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ABSTRACT

Graph Convolutional Representation (GCR) has achieved impressive performance
for graph data representation. However, existing GCR is generally defined on
the input fixed graph which may restrict the representation capacity and also be
vulnerable to the structural attacks and noises. To address this issue, we propose a
novel Latent Graph Convolutional Representation (LatGCR) for robust graph data
representation and learning. Our LatGCR is derived based on reformulating graph
convolutional representation from the aspect of graph neighborhood reconstruction.
Given an input graph A, LatGCR aims to generate a flexible latent graph Ã for graph
convolutional representation which obviously enhances the representation capacity
and also performs robustly w.r.t graph structural attacks and noises. Moreover,
LatGCR is implemented in a self-supervised manner and thus provides a basic
block for both supervised and unsupervised graph learning tasks. Experiments on
several datasets demonstrate the effectiveness and robustness of LatGCR.

1 INTRODUCTION

Graph Convolutional Networks (GCNs) have been widely studied for graph data representation
and learning (Defferrard et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018a;b; Chen et al.,
2020; Jiang et al., 2021). Graph convolutional representation (GCR) is the core operation powering
GCNs. The aim of GCR is to generate context-aware embeddings for graph nodes by aggregating the
messages from their neighbors via some differentiable aggregation functions (Hamilton et al., 2017;
Geisler et al., 2020). For example, Kipf et al. (Kipf & Welling, 2017) propose a graph convolution
operation by exploring the first-order approximation of graph Laplacian spectral filter. Hamilton
et al. (Hamilton et al., 2017) present Graph Sample and Aggregate (GraphSAGE) for inductive
graph representation and learning by using graph sampling and aggregating techniques. Petar et
al. (Veličković et al., 2018b) propose Deep Graph Infomax (DGI) to learn node’s representation in an
unsupervised manner. Klicpera et al. (Johannes Klicpera & Günnemann, 2019) propose Personalized
Propagation of Neural Predictions (PPNP) which combines GCN and PageRank together for graph
semi-supervised learning. Zhu et al. (Zhu et al., 2019) propose Robust GCN (RGCN) by adopting
robust learnable Gaussian distributions for message propagation.

However, the above GCRs are generally defined on the input fixed graph which may restrict the
representation capacity and also be very vulnerable to the structural attacks and noises (Zügner
& Günnemann, 2019; Jin et al., 2020b; Geisler et al., 2020). To address this issue, one kind of
popular way is to incorporate graph learning modules into GNNs’ training via optimizing a general
joint loss function, i.e., ‘graph learning loss + GNN’s loss’. For example, Wu et al. (Wu et al.,
2019) propose GCN-Jaccard to denoise input graph by deleting the edges with low similarities.
Li et al. (Li et al., 2018) propose AdaGCN to learn an optimal graph for GNN learning. Jiang et
al. (Jiang et al., 2019) propose Graph Learning Convolutional Network (GLCN) by integrating graph
learning module into GCN architecture for semi-supervised learning problem. Yang et al. (Yang
et al., 2019) propose Topology Optimization based Graph Convolutional Networks (TO-GCN) for
semi-supervised learning by jointly refining the graph structure and learning the parameters of GCN.
Jin et al. (Jin et al., 2020b) develop Pro-GNN to adaptively train a more optimal graph for GNN’s
learning via designing a joint loss function.

In this paper, we propose a novel Latent Graph Convolutional Representation (LatGCR) for robust
graph data representation and learning. Our LatGCR is derived based on reformulating GCR from
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the aspect of graph neighborhood reconstruction. The main difference between LatGCR and previous
related works is that LatGCR gives a basic block which can be used within many GNN architectures
by replacing traditional graph convolution layer with LatGCR block. We will discuss the detailed
differences between LatGCR and previous related works including recent Pro-GNN (Jin et al., 2020b)
and GeCN (Jiang et al., 2021) in §4. Specifically, given an input observed graph A, LatGCR aims
to generate a flexible latent graph Ã for GCR in a self-supervised manner which enhances the
representation capacity and also obviously performs robustly w.r.t graph structural attacks and noises.

Overall, we summarize the main contributions of this paper as follows:

• We propose a novel self-supervised Latent Graph Convolutional Representation (LatGCR)
based on the reformulation of GCR from graph neighborhood reconstruction.

