2)) compromises unbiasedness.

Lemma 3.1. When using the BIC reward (8), the risk-seeking policy gradient (2)) is not guaranteed
to be unbiased.

Under review as a conference paper at ICLR 2025

Algorithm 1 Complexity-Aware Deep Symbolic Regression (CADSR)

input Learning rate [; risk factor «; batch size B; coefficients A > 0 and Ay > 0
output The best equation 7*

1: Initialize transformer with parameters 6

2: while i < epochs do

32 T« {7 ~ p(-|0)} 2., {Sample B expressions using the transformer}
T < {OptimizeConstants(7(")}¥., {Optimize the values of the constant tokens}
R+ {BIC(r®")}¥, {Calculate the reward for each expression using ()}
Ra + (1 — «/100)-quantile of R {Find the reward that denotes the top a%}
T« {r® : R(r%) > R,} {Reduce the sampled expressions to the top performers}
g1+ 25 Zszl Vo logp(T160) {Compute for top a% gradient}

9 g+ 2% S8 Ve H(T10) {Compute entropy gradients}
10: 0+ 0+1(g1+g2)
11: if max R > R(7*) then 7* < 7(@2mXR) Update best equation}
12: end while
13: return 7*

® Nk

We leave the analysis in Appendix Section To overcome this problem, a commonly used
strategy, which is also adopted in DSR, is to introduce a continuous mapping that maps the reward
value to a bounded domain. For example, DSR uses the mapping f(z) = 1; where z € [0, o0,
which maps the unbounded NRMSE (in [0, o)) to the range (0, 1]; see (I). Another choice can be
the sigmoid function, s(z) = H% that maps from (—oo, 00) to (0,1). In doing so, we can apply
Leibniz rule to interchange integration and differentiation to show the unbiasedness of the policy
gradient. However, this strategy brings up the second challenge. That is, the reinforcement learning
can encounter a fail barrier, defined as follows.

Definition 3.2 (Tail barrier). Let o € [0,1). A risk seeking policy meets a o-tail barrier if the top
a% rewards of the sampled actions (e.g., expression trees) are all equal to R,,.

Lemma 3.3. Given any continuous mapping f that can map unbounded reward function values to a
bounded domain (e.g., (—o0,00) — [0, 1)), suppose the reward function is continuous, there always
exists a set of distinct rewards values that numerically create a tail barrier in the risk-seeking policy.

The proof is given in Appendix Section In practice, since we often use continuous reward
functions (e.g., NRMSE or Gaussian likelihood) and reward mappings, there is a risk of encountering
the tail barrier. From (2), we can see that the tail barrier can incur zero policy gradient, since all the
top a% rewards are identical to R, leading to a zero weight for every gradient. As a consequence,
the actor model would not have any effective updates according to the feedback from the selected
expressions (top performers). In DSR, the RNN model will be updated only from the entropy bonus
(see (@), and henceforth the learning starts to explore wildly.

To address these challenges, we use a step function to perform a reward mapping,

A, ifz > R,

JG) = {O, otherwise ®
where A > 0 is a constant. Then the risk-seeking policy gradient is given by
s :
Viik(0ia) = —5 > Lbicro)srae) Vo log(p(r™]6). (10)

i=1

Lemma 3.4. By using the step function Q) for reward mapping, the policy gradient with our BIC
reward, as shown in (10), is unbiased and will not encounter any tail barrier.

The proof is given in Appendix Section[D.3] Our approach is summarized in Algorithm

Under review as a conference paper at ICLR 2025

4 Related Work

DSR is a reinforcement learning method that uses an RNN actor [Petersen et al.| (2019). The risk-
seeking policy rewards the actor only for top-performing expressions, which allows the actor to
make a diverse range of predictions without being punished for poor average performance.

Many symbolic regression models have started to use transformers, such as Kamienny et al.| (2022));
Valipour et al.| (2021); |Vastl et al.| (2022)). However, all of these models learn the mapping directly
from the dataset to the expression trees in a supervised fashion. This type of models is named as
Deep Generative Symbolic Regression (DGSR) by [Kamienny et al.[(2023). To achieve this end-to-
end learning, a much larger model architecture is necessary, along with a substantial collection of
datasets. By contrast, DSR and our method are not DGSR; they essentially perform unsupervised
learning, and the dataset only corresponds to one (unknown) expression. Hence, the model size
and data quantity is much smaller. Recently, [Shojaee et al.| (2023)) developed Monte Carlo tree
search (MCTS) with transformers (TPSR) to conduct DGSR. TPSR assumes a pre-trained trans-
former is given, and conducts an efficient search to identify well-performed expressions. TPSR
introduces a regularization term to control the expression complexity. The reward is specified as

r(t()|x,y) = Wm(x)) + /\exp(fW) where I(f(-)) retrieves the number of tokens in the

given expression, and A > 0 is the weight of the regularization term. Note that our work does not
assume the availability of a pre-trained model. Throughout the evaluation, our method has never
utilized a pre-trained transformer. Nonetheless, our ablation study demonstrates that our frame-
work can be easily adapted to incorporate pre-trained models and gain their benefits; see Section[5.3)
Kamienny et al.| (2023) proposed DGSR-MCTS, which also uses MCTS search but uses a critic
network — a transformer based model — to scores expressions without using the reward function,
which allows for incomplete expressions to be evaluated by the critic.

Another relevant recent work is symbolic physics learner (SPL) (Sun et al.,[2023)), which uses MCTS

but employs a different regularized reward function, r(7(-)|x = n- , that
P ’ s . (r()w) /A 2K, Iy —7(xa)lI3

has a discount factor 7 that is raised to the n, which represents the number of product rules in the

expression tree. This regularized reward function selects equations that use the fewest product rules,

but does not have any regularization based on the length of the expression.

