
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING PHYSICS-INFORMED NEURAL NET-
WORKS THROUGH FEATURE ENGINEERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Physics-Informed Neural Networks (PINNs) have deployed
fully-connected multi-layer deep learning architectures to solve partial differen-
tial equations (PDEs). Such architectures, however, struggle to reduce prediction
error below O(10−5), even with substantial network sizes and prolonged train-
ing periods. Methods that reduce error further, to O(10−7), generally come with
high computational costs. This paper introduces a Single-layered Architecture
with Feature Engineering (SAFE-NET) that reduces the error by orders of mag-
nitude using far fewer parameters, challenging the prevailing belief that modern
PINNs are effectively learning features in these scientific applications. Our strat-
egy is to return to basic ideas in machine learning: with random Fourier features,
a simplified single-layer network architecture, and an effective optimizer we call
(Adam + L-BFGS)2, SAFE-NET accelerates training and improves accuracy by
reducing the number of parameters and improving the conditioning of the PINN
optimization problem. Our numerical results reveal that SAFE-NET converges
faster, matches or generally exceeds the performance of more complex optimiz-
ers and multi-layer networks, improves problem conditioning throughout training,
and works robustly across many problem settings. On average, SAFE-NET uses
an order of magnitude fewer parameters than a conventional PINN setup to reach
comparable results in 20% as many epochs, each of which is 50% faster. Our find-
ings suggest that conventional deep learning architectures for PINNs waste their
representational capacity, failing to learn simple but effective features.

1 INTRODUCTION

Partial Differential Equations (PDEs) form the bedrock of numerous scientific and engineering
fields, but their solution poses fundamental difficulties. Very few PDEs possess analytic solutions,
forcing scientists and engineers to rely on numerical methods, which become prohibitively expensive
for non-linear and high-dimensional problems. In the past several years, approaches based on ma-
chine learning have been developed that have the potential to ameliorate this problem. Amongst the
many approaches, one of the most popular is the physics-informed neural network (PINN) (Raissi
et al., 2019; Karniadakis et al., 2021; Cuomo et al., 2022), which has the potential to solve both for-
ward and inverse problems involving PDEs. PINNs parameterize the solution to a PDE with a neural
network, and are often fit by minimizing a least-squares loss involving the PDE residual, boundary
condition(s), and initial condition(s). As PINNs do not require a mesh, they have the potential to
efficiently solve high-dimensional and non-linear problems that require massive computing power
to solve with classical numerical methods.

Unfortunately, recent works Krishnapriyan et al. (2021); Rathore et al. (2024) have shown that
PINNs are extremely difficult to train. The main source of the diffiuclty being the ill-conditioning
induced by the differential operator appearing in the PINNs loss. The ill-conditioning makes it very
difficult for popular optimizers such as Adam (Kingma & Ba, 2014) and SGD (Bottou, 2010) to
make the loss small enough so as to yield a useful model.

To address this issue, Rathore et al. (2024) proposed a custom optimizer, NysNewton-CG (NNCG),
which, when combined with Adam and L-BFGS, significantly improves the optimization of the
PINNs loss function. This combination achieved error reductions of one to two orders of magnitude
compared to using Adam and L-BFGS alone.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite its effectiveness, NNCG has two significant shortcomings: (1) it is computationally expen-
sive and (2) it is difficult to tune. For the wave equation, Rathore et al. (2024) reports that a step of
NNCG is over 10× then a step of L-BFGS. It is partly because of this that they recommend making
as much progress as possible with Adam and L-BFGS before switching to NNCG. NNCG also has
multiple hyperparameters, that are not easily set apriori, which means an expensive grid-search may
be required.

In this paper, we ask whether or not a simpler more computationally friendly solution is possible to
address the challenges in training PINNs? We argue that the primary issue facing PINNs is that the
input representation is inadequate for the network to adequately learn the solution. We show that
by incorporating an informative set of features that better capture the inductive bias of the PDE, we
can exceed the performance of more complex optimizers and multi-layer networks. In particular,
our proposed method SAFE-NET, combines two-layer neural network with feature augmentation to
yield a method that is not only faster and computationally less expensive but also more generalizable
to a wider range of more complex problems.