• LatGCR can be efficiently implemented via a simple recurrent architecture, i.e., LatGCR
block, which provides a general basic block for GNNs.

• Based on the proposed LatGCR block, we propose an end-to-end LatGC neural network
(LatGCN) for robust graph data representation and learning.

Experimental results on both semi-supervised classification and unsupervised clustering tasks demon-
strate the effectiveness and robustness of the proposed LatGCR and LatGCN.

2 REVISITING GRAPH CONVOLUTIONAL REPRESENTATION

As the main aspect of Graph Convolutional Networks (GCNs) for graph data representation and
learning, Graph Convolutional Representations (GCRs) have been widely studied in recent years (D-
efferrard et al., 2016; Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018a; Geisler
et al., 2020). The aim of GCRs is to generate context-aware representations for graph nodes by
aggregating the representations from their neighbors via some specific aggregation functions.

One popular formulation of GCR is to employ the weighted mean aggregation function for neighbor’s
information aggregation (Hamilton et al., 2017; Jiang & Zhang, 2021). LetG(A,Z) denotes the input
graph where A ∈ Rn×n denotes the adjacency matrix with Aii = 1 and Z = (z1, z2 · · · zn) ∈ Rn×d

denotes the collection of node features. Then, the weighted mean-type GCR (Hamilton et al., 2017)
can be formulated as

h′i =
1

di

∑
j∈Ni∪i

AijzjW (1)

where di =
∑

j∈Ni∪i Aij and Ni represents the neighbor set of node i. Matrix W ∈ Rd×d′
denotes

the graph convolutional parameter which is learned adaptively based on the specific downstream
task. The output H′ = (h′1,h

′
2 · · ·h′n) ∈ Rn×d′

provides the graph convolutional representations of
graph nodes. Comparing with input Z, H′ involves more context information encoded in A and also
provides task-relevant representations for nodes via learned W.

3 LATENT GRAPH CONVOLUTION REPRESENTATION

The above GCR is defined on the fixed input graph A which may restrict the representation capacity
and also has been demonstrated to be very vulnerable to the structural attacks and noises in A (Zügner
& Günnemann, 2019; Jin et al., 2020b;a). To address this issue, we present a novel Latent Graph
Convolution Representation (LatGCR) for robust graph data representation and learning. Our LatGCR
is motivated based on the reformulation of the above GCR (Eq.(1)) from the aspect of neighborhood
reconstruction (Geisler et al., 2020; Jiang & Zhang, 2021). Specifically, Eq.(1) provides the optimal
solution to the following node reconstruction problem,

h′i =
1

di

∑
j∈Ni∪i

AijzjW = argmin
hi

∑
j∈Ni∪i

Aij‖hi − zjW‖2 (2)

where ‖ · ‖ denotes Frobenius norm function.
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3.1 LATGCR MODEL FORMULATION

Let G(A,Z) be the input observed graph with adjacency matrix A ∈ Rn×n (Aii = 1) and node
features Z ∈ Rn×d. The aim of LatGCR is to estimate a latent and flexible graph Ã to better support
GCR. Based on the reformulation of GCR (Eq.(2)), we present our LatGCR model by integrating
latent graph estimation and graph convolutional representation jointly as

{Ã′,H′} = argmin
Ã,H

∥∥A− Ã
∥∥2 + λ

∑
i

∑
j∈Ni∪i

Ãij

∥∥hi − zjW
∥∥2 (3)

s.t. Ãij ≥ 0

where Ã′ denotes the estimated latent graph and H′ = (h′1,h
′
2 · · ·h′n) ∈ Rn×d′

denotes the output
Latent GCRs for graph nodes. Matrix W ∈ Rd×d′

denotes the graph convolutional parameter and
parameter λ > 0 is the trade-off hyper-parameter balancing two terms. The first term in Eq.(3)
represents the latent graph estimation/reconstruction while the second term denotes the GCR. Note
that, when λ → 0, the first term is penalized very largely and we can have Ã′ = A. In this case,
LatGCR degenerates to standard GCR (Eq.(1)). Overall, there are four main aspects of the above
LatGCR model.

• Self-supervised joint learning: In LatGCR, the estimation of latent graph is conducted in
a self-supervised way. LatGCR conducts both latent graph generation and GCR jointly to
boost their respective representation ability. Therefore, LatGCR can be potentially used in
both supervised and unsupervised learning tasks.

