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ABSTRACT

A major challenge in Semi-Supervised Learning (SSL) is the mismatch between
the labeled and unlabeled class distributions. Most successful SSL approaches are
based on pseudo-labeling of the unlabeled data, and therefore are susceptible to
confirmation bias because the classifier being trained is biased towards the labeled
class distribution and thus performs poorly on unlabeled data. While distribution
alignment alleviates this bias, we find that the distribution estimation at the end
of training can still be improved with the doubly robust estimator, a theoretically
sound approach that derives from semi-parametric efficiency theory. As a result,
we propose a 2-stage approach where we first train an SSL classifier but only
use this initial prediction for the doubly robust estimator of the class distribution,
and then train a second SSL classifier but fixing the improved distribution esti-
mation from the start. For training the classifier, we use a principled expectation-
maximization framework for SSL with label shift, showing that the popular distri-
bution alignment heuristic improves the data log-likelihood in the E-step, and that
this EM is equivalent to the recent SimPro algorithm after reparameterization and
logit adjustment but is much older and more interpretable (using the missingness
mechanism). Experimental results demonstrate the improved class distribution
estimation of the doubly robust estimator and subsequent improved classification
accuracy with our 2-stage approach.

1 INTRODUCTION

Semi-supervised learning (SSL) aims to augment the small labeled set of data with a large unlabeled
set of data Chapelle et al. (2009). This is of considerable practical significance since in many ap-
plications unlabeled data is easily available but the labeling effort is very costly. A key summary
statistics is the unlabeled class distribution, which appeared in many previous semi-supervised al-
gorithms (Kim et al., 2020; Wei et al., 2021; Oh et al., 2022; Wei & Gan, 2023; Du et al., 2024;
Ma et al., 2024), and is identified as one of the main challenges in semi-supervised learning, namely
when it is significantly different from the labeled class distribution. This is because most of these
algorithms work by pseudo-labeling the unlabeled data Sohn et al. (2020); Berthelot et al. (2019a)
and therefore are susceptible to confirmation bias (Arazo et al., 2020). The unlabeled class distribu-
tion can be of independent interest as well (Lee et al., 2025a;b), and can be used to adapt a classifier
during test time (when unlabeled data is not available during training time as in semi-supervised
learning), a procedure more commonly known as label shift adaptation (Saerens et al., 2002; Lipton
et al., 2018; Azizzadenesheli et al., 2019; Alexandari et al., 2020)

In this paper, we first show that a simple yet principled expectation-maximization (EM) framework,
which goes as far back as Ibrahim & Lipsitz (1996), underlies the popular distribution alignment
heuristic in Berthelot et al. (2019a) and therefore is the foundation for most modern pseudo-labeling
semi-supervised learning methods. SimPro (Du et al., 2024), a recent publication with very strong
performance in various distribution mismatch settings, is in fact the same algorithm but with differ-
ent parameterization using logit adjustment (see section 3.2). The framework shows that estimating
the unlabeled class distribution is crucial for finding the pseudo-labels that improve the data log-
likelihood in the E-step. However, we find that the final distribution estimation can still be improved,
as evidenced in fig. 1, where SimPro tends to overestimate the head classes in 4 out of 5 unlabeled
class distributions in their study, as compared to our proposed doubly-robust estimator. This leads
to our second and main contribution, a simple 2-stage algorithm to improve learning further that
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Figure 1: The labeled class distribution and 5 possible unlabeled class distributions studied in Du
et al. (2024). SimPro significantly overestimates the head classes in consistent, reverse and head-
tail settings. Our doubly-robust estimate is more accurate at the head classes as well as the overall
distribution in all but the middle setting, as measured in total variation distance in table 1. Our
proposed 2-stage SimPro+ outperforms SimPro in classification accuracy in the middle setting as
well.

first trains a model with EM, and then trains a second model also with EM but this time fixes the
unlabeled data distribution with an improved estimate from the start.

Our doubly robust estimator derives from semi-parametric efficiency theory predominantly studied
in causal inference and has well-understood and strong theoretical guarantee Chernozhukov et al.
(2018). Its effectiveness stems from Neyman orthogonality, a statistical property that corrects first-
stage estimation biases, including but not limited to SimPro’s over-estimation (the theoretical con-
ditions and results are stated in statistical convergence rates, see theorem 3.2). Our 2-stage approach
first learns nuisance estimates including a first-stage classifier to use for the doubly robust estimator,
a standard procedure in doubly machine learning with nuisance parameters (Chernozhukov et al.,
2018). Experiments show that we improve the classification accuracy when using an improved un-
labeled class distribution estimate in a second learning stage.

2 BACKGROUND AND RELATED WORK

Notation We write the random variable X ∈ X for the feature(s) and Y ∈ {1, . . . , C} for the
class among C possible classes. We are given a labeled dataset Dl = {xi, yi}Nl

i=1 and an unlabeled
dataset Du = {xi}Ni=Nl+1, where xi and yi are realizations of X and Y . The training dataset is
Dt = Dl ∪Du. The auxiliary variable A takes binary values and selects between the different class
distributions P (Y |A); let A = 1 if the datapoint is in the labeled set and A = 0 in the unlabeled set.
Therefore P (Y |A = 0) is the class distribution the unlabeled set. The combined class distribution
P (Y ) = P (A = 0)P (Y |A = 0) + P (A = 1)P (Y |A = 1) is the class distribution of the combined
dataset. For convenience, we also denote P (Y |unf) = 1/C everywhere to be the uniform class
distribution, noting that it is not another value of A. We assume that the class distribution of the test
set is uniform throughout this paper.

Long-tailed Semi-supervised learning is the intersection between long-tailed learning Buda et al.
(2018) and semi-supervised learning Chapelle et al. (2009), and attempts to deal with two key real
world problems: class distribution in the wild is often long-tailed with many classes having few
samples; and the unlabeled data dwarfs the labeled data because of the advent of the web and the
significant cost of large-scale manual labeling efforts. Pseudo labeling Lee et al. (2013); Berthelot
et al. (2019b); Xie et al. (2020); Laine & Aila (2016) has become one of the prominent approaches
in semi-supervised learning, and has been extended to the long-tailed case Wei et al. (2021); Lee
et al. (2021), although the unlabeled class distribution was assumed to be the same as the labeled
class distribution Berthelot et al. (2019a). More recent work has tackled the unknown distribution
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case Zhao et al. (2022); Duan et al. (2022); Hu et al. (2022); Duan et al. (2023); Wei & Gan (2023);
Du et al. (2024); Ma et al. (2024); Gan et al. (2024).

(Balanced) Pseudo-labeling. Semi-supervised learning methods use a regularization loss on the
unlabeled data in addition to the classification loss on the labeled data. A simple technique is to
use the model’s own predictions on the unlabeled data. Specifically, FixMatch Sohn et al. (2020)
keeps the maximum predictions that also fall above a certain confidence threshold and convert them
into one-hot labels (operator δ), which is called a pseudo label. For example, given a confidence
threshold of 0.8, a binary prediction [0.1, 0.9] will be mapped to [0, 1] while [0.4, 0.6] to [0, 0] under
the operator δ. FixMatch then minimizes the cross entropy loss between a strongly augmented
version and the pseudo label of a weakly augmented version of the same unlabeled image:

Lu = −
N∑

i=Nl+1

C∑
c=1

δ(P (Y |α(xi)))c logP (Y = c|G(xi)) (1)

where c is the class, G is the strong augmentation, and α is the weak augmentation. FixMatch
is simple and performant. However, it suffers when labeled and unlabeled class distributions are
different, which label shift approach tries to address.

