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Object Detection Open-Vocabulary Object Detection Instance Captioning Grounding

Query: This is an emperor
penguin on the ice. It appears
to be in motion, with its wings
spread out, its beak pointing
downward and its black feet
moving. This penguin is lying
on the ground with its head
facing right.

This is a yellow moray
eel sticking its head out
of the hole, with its
mouth open. It has a
slender body and
expanded anterior
nostrils. The yellow eel
is on top of the blue eel.

Object localization Vision-language understanding

sea urchin
sea urchin sea urchin

sea urchin
sea urchin

sea turtle

sea slug

fan worm

emperor penguin

Figure 1: We present MarineMaid dataset, the first dataset and benchmark specifically designed
for marine visual understanding. Top: MarineMaid consists of two main components: high-quality
bounding boxes for object detection and fine-grained instance captions for marine vision-language
understanding. Bottom: MarineMaid enables a wide range of marine visual understanding tasks,
including object detection, open-vocabulary object detection, instance captioning and grounding.

ABSTRACT

Oceans, covering more than 70% surfaces of our blue planets are less explored by
the whole computer vision community. The scarcity of the labeled data is attributed
to the most hindering issue. In this work, we propose a novel and comprehensive
dataset called MarineMaid specifically designed for marine monitoring and under-
standing, including a wide spectrum of marine creatures. Based on the essential
requirements of the marine research community, we adopt object detection and
vision-language understanding as our two fundamental tasks. The former object
detection could yield precise localization and category predictions for species
identification and monitoring. Besides the sole category and BBOX predictions,
the latter vision-language understanding generates redundant and comprehensive
captions about biological traits required for domain experts. MarineMaid contains
12,873 fine-grained instance-captioning pairs and 42,217 bounding boxes annotated
by domain experts. We have benchmarked 14 state-of-the-art algorithms on our
MarineMaid dataset to reveal the strengths and limitations of existing general-
purpose and domain-specific algorithms. The hierarchical and comprehensive
experimental results provide valuable insights on how to develop practical and
efficient marine visual perception algorithms to satisfy the domain requirements.
To foster the further development of this direction, we will release our MarineMaid
dataset with the acceptance of this paper.

1 INTRODUCTION

The unbounded depths of the ocean (Epstein et al., 1993; Ormond et al., 1997), rich with mysteries,
have driven researchers to explore relentlessly, aiming to uncover its hidden secrets and valuable
treasures (Thorne-Miller, 1999). The marine ecosystem (Epstein et al., 1993; Halpern et al., 2008)
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is the most productive of all underwater ecosystems and shares immense ecological, social, and
economic value. Performing marine study plays a significant role in protecting the marine environment
and understanding marine science. However, marine research is limited compared with its volume.
The ocean is continuously being polluted, leading to the migration of marine organisms (Perry et al.,
2005) and species changes (Hiddink & Ter Hofstede, 2008; Poloczanska et al., 2013). Automatic
marine life detection algorithms based on computer vision techniques are keenly required. Existing
methods for monitoring and assessing marine ecosystem changes suffer from inefficiency and high
labor costs. Nevertheless, utilizing computer vision techniques and deep learning algorithms can
rapidly analyze marine images and videos, identifying species (Khan et al., 2023b) and tracking their
migrations (Danovaro et al., 2010).

Object detection (Redmon et al., 2016; Ren et al., 2015; 2016; Liu et al., 2016), as a fundamental
task, is to localize the interests of objects while discriminating the category information. The detected
objects with bounding box annotations are important for species identification (Khan et al., 2023b),
object tracking (Alawode et al., 2022), and object counting (Sun et al., 2023). To boost efficient
marine object detection, there are several efforts proposed to build datasets (Zhuang et al., 2020;
Liu et al., 2021b) and benchmarks (urp, 2020) to optimize powerful object detection algorithms.
However, the categories (e.g, sea urchin, shark and etc.) are very limited, which are far away from
satisfying to monitor a large range of marine creatures. Furthermore, the category information is
not sufficient to satisfy the monitoring and surveying requirement, where biological traits (Miatta
et al., 2021; Costello et al., 2015) are usually required. Furthermore, due to the essential monitoring
purpose, the algorithms should also be able to detect a wide spectrum of objects (Zheng et al., 2023)
and demonstrate strong generalization ability to unseen marine objects.

Vision-language models (VLMs) (Liu et al., 2024; 202, 2023; Team et al., 2023) achieve remarkable
success thanks to large-scale datasets (Krishna et al., 2017; Gurari et al., 2018; Kazemzadeh et al.,
2014; Shao et al., 2019). The VLMs could yield redundant visual descriptions based on the visual
inputs, describing the objects with detailed attributes (e.g., color, pose, activity, and etc). Despite the
remarkable success of VLMs in a large number of visual understanding tasks, they are still poorly
known to generate reasonable and domain-specific visual understanding for marine creatures. There
are two main limitations when directly utilizing existing VLMs for marine visual understanding:
data distribution shift and the lack of ability to localize and then describe the biological traits of the
marine instances. The existing VLMs were mainly driven by datasets with dominant in-air objects
and very limited marine objects, leading to unsatisfactory marine object understanding ability. There
is a gap in the development and evaluation of VLMs for marine visual understanding for scientific
research purposes. Furthermore, VLMs are optimized by redundant image-text pairs that succeed in
holistic view understanding but struggle with detecting and understanding specific marine creatures
with irregular boundaries/poses and also the ability to camouflage themselves into the background.
Besides, generating the biological traits for detected instances with detailed descriptions of the spatial
information/relationship between objects is also important to yield a complete analysis report. There
is still a gap in utilizing existing algorithms and datasets for domain-specific marine research.