• Robustness: When A contains some noises/errors, i.e., A = Ã+E where E denotes the
noises/errors. Then Eq.(3) can be re-formulated as

{Ã′,H′,E′} = argmin
Ã,H,E

‖E‖2 + λ
∑
i

∑
j∈Ni∪i

Ãij

∥∥hi − zjW
∥∥2

s.t. A = Ã+E, Ãij ≥ 0 (4)

That is, LatGCR acts as recovering/generating a latent ‘clear’ graph Ã from the input noisy
graph A for GCR and thus performs robustly w.r.t. graph noises and attacks. This is one
important property of LatGCR and will be validated in Experiments in detail.

• Sparsity: The estimated graph Ã′ inherits the same sparse pattern from input graph A, i.e.,
we can easily prove that if Aij = 0, then we have Ã′ij = 0, as also seen from Eq.(5) below.
• Efficient implementation: In LatGCR, both graph estimation and graph convolutional

representation are implemented via simple one-step update rules which thus can be computed
very efficiently, as discussed in §3.2.

3.2 LATGCR IMPLEMENTATION.

The optimum Ã′ and H′ can be obtained via a simple update algorithm which alternatively conducts
the following Latent Graph Estimation (LGE) and Graph Convolutional Representation (GCR) steps.

LGE-step: Solving Ã while fixing H, the problem becomes

Ã′ =argmin
Ã

∥∥A− Ã
∥∥2 + λ

∑
i

∑
j∈Ni∪i

Ãij

∥∥hi − zjW
∥∥2 s.t. Ãij ≥ 0

which is equivalent to

Ã′ij = argmin
Ãij

((
Aij −

λ

2
‖hi − zjW‖2

)
− Ãij

)2
s.t. Ãij ≥ 0

It has a simple closed-form solution which is given as

Ã′ij =max
{(

Aij −
λ

2
‖hi − zjW‖2

)
, 0
}

(5)
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GCR-step: Solving H while fixing Ã, the problem becomes to the standard GCR Eq.(2). The exact
optimal solution is

H′ = D̃−1ÃZW (6)

where D̃ is the diagonal matrix with D̃ii =
∑

j∈Ni∪i Ãij .

Remark. (1) As discussed before, since the optimal Ã′ inherits the sparse pattern of A, in implemen-
tation of Eq.(5), we only need to compute the element Ã′ij with j ∈ Ni ∪ i which is efficient, as
further analyzed in section Complexity analysis.

(2) In real implementation, instead of using Eq.(5), we use the following update rule to avoid the
possible numerical issue when λ is large, i.e.,

Ã′ij =max
{(

Aij −
λ

2
‖hi − zjW‖2

)
, ε
}
, j ∈ Ni ∪ i (7)

where ε is a very small positive number. That is, when λ is large enough, we have Ãij = ε, j ∈ Ni∪ i.
In this case, the above GCR (Eq.(6)) becomes to the unweighed mean aggregation which also gives a
reasonable solution.

LatGCR block. From network architecture aspect, the above LatGCR implementation can be
designed via a recurrent architecture, i.e., LatGCR block, which consists of Latent Graph Estimation
(LGE) and Graph Convolutional Representation (GCR) submodules, as shown in Figure 1. As shown
in Fig. 1(B), LGE and GCR are alternatively conducted in LatGCR. On the contrary, the graph A is
fixed in traditional GCR (shown in Fig. 1(A)). Therefore, LatGCR is more flexible than GCR. More
importantly, LatGCR block performs more robustly than GCR, as demonstrated in Experiments.

(A) GCR

𝐻’𝐷−1𝐴𝑍𝑊𝑊

(B) LatGCR

𝐻’𝑍

𝐴

𝑊

𝐵𝑖𝑗 = ℎ𝑖 − 𝑧𝑗𝑊
2

෩𝐷−1 ሚ𝐴𝑍𝑊

GCR

max 𝐴𝑖𝑗 − 𝐵𝑖𝑗 , 0

LGE 

𝜆

2
{ }

𝑍

𝐴

Figure 1: Architectures of GCR and our LatGCR block.