Lastly, the recent work uDSR [Landajuela et al.| (2022) combines several different methods together
to improve DSR. One of the additions is a transformer trained using supervised learning or reinforce-
ment learning to provide the RNN actor with additional information about the dataset. uDSR also
incorporates genetic programming to each expression tree generation step, which allows for a larger
variety of expression trees to be generated each epoch. Validating the performance of the different
parts of uDSR required several ablation studies, where every combination of methods, including
DSR, was tested in the uDSR paper|Landajuela et al.|(2022). The addition of a transformer to DSR
showed minimal improvement and occasionally hindrance to uDSR during the ablation study. Fur-
thermore, genetic programming was the single biggest influence on performance, showing that there
needs to be an improvement to DSR. uDSR appeared on the Pareto frontier near the optimal mixture
of accuracy and complexity.

S Numerical Experiments

For evaluation, we examined CADSR in the well known comprehensive SRBench dataset|La Cava
et al.[(2021), and then we studied each component of CADSR to confirm their efficacy.

5.1 Overall Performance

In SRBench, we first tested on the 133 problems with known solutions. We ran eight trials for each
problem at the four noise levels, 0%, 0.1%, 1%, and 10%. We ran CADSR in a large computer
cluster, for which we set a time limit of 6 hours for each trial. We deployed the trials on 10 V100
GPUs with parallelization of 6 processes per GPU. The maximum number of epochs is set to 2000
without early termination. The architecture of the transformer is shown in Appendix Fig. 8| In each
epoch, we sampled a batch of 1000 expressions to compute the policy gradient. We used ADAM
optimization where the learning rate was set to SE-4. The full list of hyperparameters of our method
is provided in Appendix Table|l} We compared with 17 popular and/or state-of-the-art SR methods

Under review as a conference paper at ICLR 2025

Symbolic Solution Rate (%) R? Test Simplified Complexity
TPSR (A =0.1) Not Reported] 3
uDSR —-— —— Not Reported Not Reported
CADSR —E-an— = o
AlFeynman & —e— — —_——— =
AFP_FE -e: n a
DSR —-= = 3
AFP -] -
gplearn — a- = Target Noise
Bingo B-&- —w— -3 - = 1?:"
GP-GOMEA ®e-—#— L] R ® 01%
ITEA B—e—n = a 0%
EPLEX -- = me
Operon ®» —¥# 2 « -
SBP-GP ® 1] B
BSR » —== a
FEAT 1 - e
FFX 1 - e
MRGP 1 —_— < «o- —
0 20 40 60 8000 02 04 06 08 10 4o 102 10° 10°

Figure 2: Symbolic regression performance on 133 problems from SRBench with known solutions.

in terms of Symbolic Solution Rate (%), R? test, and Simplified Complexity, which are standard
metrics for SR evaluation. These SR baselines include AlFeynman [Udrescu & Tegmark| (2020),
AFP_FE [Schmidt & Lipson| (2009), DSR [Petersen et al.| (2019), Bingo |Randall et al.| (2022), etc.
The majority of these are genetic programming methods with a few notable exceptions: DSR is
deep reinforcement learning, BSR [Jin et al.| (2020) is an MCMC method with a prior placed on the
tree structure, and AlFeynmen is a divide-and-conquer method that breaks the problem apart by
hyper-planes and fits with polynomials. The results of the competing methods are retrieved from the
public SRBench report|[La Cava et al.| (2021). We show the results of all the methods in Fig. 2]

Overall, CADSR shows strong performance in sym-
bolic discovery as measured by Symbolic Solute

Rate. In particular, when data includes significant

noise (10%), CADSR achieves the best solution rate, XGB

showing that our method is more robust to noise 20 (e
than gll the competing methqu. Meanwhlle,'the o ML
simplified complexity of our discovered expressions x ° '
is among the lowest. This together shows that our & ¥srp-o1) .

method, with the BIC reward design, not only can ﬁ ® \.

find simpler and hence more interpretable expres- 3 \ S .

sions, but also is more resistant to data noise. The B2 £'° T

Test shows the prediction accuracy of the discovered - RFP TS .
expressions. As we can see, the R? Test obtained 5 N :
by CADSR is close to the best.The slightly better \fs"'
methods, such as AFP_FE and GP-GOMEA, how-

dDSR' —
ever, generate lengthier and more complex expres- 7
sions, which lack interpretability and are much far 0 5 ;‘% T 5 20

. . est Rank
away from the ground truth expression. It is worth
noting that CADSR outperforms DSR in both Sym-) .
bolic Solution Rate (%) and R? Test, showing an Ellglltri 3: Pagleto fro?ts‘l’{fBead;rmithOd mn 1120
improvement on both expression discovery and pre- o<"P0X Problems o ench; the true solu-
L. . tions are unknown.

diction accuracy. When data does not have noise,
AlFeynman, uDSR, and Bingo shows better Symbolic Solution Rate than CADSR. This might be
because AlFeynman tends to use polynomials to construct the expressions, which match most of the
ground-truth; Bingo as a genetic programming approach, uses evolution operators to sample new
expressions, which might explore more broadly; uDSR is an ensemble approach using AIFeynman,
genetic programming, and DSR and thus can achieve higher symbolic accuracy.

o

Next, we tested with the 120 black-box problems in SRBench. Since the true solutions for these
problems are unknown, we examined the Pareto front of all the methods in Model Size Rank vs. R?
Test Rank. We also retrieved the results of several commonly used machine learning algorithms from

Under review as a conference paper at ICLR 2025

the SRBench report|La Cava et al.| (202 1)) for comparison. These algorithms include Random Forest,
AdaBoost, and Multi Layer Peceptron (MLP). The setting of these methods are given in La Cava
etal|(2021). As shown in Fig.[3] CADSR is at the most frontier, meaning CADSR is among the best
in terms of the trade-off between the model size (expression complexity) and R? test (prediction
accuracy). It is interesting to see that among those most frontier methods, CADSR tends to find
the most concise expressions (ranked as the lowest in model size) while sacrificing the prediction
accuracy to a certain degree. On the contrary, methods like Operon, typically generates way more
complex expressions yet with smaller prediction error. It shows that our method can push the best
trade-off toward more interpretability, which can be important in practical applications.