Label shift and logit-adjustment. Label shift assumes that the probability of X given Y is un-
changed:

P (X|Y,A) = P (X|Y ) (2)
i.e. feature X is conditionally independent of the variable A. The posterior change in P (Y |X,A)
results from the difference between the class distributions i.e. P (Y |A = 0) ̸= P (Y |A = 1). If
the class distributions are known, logit adjustment can be used to convert a classifier of one class
distribution to another. When label shift occurs between two datasets, classifiers performing well on
one dataset may not perform well on the other. For example, to adapt the labeled class distribution
P (Y |A = 1) to the test class distribution P (Y |unf), we can use Bayes formula to get:

P (Y |X, unf) ∝ P (Y |X,A = 1)
P (Y |unf)

P (Y |A = 1)
(3)

which is the basis of the post-hoc logit adjustment formula for long-tailed learning.

Label shift is the natural assumption in imbalanced / long-tailed learning where the target distri-
bution is the uniform test distribution. Logit adjustment Menon et al. (2020), implicitly using this
assumption, relies on the formula eq. (3) to correct label shift in long-tailed data. When the test
distribution is unknown, label shift adaptation methods exist that can estimate the unknown test dis-
tribution Saerens et al. (2002); Alexandari et al. (2020); Lipton et al. (2018); Azizzadenesheli et al.
(2019) when given a good classifier of the source data. It is possible therefore to train on the labeled
set and use a label shift adaptation method to estimate the unlabeled class distribution. This proce-
dure is best suited to label shift test-time adaptation Sun et al. (2023); Nguyen et al. (2024) where
the unlabeled data is not available during model training. In contrast, when additional unlabeled
data is available, semi-supervised EM gives significantly better class distribution estimation.
Non-ignorable missingness. This is a variant of missing data problems where the missing in-
dicator A can depend on both feature X and outcome Y Rubin (1976). The dependence on Y
distinguishes this variant from the standard ignorable missingness (missing at random) assumption
Tsiatis (2006). The label shift assumption eq. (2) further assumes that only Y causes A, and this
assumption is sufficient to identify the true data distribution, meaning that no two distributions can
generate our missing data Miller & Futoma (2023); Sportisse et al. (2023).
Doubly robust (DR) estimation This approach has roots in semi-parametric efficiency theory
Kennedy (2024); Chernozhukov et al. (2018). The most successful application of DR is the estima-
tion of the average treatment effect in causal inference Tsiatis (2006); Pham et al. (2023), which is
an example of ignorable missingness. Recently doubly machine learning Chernozhukov et al. (2018;
2022) takes double robustness further by showing that powerful machine learning methods such as
neural networks can be used to deal with high-dimensional and complex data while at the same time
making valid inference about the target statistics. The applications of DR in modeling more complex
data than traditionally studied in statistics have recently gained significant interest Shi et al. (2019);
Chernozhukov et al. (2022); Zhang et al. (2023). We contribute to this line of work, but furthermore
shows that we can plug in this estimation to improve the final classification itself.

More background and related work can be found in appendix C
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3 METHOD

3.1 LABEL SHIFT EXPECTATION MAXIMIZATION

When pseudo-labeling is applied naively, a classifier trained on the labeled set with class distribution
P (Y |A = 1) may not do well on the unlabeled set that has a different class distribution P (Y |A =
0) thus resulting in incorrect pseudo labels for training and consequently confirmation bias Arazo
et al. (2020). We can not straightforwardly adapt to the unlabeled class distribution because it is
unknown. In the following, we detail a likelihood maximization framework that eventually is shown
to generalize pseudo-labeling to the label shift case. Using the indicator A, we can write the observed
(or missing) data log-likelihood as

L(θ) =

Nl∑
i=1

logP (X = xi, Y = yi, A = 1|θ) +
N∑

i=Nl+1

logP (X = xi, A = 0|θ), (4)

where θ represents the parameter of the joint distribution P (X,A, Y ). This likelihood consists of
the labeled term and an unlabeled term with a missing Y . Immediately, we can maximize L(θ) by
writing the unlabeled term as a Y -marginalization of the joint as in Sportisse et al. (2023). As we
will use EM to maximize L(θ), we apply Jensen inequality to the each term in the second sum using
the posterior weight ωt(x, y) = P (Y = y|X = x,A = 0, θt) where θt is value of θ in previous EM
iteration, to get the lower bound

Q(θ|θt) =
Nl∑
i=1

logP (X = xi, Y = yi, A = 1|θ)+
N∑

i=Nl+1

C∑
c=1

ωt(xi, c) logP (X = xi, Y = c, A = 0|θ)

(5)
This is the E-step of EM and we have found the ”pseudo-label” ωt(x, c) for our unlabeled data, re-
ducing the problem to a supervised learning one for the moment. Now we need to decide how to de-
compose the joint P (X,Y,A|θ) which decides what the parameter specification will be. It is natural
that we use the invariance P (X|Y,A) = P (X|Y ) in eq. (2) to decompose P (X|Y )P (Y |A)P (A),
but this requires generative modeling for P (X|Y ). Instead, we use P (A|Y )P (Y |X)P (X), which
means we only need to learn a classifier P (Y |X) and a finite-dimensional P (A|Y ), which are
recipes for the posterior weight ωt(x, y). With this, we get

Q(θ|θt) =
N∑
i=1

C∑
c=1

γi(c) logP (Y = c|X = xi, θ) +

C∑
c=1

1∑
a=0

ζc(a) logP (A = a|Y = c, θ) (6)

where γi(c) = 1(yi = c) for i ≤ Nl and P (Y = c|X = xi, A = 0, θt) for i > Nl. ζc(1) =∑Nl

i=1 1(yi = c) and ζc(0) =
∑N

i=Nl+1 P (Y = c|X = xi, A = 0, θt). This means that maximizing
L(θ|θt) is equivalent to minimizing a sum of cross entropy losses as this is the M-step. To compute
the posterior weight ωt(x, c), we use Bayes’ theorem:

ωt(x, c) ∝ P (Y = c|X = x, θt)P (A = 0|Y = c, θt) (7)

In summary, the 2 steps of the EM are:

E-step: Given P (Y = y|X = x, θt) and P (A = 0|Y = y, θt), set ωt(x, c) according to eq. (7)

M-step: Given ωt(x, c), find the new P (Y |X, θ) and P (A|Y, θ) by maximizing Q(θ|θt).

3.2 CONNECTION TO FIXMATCH, REMIXMATCH AND SIMPRO

Pseudo labeling methods such as Fixmatch (Sohn et al., 2020) and ReMixmatch (Berthelot et al.,
2019a) have a deep connection with Expectation-Maximization. Indeed, eq. (1) without data
augmentation and confidence thresholding is just the unlabeled term in eq. (5). For Fixmatch,
P (Y |A = 1) = P (Y |A = 0) = P (Y |uniform) i.e. there is no label shift. When there is mis-
match, the distribution alignment heuristic in Berthelot et al. (2019a) and subsequent works use
similar Bayes formula from eq. (3) to try to match the pseudo-label-induced class distribution with
(an estimate of) the distribution of unlabeled class. This is equivalent to eq. (7) after observing that
P (A = 0|Y ) ∝ P (Y |A = 0)/P (Y ). SimPro is a recent work that proposes an EM formula that
we found to be equivalent this this EM up to a parameterization of the model and logit adjustment.
They used a similar E-step but also applied Fixmatch’s confidence thresholding and augmentation.
Their M-step parameterizes the distribution as 2 parameters P (X|Y )

P (X) and P (Y |A = 0). This is just
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another decomposition of the unlabeled log-likelihood term in eq. (5) up to a constant P (A = 0):
P (X|Y )

P (X)
P (Y |A = 0) ∝ P (Y |X)

P (Y )
P (Y )P (A = 0|Y ) (8)

Instead of canceling out P (Y ), however, SimPro uses a logit adjustment loss Menon et al. (2020)
for the first term in eq. (6):

−
N∑
i=1

C∑
c=1

γi(c) logP (Y = c|X = xi, unf, θ)P (Y = c) (9)

As P (Y = c) is unknown, they use its running estimate. The model is automatically logit adjusted
to the uniform test distribution during training. In contrast, if the model is P (Y |X) in eq. (6), we
can apply post-hoc logit adjustment. As shown in Menon et al. (2020), the logit adjustment loss is
often slightly better, and this is what we find experimentally as well. Other than this difference, we
can recover the class distribution P (Y |A) from the missingness mechanism P (A|Y ) and because
P (A) is known, so they are learned equivalently.