Complexity analysis. The whole computation complexity of the proposed LatGCR block involves
three parts, i.e., linear projection, LGE and GCR. The complexity of projection ZW is O(ndd′).
The computation cost of LGE-step mainly focuses on computing ‖hi − zjW‖2 with j ∈ Ni ∪ i
and the complexity is O(|ξ|d′) where |ξ| denotes edge number and d′ denotes dimension of feature
vector h′i. The complexity of GCR-step is O(|ξ|d′). In summary, the whole LatGCR complexity is
O(ndd′) +O(2r|ξ|d′) where r is the recurrent time for alternatively conducting LGE and GCR and
set to 3 in experiments. Note that, LatGCR does not bring very high complexity when comparing
with GCR (Eq.(1)) whose main complexity is O(ndd′) +O(|ξ|d′).

4 LATGC NEURAL NETWORKS

LatGCR gives a basic block which can be used within many GNN architectures (Veličković et al.,
2018b; Hamilton et al., 2017; Kipf & Welling, 2017) by replacing the traditional graph convolution
layer with LatGCR module. Here, we adopt the GNN architecture utilized in traditional GCN (Kipf
& Welling, 2017) and design an end-to-end multi-layer neural network architecture, named Latent
Graph Convolutional Network (LatGCN) for graph data learning. Concretely, the proposed LatGCN
contains one input layer, several hidden propagation layers and one final perceptron layer, as shown
in Figure 2. For each hidden propagation layer, it takes features H(l) and initial graph A as input and
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outputs features H(l+1) by using LatGCR module with parameter W(l). LatGCN can be used in many
graph learning tasks. For example, when applying LatGCN for semi-supervised node classification
tasks, the last perceptron layer outputs the final label predictions P for all nodes. The convolutional
parameter W(l) of each hidden layer can be learned via minimizing the cross-entropy function on the
labelled nodes, as discussed in work (Kipf & Welling, 2017).

SoftmaxH (1)

P

LatGCR

ReLU

A

LatGCR

H (0)

H (L)

Figure 2: The architecture of LatGCN.

Comparison with related works. Exploiting graph learning for GNNs has been studied in recent
years. The main differences between LatGCN and previous graph learning guided GCNs including
Pro-GNN (Jin et al., 2020b), TO-GCN (Yang et al., 2019) and GLCN (Jiang et al., 2019) are follows.
First, LatGCN is designed based on our proposed new LatGCR block (Figure 1 (B)). In contrast,
previous works generally incorporate graph learning into GNN’s training via designing a joint loss
function. Second, LatGCR is derived based on the joint reconstruction framework (Eq.(3)) which
is implemented in a self-supervised manner. This makes LatGCR be a general block which can be
used within many GNN’s architectures to derive various kinds of LatGCNs. LatGCR is also different
from recent GeC and GeCN (Jiang et al., 2021). (1) LatGCR aims to generate a flexible latent graph
for graph convolution while GeC incorporates neighborhood selection into graph convolution. (2)
LatGCR is derived based on neighborhood reconstruction while GeC is designed based on graph
Laplacian regularization. (3) LatGCR implements both graph estimation and GCR via simple one-
step update rules while GeC (Jiang et al., 2021) adopts T -step update rules for both neighborhood
selection and graph convolution operation. Thus, the implementation of LatGCR is generally more
efficient than GeC (Jiang et al., 2021).

5 EXPERIMENT

To verify the effectiveness and robustness of LatGCR block and LatGCN, we test it on both semi-
supervised node classification and unsupervised clustering tasks on three standard benchmark datasets,
i.e., Cora, Citeseer and Pubmed (Sen et al., 2008; Jin et al., 2020b).