To fill this gap, we propose the first marine dataset and benchmark called MarineMaid to achieve
robust and accurate marine visual understanding with detailed descriptions of biological traits from
various aspects. Our dataset with rich biodiversity comprises 14,645 marine images with more
than 42k human-labeled bounding boxes and instance captions, enhancing the understanding of the
complex marine ecosystems. MarineMaid dataset enables various tasks, including open-vocabulary
object detection, region-specific image/instance captioning and visual grounding specifically designed
for marine creatures. Unlike existing image-text datasets with only short descriptions, MarineMaid
provides a comprehensive and detailed description (average word length is 42) of the biological traits
of the marine creatures from 4 aspects. To the best of our knowledge, our MarineMaid dataset is the
first marine dataset to support marine monitoring and further analysis.

Based on our MarineMaid dataset, we have benchmarked the existing object detection, VLMs, and
grounding algorithms to explore the boundary of these advanced algorithms to perform detailed
marine visual understanding. Our MarineMaid stands as a novel and challenging testbed for both
computer vision and marine research communities. Our main contributions are as follows:

• We propose the first region-level instance-caption pair dataset specifically designed for
marine creatures, containing 12,873 fine-grained instance-captioning pairs and 42,217
BBOXs annotated by domain experts.
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• We benchmark various marine visual understanding tasks including close-set object detec-
tion, open-vocabulary object detection, visual grounding, and instance captioning based on
14 state-of-the-art models.

2 RELATED WORK

Existing Marine Research. Unlike our everyday stuff, marine creatures usually possess significant
diversity (a wide spectrum of poses, appearance, and patterns). Performing efficient marine visual
understanding could harness the advanced algorithms (Li et al., 2021; Hong et al., 2020) to elevate
marine research, conservation, and industrial endeavors. Existing marine datasets (e.g., MAS3K (Li
et al., 2020; 2021), WildFish (Zhuang et al., 2018), WildFish++ (Zhuang et al., 2020), SUIM (Islam
et al., 2020)) have been proposed for promoting the recognition performance of marine organisms.
However, most of these datasets only contain a few pre-defined categories without detailed captions,
which limits the ability to accelerate the accumulation of detailed marine visual analysis through
the creation of ocean databases and scientific data. Meanwhile, domain knowledge and expertise
are required to do high-quality annotations (for both BBOX and caption), which is costly and time-
consuming. In this work, we aim to propose a large-scale marine dataset with a wide spectrum of
marine creatures.

Object Detection. Object detection is a fundamental computer vision problem (Lin et al., 2014;
Ren et al., 2015; 2016), localizing the interests of objects and discriminating object categories
simultaneously. The detection algorithms mainly fall into two categories: 1) one-stage algorithms (Liu
et al., 2016; Ge et al., 2021; Redmon et al., 2016) perform localization and classification in parallel; 2)
two-stage detection algorithms (Ren et al., 2015; 2016; He et al., 2017) generate the object proposals
and then perform localization regression. However, these algorithms mainly perform close-set object
detection. To address this limitation, open-vocabulary object detection (OVOD) (Zareian et al., 2021;
Yao et al., 2023; Kim et al., 2023; Wang et al., 2023) aims to generalize beyond the limited number
of pre-fixed classes during the training phase. The goal is to detect novel classes at the inference
stage. The dominant way of performing OVD is to adopt a pre-trained visual encoder from a trained
cross-modality alignment model, which is optimized by millions of image-text pairs from public
websites. RegionCLIP (Kim et al., 2023) proposed to perform the regional visual feature and the
textual conception alignment to promote the generalization ability to unseen categories.

Vision-Language Understanding. Vision-language models (VLMs) (Liu et al., 2024; 202, 2023;
Team et al., 2023; Zhu et al., 2023; Liu et al., 2023a; Zheng et al., 2023; Li et al., 2022; 2023a) achieve
remarkable success thanks to large-scale datasets such as Visual Genome (Krishna et al., 2017),
VizWiz (Gurari et al., 2018), RefCOCO (Kazemzadeh et al., 2014), and Objects365 (Shao et al., 2019).
VLMs bridge vision modality and text modality together to harness the power of large language
models (LLMs) (OpenAI, 2022; 2023) and vision encoders (Dosovitskiy et al., 2020). Optimized by
millions of image-text pairs, CLIP (Radford et al., 2021) demonstrated a strong zero-shot recognition
ability for diverse images. BLIP (Li et al., 2022; 2023a) bootstraps vision-language pre-training
from frozen pre-trained image encoders and frozen language decoders. However, these datasets
only contain in-air objects or very limited marine objects, which is due to the poor ability of marine
domain tasks. Furthermore, VLMs also struggle with the limited ability to perform region-level
instance understanding following the user instructions.

3 DATASET AND APPROACH

Overview. We start by elaborating on the detailed dataset construction procedure of our MarineMaid
and outlining the characteristics of our dataset, along with relevant statistics and explanations. We
then provide the hierarchical and extensive experiments to benchmark marine object detection (in-
cluding both close-set and open-vocabulary formulations), visual grounding, and instance captioning,
revealing the strengths and limitations of existing algorithms.