1.1 CONTRIBUTIONS

• SAFE-NET challenges the prevailing belief that deeper networks are necessary for better
learning features in scientific applications, showing that substantial reductions in error can
be achieved faster with significantly fewer parameters. SAFE-NET utilizes on average
only about 600 parameters—far fewer than the approximately 5300 parameters typically
used in a conventional four-layer PINN. This drastic reduction in parameter count leads to
faster epoch times and requires less than 20% of the epochs typically needed by traditional
models to achieve comparable results.

• By utilizing the (Adam + L-BFGS)2 optimizer, SAFE-NET not only accelerates training
but also enhances the overall accuracy, matching or exceeding the performance of more
complex optimizers and multi-layer networks on several problems.

• SAFE-NET improves the spectral density of the loss landscape both early in training and
after training, indicating better initialization and enhanced conditioning of the problem with
SAFE-NET, which is critical for the successful training of PINNs.

2 PROBLEM SETUP

An overview of PINNs and the PINN loss function is provided in Appendix A. We conduct a series
of experiments aimed at optimizing the PINN loss function for a range of PDE problems including
wave, convection, heat, Burgers, and reaction equations. These PDEs have been rigorously studied
in previous works, particularly in the context of training difficulties associated with PINNs. The
coefficient settings are detailed in Appendix A.

Our experiments assess the performance of these optimizers: Adam, L-BFGS, a combina-
tion of Adam and L-BFGS (Adam+L-BFGS), and a custom hybrid optimizer referred to as
(Adam + L-BFGS)2. For Adam, the learning rate is tuned via a grid search over the set
{10−5, 10−4, 10−3, 10−2, 10−1}. For L-BFGS, we use a default learning rate of 1.0, a memory size
of 100, and employ a strong Wolfe line search. The combined Adam+L-BFGS and the (Adam + L-
BFGS)2 setups involve tuning the Adam learning rate as previously mentioned, with adjustments in
the switching sequence from Adam to L-BFGS to optimize results. For the first set of experiments,
each optimizer is run for 20,000 epochs, and in the second set, the duration is extended to 40,000
epochs, switching from L-BFGS to Adam whenever a stall in L-BFGS is detected. Throughout
this study, we compare our proposed architecture, SAFE-NET—simply a single-layer network—to
a traditional PINN model, which is a multi-layer perceptron (MLP)-with three hidden layers-and
tanh activations. Network initialization is performed using the Xavier normal initialization method
with all biases set to zero. Each experimental configuration, encompassing combinations of PDEs,
optimizers, and network structures, is replicated across seven random seeds to ensure robustness.
The computational domain for each problem is discretized using 10,000 residual points randomly
sampled from a 255×100 grid, with 257 equally spaced points for initial conditions and 101 equally
spaced points for each boundary condition.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In each setup, the discrepancy between the predicted solution and the ground truth is evaluated using
the ℓ2 relative error (L2RE), a standard metric in the PINN literature. Given the PINN prediction
y = (yi)

n
i=1 and the ground truth y′ = (y′i)

n
i=1, the L2RE is defined as:

L2RE =

√∑n
i=1(yi − y′i)

2∑n
i=1(y

′
i)

2
=

∥y − y′∥2
∥y′∥2

.

What is (Adam + L-BFGS)2? One of the key factors contributing to the success of SAFE-NET
in our experiments is the utilization of an effective hybrid optimizer, denoted as (Adam+L-BFGS)2.
This optimizer sequence is designed to leverage the strengths of both Adam and L-BFGS optimizers
in a staged approach to achieve the best possible results for each problem.

The optimizer works as follows:

1. Adam(1): The first stage involves running Adam, referred to as Adam(1). This stage is
used to approach a suitable region in the solution space, minimizing the risk of stalling in
subsequent stages.

2. L-BFGS(1): After Adam(1), we employ L-BFGS (denoted as L-BFGS(1)), which utilizes
the above settings.

3. Adam(2): When a stall in L-BFGS(1) is detected, Adam is run again (Adam(2)). This
iteration of Adam is adaptive; the learning rate decreases by a predetermined factor every
2000 steps to fine-tune the approach towards the minimum.

4. L-BFGS(2): Another round of L-BFGS (L-BFGS(2)) is implemented at the end of the
training process to rapidly converge to the solution.

3 RELATED WORK

Here we review common approaches for PINN training and feature engineering strategies proposed
in the literature.