3.3 OUR 2-STAGE ALGORITHM

Figure 2 (Appendix) shows an overview of our algorithm. In the first stage, we learn nuisance pa-
rameters to estimate the class distribution. This is a common procedure in Double Machine Learning
Chernozhukov et al. (2018). We use the log-likelihood eq. (4) on a validation set to pick the final
distribution. Then, we learn the final classifier in a second stage using the first-stage class distribu-
tion to adjust the pseudo-labels. The quality our first-stage estimation of P (Y |A = 0) has a direct
impact on the pseudo label accuracy, as highlighted in Theorem 3.1 of Wei et al. (2024). Briefly, the
error gap between the adjusted model and the Bayes-optimal model can be bounded by the sum of an
error term induced by the model’s performance on the training data and another error term induced
by the quality of our unlabeled distribution estimation. Therefore, we should aim for the highest
estimation quality we can get in the first stage. To this end, we present 3 possible estimators for
the combined class distribution P (Y ), the outcome regression (OR) estimator, inverse probability
weighted (IPW) estimator and the doubly robust (DR) estimator. The unlabeled class distribution
P (Y |A = 0) can be recovered by noting that P (Y ) =

∑
a P (A = a)P (Y |A = a) and that P (A)

and the labeled class distribution P (Y |A = 1) is known. The OR estimator is simply the average of
the model’s predictions

Ψor(c) =
1

N

N∑
i=1

P (Y = c|X = xi, θ) (10)

where the summation takes both labeled and unlabeled data.

Another estimator is the inverse probability weighted (IPW) estimator. Suppose that we have the
ground truth missingness mechanism P (A|Y ), then we have the following identity:

P (Y = c) = EO

[
1(A = 1)

P (A = 1|Y )
1(Y = c)

]
(11)

where O is a random variable representing one observation from the combined dataset, which is
complete (O = (X,A = 1, Y )) if the datapoint is from the labeled set and missing (X,A = 0)
if unlabeled set. The indicator 1(A = 1) means that we are not actually using ground truth labels
from the unlabeled set, but up-weighting the existing labels from the labeled set by the missing-
ness mechanism. Replacing expectation with sample average and P (A = 1|Y ) with an estimation
P (A = 1|Y, θ), we get our IPW estimator of P (Y ), which depends on θ

Ψipw(θ)(c) =
1

N

N∑
i=1

1(ai = 1)

P (A = 1|Y = yi, θ)
1(yi = c) (12)

Our doubly robust estimator It is worth noting that each estimator above (OR or IPW) uses only
one part of the distribution, either P (Y |X) or P (A|Y ). The DR estimator takes advantage of both
of these quantities. It is

Ψdr(θ)(c) =
1

N

N∑
i=1

[
P (Y = c|X = xi, θ)+

1(ai = 1)

P (A = 1|Y = yi, θ)
(1(yi = c)−P (Y = c|X = xi, θ))

]
(13)

Ψdr(θ) is called doubly-robust because, given either a correct P (Y |X) or P (A = 1|Y ), we will
get an unbiased estimate of P (Y ). We need to learn both of these quantities from finite data which
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Table 1: Performance of unlabeled distribution estimation methods on CIFAR-10-LT measured by
Total Variation Distance to the ground truth. green indicates the best number in each column. In
most settings, our SimPro + DR performs significantly better than other baselines.

consistent uniform reversed middle head-tail

γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100
Model Estimator γu = 150 γu = 100 γu = 1 γu = 1 γu = 1/150 γu = 1/100 γu = 150 γu = 100 γu = 150 γu = 100

Supervised MLLS 0.269 ± 0.252 0.038 ± 0.006 0.251 ± 0.046 0.255 ± 0.060 0.429 ± 0.028 0.493 ± 0.050 0.333 ± 0.042 0.320 ± 0.009 0.457 ± 0.034 0.444 ± 0.043
Supervised RLLS 0.043 ± 0.001 0.044 ± 0.010 0.348 ± 0.034 0.305 ± 0.068 0.769 ± 0.016 0.678 ± 0.028 0.430 ± 0.008 0.368 ± 0.013 0.539 ± 0.018 0.503 ± 0.020

MLE IPW 0.027 ± 0.001 0.027 ± 0.000 0.319 ± 0.072 0.243 ± 0.010 0.674 ± 0.020 0.646 ± 0.041 0.438 ± 0.020 0.454 ± 0.026 0.547 ± 0.049 0.491 ± 0.059
MLE OR 0.045 ± 0.004 0.042 ± 0.000 0.215 ± 0.026 0.203 ± 0.032 0.433 ± 0.017 0.395 ± 0.033 0.193 ± 0.006 0.209 ± 0.037 0.307 ± 0.147 0.249 ± 0.130
MLE DR 0.090 ± 0.002 0.079 ± 0.000 0.407 ± 0.027 0.360 ± 0.007 0.425 ± 0.007 0.421 ± 0.029 0.256 ± 0.001 0.286 ± 0.031 0.435 ± 0.136 0.362 ± 0.122

EM IPW 0.035 ± 0.002 0.040 ± 0.001 0.021 ± 0.001 0.029 ± 0.015 0.303 ± 0.187 0.091 ± 0.010 0.119 ± 0.011 0.105 ± 0.022 0.104 ± 0.026 0.104 ± 0.051
EM OR 0.037 ± 0.003 0.042 ± 0.002 0.016 ± 0.001 0.024 ± 0.012 0.269 ± 0.183 0.090 ± 0.008 0.122 ± 0.012 0.103 ± 0.022 0.072 ± 0.012 0.073 ± 0.024
EM DR 0.034 ± 0.004 0.037 ± 0.001 0.014 ± 0.001 0.027 ± 0.020 0.264 ± 0.191 0.092 ± 0.005 0.111 ± 0.019 0.097 ± 0.026 0.077 ± 0.016 0.073 ± 0.028

SimPro IPW 0.070 ± 0.011 0.058 ± 0.000 0.046 ± 0.001 0.049 ± 0.005 0.254 ± 0.074 0.223 ± 0.098 0.097 ± 0.025 0.067 ± 0.002 0.105 ± 0.066 0.110 ± 0.079
SimPro OR 0.071 ± 0.012 0.058 ± 0.000 0.045 ± 0.001 0.049 ± 0.006 0.040 ± 0.003 0.059 ± 0.017 0.074 ± 0.006 0.075 ± 0.002 0.033 ± 0.003 0.033 ± 0.003
SimPro DR 0.017 ± 0.004 0.026 ± 0.001 0.019 ± 0.002 0.018 ± 0.003 0.039 ± 0.003 0.058 ± 0.025 0.091 ± 0.007 0.031 ± 0.001 0.015 ± 0.003 0.019 ± 0.007