3.1 DATASET CONSTRUCTION

Data collection. We collect images from the Internet. To maintain data quality and diversity, we
manually reviewed all the images and removed duplicates or instances that did not align with the pre-
defined categories. Existing datasets (Schuhmann et al., 2021) mainly utilized alt-texts to formulate
the image-text pairs (image-level). However, the texts suffer from limited information (short captions),
misalignment with the visual contents, and deviation from domain-specific requirements. In contrast,
we generate comprehensive and contextually relevant instance captions based on the domain experts.
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devil scorpionfish

coral

fish

fish

Classification Background Unexisting

Spatial Action

Size Color Shape

Texture Material Counting

The image shows a fish
with blue stripes on its
body, lying inside of the
rock.

amberjack
angelfish

arrow crab
atlantic triton

bighead gurnard
blacktip grouper
blue triggerfish

bluegill
bonito tuna

cancer irroratus
chelonia mydas

. . .

Collect Images

Object:

Relation:

Attribute:

This image shows a sea anemone
on the ocean floor. The sea
anemone is a type of animal and
has a moist texture.

This is the side of a fish lying
on top of some rocks and
coral. The fish is of brown
and red color with green
moss growing on it. It has a
large head with a wide
mouth and large pectoral
fins, resembling wings. Its
rough and bumpy texture
enhances its camouflage,
making it nearly invisible on
the ocean floor.

Kingdom: 
Phylum: 
Class: 
Order: 
Family: 
Genus: 

 Animalia
 Chordata
 Actinopterygii
 Scorpaeniformes
 Scorpaenidae
 Scorpaenopsis

Taxonomy

Refined Positive

This image shows a sea
anemone on the ocean floor.
The sea anemone is a type of
animal and has a moist texture.

This is an image of a fish lying
on top of some rocks and coral.
The fish is a green and red
color. It appears to be resting
on the bottom of the ocean.
There is a lot of algae and coral
around.

Generate Categories

Label BBOX using SAM

. . .

Generate Captions

Caption
Refinement

Figure 2: Overview of the dataset construction and data labeling pipeline, which can be summarized
into five stages: 1) marine object categories are generated based on ChatGPT-3.5/GPT-4; 2) crawling
corresponding marine images from the Internet (mainly from Google image engine and Flickr); 3)
we employ SAM (Kirillov et al., 2023) model to label all marine objects present in each image by
receiving the human prompts to iteratively obtain high-quality BBOX annotations; 4) the cropped
image region based on the annotated BBOX from the whole image serves as the input to domain-
specific VLM (MarineGPT (Zheng et al., 2023) used in this work) to generate object instance
caption candidates for further human refinement; 5) domain experts refine the generated captions
from some pre-defined aspects as the positive instance captions. We also provide the additional
binary annotations from 11 diverse properties to identify some common prediction errors produced
by VLMs and we regard these captions with binary annotations as negative captions (discussed in
Supplementary material).

To promote labeling efficiency, we first utilize the marine-specific VLM MarineGPT to generate the
candidate captions and the domain experts perform the refinement and revision from pre-defined
aspects.

Specific features: 1) Wide spectrum of marine object categories (670 categories), varying from
Cephalopods, Crustaceans, Sharks, Rays, Reptiles, Mammals, Aves, Corals, to Invertebrates. 2)
Hierarchical taxonomy: including 6 coarse-to-fine granularities (Kingdom, Phylum, Class, Order,
Family, Genus) by automatically querying the official Worms (Ahyong et al., 2024) database. 3)
Image diversity: images were captured in various environmental conditions (e.g., deep-sea, blurs,
clutters, aquariums, markets, etc). Meanwhile, the images describe object instances from different
aspects: activity events (e.g.,, hunting, reproductive, interactive, etc), life stages (e.g., juvenile and
adult), and image styles.

Positive vs. Negative.We also provide the additional information for the negatives to reveal common
mistakes made by the models. We define 11 properties: classification, background, unexisting,
spatial, action, size, color, shape, texture, material, and counting to summarize wrong captions. These
negatives from VLMs and human post-processing offer more valuable insights compared to (Zhao
et al., 2022; Yuksekgonul et al., 2022) that replaced correct objects with random noun phrases. These
negative samples serve as the hard negatives to force the model to learn and recognize subtle feature
differences.

Data statistics. Our dataset consists of 14,645 images, from a total of 670 categories. We manually
labeled all identifiable marine life object, resulting in a total of 42,217 labeled bounding boxes.
Among these, there are 24,197 large, 10,555 medium, and 7,465 small bounding boxes. There are
12,873 captions that have been refined by domain experts specializing in marine specialties, resulting
in a superior level of quality. The average length of these refined positive captions is 42. Totally we
have 22,321 refined and generated positive captions, and 12,431 generated negative captions.