3.1 CHALLENGES IN LEARNING WITH PINNS

In order to learn effectively with a PINN model, it is crucial that the model be trained till it reachs
a low loss — indeed, existing generalization bounds Mishra & Molinaro (2023) show the quality of
the recovered solution increases as the training loss goes down. Unfortunately, training the vanilla
PINN architecture is known to be extremely challenging Krishnapriyan et al. (2021); Rathore et al.
(2024). On a fundamental level, this issue directly arises from of the presence of the differential
operator in the loss. The differential operator can be highly ill-conditioned De Ryck et al. (2023),
which leads to an ill-conditioned optimization landscape and slow convergence Rathore et al. (2024).

In order to address these challenges, a variety of modifications to the vanilla PINN have been pro-
posed within the literature, many of which attempt to make the optimization problem easier to solve.
Wang et al. (2021a; 2022a;b); Nabian et al. (2021); Wu et al. (2023a;b) propose loss reweight-
ing/resampling to balance different components of the loss, Yao et al. (2023); Müller & Zeinhofer
(2023) propose scale-invariant and natural gradient-based optimizers for PINN training, Jagtap et al.
(2020a;b); Wang et al. (2023) propose adaptive activation functions which can accelerate conver-
gence of the optimizer, and Liu et al. (2024) propose an approach to precondition the PINN loss
itself. Other approaches include bespoke loss functions and regularizations E & Yu (2018); Lu et al.
(2021); Kharazmi et al. (2021); Khodayi-Mehr & Zavlanos (2020); Yu et al. (2022) and new archi-
tectures Jagtap et al. (2020c); Jagtap & Karniadakis (2020); Li et al. (2020); Moseley et al. (2023).
These strategies work with varying degrees of success, and no single strategy improves performance
across all PDEs.

SAFE-NET differs from much of this prior work, in that it does not seek to directly change the opti-
mization landscape. Instead, it seeks to better capture the inductive bias of the PDE, by augmenting
the initial data representation with relevant features. However, we shall see that the better choice of
representation yields can improve conditioning which leads to a better optimization landscape and
fast training. Thus, SAFE-NET implicitly preconditions the problem with its feature engineering.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 FEATURE ENGINEERING IN PINNS

We are not the first work to consider feature engineering PINNs. Several works have considered
feature engineering in the context of spectral bias. Spectral bias refers to the inability of neural
networks to learn high-frequency functions. Wang et al. (2021b) applies random Fourier features to
enhance the network’s ability to learn high-frequency functions more effectively, using their Fourier
feature mapping. They use the feature mapping

γ(v) = [cos(Bv), sin(Bv)]

where v denotes the input coordinates (space, time, etc.) and B ∈ Rm×d is a matrix with elements
from a Gaussian distribution N(0, σ2). By using both cos and sin components in their mapping, they
try to have the network capture periodic, high-frequency behavior in the input data. This embedding
is much less general then SAFE-NET, and they only explore the case when B is normally distributed.

Another recent approach is the RBF-PINN (Burghardt et al.; Zeng et al., 2024). In the RBF-PINN
method, the authors propose using Radial Basis Functions (RBF) instead of Fourier features. They
use the RBF function:

ϕRBF(x) = exp

(
−|x− c|2

2σ2

)
,

where c is the center of the RBF, and σ controls the width of the RBF. They argue that the RBF
kernel can better handle problems with sharp changes or discontinuities, which Fourier features
sometimes struggle with due to the Gibbs phenomenon. The restriction to RBF kernels is less
general than SAFE-NET, and maybe more computationally intensive due to the need to perform
kernel regression.

Moseley et al. (2023) proposed FBPINN, which models the solution as a sum of basis functions
with neural network coefficients. Again this technique was developed to address spectral bias and
the deficiencies of PINNs in capturing multiscale solutions. This approach can be viewed as a feature
expansion of the solution, with the basis functions corresponding to features. Judicious choice of
the basis functions can be viewed as feature engineering. This approach differs significantly from
SAFE-NET, which engineers the input-features to the network to learn better solutions.

In total, most of the literature on feature engineering in PINNS has been focused on addressing
spectral bias. Unlike SAFE-NET These works do not systematically investigate whether or not
augmenting PINNS with physically relevant input features leads to significantly better performance.

4 THEORY

4.1 FOURIER FREQUENCIES AND FEATURE GENERATION

From Fourier theory, it is known that a function f could be approximated using its dominant Fourier
frequencies. In particular, f(x) ≈

∑
κ dominant (Aκ cos(2πκ · x) +Bκ sin(2πκ · x)) . Additional

details regarding these calculations are provided in Appendix B. There are different ways to utilize
dominant frequencies in to generate suitable features for our network.