5.2 Ablation Study

Next, we performed ablation studies to confirm the efficacy of each component of our method. We
selected a subset of problems from SR Bench that shows the most significant difference between
DSR and CADSR. These problems include: Feynman_I_12_11 and Strogatz_sherflowl
that demonstrate the biggest decrease in R? score and symbolic solution rate, Feynman_test _9
showing the increase in R? score, and Feynman_T_34_27 and Feynman_TIT_12_43 exhibiting
the largest increase in symbolic accuracy. For each problem, we ran five trials at 10% noise with
each ablation using the same seed. Below is a brief description of each ablation.

Transformer Actor. We first tested altering the RNN to a transformer while maintaining the re-
maining DSR framework, including original prediction ordering. DSR does not have a defined
positional encoding, so we used a standard 1D-dimensional positional encoding based on the posi-
tion of the token in the prediction order, i.e., pre-order traversal (POT). This comparison would be
between DSR and DSR-POT-1PE in Figures [} [5] and [6] showing that switching from an RNN to
a transformer in the DSR framework incurs some trade-off in learning. This change is highlighted
by the difference in symbolic discovery rate between the problems, as DSR with a transformer can
consistently solve problems that the RNN can not, and vice versa. Since this is a curated selection of
problems to highlight the difference between DSR and CADSR, we have magnified the difference
between the two methods, causing this stark difference in performance.

Prediction Ordering. Next, we validated the change of the prediction ordering from the pre-order
traversal (POT) to a Breadth First Search (BFS) ordering while maintaining the 1D-dimensional
position encoding. DSR-POT-1PE and DSR-BFS-1PE compare these two tests in Figures {] [5] and
The improvement from the prediction ordering change can be easily seen in Figures 4| and [5]
as DSR-BFS-1PE has better R? scores and symbolic accuracy. Furthermore, we can decrease the
model’s runtime from 0.00361 to 0.00157 seconds per equation by changing the prediction ordering
because BFS enables the model to keep token generation on the GPU during equation sampling.

Position Encoding. To confirm the effectiveness of our designed 2-dimensional PE, we tested
with alternatives, including 1D-dimensional PE based on the tokens’ location in the sequence of
the BFS order. These two tests are DSR-BFS-1PE and DSR-BFS-2PE in Figures 4] [5] and [6] The
2D-dimensional PE improved R? scores and consistency of R? scores while maintaining a similar
symbolic discovery rate for the test problems.

Policy. Next, we evaluated the effectiveness of our robust risk-seeking policy while using the
NMSE-based reward function. DSR-BFS-2PE denotes the risk-seeking policy test, while the ro-
bust risk-seeking policy test is CADSR-NMSE. Figures [and [5] show that the new policy actually
hinders the model’s performance in both R? score and symbolic accuracy. The most likely cause
of this is the lack of convergence from the robust risk-seeking policy, as it relies on the top a% of
expression to guide better equations rather than a numerical gradient. However, when the robust
risk-seeking policy is combined with the BIC reward function it was designed for, we can see a an
improvement in symbolic accuracy and R? score. A proof of the requirement of the robust risk-
seeking reward is provided in Appendix and additional analysis in actual learning processes
is done in Appendix [C.2] These differences in policy performance could be alleviated by using a
nonconstant gradient with a robust risk-seeking gradient, but this is left for further research.

Complexity vs. Fittness Reward. Lastly, we tested the BIC reward function compared to NMSE,
and two newer regularized reward functions introduces with TPSR and SPL, as specified in (@) and
(@), respectively. These four tests are labeled CADSR-BIC, CADSR-NMSE, CADSR-SPL, and
CADSR-TPSR. Figures[@]and 5|show that BIC can consistently improve the model’s performance in

Under review as a conference paper at ICLR 2025

1.0
0.8
wn
3]
506
O
0
&
04 feynman_|_12_11
feynman_test_9
0.2 feynman_l_34_27
feynman_lll_12_43
strogatz_shearflowl
0.0
C
o ” s ﬁcjx‘?e 651""‘ @\v\‘ﬁ 9 oS Bﬁvs“
o™ o o PX)E‘ [da [da op®

Figure 4: R? scores across various ablations of CADSR, namely, prediction ordering (POT vs. BES), 1D or 2D
position encoding (1PE vs. 2PE), policy (DSR vs. CADSR), and reward function (NMSE, BIC, SPL, TPSR).
The comparison spans five problems with the most significant differences between DSR and CADSR. This
comparison highlights the improvement of the DSR-BFS-2PE and shows that BIC is the best reward function
with CADSR.

g
o

o
©

o
o

<
IS

Symbolic Accuracy

o
[N}

0.0

q,\
e R
oo°

§2\0e

feynman_l_12_11
feynman_test_9
feynman_|_34_27
feynman_lll_12_43
strogatz_shearflowl

X
x°°
o
pD

Figure 5: Symbolic accuracy across various ablations of CADSR, namely, prediction ordering (POT vs. BES),
1D or 2D position encoding (1PE vs. 2PE), policy (DSR vs. CADSR), and reward function (NMSE, BIC, SPL,
TPSR). The comparison spans five problems with the most significant differences between DSR and CADSR.
This figure highlights the significance of a regularized reward function (BIC, SPL, TPSR) as they have the
highest symbolic recovery rate. Additionally, the figure shows that the switch from an RNN to a transformers
incurs some trade-off in learning (DSR vs. all other ablations).