3.2 LABELING PIPELINE

Our labeling pipeline encompasses three main stages: 1) BBOX labeling and refinement; 2) caption
generation from VLM and refinement based on domain experts; and 3) cross-checking verification.
BBOX generation. We first manually label bounding boxes for all the recognizable marine organisms
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Figure 3: We provide the data statistics and the class distribution of MarineMaid at the Class-level
granularity. The seen and unseen classes are split to perform open-vocabulary object detection.

within the image to perform dense labeling. To ensure the quality of the labeled BBOX annotations,
we perform further refinement to ensure the whole instance (e.g.,, the transparent tail of the fish, and
the slender legs of the shrimp) is accurately labeled. Caption generation and refinement. We first
crop the marine object instance based on the BBOX annotations and feed the cropped image region
to MarineGPT to generate the caption candidate based on the prompt “describe this image in detail”.
Please note that we only generate descriptive and informative captions based on image regions larger
than 1024 pixels. Then based on the caption candidate, the domain experts do the refinement from
four aspects: features (e.g., unique characteristics, injuries, color, shape, size, etc), spatial information
(e.g., absolute and relative position), background and activity events (e.g., individual or mutual). For
each image, we only select one to perform caption refinement and we provide additional tags from the
pre-defined 11 properties for the incorrect captions to formulate the hard negatives. Cross-checking
validation. Finally, we perform the cross-validation based on two annotators to revise potential errors.
Filtering: filters out some model-generated prompts or “unrecognizable” content. The annotators will
cross-check and correct evident errors in captions, tags, and bounding boxes. Experts finally conduct
inspections and verifications on uncertain objects to ensure accuracy and reliability. The construction
of our MarineMaid dataset involves 16 domain experts with 624 human hours in total.

3.3 COMPARISON WITH EXISTING DATASETS AND BENCHMARKS

We provide a direct comparison with existing general-purpose and domain-specific datasets in Table 1
from various aspects: the data/annotation volume; annotation type; whether the image/instance
captions provided and the average word length of these corresponding captions; and Taxonomy for
hierarchical classification and understanding. MarineMaid dataset possesses three main advantages
over existing datasets: 1) compared with existing marine datasets, which mainly provide the BBOX
and mask annotations, the MarineMaid dataset provides detailed instance captions for the object
instance besides the BBOX annotations. 2) Compared with general-purpose datasets that contain a
large scale of image/instance captions, our provided instance captions are significantly longer (42 vs.
12), describing diverse biological traits of marine creatures. 3) Compared with the existing Wildfish++
dataset with both taxonomy and visual descriptions from the domain experts, MarineMaid is 10 times
larger and contains a wide range of marine creatures while wildfish++ only focuses on fish.

4 EXPERIMENTS

In this section, to comprehensively evaluate the effectiveness of marine visual understanding, we
choose three representative visual understanding tasks, including object detection (both close-set and
open-vocabulary settings), region-level instance captioning, and visual grounding. We benchmark the
existing state-of-the-art algorithms for corresponding tasks on our MarineMaid dataset.

4.1 OBJECT DETECTION

Experimental settings. Dataset split. We construct seen/unseen split following three settings:
1) Class-level: We consolidated the 670 categories into 33 categories based on their taxonomic
Class (Ahyong et al., 2024). Certain object categories (e.g.,, bryozoa), are classified at a higher level
of granularity (Phylum) and are therefore excluded from the Class-level categories. As illustrated in
Fig. 3, we adopt 24 Classes as seen and the other 9 Classes as unseen. 2) Intra-Class: Intra-Class
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Table 1: We provide a direct comparison between our MarineMaid dataset with both general-purpose
datasets and marine-specific datasets. − indicates that the numbers were either not reported in their
publications or we are unable to conduct statistical analysis.

Datasets Categories Images Annotations Image/Instance Captions Avg. Length Taxonomy

DUO (Liu et al., 2021a) 4 7,782 74,515bbox None None ×

SUIM (Islam et al., 2020) 8 1,525 1,525mask None None ×

MAS3K (Li et al., 2020) 37 3,103 3,103mask None None ×

UIIS (Lian et al., 2023) 7 4,628 4,628mask None None ×

SEAMPD21 (Boulais et al., 2021) 130 28,328 90,000bbox None None ×

Wildfish (Zhuang et al., 2018) 1,000 54,459 54,459cls None None ×

FishNet (Khan et al., 2023a) 17,357 94,532 114,375bbox None None ✓

Wildfish++ (Zhuang et al., 2020) 2,348 103,034 103,034cls 3,187 56 ✓

nocaps (Agrawal et al., 2019) – 15,100 Caption 166,100 – ×

Redcaps (Desai et al., 2021) – 12,011,121 Caption 12,011,121 9 ×

Pascal Sentences (Rashtchian et al., 2010) 20 1,000 Caption 4,998 10 ×

SBU Captions (Ordonez et al., 2011) 81 1,000,000 Caption 1,000,000 12 ×

MarineMaid 670 14,645 42,217bbox
12,873 (Refined) 42

✓34,752 (All) 33

categorization is obtained by retrieving object categories at the Class-level. Under this setting, we
have 555 seen categories and 109 unseen categories. 3) Inter-Class: we choose 1 object category
from every 4 object categories in each Class as the unseen and the other 3 object categories as seen.
We omit the Class that contains less than 4 object categories. With this setup, there are 482 seen
categories and 161 unseen categories.

Implementation details. Close-set object detection setting. We mainly include 3 close-set object
detection algorithms (Faster-RCNN (Ren et al., 2015), GridRCNN (Lu et al., 2019) and YOLOX (Ge
et al., 2021)) and report the mAP50 of 24 seen categories under three settings(Class-level, Intra-
Class and Inter-Class). Our implementation of these models is based on MMDetection (Chen et al.,
2019) using the official experimental setting. Please note that we do not evaluate these close-set
object detection algorithms on the unseen categories. Open-Vocabulary Object Detection We
evaluate the performance of 3 open-vocabulary object detection algorithms (RegionCLIP (Zhong
et al., 2022), UniDetector (Wang et al., 2023) and DECOLA (Cho & Krähenbühl, 2023)) on our
MarineMaid dataset. For RegionCLIP (Zhong et al., 2022), we follow the official experimental
setting and fine-tune the model on our MarineMaid dataset. We adopt the single-dataset training
strategy for UniDetector (Wang et al., 2023) to continuously optimize it in an end-to-end fashion. For
DECOLA (Cho & Krähenbühl, 2023), we utilize their best-performing model with Swin-B backbone
(phase 1) as the pre-trained model. We inherit the language-conditioned detection training procedure
of DECOLA while keeping other configurations the same. At the evaluation stage, we report the
quantitative results for both seen and unseen categories. The mAP50 is computed to comprehensively
evaluate the ability of models to detect overall marine object instances.