4.1.1 INTEGER FOURIER FREQUENCIES

Let us first consider the two-dimensional case. Take

{cos(mπx− nπt), cos(mπx+ nπt), sin(mπx− nπt), sin(mπx+ nπt)}
to be a basis for L2([0, 1]2). Then, from the previous calculations, the function f(x, t) can be
approximated as:∑
m,n

amn cos(mπx−nπt)+ bmn cos(mπx+nπt)+ cmn sin(mπx−nπt)+ dmn sin(mπx+nπt)

where amn, bmn, cmn, dmn are the Fourier coefficients that represent the amplitudes of the corre-
sponding basis functions. Our experiments demonstrate that introducing a set of normalized Fourier
features of the form

{cos(mπx− nπt), cos(mπx+ nπt), sin(mπx− nπt), sin(mπx+ nπt)}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

into the network significantly improves the optimization of the loss function. Moreover, they estab-
lish that setting m = n leads to sufficiently good results while keeping our optimization process
fast. We further discuss and systematically compare feature selection strategies in Section 5.2.

4.1.2 “ORACLE”; DOMAIN KNOWLEDGE FEATURES

One potential approach involves calculating some dominant frequencies of f and ∇f based on
specific cases derived from the boundary and initial conditions of the PDE. This method is supported
by the following mathematical lemma:

Lemma. The Fourier frequencies of f and ∇f are identical, as given by:

F{∇f(x)} = iκf̂(κ),

where F denotes the Fourier transform, ∇f represents the gradient of f , κ is the frequency vector,
and f̂ is the Fourier transform of f .

Our experiments demonstrate that approximating the dominant frequencies of f and ∇f , especially
in scenarios dictated by initial and boundary conditions, and employing these frequencies to gen-
erate Fourier features, significantly enhances the effectiveness of minimizing the loss function. An
example illustrating this method is detailed in Section 5.2.

4.2 LOGARITHMIC AND POLYNOMIAL FEATURES

Our experiments show that, in addition to the previously discussed Fourier features, adding polyno-
mial and logarithmic features to certain problems can improve loss function minimization, enhanc-
ing the error’s order of magnitude. A key strength of logarithmic features is the identity:

log(ωx) = log(ω) + log(x) for any ω ∈ R

This property implies that adding log(ωx) as a feature in the network is effectively the same as
adding log(x) plus a constant term log(ω). Since adding a constant has no impact on the network’s
performance, it suffices to include only log(x) and log(t) as features. In certain problems, these
logarithmic features could make a substantial difference.

We also found that incorporating polynomial features could be beneficial in specific scenarios. For
our experiments, we added x2, xt, and t2, as polynomials of higher degrees do not seem to contribute
to further noticeable improvements in loss function minimization in our experiments.

5 EXPERIMENTS

In this section, we validate our feature engineering approach for PINNs across a number of PDEs.
Our experiments are structured into three main sections.

5.1 A COMPARISON BETWEEN NETWORK STRUCTURES AND OPTIMIZERS

We first compare different network architectures and optimizers with and without added
features. Figure 1 illustrates the performances of different optimizers on three network
structures for each PDE. For all these problems, we employ the basic feature set S =
{sin(πx), sin(πt), cos(πx), cos(πt), sin(x − t), sin(x + t), cos(x − t), cos(x + t)}, where each
feature is normalized before being fed through the single layer network. Each optimizer runs for
20,000 epochs.

We demonstrate that all our tested optimizers—Adam, L-BFGS, Adam+L-BFGS, and (Adam+L-
BFGS)2—perform optimally in SAFE-NET. Particularly, (Adam+L-BFGS)2 shows a remarkable
improvement over the other optimizers, enhancing the error’s order of magnitude by one or two
orders in each problem. Further experiments indicate that increasing the number of layers while
maintaining the feature set S results in a negligible difference; these results along with the final loss
table of Figure 1 (Table 4) are detailed in Appendix C.

