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Abstract. Accurate segmentation of primary tumors (GTVp) and nodal
lesions (GTVn) is essential for radiotherapy planning in head and neck
cancer (HNC). The HECKTOR 2025 challenge provides a large-scale
multi-center PET/CT dataset for benchmarking automated tumor seg-
mentation. In this study, we developed a segmentation pipeline based
on the nnU-Net v2 framework without architectural modifications. The
model was trained using 5-fold cross-validation on the complete train-
ing cohort and deployed in a Docker container for submission. On the
official validation leaderboard, our approach achieved a GTVp Dice of
0.7444, a GTVn Dice of 0.7956, and a GTVn F1-score of 0.5868, securing
seventh place overall in Task 1. These results demonstrate that nnU-Net
v2 remains a competitive baseline for multi-center PET/CT segmenta-
tion tasks, providing robust tumor delineation performance across het-
erogeneous datasets. We ranked third overall in the HECKTOR 2025
Challenge (Task 1).

Keywords: Medical image segmentation · nnU-Net· tumor segmenta-
tion· MRI-guided radiation therapy.

1 Introduction

Head and neck cancer (HNC) remains one of the most challenging malignancies
to treat due to its complex anatomical structures and the close proximity of
tumors to critical organs at risk [1]. Radiation therapy (RT) plays a central role
in the management of HNC, and accurate delineation of gross tumor volumes
(GTVs) is essential for effective treatment planning and outcome optimization,
especially with the increasing adoption of MRI-guided RT, which offers superior
soft-tissue contrast [2]. In recent years, the HEad and neCK TumOR Lesion Seg-
mentation (HECKTOR) challenge series has provided large-scale, multi-center
⋆ These authors contributed equally to this work.
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datasets with standardized evaluation protocols, enabling the benchmarking of
automated tumor segmentation methods in PET/CT imaging [3]. The multi-
institutional nature and heterogeneous data distributions of HECKTOR make
it a valuable testbed for developing clinically robust algorithms.

Manual delineation of primary tumors (GTVp) and involved lymph nodes
(GTVn) from PET/CT is time-consuming, labor-intensive, and prone to inter-
observer variability [4]. Deep learning methods, especially fully convolutional
neural networks, have shown promise in automating this task and alleviating
the burden on clinicians [5]. Among them, nnU-Net has emerged as a widely
adopted framework due to its self-configuring design and strong performance
across diverse medical image segmentation challenges [6]. Its ability to automat-
ically adapt preprocessing, architecture, and training parameters to the target
dataset makes it a strong and reproducible baseline. Therefore, we present a
simple, fully documented nnU-Net v2 baseline for the HECKTOR 2025 chal-
lenge, aiming to maximize reproducibility and provide a strong reference for
PET/CT-based HNC segmentation.

We evaluate this baseline on the HECKTOR 2025 Task 1 segmentation
benchmark. Without introducing architectural modifications or large-scale pre-
training, we demonstrate that the default nnU-Net v2 pipeline achieves compet-
itive performance on this multi-center dataset. On the official validation leader-
board, our approach reached an overall rank of seventh place, highlighting that
nnU-Net v2 remains a strong baseline for PET/CT-based HNC tumor segmen-
tation. In the final test phase, our method ranked third overall in Task 1, further
reinforcing this message.

2 Dataset

The dataset used in this study originates from the HEad and NeCK TumOR
Lesion Segmentation (HECKTOR) 2025 challenge [3]. It is a large-scale, multi-
institutional collection of FDG-PET/CT scans from over 1,100 patients with
histologically confirmed head and neck cancer, acquired across 10 international
medical centers. The training cohort consists of approximately 700 cases from 8
centers, while the test cohort includes about 450 previously unseen cases from
3 centers. Notably, a subset of the 2022 test set was incorporated into the 2025
training cohort. The estimated HPV status distribution in the test set is approx-
imately 80 HPV-positive and 20 HPV-negative.