30 B feynman_|_12_11
mm feynman_test 9
25 B feynman_|_34_27
- mmm feynman_lll_12_43
E\ B strogatz_shearflowl
$ 20
o
S
% 15
wn
g
<10
u

w

Figure 6: Expression length across various ablations of CADSR, namely, prediction ordering (POT vs. BFS),
1D or 2D position encoding (1PE vs. 2PE), policy (DSR vs. CADSR), and reward function (NMSE, BIC,
SPL, TPSR). The comparison spans five problems with the most significant differences between DSR and
CADSR. This figure highlights the impact of the regularized reward function in shortening expression length
and improving the convergence consistency of the expressions.

Under review as a conference paper at ICLR 2025

Iy
o

mmm feynman_|_12_4 .
feynman_|_18_12 Dataset ‘ Expression

EOB B strogatz_gliderl

=1 qirT
Sos Feynman_1_12_4 Incr3

= .

S04 Feynman_1_18_12 rF sin(6)
£

(%]

o
N

Strogatz_Glider_1 | —0.0522 — sin(y)

o
o

DSR CADSR Pretrained

(a) (b)

Figure 7: Pre-trained CADSR symbolic accuracy on three problems from SR Bench.

both R? and symbolic accuracy when compared to using the NMSE reward function. Furthermore,
we see from Figure@that BIC helps reduce the expression length while maintaining R? compared to
the other reward functions. BIC is the best-regularized reward function for our method when com-
pared to SPL and TPSR’s reward functions. Both other regularized reward functions hinder CADSR
accuracy or symbolic discovery rate by over-selecting for shorter functions. The best example is the
relative performance on Feynman_test_9, where SPL and TPSR’s reward functions prevent any
notable symbolic discovery causing the R? < 0.0 (Figure E]) because of the high pressure towards
short equations (Figure[6). An examination of BIC improving learning, and shortening expressions
is provide in Appendix |C.1]

5.3 Pre-Trained Transformer

Although pre-training is not the focus of CADSR, we wanted to see if CADSR has the potential to
be improved through pre-training. One of the benefits of a transformer is pre-training, which can be
used to add information about the entire system. We generated a random dataset from pre-training
by randomly sampling expression trees; a more in-depth explanation is left in Appendix [E] In order
to do pre-training, we need to add information about the problem into the sequence, which we do by
adding additional channels into the sequence to contain the (x,y) information. We pre-trained the
method using risk-seeking reinforcement learning to maintain the same environment that CADSR
runs in. We tested the pre-trained method on two problems from SRBench that have a dimensionality
of 3 and 0% noise to match the pre-training dataset. Lastly, we leveraged the transformer’s log
scaling rule by increasing the transformer’s size to reduce training time |Kaplan et al.| (2020).

Overall, the pre-trained version of CADSR drastically improved equations that were similar to the
training set. We can see that the Feynman_I_12_4 has worse performance, which is most likely
due to the fact the training dataset has a large number of sin, cos, log, and exp functions as they are
equally likely to be sampled, whereas in most cases they are uncommon. This change in performance
is further highlighted by the performance of the other two equations. Overall, we can see that pre-
training has the potential to be highly beneficial to this method and is left for further research.

5.4 Runtime

We conducted a runtime comparison between gplearn, DSR, and CADSR and found that CADSR
had comparable runtimes at 0.00157 seconds per equation as compared to 0.00105 seconds per
equation for gplearn, and 0.0014 seconds per equation for DSR. Furthermore, we found an that the
BFS ordering reduced runtime by 50% and that the pre-trained CADSR increases runtime by nearly
1500%. The exact details of the study are given in Appendix [F

6 Conclusion

We have presented CADSR, a new symbolic regression approach based on reinforcement learning.
On standard SR benchmark problems, CADSR shows promising performance. The ablation study
confirms the effectiveness of each component of our method. Nonetheless, our current work has two
limitations. First, the implementation is inefficient, especially for the expression sampling coupled
with validation rules. This leads to a slow training process. Second, we lack an early stopping
mechanism to further reduce the training cost and prevent useless exploration. In the future, we plan
to address these limitations and use our method in more practical applications.

10

Under review as a conference paper at ICLR 2025

References

Bogdan Burlacu, Gabriel Kronberger, and Michael Kommenda. Operon C++: an efficient ge-
netic programming framework for symbolic regression. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, GECCO 20, pp. 1562-1570, New York, NY,
USA, July 2020. Association for Computing Machinery. ISBN 978-1-4503-7127-8. doi: 10.1145/
3377929.3398099. URL https://dl.acm.org/doi/10.1145/3377929.33980909.

Sepp Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neu-
ral Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 06(02):107-116, April 1998. ISSN 0218-4885. doi: 10.
1142/S0218488598000094. URL https://www.worldscientific.com/doi/abs/
10.1142/s0218488598000094, Publisher: World Scientific Publishing Co.

Ying Jin, Weilin Fu, Jian Kang, Jiadong Guo, and Jian Guo. Bayesian symbolic regression, 2020.