Table 2: Top-1 accuracy (%) on CIFAR-10-LT (Nl = 500, Ml = 4000) with different class imbal-
ance ratios γl and γu under five different unlabeled class distributions. green / red indicates when
our algorithm (SimPro+ and BOAT+) improves / degrades the base method (SimPro and BOAT). In
most settings, our two stage algorithm improves SimPro (9 / 10) and BOAT (8 / 10)

consistent uniform reversed middle head-tail

γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100 γl = 150 γl = 100
γu = 150 γu = 100 γu = 1 γu = 1 γu = 1/150 γu = 1/100 γu = 150 γu = 100 γu = 150 γu = 100

FixMatch 62.9 ± 0.36 67.8 ± 1.13 67.6 ± 2.56 73.0 ± 3.81 59.9 ± 0.82 62.5 ± 0.94 64.3 ± 0.63 71.7 ± 0.46 58.3 ± 1.46 66.6 ± 0.87
CReST+ 67.5 ± 0.45 76.3 ± 0.86 74.9 ± 0.90 82.2 ± 1.53 62.0 ± 1.18 62.9 ± 1.39 58.5 ± 0.68 71.4 ± 0.60 59.3 ± 0.72 67.2 ± 0.48
DASO 70.1 ± 1.81 76.0 ± 0.37 83.1 ± 0.47 86.6 ± 0.84 64.0 ± 0.11 71.0 ± 0.95 69.0 ± 0.31 73.1 ± 0.68 70.5 ± 0.59 71.1 ± 0.32
Supervised 63.2 ± 0.14 66.0 ± 0.27 63.3 ± 0.28 65.8 ± 0.19 63.1 ± 0.19 65.9 ± 0.51 63.5 ± 0.22 65.8 ± 0.03 63.0 ± 0.18 66.4 ± 0.07

EM 69.1 ± 1.29 73.8 ± 0.71 94.0 ± 0.08 93.2 ± 0.94 76.6 ± 2.72 82.2 ± 0.24 79.5 ± 0.35 81.6 ± 0.58 79.2 ± 0.50 79.8 ± 0.17

SimPro 74.4 ± 0.71 79.7 ± 0.45 93.3 ± 0.10 93.3 ± 0.47 83.8 ± 0.80 84.1 ± 0.24 78.7 ± 0.30 84.2 ± 0.26 81.2 ± 0.20 82.0 ± 1.07
SimPro+ 77.8 ± 1.50 81.2 ± 0.39 93.7 ± 0.07 93.7 ± 0.24 83.3 ± 0.38 84.7 ± 0.78 79.2 ± 0.70 85.4 ± 0.66 81.3 ± 0.27 82.5 ± 0.56

BOAT 80.5 ± 0.39 83.3 ± 0.27 93.9 ± 0.03 94.1 ± 0.10 79.7 ± 0.25 81.1 ± 0.15 79.7 ± 1.15 81.6 ± 0.09 79.4 ± 0.44 80.9 ± 0.16
BOAT+ 81.6 ± 0.15 83.8 ± 0.04 93.7 ± 0.23 94.1 ± 0.17 80.4 ± 0.71 81.7 ± 0.38 80.3 ± 0.28 83.1 ± 0.45 79.7 ± 0.29 81.0 ± 0.36

means their errors will propagate to the final estimation. However, this issue is addressed by the
following optimality result.

3.3.1 THEORETICAL GUARANTEES FOR Ψdr

We can show, under weak assumption on the quality of θ, that Ψdr has strong theoretical guarantees.
Let op denote convergence in probability, define the L2(P ) as ∥f∥L2(P ) = (

∫
|f |2dP )1/2, where P

is the true distribution. We make the following assumption.
Assumption 3.1. Assume that both P (Y |X, θ) and P (A = 1|Y ) converge at fourth-root-n rate i.e.

∥P (Y |X, θ)− P (Y |X)∥L2(P ) = op(N
−1/4)

∥P (A = 1|Y, θ)− P (A = 1|Y )∥2 = op(N
−1/4)

(14)

Justification: These assumptions (fourth-root-n rate of convergence) have been proven for neural
networks Chernozhukov et al. (2022), which are consistent because of the universal approximation
theorem, but tend to be biased because of regularization Chernozhukov et al. (2018).

We have the following optimality result:
Theorem 3.2. Under the assumption theorem 3.1 the DR estimator Ψdr for each class c is asymp-
totically normal with 0-mean and the efficient influence function’s variance:√

N(Ψdr(θ)(c)− P (Y = c))⇝ N (0,E[ϕ(O)(c)2]) (15)

The proof of theorem theorem 3.2 is deferred to the supplemental material. To put this theorem
into perspective, the sample mean 1

n

∑
i zi is the most efficient estimator of the mean of a random

variable Z, where zi are unbiased samples. However, the OR estimator Ψor, which resembles a
sample mean of P (Y |X, θ), can be biased because θ is a model-dependent approximation of the
true data-generating process based on finite samples. This bias can slow the convergence of Ψor

if the model P (Y |X, θ) does not converge sufficiently quickly to the truth, specifically at a rate
slower than N−1/2 Chernozhukov et al. (2018), potentially causing Ψor to diverge. Theorem 3.2
suggests that if both the OR and IPW estimators converge at a faster rate than N−1/4, as stated
in Assumption 3.1, then the DR estimator will converge to a normal distribution, behaving as if it
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Table 3: Total Variance Distance on CIFAR-100-LT. SimPro + DR does not improve because there
are too few labels for each class.

consistent uniform reversed middle head-tail

γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10
Model Estimator γu = 20 γu = 10 γu = 1 γu = 1 γu = 1/20 γu = 1/10 γu = 20 γu = 10 γu = 20 γu = 10

Supervised MLLS 0.707 ± 0.016 0.313 ± 0.100 0.445 ± 0.172 0.309 ± 0.119 0.383 ± 0.075 0.397 ± 0.006 0.570 ± 0.001 0.373 ± 0.107 0.543 ± 0.009 0.231 ± 0.057
Supervised RLLS 0.520 ± 0.007 0.133 ± 0.003 0.337 ± 0.125 0.253 ± 0.082 0.424 ± 0.060 0.463 ± 0.003 0.454 ± 0.021 0.306 ± 0.074 0.460 ± 0.028 0.241 ± 0.040

MLE IPW 0.075 ± 0.000 0.071 ± 0.001 0.229 ± 0.001 0.167 ± 0.002 0.565 ± 0.005 0.443 ± 0.007 0.415 ± 0.000 0.311 ± 0.005 0.343 ± 0.000 0.280 ± 0.001
MLE OR 0.065 ± 0.002 0.061 ± 0.001 0.200 ± 0.007 0.143 ± 0.001 0.526 ± 0.011 0.399 ± 0.023 0.360 ± 0.003 0.256 ± 0.012 0.328 ± 0.003 0.266 ± 0.005
MLE DR 0.149 ± 0.019 0.145 ± 0.010 0.243 ± 0.004 0.214 ± 0.019 0.568 ± 0.005 0.464 ± 0.014 0.403 ± 0.014 0.309 ± 0.012 0.365 ± 0.007 0.320 ± 0.004

EM IPW 0.097 ± 0.008 0.092 ± 0.004 0.239 ± 0.007 0.179 ± 0.003 0.478 ± 0.012 0.329 ± 0.020 0.262 ± 0.016 0.202 ± 0.003 0.312 ± 0.002 0.227 ± 0.001
EM OR 0.121 ± 0.007 0.108 ± 0.005 0.261 ± 0.007 0.189 ± 0.004 0.489 ± 0.013 0.335 ± 0.020 0.274 ± 0.016 0.211 ± 0.004 0.336 ± 0.003 0.235 ± 0.001
EM DR 0.125 ± 0.005 0.111 ± 0.004 0.269 ± 0.007 0.194 ± 0.005 0.497 ± 0.010 0.336 ± 0.024 0.281 ± 0.019 0.219 ± 0.008 0.336 ± 0.007 0.233 ± 0.004