Comparison and analysis. We report the quantitative result in Table 2 and all the experiments are
conducted following the same train/val data split. We have observed that the existing generalist
object detection algorithms still face challenges when optimized by underwater images in providing
accurate object localization. This can be attributed to two potential reasons: 1) the huge conception
distance between the in-air object categories and marine object categories; and 2) the diversity of
underwater data and the inherent challenges of underwater scenes make it difficult to extract features.
Furthermore, as demonstrated, open-vocabulary detection algorithms, continuously fine-tuned on
the MarineMaid dataset, typically exhibit improved detection performance even on seen categories
compared to close-set counterparts. We attribute such promoted performance to the optimization
through large-scale datasets with redundant supervised training data during the pre-training procedure.
We present a qualitative comparison of the results in Fig. 4 under Class-level setting. DECOLA
exhibits superior performance in semantic and object localization when detecting seen objects.
However, when it comes to unseen objects, the models struggle to accurately classify the object
category. In both Intra-Class and Inter-Class settings, DECOLA is the sole model to gain an advantage
over the fine-grained marine species. We attribute such powerful fine-grained recognition ability to
its language-conditioned query selection strategy.

4.2 INSTANCE CAPTIONING

Experimental settings. We benchmark off-the-shelf VLMs from two aspects: image-level and
region-level. The former image-level VLMs (LLAVA (Liu et al., 2024), MiniGPT-4 (Zhu et al.,
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Figure 4: The qualitative comparison between different algorithms under the Class-level setting. The
left part of the dashed line: the results of seen category. The right part: the results of unseen category.

Table 2: Quantitative object detection (close-set and open-vocabulary) results on our MarineMaid
dataset. − indicates the results cannot be computed under the settings.

Method Seen Unseen
Class-level Intra-Class Inter-Class Class-level Intra-Class Inter-Class

FasterRCNN (Ren et al., 2015) 28.7 17.6 16.7 - - -
YOLOX (Ge et al., 2021) 27.5 21.7 21.0 - - -
GridRCNN (Lu et al., 2019) 32.7 28.1 28.6 - - -

UniDetector (Wang et al., 2023) 31.5 23.3 24.1 8.2 0.4 0.7
RegionCLIP (Zhong et al., 2022) 39.8 34.1 29.8 12.2 6.2 0.4
DECOLA (Cho & Krähenbühl, 2023) 66.7 88.8 86.9 37.7 51.6 52.3

2023), BLIP2 (Li et al., 2023b) and InstructBLIP (Dai et al., 2024)) were optimized by image-level
captions and lacked the ability to understand specific object instances. We evaluate these image-
level VLMs based on the following user instruction: “describe the object in this figure”. The latter
region-level VLMs (GroundingLMM (Rasheed et al., 2023), GPT4RoI (Zhang et al., 2023)) were
optimized by paired image region prompts and the corresponding instance captions. We provide
the BBOX annotation in the given text prompt following the experimental setting of (Rasheed
et al., 2023; Zhang et al., 2023). We perform the evaluations based on the positive instance captions
to analyze their capability in describing marine instance objects. To quantitatively measure the
performance of various algorithms, we adopt the widely used captioning metrics (Hessel et al.,
2021; Vedantam et al., 2015; Banerjee & Lavie, 2005; Lin, 2004; Papineni et al., 2002) (including
CLIPScore, RefCLIPScore (Hessel et al., 2021), CIDEr (Vedantam et al., 2015), BLUE-4 (Papineni
et al., 2002), METEOR (Banerjee & Lavie, 2005) and Rouge (Lin, 2004)) to compute quantitative
results in Table 3. Besides the human-constructed instance captions proposed in our MarineMaid
dataset, we also construct a starting sentence to include the category information for the selected
object instance: “This is a <Category Name>.”, where the <Category Name> is the placeholder to
compensate the scientific category-level information of each instance. In this way, by penalizing
generated plausible but not domain-specific responses (e.g., “fish”, “animal” and “mammal”), we
encourage the model to generate the scientific captions to satisfy the domain requirements.

Implementation details. We perform the evaluation only based on the released official models
provided by various algorithms on our MarineMaid dataset and our experiments were conducted using
an NVIDIA L20 GPU. For LLAVA (Liu et al., 2024), we choose its V1.5-7b version for evaluation.