Each patient case includes co-registered CT and PET images. PET images
were normalized to standardized uptake values (SUVs), and CT scans were pro-
vided as low-dose non-contrast-enhanced images. Ground-truth segmentation
masks, available only for Task 1, delineate primary tumors (GTVp) and in-
volved lymph nodes (GTVn). All images underwent standardized preprocessing
to ensure cross-center comparability and facilitate model training.
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3 Method

3.1 Model Architecture

For Task 1, we selected the nnU-Net v2 [6] framework as our segmentation model
and trained it on the HECKTOR 2025 dataset. nnU-Net is a widely adopted,
self-configuring deep learning framework for medical image segmentation, which
automatically adapts preprocessing, network architecture, data augmentation,
and training hyperparameters to the target dataset. This flexibility allows it to
serve as a robust and reproducible baseline across a variety of imaging tasks.

In our study, we used the 3D full-resolution configuration, which deter-
mines patch size, network depth, loss function (a combination of Dice and
cross-entropy), and learning rate schedule automatically according to the dataset
properties. No manual modifications were made to the network architecture. For
multi-modal input, CT and PET images were concatenated as separate channels,
following the default nnU-Net v2 implementation.

3.2 Pre-processing

The raw dataset was provided in a patient-wise folder structure, where each
folder contained a CT scan, a PET scan, and the corresponding segmentation
mask. To comply with the nnU-Net v2 input format, the data were reorganized
into a standardized directory layout, including a dataset description file and
modality-indexed inputs (with CT assigned to channel 0000 and PET to channel
0001). During this step, we identified a small number of invalid cases where the
CT and label volumes were not aligned in size; these cases were excluded from
training. Furthermore, discrepancies in voxel dimensions between CT and PET
images were corrected by resampling the PET volumes using the SimpleITK
library to ensure voxel-wise correspondence. The final dataset consisted of paired
CT and PET inputs with corresponding labels, ready for training with nnU-Net
v2.

3.3 Training and Inference

Model training was performed with 5-fold cross-validation to maximize the use
of the available training cohort and assess robustness across different partitions.
Each fold was trained independently for 1000 epochs using mixed-precision train-
ing. All other hyperparameters were kept as default in nnU-Net v2. During infer-
ence, the framework’s standard strategy was employed, namely sliding-window
prediction with overlapping patches, followed by Gaussian weighting to fuse
patch-level outputs into the final segmentation map. For the official submis-
sion, results from the cross-validation models were aggregated and evaluated on
the challenge validation set.



4 Y. Bu et al.

3.4 Implementation Details

All experiments were implemented using Python and the PyTorch deep learn-
ing library, and training was conducted on a GPU server. The nnU-Net v2 (3D
full-resolution) framework was used for both training and inference. During in-
ference, single-case predictions were performed using a sliding-window strategy
with Gaussian weighting, and the predicted segmentation masks were resam-
pled to the original CT geometry to preserve label integrity. The final outputs
were saved in the required format according to HECKTOR challenge guidelines.
Training protocols are summarized in Table 1, and hardware configuration and
development environments are presented in Table 2.

Table 1. Training protocols.

Network initialization normal initialization
Batch size 2
Patch size 96× 160× 160

Total epochs 1000
Optimizer SGD with Nesterov momentum (µ = 0.99)
Weight decay 3e-5
Loss function Dice + cross-entropy loss
Initial learning rate (lr) 0.001

Table 2. Development environments and requirements.

System Ubuntu 22.04
CPU Intel(R) Xeon(R) CPU E5-2680 v4
RAM 256 GB
GPU (number and type) 8× Tesla P40
CUDA version 12.0
Programming language Python 3.10.18
Deep learning framework PyTorch 2.7.1; torchvision 0.22.1

4 Results

The performance of the proposed pipeline based on nnU-Net v2 was evaluated
on the HECKTOR 2025 Task 1 segmentation benchmark. To ensure robustness,
we conducted a 5-fold cross-validation on the training cohort. This strategy al-
lowed us to assess the variability of the model across different data partitions and
reduce the risk of overfitting to a single split. The cross-validation results demon-
strated stable segmentation performance for both primary tumors (GTVp) and
lymph nodes (GTVn), highlighting the reliability of the nnU-Net v2 framework
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in a multi-center PET/CT setting. As illustrated in Fig. 1, the predicted seg-
mentations show good agreement with the ground-truth annotations, further
confirming the effectiveness of nnU-Net v2.