SimPro IPW 0.125 ± 0.001 0.100 ± 0.005 0.166 ± 0.007 0.141 ± 0.009 0.353 ± 0.023 0.261 ± 0.008 0.202 ± 0.003 0.158 ± 0.005 0.277 ± 0.009 0.197 ± 0.003
SimPro OR 0.133 ± 0.005 0.100 ± 0.004 0.160 ± 0.007 0.138 ± 0.010 0.322 ± 0.014 0.253 ± 0.008 0.202 ± 0.003 0.156 ± 0.005 0.269 ± 0.006 0.191 ± 0.004
SimPro DR 0.122 ± 0.003 0.106 ± 0.006 0.188 ± 0.009 0.149 ± 0.006 0.343 ± 0.023 0.257 ± 0.007 0.219 ± 0.010 0.172 ± 0.002 0.279 ± 0.007 0.198 ± 0.004

Table 4: Top-1 accuracy (%) on CIFAR-100-LT. Despite poor estimation in stage 1, our algorithm
does not degrade overall performance.

consistent uniform reversed middle head-tail

γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10 γl = 20 γl = 10
γu = 20 γu = 10 γu = 1 γu = 1 γu = 1/20 γu = 1/10 γu = 20 γu = 10 γu = 20 γu = 10

Supervised 32.4 ± 0.40 38.4 ± 0.18 32.7 ± 0.25 38.0 ± 0.22 32.5 ± 0.51 38.4 ± 0.43 32.3 ± 0.08 37.9 ± 0.43 32.1 ± 0.33 38.2 ± 0.38
EM 42.4 ± 0.43 49.6 ± 0.30 50.9 ± 0.27 58.0 ± 0.35 42.1 ± 0.16 49.8 ± 0.47 42.8 ± 0.41 49.6 ± 0.36 41.5 ± 1.26 49.5 ± 0.18

SimPro 42.5 ± 0.58 49.6 ± 0.22 51.7 ± 0.22 58.1 ± 0.53 44.9 ± 0.21 51.8 ± 0.42 42.7 ± 0.06 49.8 ± 0.45 43.3 ± 0.76 50.9 ± 0.19
SimPro+ 42.8 ± 0.49 50.1 ± 0.33 51.6 ± 0.63 57.8 ± 0.38 44.7 ± 0.51 51.4 ± 0.88 43.4 ± 0.58 50.4 ± 0.28 43.8 ± 0.50 50.7 ± 0.76

BOAT 43.7 ± 0.16 51.4 ± 0.32 55.1 ± 0.95 60.5 ± 0.15 43.1 ± 0.49 52.7 ± 0.23 43.6 ± 0.19 51.4 ± 0.39 43.9 ± 0.42 51.4 ± 0.14
BOAT+ 44.8 ± 0.13 51.4 ± 0.51 53.8 ± 0.32 60.5 ± 0.69 43.4 ± 0.56 52.4 ± 0.36 43.9 ± 0.59 50.8 ± 0.09 43.6 ± 0.50 51.9 ± 0.49

were estimated using unbiased samples. Moreover, the DR estimator achieves the smallest variance
among all regular estimators.

Limitation of Theorem 3.2 This is an asymptotic result, guaranteeing convergence only as the
sample size N approaches infinity. In practice, for datasets with very small sample sizes per class,
the DR estimator may offer little to no improvement over the baseline. Another weakness of the
theorem is that it applies to each class c independently; extending the result to all C classes si-
multaneously would require roughly C times as much data. Our experiments on CIFAR-100-LT
confirm this behavior, showing that the DR estimator slightly degrades the baseline. However, the
performance of the second-stage model remains relatively unaffected.

4 EXPERIMENTAL RESULTS

We show results for each stage of our algorithm. In the first stage, we compare among various
methods to estimate the unlabeled class distribution P (Y |A = 0), showing that SimPro + DR per-
forms well. In the second stage, we freeze the unlabeled class distribution, using our best estimator
SimPro + DR, and plug it into a second SimPro model (reseting model parameters). We also use
alternative methods BOAT (Gan et al., 2024), the state-of-the-art at the time of writing, and ReMix-
Match (Berthelot et al., 2019a), CoMatch (Li et al., 2021), the latter two are deferred to table 8 in
the Appendix. We show that this simple procedure improves the existing SSL methods.

Datasets We evaluate our method on four standard semi-supervised learning benchmarks: CIFAR-
10, CIFAR-100 Krizhevsky & Hinton (2009), STL-10 Coates et al. (2011), and Imagenet-127 Fan
et al. (2022). To simulate RTSSL, we construct long-tailed labeled and unlabeled sets for CIFAR-10
and CIFAR-100. The labeled data follows an imbalance ratio γl with head class size n1, while the

remaining class sizes are computed as nc = n1 × γ
− c−1

C−1

l . The unlabeled data follows a similar
setup with γu and m1. For CIFAR-10, we set n1 = 500, m1 = 4000, and test two configurations:
γl = γu = 150 and γl = γu = 100. We generate 10 datasets by permuting the unlabeled class
distributions in five ways: consistent, uniform, reversed, middle, and head-tail, as in Du et al. (2024).
CIFAR-100 follows the same setup with n1 = 50, m1 = 400, and γl, γu values of 20 and 10. For
STL-10, where unlabeled data lacks ground-truth labels, we use all head-class samples and set γl to
10 or 20. Imagenet-127 is naturally long-tailed with 127 classes, and we train on 32×32 and 64×64
resolutions as in Fan et al. (2022).
Training. We follow the implementation and hyperparameter settings of Du et al. (2024). We
defer these details in the supplementary material. One important exception is that for Imagenet-127,
we use the smaller Wide ResNet-28-2 in stage 1 and the larger ResNet-50 for stage 2, to demonstrate
that a smaller model is sufficient for distribution estimation.
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Table 5: Results on Imagenet-127. Each subtable reports a different metric.

(a) Total Variation Distance.

Method Estimator 32× 32 64× 64
MLE IPW 0.103 ± 0.034 0.051 ± 0.000
MLE OR 0.153 ± 0.052 0.041 ± 0.000
MLE DR 0.100 ± 0.029 0.075 ± 0.003

EM IPW 0.141 ± 0.006 0.163 ± 0.010
EM OR 0.205 ± 0.006 0.236 ± 0.011
EM DR 0.024 ± 0.001 0.042 ± 0.004

SimPro IPW 0.041 ± 0.012 0.224 ± 0.040
SimPro OR 0.036 ± 0.014 0.291 ± 0.079
SimPro DR 0.017 ± 0.000 0.037 ± 0.004

(b) Top-1 Accuracy (%).

Method 32× 32 64× 64
SimPro 54.8 63.7
SimPro+ 55.1 64.2

BOAT 51.6 58.7
BOAT+ 52.0 59.2

4.1 BETTER RESULTS ON LABEL DISTRIBUTION

We compare multiple methods for estimating the label distribution. Each method consists of a
model, which is how the learning is done, and an estimator, which is how the final distribution
is estimated using parameters learned from the model. The methods are: Supervised (using only
supervised labels as in test-time adaptation) MLE (directly maximizing the likelihood eq. (4) with
gradient descent Sportisse et al. (2023)); EM and SimPro as discussed in section 3.1 where the
difference is that EM does not use confidence thresholding. While it is a powerful regularization
technique that encodes the assumptions that classes are well separated Grandvalet & Bengio (2004),
confidence thresholding can introduce bias to the label distribution estimation, as shown in fig. 1,
which justifies the use of our doubly-robust estimator. Regarding estimators, for Supervised, we
use RLLS Azizzadenesheli et al. (2019) and MLLS Saerens et al. (2002), both well-known in label
shift adaptation, and for each semi-supervised method, we try all 3 estimators in section 3.3, namely
OR which is the baseline estimator, IPW and DR which are our proposed estimator.