Table 1 summarizes the L2 relative error (L2RE) of each optimizer for each network structure.
Notably, (Adam+L-BFGS)2 on SAFE-NET achieves 21× smaller L2RE than the best PINN L2RE

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a)

(b)

(c)

(d)

Figure 1: Performance of Adam, L-BFGS, Adam + L-BFGS, and (Adam + L-BFGS)2 on each
problem. The structure set-up is mentioned below each figure.

result on the Wave problem, 323× smaller L2RE than the best PINN result on the Convection
problem, and more than 6× smaller L2RE than the best PINN result on the other problems for only
20,000 epochs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: L2RE for different network structures and optimizers for the wave (W), convection (C),
heat (H), and Burger’s (B) PDEs after 20k epochs

Structure Optimizer
Layers Feature Set Adam L-BFGS Adam+L-BFGS (Adam+L-BFGS)2

W
4 N/A 9.03e-01 2.84e-01 5.55e-01 2.27e-01
1 N/A 8.68e-01 8.79e-01 8.99e-01 7.85e-01
1 S 3.26e-02 2.74e-02 3.40e-02 1.05e-02

C
4 N/A 4.00e-01 4.02e-01 4.05e-01 3.13e-01
1 N/A 1.04e+00 4.89e-01 8.26e-01 2.97e-01
1 S 1.92e-02 1.03e-02 8.87e-03 9.67e-04

H
4 N/A 7.83e-02 7.04e-02 7.33e-02 1.58e-02
1 N/A 3.78e-01 1.76e-01 1.57e-01 8.57e-02
1 S 1.72e-02 1.42e-02 2.15e-02 1.17e-03

B
4 N/A 7.09e-02 5.40e-02 5.66e-02 4.91e-03
1 N/A 8.33e-01 7.44e-01 6.20e-01 5.89e-01
1 S 2.62e-03 5.09e-03 2.46e-03 9.18e-04

5.2 A COMPARISON BETWEEN FEATURE ENGINEERING METHODS

Figure 2: Performance of each feature generation method on the wave and heat PDEs

In this section, we test our hypothesis by exploring how different feature engineering techniques
affect our loss function optimization. We use SAFE-NET with S as well as additional features. We
employ the following methods to choose the additional features:

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1. Consecutive Integer Features (CIF):We define an integer upper bound M and consider
all integers n ∈ {1, 2, 3, . . . ,M}. Using these integers, we construct the feature set

SM = S ∪
M⋃
k=2

{sin k(x− t), sin k(x+ t), cos k(x− t), cos k(x+ t)}

as our new expanded feature set. For example, S1 = S, S2 = S ∪ {sin 2(x− t), sin 2(x+
t), cos 2(x− t), cos 2(x+ t)} and so forth, up to SM .

2. Uniformly-Chosen Integer Features (UIF): We fix an integer lower bound Mmin and an
integer upper bound Mmax, and n as the number of features. We then choose n integers
using the uniform distribution U(Mmin,Mmax). We form the set

SMmin,Mmax = S ∪
⋃

{sin k(x− t), sin k(x+ t), cos k(x− t), cos k(x+ t)},

where k ∼ U(Mmin,Mmax), as our new feature set.

3. Uniformly-Chosen Real Features (URF): Similar to the above, but k is taken to be a
uniformly chosen real number from U(Mmin,Mmax), where Mmin and Mmax are the real
lower and upper bound respectively.

4. Other distributions: We also utilize a normal distribution to pick our frequencies, which
proves to be less effective as it centers around a specific number and does not provide the
diversity. This is the complete opposite of our intuitive Fourier basis approach.

5. Domain Knowledge Features (DKF): In many instances, the initial and boundary con-
ditions of a Partial Differential Equation (PDE) carry simple yet valuable information that
can be directly used as features. We detail the training results utilizing DKF in subsequent
plots and tables, referred to as “oracle”. An example illustrating the practical application
of DKF will be presented later in this section to better demonstrate the use of DKF.

Figure 2 illustrates a comparison of approaches 1 through 4 from an approximation theory perspec-
tive on the wave and heat problems, where a decrease in the error order of magnitude is spotted as
the number of features increases. Each plot within the figure displays the final loss vs. the number
of features generated using each approach on each PDE.

Example of DKF. In addition to studying these feature selection methods, we could also incorporate
DKF relevant to each specific PDE as previously discussed.To demonstrate this method, let us use
the wave PDE as an example. From the description of the wave problem in the appendix, we have
the initial condition:

u(x, 0) = sin(πx) +
1

2
sin(βπx), x ∈ [0, 1],

where β = 5 in our experiments. Based on this information, we select our DKF to be the set

SDKF = {sin(πx), sin(πt), cos(πx), cos(πt), sin(5πx), sin(5πt), cos(5πx), cos(5πt)}.