Table 3: Results of various algorithms (image-level and region-level) on instance captioning.
Method CLIPScore↑ RefCLIPScore↑ CIDEr↑ BLUE-4↑ METEOR↑ Rouge↑

LLAVA (Liu et al., 2024) 73.78 72.27 4.93 8.77 7.70 20.76
MiniGPT-4 (Zhu et al., 2023) 74.48 73.43 5.72 7.18 16.90 28.03
BLIP2 (Li et al., 2023b) 76.22 73.73 9.96 8.16 5.95 18.96
InstructBLIP (Dai et al., 2024) 76.60 75.25 12.09 13.94 7.40 21.31

GroundingLMM (RefCOCOg) (Rasheed et al., 2023) 73.04 70.97 4.37 4.39 4.60 16.37
GroundingLMM (VG) (Rasheed et al., 2023) 71.15 69.04 4.06 2.47 4.11 15.22
GPT4RoI (Zhang et al., 2023) 71.28 68.71 3.53 2.81 4.07 15.08
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MiniGPT-4

BLIP2

Grounding
LMM

LLAVA

Instruct
BLIP

this is a black fish with white stripes swimming
in a tank filled with water. the fish has a long,
slender body and a small mouth with sharp
teeth. it is swimming towards the camera, its
fins flapping rapidly as it moves through the
water. the background of the image is a dark,
rocky cave with a small amount of algae
growing on the walls.

a black slender ray swimming in an aquarium

a black fish with a white stripe on its head

A black fish with a white stripe on its tail swims
through the water.

a black and white fish swimming in an aquarium

This is a black ghost knifefish swimming in the
water. The water is clear and there is a piece of
rock, aquatic plants and gravel in the
background. The body of the fish is black and it
has a long tail with black and white stripes.

GT

this image shows a group of people holding a
large fish on a boat. the fish is a blue marlin,
which is a large and powerful fish that is prized
for its meat and sport fishing. the people in the
image are wearing fishing gear and appear to be
preparing to release the fish back into the
water.

a tuna caught on a fly fishing trip in the
bahamas

a large fish being held by two men

A person is holding a fish in their hand, showing
off its shiny scales.

a man holding a large fish on a boat

The object in the middle is a tuna being held in
the left hand of a fisherman in a boat. The fish is
silver with purple and green iridescent markings
on its body. Its dorsal fins are separate and both
steep and pointed. There is another person
standing to the fisherman's left.

this image shows a large, pink sea anemone
with its tentacles spread out, surrounded by
other sea creatures such as a crab and a fish.
the anemone appears to be in a coral reef
environment, with other coral and seaweed
visible in the background. the image is taken
underwater, with the sunlight filtering through
the water to create a beautiful, colorful scene.

a close up of the inside of a sea urchin

a purple and pink sea star

A small crab is sitting inside a pink shell,
possibly a sea anemone.

a close up of a large pink shell on the ocean
floor

This is a close-up of a pink barrel sponge seen
from above the animal. The inside surface is
smooth and layered and the outside surface
appears spikey and rough. The appears to be a
smaller blue sponge behind the object.

a black fish swimming in the water a man holding a fish a purple and pink organismGPT4RoI

Figure 5: The qualitative results of different algorithms on marine object instance understanding.
Best viewed in color.

The language model of MiniGPT-4 (Zhu et al., 2023) is set to LLaMA-2 (Touvron et al., 2023).
As for the GroundingLMM (Rasheed et al., 2023), we report the results of the models fine-tuned
on RefCOCOg dataset (Kazemzadeh et al., 2014) and Visual Genome (VG) dataset (Krishna et al.,
2017), respectively.

Comparison and analysis. All the quantitative results are reported in Table 3. Please note that
CLIPScore and RefCLIPScore (Hessel et al., 2021) are computed based on the whole image. We
observe that image-level VLMs achieve various scores when there are human-constructed reference
captions. LLAVA (Liu et al., 2024) and BLIP2 (Li et al., 2023b) achieve very poor outputs on
CIDEr (Vedantam et al., 2015) and BLUE-4 (Papineni et al., 2002) since these two tend to generate
very short answers and they also make some wrong recognitions. InstructBLIP (Dai et al., 2024)
performs best on CLIPScore, RefCLIPScore (Hessel et al., 2021), CIDEr (Vedantam et al., 2015)
and BLUE-4 (Papineni et al., 2002). This indicates that the instruction-following tuning could
heavily promote the ability of the models to understand the instances following the user instructions.
However, the generated instance captions are still too short to satisfy the domain requirement. Region-
level VLMs also achieve very poor results since they cannot accurately localize the specific marine
instances by the user-provided BBOX prompts. Thus, the region-level VLMs still describe the whole
image and yield wrong captions as demonstrated in Fig. 5. There is still a gap when utilizing existing
VLMs for marine instance understanding.

4.3 GROUNDING

Experimental settings. We finally demonstrate the performance of existing general-purpose ground-
ing algorithms in handling marine visual localization. Using our captions as prompts, we apply
these algorithms to generate target bounding boxes, which are then compared to the ground truth
bounding boxes in our dataset. Specifically, we examine GroundingDINO (Liu et al., 2023b) and
GroundVlP (Shen et al., 2023). These models are not fine-tuned on our training set and are directly
evaluated on our validation set. Additionally, captions that are negatives, empty, and with no noun
phrases detected by nltk package are excluded to ensure a smooth evaluation process. The results are
reported in Table 4, following the default evaluation metrics (Recall used in GroundingDINO (Liu
et al., 2023b) and accuracy for GroundVLP (Shen et al., 2023)). To guarantee a proper configuration
of the evaluation environment settings, we meticulously adhered to the instructions and evaluation
program provided by the authors (discussed in Supplementary).
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sea urchin

Query: This is a sea urchin with long,
sharp black spines on its body. It is
located in a body of water with
other sea creatures nearby. There is
a purple and yellow fish on top of it.