Results on table 1 presents the performance of various models and estimators on CIFAR-10. We can
see that SimPro + DR performs best. In contrast, SimPro + OR, SimPro’s original way of estimating
P (Y |A = 0), and SimPro + IPW tend to underperform EM on the consistent and uniform datasets.
The consistent setting is worth noting, since it arises when data is sampled uniformly at random for
labeling, representative of a large number of real world situations. EM is competitive to SimPro
as well even without pseudo labeling, but overall we found this regularization to offer significant
gains in the reversed, middle and head-tail settings. Finally, Supervised with either MLLS or RLLS
estimators performs much worse than the semi-supervise methods.

table 3 shows that most methods struggle to estimate class distributions in CIFAR-100, which is
expected given the limited label: only 50 labeled samples per class in the head class, compared to
500 in CIFAR-10, while the number of classes increases tenfold. Among SimPro variants, SimPro
+ OR performs best in most settings, though the performance gaps remain small. In contrast, on
Imagenet-127, which has a similar number of classes but roughly ten times more samples, SimPro +
DR shows significant improvements as shown in table 5a. As noted in theorem 3.2, our theoretical
guarantee holds asymptotically and for each class independently, which may explain the limited
effectiveness of our method in low-sample regimes. We ablate on the number of samples needed for
DR to outperform OR by reducing the original CIFAR-10-LT size incrementally (there is not enough
data to add for CIFAR-100-LT while fixing the class ratio), finding in fig. 3 (Appendix) that there is
indeed a ”phase transition” in the number of samples when DR starts to become better than OR. We
also found that a small neural network and a small image resolution is sufficient for the distribution
estimation of the much larger Imagenet-127 dataset.

4.2 TWO-STAGE ALGORITHM IMPROVES ACCURACY

In the second stage of our algorithm, we freeze our estimation and plug it in SimPro and BOAT. We
denote SimPro+ and BOAT+ for algorithms that use our first stage estimate.

table 2 shows that for CIFAR-10 SimPro+ and BOAT+ improve over their original versions across
most settings, leading to large improvements in both the consistent and middle class distribution
settings. In particular, our two-stage approach improves SimPro in 9 / 10 settings and BOAT in
8 / 10 settings. We also observe consistent improvements over both base algorithms, SimPro and
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Table 6: Top-1 Accuracy (%) on CIFAR-10. We compare our 2-stage SimPro+ with 1) an 1-stage
alternative that updates and uses the doubly-robust estimation online and 2) SimPro+ with doubly-
robust risk. We fix γl = 150. The chosen implementation outperforms alternatives.

Method consistent uniform reversed middle headtail
SimPro+ 77.8 93.7 83.3 79.2 81.3
batch-update 71.9 91.4 82.6 78.6 81.2
DR-risk 72.1 89.8 67.1 75.6 79.5

BOAT, for several other datasets. table 7 (Appendix) demonstrates improvements for 2 / 2 class
imbalance ratios in STL-10 and table 5b for 2 / 2 different resolutions of ImageNet-127.

We also evaluate on CIFAR-100 for multiple unlabeled class distribution settings and with mediocre
class label distribution estimates in stage 1, demonstrate no degradation in accuracy in stage 2. As
shown in table 4, the two stage algorithm with a mediocre stage 1 estimation leads to parity with the
baseline. Stage 2 provides small improvements in 5 / 10 settings for SimPro and in 4 / 10 (with 2
ties) for BOAT.

4.3 ABLATION STUDY: ALTERNATIVE IMPLEMENTATIONS.

In this section, we ablate on our 2-stage choice. Specifically, we consider 2 alternative implementa-
tions:
Doubly-robust risk This approach is Sportisse et al. (2023); Hu et al. (2022), as discussed in
section 2. We consider the doubly-robust risk as our training loss eq. (28). The main difference is that
instead of evaluating the class distribution P (Y ), the doubly robust risk evaluates the loss l(X,Y |θ)
and therefore can be used directly as a training loss. Otherwise, the missingness mechanism and
probability weight are shared by both. To control the comparison, we use the same missingness
mechanism estimation from stage-1 for the doubly-robust risk, so the doubly-robust risk can be
considered an alternative stage-2. More detail can be found in appendix C.
Batch-update doubly-robust P (Y |A) One may ask why not combine the 2 stages into one by up-
dating the class distribution with the doubly-robust estimator online. We verify this by re-computing
the doubly-robust estimator for every batch. More specifically, after an M-step with a batch t of data
and we obtain P (Y = y|X = x, θt) and P (A = 0|y = y, θt), we plug these nuisance estimates
into our doubly-robust estimator, still using the data from that batch only. To reduce variance, we
then use a moving average of this newly computed value with a running value (a common strategy
in SSL e.g. Berthelot et al. (2019a)), which is the actual value that we use for the posterior weight
ω in the E-step.

table 6 shows that the both alternatives are worse in all mismatch settings, although the batch-update
SimPro+ is better than the DR-risk. The batch-update doubly robust estimator does not have enough
samples per batch for a reliable estimate, and the moving average has no theoretical backing and
potentially introduces bias. Another alternative is update the doubly-robust estimator with all data
but after every epoch, which even translates to multiple stages (instead of just 2) of updating the
class distribution then updating the classifier. However, a crucial difference is that we reset the
parameters after a stage, which alleviates a potential overfitting problem. The doubly-robust risk
is worst overall, especially in the reversed setting where P (A|Y ) is very small for the labeled tail
classes, causing instability issues during training. Another potential issue with the DR-risk is that the
loss theoretically has undesirable optimum of negative infinity due to negative meta-pseudo-labels,
see eq. (29). In conclusion, we find that the 2-stage implementation works best.

5 CONCLUSION

We improve the estimation of class distribution in the distribution mismatch settings in semi-
supervised learning with the doubly robust estimator from semi-parametric efficiency theory, and
subsequently propose a simple two-stage approach to additionally improve classification accuracy
by training a second classifier using the improved class distribution. Our method achieves improved
performance on three benchmark datasets: CIFAR-10, STL-10, and ImageNet-127. However, a
limitation of our estimator is its reduced effectiveness on datasets with very small per-class sample
sizes, such as CIFAR-100. A promising fix is to initialize the learning with large foundation models
pretrained on image data, which is out of the scope of this work.
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A APPENDIX

B PROOF OF THEOREM 3.2

We require some additional regularity assumptions:

Assumption B.1. 1) The number of classes C is bounded w.r.t the number of samples N , 2) the
missingness mechanism P (A = 1|Y, θ), as well as its estimated counterpart P (A = 1|Y, θ), are
bounded below by some constant ϵ > 0, 3) the quantities P (Y |X, θ) and P (A|Y, θ) are estimated
using auxiliary samples independent of samples used for the sample averaging.

Assumptions 1 and 2 are natural. For the missingness mechanism, the ground truth being bounded
means that there is a non-vanishing proportion of samples for every class. The boundedness of
the estimate can be enforced by clipping the estimate. Assumption 3 is called sample splitting in
Kennedy (2024).

For convenience we use operator EN to denote the average of N samples i.e. 1
N

∑N
i=1. Note that

this is by itself a random variable, in contrast to E which is a fixed number.