For the official submission, the trained nnU-Net v2 model was applied to
the challenge validation set. On the official leaderboard, our method achieved a
GTVp Dice of 0.7444 (rank 9), a GTVn aggregated Dice of 0.7956 (rank 2), and
a GTVn F1-score of 0.5868 (rank 14), resulting in a mean position of 8.3 and
an overall rank of 7th among all participating teams. These results indicate that
the default nnU-Net v2 configuration, without any architectural modifications or
external pre-training, remains a strong and competitive baseline for automatic
segmentation of head and neck tumors in PET/CT images.

Fig. 1. Qualitative visualization of the segmentation results. For ease of comparison,
only representative cropped regions of the original images are shown.

Table 3. Cross-validation Dice scores (training cohort, 5-fold).

Fold Mean Validation Dice
0 0.6913
1 0.6958
2 0.6933
3 0.6800
4 0.6650

Table 4 summarizes the quantitative performance of our method on the offi-
cial validation leaderboard.

Table 5 reports the official test results, where our team ranked third overall
in Task 1.
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Table 4. Official validation leaderboard results (team sztu_bme2025, HECKTOR 2025
Task 1).

Metric Score Rank Description
GTVp Dice 0.7444 9 Primary tumor segmentation
GTVn Dice (agg) 0.7956 2 Nodal tumor segmentation
GTVn F1-score 0.5868 14 Detection sensitivity
Mean Position 8.3 – Averaged ranking across metrics
Overall Rank – 7 Leaderboard standing

Table 5. Official test leaderboard results (team sztu_bme2025, HECKTOR 2025
Task 1).

Metric Score Rank Description
GTVp Dice 0.7308 – Primary tumor segmentation
GTVn Dice (agg) 0.7641 – Nodal tumor segmentation
GTVn F1-score (agg) 0.6320 – Detection sensitivity
Mean Position – – Averaged ranking across metrics
Overall Rank – 3 Leaderboard standing

5 Discussion

In this study, we investigated the performance of nnU-Net v2 on the HECKTOR
2025 Task 1 segmentation benchmark. Without introducing architectural mod-
ifications or external pre-training, the standard 3D full-resolution configuration
of nnU-Net v2 achieved a competitive 7th place on the official validation leader-
board and maintained comparable accuracy on the hidden test set, ultimately
placing third overall in the final Task 1 ranking.

These results highlight the robustness of nnU-Net v2 as a strong baseline for
head and neck tumor segmentation in multi-center PET/CT data, particularly
reflected in the high DSCagg score for nodal disease (GTVn).

Despite these promising results, several limitations should be noted. First,
the relatively low F1-score for GTVn suggests that the model tends to miss
smaller or less distinct lesions, indicating limited sensitivity in challenging cases.
This may be partly due to the absence of advanced post-processing strategies,
such as threshold optimization or connected-component filtering, which could
improve recall. Second, unlike recent large-scale models that leverage trans-
fer learning, our approach did not incorporate external pre-training or domain
adaptation techniques. As a result, the model may be less effective at handling
inter-institutional variability across unseen test centers.In addition, our internal
experiments indicated that using STU-Net [7, 8] might further improve the F1-
score, especially for nodal disease. However, due to time constraints, we were
not able to submit this approach for official evaluation.

Future research can address these limitations in several ways. Semi-supervised
learning strategies could leverage the unannotated test-center data to improve
generalization. Domain adaptation methods may further reduce the performance
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gap across centers with heterogeneous imaging protocols. A two-stage pipeline
combining lesion detection and fine-grained segmentation could help capture
small-volume nodal disease more effectively. [9,10] In addition, uncertainty-aware
post-processing may provide more reliable outputs for clinical use. Finally, train-
ing with larger patch sizes or more complex architectures could be explored on
hardware with higher memory capacity, such as TPUs or high-memory GPUs,
to better capture long-range spatial context.

In summary, this study demonstrates that nnU-Net v2, even in its default
configuration, provides a strong and reproducible baseline for automatic tumor
segmentation in PET/CT images of head and neck cancer. These findings sug-
gest that while more advanced models may further improve accuracy, nnU-Net
v2 remains a reliable starting point for clinical and research applications in ra-
diation therapy planning.
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