(d)Query: This is a shark in a tank. 
It appears to be swimming in the
water.

(c)

shark in a tank

Query: This is a bubble-tip anemone
under aquarium lighting. It has
bulbous tops on its tentacles that
are closely packed together in
purple color, with a large protruding
spot at the tips.

(a)

bubble-tip anemone

(b)Query: This is an angel shark
swimming on the ocean floor. It is
large in size with a flat body. Its tail 
is long with two raised dorsal fins.
The color of its body is similar to the
ocean floor.

angel shark

cow person

the tips
dorsal fins

Figure 6: Results of GroundingDINO (Liu et al., 2023b) (a,b) and GroundVLP (Shen et al., 2023)
(c,d) on our MarineMaid dataset. Green texts and BBOXs indicate the query and GT respectively.
Red texts and BBOXs indicate model-generated predictions and corresponding BBOX outputs.

Table 4: Quantitative visual grounding results on MarineMaid dataset.

Method Evaluation Seen Unseen
Metric Class-level Intra-Class Inter-Class Class-level Intra-Class Inter-Class

GroundingDINO (Liu et al., 2023b) R@1 38.8 37.5 37.2 46.8 46.8 45.6
GroundingDINO (Liu et al., 2023b) R@5 67.3 65.5 66.2 76.9 76.8 74.5
GroundingDINO (Liu et al., 2023b) R@10 78.0 76.0 76.8 84.9 84.9 83.3

GroundingVLP (Shen et al., 2023) Accuracy 19.8 45.8 42.8 34.3 35.6 52.4

Implementation details. For GroundingDINO (Liu et al., 2023b), we employ the best Swin-B pre-
trained model (MM-GDINO-B*) as the backbone. The evaluation is conducted on a single GeForce
RTX 2080 Ti. Other configurations are consistent with the original paper. For GroundVLP (Shen
et al., 2023), we use the ALBEF and Swin-B Detic (Zhou et al., 2022) models provided by the authors,
evaluated on our validation dataset.

Comparison and analysis. As reported in Table 4, there is an obvious performance drop (still
unsatisfactory performance) when utilizing the two grounding algorithms on marine creature local-
ization. We attribute this to the gap in knowledge between everyday objects and marine creatures.
Furthermore, as depicted in Fig. 6, these algorithms struggle to accurately recognize and locate target
marine creatures, being hindered by the knowledge acquired from in-air objects. For instance, in
Fig. 6 (c), GroundVLP (Shen et al., 2023) mistakenly identifies a shark as a cow and fails to locate
the correct target based on the described action in the caption. Conversely, GroundDINO (Liu et al.,
2023b) (b) correctly identifies the angle shark, but mistakenly recognizes its tail fin as dorsal fins,
further revealing the lack of ability to perform accurate marine visual grounding.

5 DISCUSSIONS AND CONCLUSION

New benchmark. The proposed MarineMaid serves as a novel comprehensive and diverse benchmark
meticulously curated for marine research. Our dataset is introduced to enhance the assessment of
existing algorithms for marine visual understanding. It includes a wide range of marine creatures
across various environments, providing a valuable benchmark for testing and developing new models.

Broader impact. The study of marine creatures has several important applications, such as identifying
and safeguarding rare animal species, preventing wildlife trafficking, and aiding in search-and-rescue
operations. Our dataset deliberately excludes any military or sensitive scenes, ensuring its focus
remains on benign and beneficial applications.

Limitation. Even though we tried our best to cover the most common marine creatures, we have to
admit that the amounts of existing marine creatures are much larger than the included marine object
categories. Our dataset will be continuously growing to include more marine object categories.

Conclusion. In this work, we propose the first large-scale marine datasets to enable both object
detection and vision-language understanding. Our dataset supports various tasks, including close-
set object detection, open-vocabulary object detection, instance captioning, and grounding. The
comprehensive evaluation sheds light on the strengths and limitations of both general-purpose and
domain-specific algorithms.
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A APPENDIX

A.1 DATA ANNOTATION

BBOX annotation. We develop a bounding box annotation platform as shown in Fig. 7. The left
side represents the image with the point prompts from the users. We embed the segment anything
model (SAM) as our labeling engine. The green dots indicate selected areas and the red dots indicate
unselected areas. The right slide is the labeled bounding box and corresponding instance mask output
automatically generated by SAM.

Captions refinement. We develop a user-friendly caption annotation platform as shown in Fig. 8.
On the left is the image and the object bounding boxes, and on the right is the intention description
of the object. We divided the images into 100 per subset and assigned them to experts so that the
duration of each consecutive work is not too long to ensure the quality of the annotation. We select
one salient object to perform caption refinement and tag “Refined Positive” as shown in Fig. 8. The
generated captions are then distinguished into “Generated Positive” and “Generated Negative” for
the remaining objects. Fig. 9 is the example of “Generated Negative”. We provide additional tags
from three aspects (Object, Relation, and Attribute) including 11 properties, Table 5 presents the
example and statistic.
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Table 5: The detailed explanations of the constructed 11 attributes and corresponding data statistics
for the generated negative captions.