Anna Jobin, Marcello Ienca, and Effy Vayena. The global landscape of Al ethics guide-
lines. Nature Machine Intelligence, 1(9):389-399, September 2019. ISSN 2522-
5839. doi: 10.1038/s42256-019-0088-2. URL https://www.nature.com/articles/
s42256-019-0088-2| Publisher: Nature Publishing Group.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and Francois Charton. End-
to-end Symbolic Regression with Transformers. May 2022. URL https://openreview.
net/forum?id=GoOuIrDHG Y.

Pierre-Alexandre Kamienny, Guillaume Lample, Sylvain Lamprier, and Marco Virgolin. Deep gen-
erative symbolic regression with monte-carlo-tree-search, 2023. URL https://arxiv.org/
abs/2302.11223.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87-112, June 1994. ISSN 1573-1375. doi: 10.1007/BF00175355.
URL https://doi.org/10.1007/BF00175355.

William La Cava, Patryk Orzechowski, Bogdan Burlacu, Fabricio Olivetti de Francca, Marco Vir-
golin, Ying Jin, Michael Kommenda, and Jason H. Moore. Contemporary Symbolic Regression
Methods and their Relative Performance, July 2021. URL http://arxiv.org/abs/2107.
14351, arXiv:2107.14351 [cs].

Mikel Landajuela, Chak Lee, Jiachen Yang, Ruben Glatt, Claudio P. Santiago, Ignacio Aravena, Ter-
rell N. Mundhenk, Garrett Mulcahy, and Brenden K. Petersen. A unified framework for deep sym-
bolic regression. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=2FNnBhwJsHK.

Brenden K. Petersen, Mikel Landajuela, T. Nathan Mundhenk, Claudio P. Santiago, Soo K. Kim,
and Joanne T. Kim. Deep symbolic regression: Recovering mathematical expressions from data
via risk-seeking policy gradients, December 2019. URL https://arxiv.org/abs/1912.
04871v4.

David L. Randall, Tyler S. Townsend, Jacob D. Hochhalter, and Geoffrey F. Bomarito. Bingo: a
customizable framework for symbolic regression with genetic programming. In Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO 22, pp. 22822288,
New York, NY, USA, July 2022. Association for Computing Machinery. ISBN 978-1-4503-
9268-6. doi: 10.1145/3520304.3534031. URL https://dl.acm.org/doi/10.1145/
3520304.3534031!

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465-471, 1978. doi:
10.1016/0005-1098(78)90005-5.

11

https://dl.acm.org/doi/10.1145/3377929.3398099
https://www.worldscientific.com/doi/abs/10.1142/s0218488598000094
https://www.worldscientific.com/doi/abs/10.1142/s0218488598000094
https://www.nature.com/articles/s42256-019-0088-2
https://www.nature.com/articles/s42256-019-0088-2
https://openreview.net/forum?id=GoOuIrDHG_Y
https://openreview.net/forum?id=GoOuIrDHG_Y
https://arxiv.org/abs/2302.11223
https://arxiv.org/abs/2302.11223
https://arxiv.org/abs/2001.08361
https://doi.org/10.1007/BF00175355
http://arxiv.org/abs/2107.14351
http://arxiv.org/abs/2107.14351
https://openreview.net/forum?id=2FNnBhwJsHK
https://openreview.net/forum?id=2FNnBhwJsHK
https://arxiv.org/abs/1912.04871v4
https://arxiv.org/abs/1912.04871v4
https://dl.acm.org/doi/10.1145/3520304.3534031
https://dl.acm.org/doi/10.1145/3520304.3534031

Under review as a conference paper at ICLR 2025

Cynthia Rudin. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions
and Use Interpretable Models Instead, September 2019. URL http://arxiv.org/abs/
1811.10154. arXiv:1811.10154 [cs, stat].

Michael Schmidt and Hod Lipson. Distilling Free-Form Natural Laws from Experimental Data.
Science, 324(5923):81-85, April 2009. doi: 10.1126/science.1165893. URL https://www.
science.org/doi/10.1126/science.1165893. Publisher: American Association for
the Advancement of Science.

Gideon Schwarz. Estimating the dimension of a model. The annals of statistics, pp. 461-464, 1978.

Parshin Shojaee, Kazem Meidani, Amir Barati Farimani, and Chandan K. Reddy. Transformer-
based Planning for Symbolic Regression, March 2023. URL https://arxiv.org/abs/
2303.06833v5.

Fangzheng Sun, Yang Liu, Jian-Xun Wang, and Hao Sun. Symbolic physics learner: Dis-
covering governing equations via monte carlo tree search. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=ZTK3SefE8_Z.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Aviv Tamar, Yonatan Glassner, and Shie Mannor. Policy Gradients Beyond Expectations: Condi-
tional Value-at-Risk. April 2014.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: a Physics-Inspired Method for Symbolic
Regression, April 2020. URL http://arxiv.org/abs/1905.11481, arXiv:1905.11481
[hep-th, physics:physics].

Mojtaba Valipour, Bowen You, Maysum Panju, and Ali Ghodsi. SymbolicGPT: A Generative Trans-
former Model for Symbolic Regression, June 2021. URL http://arxiv.org/abs/2106.
14131, arXiv:2106.14131 [cs].

Martin Vastl, Jondvs Kulhdnek, Jivri Kubalik, Erik Derner, and Robert Babuvska. SymFormer: End-
to-end symbolic regression using transformer-based architecture, October 2022. URL http:
//arxiv.orqg/abs/2205.15764. arXiv:2205.15764 [cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2023. URL http:
//arxiv.orqg/abs/1706.03762. arXiv:1706.03762 [cs].