5.1 SEMI-SUPERVISED NODE CLASSIFICATION

5.1.1 EXPERIMENTAL SETTING

Similar to the architecture of GCN (Kipf & Welling, 2017), LatGCN consists of one input layer,
two LatGCR layers and one final perceptron layer. The skip-connection strategy is also utilized in
LatGCN, as suggested in work (Kipf & Welling, 2017; He et al., 2016). We optimize the network
weight matrices of all LatGCR modules by minimizing the cross-entropy loss function (Kipf &
Welling, 2017). For fair comparison, we use the same attacked data setting used in work (Jin
et al., 2020b) and employ two types of attacks, i.e., Metattack (Zügner & Günnemann, 2019) and
Random Attack (Jin et al., 2020a). For Metattack (Zügner & Günnemann, 2019), we utilize the most
destructive attack variant ‘Meta-Self’ and set the perturbation level from 0 to 25% with step 5%. For
Pubmed dataset, we use the approximate version ‘A-Meta-Self’ as used in work (Jin et al., 2020b) For
Random Attack (Jin et al., 2020a), we apply the variant ‘Add’ and set the perturbation level from 0 to
100% with step 20%. Following the experimental setup in previous works (Kipf & Welling, 2017;
Veličković et al., 2018a), we set the number of units in each hidden layer to 16 and train our LatGCN
by using Adam algorithm (Kingma & Ba, 2015) with learning rate of 0.001. The recurrent time of
each LatGCR block is set to 3 and the hyper-parameter λ is determined based on validation set. We
provide additional experiments across different settings of parameter λ in §5.3.
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Figure 3: Semi-supervised classification performance under Metattack (Zügner & Günnemann, 2019).
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Figure 4: Semi-supervised classification performance under Random Attack (Jin et al., 2020a).

5.1.2 COMPARISON RESULTS

We first compare LatGCN with some traditional baseline methods including weighted mean-
type GCN (GCN-m) (Kipf & Welling, 2017; Hamilton et al., 2017), Graph Attention Networks
(GAT) (Veličković et al., 2018a). To demonstrate the robustness of LatGCN, we also compare Lat-
GCN with some recent robust GNNs including Robust Graph Convolutional Networks (RGCN) (Zhu
et al., 2019), SimP-GCN (Jin et al., 2021), Property Graph Neural Networks (Pro-GNN) (Jin et al.,
2020b) and Graph elastic Convolutional Networks (GeCN) (Jiang et al., 2021).

Effectiveness analysis. Figure 3 and 4 summarize the comparison results across different levels
of Metattack (Zügner & Günnemann, 2019) and Random Attack (Jin et al., 2020a), respectively.
For each attack level, the results are the average performance of 10 runs with different network
initializations. The overall average performance of comparison methods for all attack levels are
reported in the legend of each Figure. Here, we can observe that (1) Traditional GCN-m (Kipf
& Welling, 2017; Hamilton et al., 2017) and GAT (Veličković et al., 2018a) are vulnerable to the
structural attacks and noises. Comparing with them, LatGCN obtains obviously better performance
under various attacks and noises. This clearly demonstrates the effectiveness and robustness of the
proposed LatGCR module for robust graph data learning. (2) LatGCN obtains better performance
than some recent robust GNN methods including RGCN (Zhu et al., 2019) and SimP-GCN (Jin et al.,
2021), which indicates the more robustness of the proposed LatGCN w.r.t graph structural attacks
and noises. (3) Comparing with some recent graph learning guided GNNs including Pro-GNN (Jin
et al., 2020b) and GeCN (Jiang et al., 2021), LatGCN generally obtains the best average learning
performance on attacked graph data. This further demonstrates the effectiveness of the proposed
self-supervised latent graph estimation in LatGCR for noisy graph data representation.

Efficiency analysis. Figure 5 shows the average running time of each epoch in training LatGCN on
semi-supervised node classification tasks on the attacked datasets used in work (Jin et al., 2020b).
All methods are implemented by PyTorch on NVIDIA A6000. We can note that (1) The methods
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Figure 5: The empirical average running time in each epoch of different methods.

using fixed graph GNNs, such as GCN-m, SimP-GCN (Jin et al., 2021) and RGCN (Zhu et al.,
2019), generally run faster than graph learning guided GNN methods. (2) Our LatGCN performs
obviously faster than most of graph learning guided methods including GAT (Veličković et al.,
2018a), GeCN (Jiang et al., 2021) and Pro-GNN (Jin et al., 2020b), especially on the larger dataset
Pubmed (Sen et al., 2008). It demonstrates the efficiency of the proposed LatGCN on conducting
robust graph data learning.

5.2 UNSUPERVISED CLUSTERING

To evaluate the effectiveness of the proposed self-supervised LatGCR, we further test it on unsuper-
vised clustering tasks. Following the experimental setting in previous work (Zhang et al., 2019), we
first use Singular Value Decomposition (SVD) to replace projection step to obtain low-dimensional
embeddings for graph nodes. Then, we utilize LatGCR to obtain context-aware representations for
graph nodes and employ K-means clustering algorithm (Charu & Chandan, 2014) to obtain the final
clustering results (Zhang et al., 2019). We set the recurrent time and parameter λ to 1 and 0.03
respectively. Similar to work (Zhang et al., 2019), we adopt three widely used performance mea-
surements (Charu & Chandan, 2014), i.e., clustering accuracy (Acc), normalized mutual information
(NMI) and macro F1-score (F1) for evaluation.