Properties Example Number

Object
Classification This is a yellow fish. vs. This is a yellow coral. 6,875
Background The turtle is in the ocean. vs. The turtle is in the sky. 1,343
Unexisting The shark has a long tail. (there is no tail in the image) 3,264

Relation Spatial This fish is under the coral. vs. This fish is on the coral. 816
Action The penguin is walking. vs. The penguin is sitting. 938

Attribute

Size The shark is large. vs. The shark is small. 271
Color This is a yellow fish. vs. This is a blue fish. 2,031
Shape This is a oval seashell. vs. This is a triangle seashell. 312

Texture The seashell is smooth. vs. The seashell is rough. 321
Material The fish is probably made of plastic. 316
Counting There are three penguins vs. There are four penguins. 831

A.2 EXAMPLES AND DATA DIVERSITY

Examples. We provide some image examples with the detailed bounding box instance caption
annotations in Fig. 10. We encourage the readers to pay more attention to the generated instance
captions. The instance captions describe the appearance of the object instance, action, event, the
relationship between the selected instance with other instances, and more advanced biological traits.

Diversity and data composition. We provide the illustration about the data diversity of our con-
structed MarineMaid dataset in Fig. 11. We only provide some images from some categories for
better illustration.

Figure 7: Screenshot of the BBOX annotation platform. Left: input point prompt. Right: the labeled
instance BBOX and mask.

B MORE EXPERIMENTS

B.1 DATA SPLIT

We implement a consistent splitting strategy for each dataset: class-level, intra-class, and inter-class.
For the training set, 80% of the images containing objects from seen categories are randomly sampled.
The remaining 20% of seen objects, along with all unseen objects, are allocated to the validation
set. To assess performance on both seen and unseen objects, the validation set is further divided
into val_seen and val_unseen based on categories. Images containing both seen and unseen objects
are manually reassigned to the validation set, resulting in duplicated images in both val_seen and
val_unseen, each with different annotations. Statistics and details can be found in Table 6.
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Figure 8: Screenshot of our developed caption refinement platform for generating the “Refined
Positive”. The domain experts are required to modify and edit the accurate and detailed biological
traits for the selected marine instance.

Figure 9: Screenshot of our developed caption refinement platform for generating the “Refined
Negative”. The annotators are asked to provide additional attribute annotations (wrong types) for the
negative captions.

Table 6: Data split for performing the open-vocabulary object detection. We provide detailed data
splitting under each setting.

Class-Level Intra-Class Inter-Class

Train val val
(seen)

val
(unseen) Train val val

(seen)
val

(unseen) Train val val
(seen)

val
(unseen)

# of Images 9,291 5,298 2,743 2,963 9,312 5,301 2,746 2,963 8,163 6,062 2,943 4,023
# of BBOX 27,560 14,540 9,071 5,469 28,166 13,992 8,523 5,469 23,561 17,920 9,960 7,960
# of Captions 22,739 11,897 6,699 5,198 22,709 11,984 6,786 5,198 19,232 14,790 7,527 7,263
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Figure 10: The example images with the bounding box annotations and instance captions from our
MarineMaid dataset. Best viewed in color.
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Figure 11: We present the the data distribution of our MarineMaid dataset at the “Class” level. We
also provide images from some selected Classes for illustration.

Table 7: Results of MiniGPT-4 under two settings on our MarineMaid dataset.

Method CLIPScore↑ RefCLIPScore↑ CIDEr↑ BLUE-4↑ METEOR↑ Rouge↑

Vanilla 74.48 73.43 5.72 7.18 16.90 28.03
Fine-tuned 77.96 77.51 17.36 14.79 16.90 33.71

B.2 INSTANCE CAPTIONING

Due to the constraint of the computational power, we select the representative MiniGPT-4 (with
LLaMA2 7B version) to do the fine-tuning on our MarineMaid dataset. Please note that the testing
set is withheld for evaluation purposes. We finetuned the MiniGPT-4 on our dataset on 4 NVIDIA
A100-40GB for 5 epochs and we set other training parameters to follow the same as its original paper.
We report the experimental results under the two settings (vanilla and fine-tuned) in Table 7. We
observe that further fine-tuning could help improve the instance understanding performance. But
there is still large room for further improvement. The sole fine-tuning cannot fully solve our problem
and domain-specific design and modifications are required.

B.3 GROUNDING

Following a similar experimental setting, we select GroundindDINO to perform the grounding
experiments. To guarantee the proper configuration of the evaluation environment settings, we
meticulously adhered to the instructions and evaluation program provided by the original official
implementations. We further fine-tune GroundingDINO on our training dataset to measure the
performance. We use the same pre-trained model (MM-GDINO-B*) to optimize the model on our
dataset. The results are reported in Table 8. We observe an observable improvement in R@1 across
all validation settings, though there is a decline in performance in R@5 and R@10. This indicates
that after fine-tuning, the model becomes more proficient at identifying the target object within the
image based on the query but also detects additional regions that do not correspond to the ground
truth bounding box. However, we also acknowledge the performance drop of the R@10. We attribute
such performance drop to the specific feature of our constructed MarineMaid dataset (we only aim to
ground one instance based on the captions).
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Table 8: Performance comparison of GroundingDINO under two settings: Vanilla and Fine-tuned.

Seen Unseen
Class-Level Inter-Class Inter-Class Class-Level Inter-Class Inter-Class

R@1 38.8 37.5 37.2 46.8 46.8 45.6
R@5 67.3 65.5 66.2 76.9 76.8 74.5Vanilla
R@10 78.0 76.0 76.8 84.9 84.9 83.3
R@1 65.7 62.1 64.5 71.6 70.6 70.3
R@5 71.9 66.1 63.5 76.0 73.6 71.4Fine-tuned
R@10 74.2 67.7 64.1 78.5 74.8 71.7
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