Larry Wasserman. Bayesian model selection and model averaging. Journal of mathematical
psychology, 44(1):92-107, 2000.

A Algorithms

Below, we show the algorithms for expression sampling and positional encoding generation. Note
that for expression sampling, we over-sample expressions so that we can return a high number of
unique ones. If not enough unique expressions exist, then we begin to allow duplicates to fill out our
batch size requirements.

B Model Details

Table |1| and Fig. [8| show the comprehensive hyperparameter settings and the architecture of the
transformer used in our method. Note that we use the Levenberg—Marquardt algorithm to optimize
constant tokens for each discovered equation.

12

http://arxiv.org/abs/1811.10154
http://arxiv.org/abs/1811.10154
https://www.science.org/doi/10.1126/science.1165893
https://www.science.org/doi/10.1126/science.1165893
https://arxiv.org/abs/2303.06833v5
https://arxiv.org/abs/2303.06833v5
https://openreview.net/forum?id=ZTK3SefE8_Z
https://openreview.net/forum?id=ZTK3SefE8_Z
http://arxiv.org/abs/1905.11481
http://arxiv.org/abs/2106.14131
http://arxiv.org/abs/2106.14131
http://arxiv.org/abs/2205.15764
http://arxiv.org/abs/2205.15764
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2025

Parent and Sibling Tree
Info

Y
[One Hot Encoding]

| Positional Encoding

Attention Block

-

Attention Block

Normalization
Layer

Normalization
Layer

Feed Forward
Layer

Normalization
Layer

v

Linear Layer

v

Relu

v

Linear Layer

v

Feed Forward
Layer

Attention Block

Normalization
Layer

Feed Forward
Layer

Linear Layer

v

Softmax

v

Output Categorical
Distribution

Figure 8: The architecture of the transformer actor in CADSR.

13

Under review as a conference paper at ICLR 2025

Algorithm 2 Expression Tree Sampling

input Number of expressions to sample B; oversampling scalar v > 1, maximum tree-node number v
output A set of expressions T

. T <« ExpressionTrees(yB) {Creates vB empty expression trees }

1

2
3
4
5:
6:
7.
8
9
0

: while 7 < v do

: end while

return 7

Vi < Inputs(7") {Fetching the input embeddings of all the expression trees }
S < p(Vr|6) {Predicting categorical distributions from the transformer}

S + R(S) {Applying rules to each distribution}
K < P(-|S) {Sampling from the categorical distribution to obtain tokens}
T: + K {Adding the new tokens into the expression trees}

. T = Unique(7T, B) {Take the first B Unique expression trees }
10:

Algorithm 3 Positional Encoding Generation

input An expression tree T

1: 7.root_node.depth =1

2: 7.root_node.horizontal = 1/2
3: PositionEncodingInformation(7.root_node)

Algorithm 4 PositionEncodingInformation

input Current node

1:

if node has left then

if node has right then

. end if

2 node.left.depth = node.depth + 1
3: node.left.horizontal = node.horizontal - 1/(
4 PositionEncodingInformation(node.left)
5: end if
6:
7
8
9
10

2110de.lefndepth)

node.right.depth = node.depth + 1 _
node.right.horizontal = node.horizontal + 1/(2"deriehtdepth)
PositionEncodingInformation(node.right)

Table 1: Hyperparameter settings of CADSR.

Hyperparameter

[

CADSR

[

Pre-Trained

Variables

{1, ¢ (Constant Token), =; }

{1, ¢ (Constant Token), z1, z2, T3}

Unary Functions

{sin, cos, log, \/(+), exp}

{sin, cos, log, \/(-), exp}
}

Binary Functions {+ -, %1 {+ - %1}
Batch Size 1000 1000
Risk Seeking Percent («) 0.05 0.05
Learning Rate SE-4 SE-4
Max Depth 32 32
Oversampling 1.5 (Ideally 3) 1 (Ideally 3)
Number of Epochs 2000 2000
Policy BIC BIC
Entropy Coefficient Ay 0.005 0.005
Policy Coefficient A 0.04 0.04
Encoder Number 1 4
Decoder Number 1 4
Number of Heads 1 4
Feed Forward Layers Size 2048 2048

14

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameter settings for DSR

Hyperparameter | DSR

Batch Size 100
Learning Rate 0.0005
Entropy coefficient | 0.005
Risk Factor 0.05
RNN Type LSTM
Layer Number 1
Label [Epoch [R? [Expression
1 0 0.9771 ((z1 * ()/(v/(c1))) * c2)
2 2 0.9999 (co — (\ﬂ(c1 (02 * ((((((c3 * :po)
3 14 1.0 (log(((cf (((((z1/z0)/(@1/e1))2
4 33 1.0 (((x1 * (cg*)) * ((cos(e2)) = ((((\/03)+ 1 — ...
5 36 1.0 ((z1 *((mo—l—(ml —co) /c1)) * c2)
6 242 1.0 CoT1 — Tox1 — X
(@
10° 4 6
17500 A 5 6 o
15000 4 4 (an? 10-1 4
5 12500 > 3
E 3 —— Best 3 -
a% 10000 A Median Top a% | € 107 5
€ 7500 Ra °
o —— Median © 10-3
@ 5000 2 4
o
25001 | % 1o
O‘__]_r-’_‘ﬁ
0 Sb 160 l'_“')O 2(30 2'_'1)0 300 1o 6 é 1‘0 1‘5 2‘0 2‘5 3‘0
Epoch Equation Length

(b) ()

Figure 9: Learning progress with BIC reward function on Strogarz_Iv2 problem where the true solution is
y =221 — ToT1 — T