We compare our LatGCR with some other popular clustering approaches including Graph Variational
Autoencoder (VGAE) (Kipf & Welling, 2016), Marginalized Graph Autoencoder (MGAE) (Wang
et al., 2017), Adversarially Regularized Variational Graph Autoencoder (ARVGE) (Pan et al., 2018)
and Attributed Graph Clustering (AGC) (Zhang et al., 2019). Table 1 summarizes the comparison
results on all original datasets (Sen et al., 2008). The results of these comparison methods have been
reported in work (Zhang et al., 2019) and we use them directly. From Table 1, we can note that
comparing with some other clustering methods, the proposed LatGCR can obtain the best average
performance in most cases, which further indicates the effectiveness of the proposed LatGCR on
conducting unsupervised clustering tasks.

Table 1: Comparison results on clustering task. The best results are marked by bold.

Method Cora Citeseer Pubmed
Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

VGAE 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95
MGAE 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98
ARVGE 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04

AGC 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72
LatGCR 69.19 53.48 65.50 67.83 42.07 63.31 70.52 32.77 69.71
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5.3 MODEL ANALYSIS

5.3.1 VISUALIZATION RESULTS

To demonstrate the effectiveness of proposed LatGCR, we utilize 2D t-SNE (Van der Maaten &
Hinton, 2008) visualization to show the feature representation ability of LatGCR comparing with
baseline method GCN-m (Hamilton et al., 2017; Kipf & Welling, 2017). Figure 6 shows 2D t-
SNE (Van der Maaten & Hinton, 2008) visualization results of the feature maps output by the first
hidden layer of GCN-m and LatGCN on Cora and Citeseer (Sen et al., 2008; Jin et al., 2020b) datasets
under 0.25% Metattack (Zügner & Günnemann, 2019). Different colors denote different classes. One
can note that, LatGCR obtains clearer and compacter embeddings than baseline method GCN-m,
which intuitively demonstrates that the proposed LatGCR can obtain more robust and discriminative
feature representations for graph data with structural attacks.

(a) GCN-m result on Cora dataset (b) LatGCN result on Cora dataset

(c) GCN-m result on Citeseer dataset (d) LatGCN result on Citeseer dataset

Figure 6: 2D t-SNE (Van der Maaten & Hinton, 2008) visualizations of the feature map output from
the first layer of GCN-m and LatGCN. Different colors denote different classes.

Table 2: Results of LatGCN with different parameter λ values.

λ 0.05 0.1 0.5 1 5 10 20
Cora 76.06 77.11 76.36 75.96 72.79 70.82 67.25

Citeseer 71.09 71.27 71.68 71.5 72.16 70.44 69.73
Pubmed 84.87 85.36 86.03 86.07 86.42 86.66 86.40

5.3.2 PARAMETERS ANALYSIS

One main hyper-parameter in LatGCR is the balanced parameter λ (Eq.(3)). Table 2 shows the
semi-supervised classification results of LatGCN with different λ values on three datasets under
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100% Random Attack (Jin et al., 2020a). We can see that our LatGCN can achieve relatively stable
results in a certain range of parameter λ value which indicates that LatGCR is generally insensitive to
the value of hyper-parameter λ in a certain range.

6 CONCLUSION

This paper proposes a novel Latent Graph Convolutional Representation (LatGCR) for robust graph
data representation and learning. LatGCR is proposed based on a joint reconstruction framework,
i.e., graph structure reconstruction + node’s feature reconstruction. It can estimate a latent and
flexible graph for GCR in a self-supervised way and provides a general basic block for GNNs. The
main advantage of LatGCR is that it can perform robustly w.r.t graph structural attacks and noises.
Experiments on several benchmark datasets demonstrate the effectiveness and robustness of LatGCR.
In our future work, we will extend LatGCR to address the data with multiple graphs and further apply
it on some more applications and tasks, such as computer vision, recommendation, etc.
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