Proof of theorem 3.2. Because C is bounded (assumption B.1), we can fix a class c and prove the
theorem. Let us define the influence function ϕ, parameterized by θ, as

ϕ(O|θ)(c) = P (Y = c|X, θ) +
1(A = 1)

P (A = 1|Y, θ)
(1(Y = c)− P (Y = c|X, θ))− P (Y = c) (16)

As we have done in the main text, we use ϕ(O) to denote the same function but all estimated
quantities are replaced with their truths. In other words, we use ϕ(O) for ϕ(O|θ0) where θ0 is the
truth, given that our model contains θ0 e.g. when the model is consistent.

Recall that:

Ψdr(θ)(c) =
1

N

N∑
i=1

{
P (Y = c|X, θ) +

1(A = 1)

P (A = 1|Y, θ)
(1(Y = c)− P (Y = c|X, θ))

}
= EN [ϕ(O|θ)(c)] + P (Y = c)

(17)

We will show that:
Ψdr(θ)(c)− P (Y = c) = (EN − E)[ϕ(O)(c)] + oP (N

−1/2) (18)
To do that, we use the following decomposition
Ψdr(θ)(c)− P (Y = c) = EN [ϕ(O|θ)(c)]

= (EN − E)[ϕ(O)(c)] + (EN − E)[ϕ(O|θ)(c)− ϕ(O)(c)] + E[ϕ(O|θ)(c)]
(19)

and analyze the second and third term. The third term is:

E[ϕ(O|θ)(c)] = E[P (Y = c|X, θ)] + E
[

1(A = 1)

P (A = 1|Y, θ)
(1(Y = c)− P (Y = c|X, θ))

]
− P (Y = c)

= E
[
P (Y = c|X, θ) +

P (A = 1|Y )

P (A = 1|Y, θ)
(P (Y = c|X)− P (Y = c|X, θ))

]
− E[P (Y = c|X)]

= E
[
(P (Y = c|X, θ)− P (Y = c|X))(P (A = 1|Y, θ)− P (A = 1|Y ))

1

P (A = 1|Y, θ)

]
(20)
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by Cauchy-Schwarz inequality:

E[ϕ(O|θ)(c)] ≤ 1

ϵ
∥P (A = 1|Y, θ)− P (A = 1|Y )∥2∥P (Y = c|X, θ)− P (Y = c|X)∥L2(P )

=
1

ϵ
oP (N

−1/4N−1/4) = oP (N
−1/2)

(21)
by assumption 3.1 and that P (A = 1|Y, θ) > ϵ (assumption B.1). The second term can be bounded
by Chebyshev inequality

P (|(EN−E)[ϕ(O|θ)(c)−ϕ(O)(c)]| ≥ t) ≤ var[EN [ϕ(O|θ)(c)− ϕ(O)(c)]]

t2
=

var[ϕ(O|θ)(c)− ϕ(O)(c)]

Nt2
(22)

note here that θ is independent of the samples used for EN by assumption B.1. For any ε > 0, by
picking t = 1√

Nε
we get

P

(∣∣∣∣ (EN − E)[ϕ(O|θ)(c)− ϕ(O)(c)]

N−1/2

∣∣∣∣ ≥ 1√
ε

)
≤ εvar[ϕ(O|θ)(c)− ϕ(O)(c)] (23)

by the definition of OP , we then get
(EN − E)[ϕ(O|θ)(c)− ϕ(O)(c)] = OP (N

−1/2var[ϕ(O|θ)(c)− ϕ(O)(c)]) (24)
Because ϕ is a continuous function of P (Y |X, θ) and P (A|Y, θ) (given P (A|Y, θ) > ϵ, assumption
B.1), by the continuous mapping theorem and the fact that P (Y |X, θ) and P (A|Y, θ) are convergent
in probability (assumption 3.1), we get var[ϕ(O|θ)(c)− ϕ(O)(c)] = oP (1). This gives

(EN − E)[ϕ(O|θ)(c)− ϕ(O)(c)] = oP (N
−1/2) (25)

Therefore, we have shown that the second and third term are both oP (N
−1/2), proving eq. (18). As

the final step, multiply both sides of this equation by
√
N we get:√

N(Ψdr(θ)(c)− P (Y = c)) =
√
N(EN − E)[ϕ(O)(c)] + oP (1)⇝ N (0, var[ϕ(O)(c)]) (26)

by the central limit theorem, and var[ϕ(O)(c)] = E[ϕ(O)(c)2] because E[ϕ(O)(c)] = 0.

While we started with the definition of ϕ, eq. (18) shows that ϕ is indeed an influence function.
Now we show that ϕ is also the efficient influence function, by using the characterization of the
model’s tangent space Tsiatis (2006). Note that the joint probability factorizes as P (X,A, Y ) =
P (X)P (Y |X)P (A|Y ), therefore the tangent space T factorizes as T = TX ⊕TY |X ⊕TA|Y where
TX = {h(X) : E[h] = 0}, TY |X = {h(X,Y ) : E[h|X] = 0}, TA|Y = {h(A, Y ) : E[h|Y ] = 0},
and the 3 subspaces are pairwise orthogonal. All influence functions are orthogonal to the tangent
space, but the influence function that is also in the tangent space has the smallest variance and is
called the efficient influence function. As ϕ is already an influence function, we need only show that
ϕ is in T . We write ϕ as

ϕ(O)(c) = (P (Y = c|X)−P (Y = c))+

[
1(A = 1)

P (A = 1|Y )
− 1

]
(1(Y = c)−P (Y = c|X))+(1(Y = c)−P (Y = c|X))

(27)
and note that the first, second and third term are in TX , TA|Y and TY |X respectively. Therefore, ϕ is
indeed in T . The efficient influence function has the smallest variance of all influence function, and
therefore our estimator being asymptotically linear in ϕ (eq. (18)) has the smallest mean squared
error in a local asymptotic minimax sense Kennedy (2024); Van der Vaart (2000)

C FURTHER BACKGROUND AND RELATED WORK

Our work builds and improves on Du et al. (2024). Specifically, we show in section 3.2 that it is a
reparameterization of the semi-supervised EM algorithm in section 3.1, and we use it as the training
method for both stages of our algorithm. Our work is also close to Sportisse et al. (2023); Hu
et al. (2022) who also note the connection to non-ignorable missingness and propose doubly robust
estimation of the loss. This loss remains consistent even when the pseudo labels are arbitrarily bad,
in a similar spirit to Schmutz et al. (2022); Zhu et al. (2024), as long as the missingness mechanism
is correct. Thus they try to safeguard against wrong un-adjusted labels. We on the other hand try to
improve the label’s quality via EM and adjustment by the doubly robust estimation of the unlabeled
class distribution. An important weaknesses of the doubly robust loss Sportisse et al. (2023) is that
it involves inverse-weighting Cui et al. (2019) which is prone to unstable training Ren et al. (2020).
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Labeled sample

Observation

Unlabeled sample

Stage-2 Model

Stage-1 EM

(Nuisance) classifier

Missingness mechanism

Class distribution

Doubly-robust estimator

Stage-1 Model

Stage-2 EM

Final classifier

Figure 2: Overview of our 2-stage method (section 3.3). In stage 1, we use Expectation-
Maximization (EM, section 3.1) to estimate the missingness mechanism and classifier from ob-
servable data. These quantities are used as nuisance components for the doubly-robust estimator of
the class distribution eq. (13). In stage 2, we can use EM or other existing methods that also use
logit-adjustment with the (unlabeled) class distribution to estimate the final classifier. We use Sim-
Pro as our implementation of EM (section 3.2). The network in stage 1 can be of equal or smaller
size than the network in stage 2 (section 4.1).