C Additional Ablation Analysis

C.1 BIC Reward Analysis

On the other hand, the lengthy expressions found in Table ?? indicates that the DSR reward (1)),
which is purely based on data fitness, does not seek to reduce model complexity to enhance the
interpretability. We further replace the DSR reward with our BIC reward and re-run the learning
process. While across five runs, the discovery rate and R? test scores remain 100% and 1.0, respec-
tively, the discovered expressions are much simpler and closer to the true solution; see Table 3]of the
Appendix. In Fig.[9] we further showcased the learning progress of one trial with our BIC reward
function. It can be seen clearly from Fig. [J] that along with more epochs, the learned expressions
are increasingly concise and finally exactly recover the true solution. Meanwhile, from Fig. Ob,
we can see that those increasingly simpler expressions receive increasingly bigger rewards, while
Fig. O further confirms that shorter expressions do receive larger rewards. All these demonstrate
that our BIC reward indeed guides the learning toward more concise and, hence, more interpretable
expressions in addition to fitting the data well.

15

Under review as a conference paper at ICLR 2025

Trial [Full Expression [R? [Symbolically Accurate
1 ((2.0 — Z‘o) — $1)l’1 1.0 Yes
2 (2.0 — (1‘0 + 1‘1))1’1 1.0 Yes
3 (z1 % (3.0 — (((zo/x0) + x0) + 1)) | 1.0 Yes
4 (1= ((x1 +x0) + —1)) *x1) 1.0 Yes
6 (((1og(7.389)) — z0) — 1)1 1.0 Yes

Table 3: Trials of using BIC reward on Strogatz_Iv2 problem, where the true solution is y = 2z, — xox1 — 5.

C.2 Tail Barrier Analysis

Finally, we examined the learning behavior with our robust risk-seeking policy. To this end, we
tested on the Strogatz predpreyl problem in SRBench. We ran our method for one trial and then
replaced our policy with the risk-seeking policy as used in DSR (see (2)) to run another trial. The
random seeds for the two runs were set to be the same. In Fig. [I0h and[ITh, we report how the best
reward (among the sampled expressions at each step), the median reward, R, and the median of
the top a% rewards (denoted as Median Top a%), varied along with the training epochs. Obviously,
when the median of the top a% rewards are identical to R, many weights (around 50%) in the risk-
seeking policy (2) become zero (since R(r)) = R,,), resulting zero gradients for the corresponding
expressions. This can be viewed a “partial” tail barrier. To examine how many top a% expressions
are pruned due to their gradients being roughly zeroed out, we used a threshold 102 and report the
portion of such expressions at each epoch in Fig. [[0p and [TTp. From Fig.[I0h, we can see during
the running of original risk-seeking policy, we encountered three significant events at epochs 250,
975, and 1750. In these events, the median of the top a% rewards almost overlap with R, causing
a large portion of the top a% expressions pruned due to that their gradients were nearly zeroed out.
Accordingly, the learning afterwards can be more dominated by entropy bonus (see (3)) rather than
those best-performed expressions. By contrast, while during the course of our method, there are
also quite a few events when the median of the top a% almost overlap with R, no expression in the
top a% have their gradients zeroed out, since every such expression is assigned a constant reward \;
see (9) and (I0). Therefore, the update of the model parameters will always leverage the information
from all top a% expressions, and hence can effectively avoid over-exploration.

E
c 50
=}
0.8 &
w
c
S 40
g
- 0.6 s
] i 304
o
z g
o 0.4 2
© 20
=
o
—— Best o
0.2 Median Top a% 8 104
— Rq g
—— Median 5]
o
T T T T T T T T T 01— T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Epoch Epoch
(a) (b)

Figure 10: Running CADSR with risk-seeking policy) on Strogatz predpreyl problem. The top-performed
expressions can be pruned from being used for model updating, due to nearly zeroed out gradients.

D Theoretical Results

D.1 Proof of Lemma
Proof. The value of the BIC reward function is essentially a random variable, since it is determined

by the random expression sampled by the transformer actor. Let us denote this random variable
by Z and its probability density by p(z|@) where € denotes the transformer parameters. Obviously,

16

Under review as a conference paper at ICLR 2025

50

o
[
E]
0.8 <4
% 40
c
o
0.7 @
n
o
ke S 304
;E 0.6 w
= X
b]
o 0.5 2 20 A
[
I 5
0.44 — Best g
Median Top a% & 101
Ra 5
0.3 1 X o
—— Median o}
o g
T T T T T T T T T T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

Epoch Epoch
(a) (b)

Figure 11: Running CADSR with robust risk-seeking policy (I0) on Strogatz predpreyl problem.
Z € (—00,00). The risk-seeking policy aims to approximate the gradient of the expectation over

the truncated random variable Z, = Z - 1z>,_, where s, is the 1 — 1%)‘0 quantile of the distribution
of Z,

!
o =inf{z:CDF(z) >1—- —1}. 11
8o = inf{z (z) > 100} a1
The probability density of Z,, is given by

1
p(zall) = Ep(z|9)1225a. (12)

The gradient of the expectation is computed as

E[Z,] = é/oo zp(z]0)dz, (13)
VoE[Z,] = é ~V9/ zp(z|6)dz. (14)

a

Since the integration upper-bound is oo, we cannot apply Leibnize rule to equivalently interchange
the gradient and the integration. In other words, if we switch the order of the expectation (integra-
tion) and the differentiation, the result can be changed. Therefore, the policy gradient in the form
of (@) is no longer guaranteed to be unbiased.

O

D.2 Proof of Lemma

Proof. Pick up any reward value zy. Due to the continuity of the mapping f, for arbitrary € > 0,
there exists ¢ > 0 such that for all z # =z, if |z — 29| < 0, then |f(2) — f(20)| < e. Let us take
€= %s, where s is the machine precision (e.g., 2732). Since the reward function is continuous, we
can find a set of distinct reward values z1, . . ., zps from B(zg, d(¢)) = {z € dom f, |z—20| < d(€) }.
Let us look at the mapped rewards, f(z1),..., f(za). Forany 1 <4, < M, we have

[F(20) = Fz)| = 1F(20) = F(0) + £ (20) = F ()] < |f(z0) = F(0)| +f(z0) = f(z)| < 5+5 =

Therefore, there are no numerical difference among these mapped rewards, and they can create a tail
barrier.

O

17

Under review as a conference paper at ICLR 2025

D.3 Proof of Lemma

Proof. For any set of BIC reward values, S = {R(7(")),... R(7(B))}, we denote the mapped

reward values by S = {Rj, ..., Rz}, where each E f(R (T(]))) (1 < j < B). We know that
each

~ 1 R(rYV) >R,

R; = . 15

! {o R(rY)) < R, ()

where R, is the 1 — 155 quantlle of the rewards in S. Therefore, the 1 — 100 quantile of the mapped
reward values S, namely, R = 0. Since all the top % rewards in S take the value A, which is

strictly bigger than R., = 0, the tail barrier in the risk-seeking policy will never appear. Furthermore,
every expression in the top % will not have their gradient zeroed out (see (2))), since the weight of
the gradient is the constant A (see (10))). That means, we even will not meet a partial tail barrier.

To show the unbiasedness, we need to replace R, by the 1 — « / 100 quantile of the distribution

of the BIC reward R. Denote the mapped reward by R. Since R is bounded, namely, R e [0,1],

we can follow exactly the same steps in the proof of the original risk-adverse gradient paper [Tamar,
et al|(2014) to show the unbiasedness of (I0). Note that, with the step mapplng f, the expectation,

[Rl B0,] where @, is the 1 — «/100 quantile of the distribution of R, is actually a constant,

namely Aa. Hence the gradient of the expectation is zero. That means, our new risk-seeking policy
gradient (I0) is asymptotically converging to zero (with B — oo). However, in practice, B is always
finite, and our policy gradient is rarely close to zero. Rather, it will leverage all the top performers
to conduct efficient model updates.

O

E Pre-trained Transformer

E.1 Dataset Generation

In order to generate the dataset to train the transformer on, we randomly generated expression trees
and sampled multiple constants for each expression tree while maintain uniqueness of the expression
tree skeleton. Each expression tree was randomly generated by sampling an uniform policy in
a breadth first search ordering. Since the uniform policy gave each token equal probability, the
generated expressions had a higher number of unary functions than typical of the Feynman problems.
For each expression, a random set of x was sampled from a uniform distribution on the interval
(—5,5) and used to compute y = 7(x). We stored the breadth first search ordering, the positions,
and the (x,y) to train the transformer on. The dimensionality of the problems to three for this
feasibility test. The final dataset contained ~ 80, 000 expressions.

E.2 Training

The model was trained in the same reinforcement learning framework that CADSR use for a single
problem with an additional 250 points attached to the sequence. The additional 250 points was
selected as a balance between information, and increased compute time. We found this training
method to work best as it allowed for the transformer to learn the relationship between the dataset and
expression trees without covering towards a single expression. The model was trained for ~ 5000
epochs on an RTX 3080 over the course of 2 days.

Alternatively, we tried training the model in a supervised learning framework. This training method
failed to work well, as during testing the model converged very rapidly to a finite number of equa-
tions. This failure is not indicative of supervised learning pre-training with CADSR being impossi-
ble, but needing more than a naive implementation.

18

Under review as a conference paper at ICLR 2025

CADSR ——
AlFeynman L 2+ |
BSR 4]
SBP-GP @
AFP_FE -~ ¢
Bingo -2~ o
MRGP @
EPLEX b |
AFP a
gplearn - g
GP-GOMEA B
Operon B
ITEA @ Target Noise
FEAT @& ® 00
DSR @ M 0.001
TPSR(A=0.1) @ x 001
FFX @ ot
0 20000 40000
Training Time (S)

Figure 12: Reported time comparison by SRBench

F Run Times

Overall, it is difficult to compare runtimes, as CADSR primarily use the GPU, while gplearn, and
DSR primarily use the CPU. As such an improvement to either the GPU or CPU hardware would
alter the runtime comparison. In Figure [T2] we provide the recorded times by SRBench, however
this chart is not a very accurate comparison as CADSR does not have an early stopping criterion and

shared resources for this benchmark.

Method | Full Runtime (s) | Runtime Per Equation (s)
DSR 116 0.0014
gplearn 42 0.00105
Preordering 7211 0.00361
CADSR 3135 0.00157
Pre-trained CADSR 42524 0.0213

Table 4: Run time comparison on Nguyen-2 on a Titan V GPU with an 32 Intel Xeon Silver 4108
CPU

19

	Introduction
	Background
	Method
	Transformer Actor
	BIC Reward Function
	Robust Risk-Seeking Policy

	Related Work
	Numerical Experiments
	Overall Performance
	Ablation Study
	Pre-Trained Transformer
	Runtime

	Conclusion
	Algorithms
	Model Details
	Additional Ablation Analysis
	BIC Reward Analysis
	Tail Barrier Analysis

	Theoretical Results
	Proof of Lemma 3.1
	Proof of Lemma 3.3
	Proof of Lemma 3.4

	Pre-trained Transformer
	Dataset Generation
	Training

	Run Times