Discussion on semi-supervised EM. It appears that semi-supervised EM was first used for pa-
rameter estimation when the missingness mechanism is non-ignorable in Ibrahim & Lipsitz (1996),
but has not been used for label shift estimation. Perhaps this is because the semi-supervised situa-
tion where additional unlabeled data is available during training is rarer than the test-time adaptation
case. EM is well suited to take advantage of the extra unlabeled data to improve the classifier under
very scarce and long-tailed labeled data. While the connection between pseudo-labeling and EM
has been explored before Grandvalet & Bengio (2004), the situation with label shift has not until
recently Du et al. (2024). Here the application of EM is much more interesting, because other than
simply giving pseudo-labeling a rigorous formulation, EM also estimates the missingness mech-
anism (equivalently the label distribution shift), which is important for shift correction and thus
high-quality pseudo-labels Wei & Gan (2023). The application of confidence thresholding can be
seen as a sparse variant of EM Neal & Hinton (1998).

The doubly-robust risk. A technique that also derives from the theory of semi-parametric effi-
ciency is orthogonal statistical learning (Foster & Syrgkanis, 2023). The idea is to minimize the
doubly-robust risk:

R(θ2) =
1

N

N∑
i=1

[
l(xi, ŷi|θ2) +

1(ai = 1)

P (A = ai|Y = yi, θ1)
(l(xi, yi|θ2)− l(xi, ŷi|θ2))

]
(28)

where l(x, y|θ) = −
∑C

c=1[y]c logP (Y = c|X = x, θ) is the negative cross-entropy. The notation
[y]c means that we are using the c-entry in a C-dimension probability vector y. Thus, yi denotes the
one-hot label of observation i, while ŷi denotes the pseudo-label, which can be one-hot or all-zero.
Finally, we use θ1 to denote that P (a|y, θ1) is an estimation from a previous stage, but it can be
estimated with θ2 as well. The risk R(θ2) can be used as a training loss in a straightforward fashion.
Similar to the doubly robust estimation of P (Y ), the doubly robust risk provides approximately
unbiased estimation of the risk. This property has been used in (Sportisse et al., 2023; Hu et al.,
2022; Zhu et al., 2024) also in the semi-supervised learning setting. More broadly, it is at the heart of
one of the core techniques in heterogenous treatment effect estimation in causal estimation Kennedy
(2023); Foster & Syrgkanis (2023); Wager & Athey (2018). The focus here is not the estimation of
R(θ2) per se, but the quality of the learned model Foster & Syrgkanis (2023). By using the doubly-
robust risk, we can achieve an optimality result similar in spirit to our theorem theorem 3.2, but for
the generalization error. While this is appealing, in practice there are 2 problems with this approach.
First, the inverse probability weight P (A = ai|Y = yi, θ1) can be very large if the class ratio is
highly unlabeled, making training unstable Kallus (2020); Pham et al. (2023). This problem exists
for our estimation as well. However, it is much easier to control for estimation than for training
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Table 7: Top-1 Accuracy (%) on STL-10. Our two-stage algorithms improves both SimPro and
BOAT for both settings.

Method γl = 10 γl = 20
Supervised 73.9 ± 0.57 70.4 ± 0.95

MLE 67.6 ± 0.57 58.9 ± 4.05

EM 84.9 ± 0.14 83.6 ± 0.25

SimPro 82.4 ± 1.57 80.5 ± 0.96
SimPro+ 83.9 ± 0.76 82.7 ± 0.86

BOAT 83.8 ± 0.20 82.0 ± 0.34
BOAT+ 84.1 ± 0.38 82.4 ± 0.10

because of the iterative nature of model update. Secondly, we can further write R as:

R(θ2) =
1

N

N∑
i=1

l

(
xi, ŷi +

1(ai = 1)

P (A = ai|Y = yi, θ1)
(yi − ŷi)

∣∣∣∣∣θ2
)

(29)

which is a cross-entropy loss with new meta-pseudo-labels. However, these labels are not meant
to be learned exactly, and furthermore they can be negative. Thus, theoretical works have to put
stringent assumptions on the models. In section 4.3, we show that experimentally that the instability
problem makes doubly-robust risk performance worse than our 2-stage approach.

D TRAINING AND HYPERPARAMETER SETTINGS.

For neural network training, we follow the implementation and hyperparameter settings of Du et al.
(2024). In particular, we adapt the core code of SimPro for Supervised, MLE and EM. For MLE, we
update P (A|Y ) using the Adam optimizer with learning rate 1e-3, while for EM we use a momentum
update similar to SimPro’s update of P (Y |A) because it has a a closed-form solution at each mini-
batch. We use Wide ResNet-28-2 on all methods and all datasets in this section, including Imagenet-
127, because we are motivated by the fact that stage-1’s goal is not classification accuracy but the
estimation of a finite-dimensional parameter. When using Wide ResNet-28-2 for Imagenet-127, we
use the hyperparameters of CIFAR-100, except we lower the batch size of unlabeled data to 2 times
that of labeled data instead of 8 for memory reason. We do not perform additional hyperparameter
tuning. All experiments can be performed on 1 A6000 RTX GPU, and are run 3 times. We report
the total variation distance between the estimated and the ground truth unlabeled class distribution,
similar to its usage in Theorem 3.1 of Wei et al. (2024), and the top-1 classification accuracy.

In the second stage of our algorithm, we freeze our estimation and plug it in SimPro and BOAT.
We keep exactly the same hyperparameter settings that SimPro and BOAT use. In particular, for
Imagenet-127, we now use ResNet-50 and run each experiment once. In SimPro, we set the un-
labeled class distribution P (Y |A = 0) at the E-step; however, we still keep a running estimate of
the class distribution P (Y ) in the logit adjustment loss eq. (9). While it is possible to use the first
stage estimate in the logit adjustment loss, we observe that doing so results in lower accuracy than
using the the running average. This is conceptually consistent with the role of the running average
- serving not as an accurate estimate of P (Y ) but to make the classifier’s class distribution uniform
through the logit adjustment loss, which is good for the test set. Similarly, in BOAT, we only replace
∆c = logP (Y |A = 1) − logP (Y |A = 0) in equation (4) of Gan et al. (2024), which is adjusting
a classifier’s predictions from the labeled to the unlabeled class distribution, with our SimPro + DR
estimate instead of their on-the-fly estimate.

E ADDITIONAL EXPERIMENTS

Table 8 (supplementing Table 3) presents results for two additional methods, ReMixMatch Berth-
elot et al. (2019a) and CoMatch Li et al. (2021). Methods augmented with DR show significant
improvements, except in one setting where performance is comparable.

Figure 3 simulates scenarios with few samples relative to the number of classes. We vary the sample
size, holding everything else constant including the imbalance ratio, and find that there is indeed a
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Table 8: Top-1 accuracy (%) on CIFAR-10-LT (Nl = 500, Nu = 4000). This table supplements
table 2 from the main paper by including results for ReMixMatch and CoMatch.

consistent uniform reversed middle head-tail

γl = 150 γl = 150 γl = 150 γl = 150 γl = 150
γu = 150 γu = 1 γu = 1/150 γu = 150 γu = 150

ReMixMatch Berthelot et al. (2019a) 64.5 50.9 48.9 43.9 52.2
ReMixMatch+DR 63.6 80.7 50.4 48.2 70.28

CoMatch Li et al. (2021) 70.8 76.9 65.8 58.4 65.3
CoMatch+DR 73.1 76.7 75.3 68.8 75.0

Figure 3: Effect of sample size fraction (x) on DR performance relative to OR (baseline). Dataset:
CIFAR-10 with Nl = 500x,Nu = 4000x, γl = 100, γu = 100. DR performance is comparable to
or worse than OR for x ≤ 0.4.

”phase transition” in the number of samples at 0.4 fraction of the original dataset when DR starts to
become better than OR at estimating the class distribution.
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