We train our model using the usual single-layer network, feeding the eight features of set SDKF

through. The results are provided in Figure G, where the DKF ”oracle” is displayed by a dashed line
to be easily distinguishable. Figure G shows that the DKF of our choice was able to perform even
better than CIF, reaching an error order of 10−7 for the wave problem; Figure 3.

However, in many problems, the initial and boundary conditions may not provide useful information
for feature selection. Contrary to this approach, a significant advantage of the feature engineering
methods we presented is their general applicability as well as simplicity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Comparison of CIF with 20 features and DKF for the wave problem

Logarithmic and polynomial features could be helpful. Now, we present the results of our exper-
iments on the reaction PDE. These results are presented separately because, with this problem, we
demonstrate the effectiveness of a slightly modified basic feature set S′, as discussed in Section 4.2.
We define

S′ = {x2, xt, t2, log x, log t} ∪ S

and use S′ as our basic feature set to achieve the best performance. We generate new features based
on S′ in the same manner as with S using CIF, UIF, URF, and other distributions. For instance,
using CIF for a given M , we would have

S′
M = S′ ∪

M⋃
k=2

{sin k(x− t), sin k(x+ t), cos k(x− t), cos k(x+ t)}

and so forth. We experimented with both S and S′ as our basic feature sets, and the results are
provided in Figure 4.

Figure 4: Final loss vs. number of features for the reaction problem. The figure on the left uses
S′ as the basic feature set while the figure on the right uses S. Evidently, having polynomial and
logarithmic features helps in improving the optimization.

Table 2 summarizes the best performance of each feature generation method across all tests con-
ducted using (Adam + L-BFGS)2. As evident from the table, using CIF, we achieve significantly
lower losses. For the Wave problem, for instance, we reach an error order of 10−6 with as few as
16 generated features—or even fewer if we select an effective subset of these 16 features. This high
performance is achieved very quickly, requiring only a few iterations using Adam+L-BFGS, as de-
tailed in Figure 3. Comparing these results with those presented in Figure 1 and Table 1, we observe
a significant improvement, underscoring the effectiveness of our feature engineering strategy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Final loss and L2RE using SAFE-NET with (Adam + L-BFGS)2 for the wave (W),
convection (C), heat (H), and Burger’s (B) PDEs after 40k epochs for different feature engineering

strategies

Normal URF UIF CIF DKF

Wave Loss 6.43e-05 8.98e-05 8.19e-06 4.14e-6 6.32e-07
L2RE 2.17e-02 2.94e-02 9.73e-03 5.49e-03 2.15e-03

Convection Loss 1.80e-06 6.01e-07 3.14e-07 2.11e-07 -
L2RE 3.62e-03 1.03e-03 9.94e-04 8.69e-04 -

Heat Loss 9.80e-06 6.01e-06 5.14e-06 4.94e-07 -
L2RE 1.03e-02 5.15e-03 7.03e-03 1.04e-03 -

Burgers Loss 8.47e-06 7.21e-06 7.49e-07 4.24e-07 -
L2RE 9.60e-03 7.86e-03 1.68e-03 9.07e-04 -

Reaction Loss 7.44e-06 5.23e-06 9.79e-07 4.18e-07 -
L2RE 1.46e-02 1.01e-02 8.87e-03 7.32e-03 -

5.3 A COMPARISON BETWEEN INITIALIZATION AND PROBLEM CONDITIONING

(a) Early Stages of Training (b) End of Training

Figure 5: Spectral density plots for the wave PDE at different stages of training

We conduct a comparison between the conditioning of each problem both at the early stages (after
5000 epochs of Adam) and after training using SAFE-NET and PINN. We utilize (Adam+L-BFGS)2
for 40,000 iterations, using the optimizer settings of Section 5.1 as illustrated in Figure 5 for the wave
PDE. Similar spectral density comparison plots for all other PDEs are provided in Appendix C. We
observe considerable improvements in the conditioning of the problems even at the initial phase,
which suggests that SAFE-NET does more effective initialization as well. Additionally, the spectral
density plots at the end of the training period indicate dramatic improvements in the conditioning
of each problem using SAFE-NET. In particular, the top eigenvalues for the wave and convection
problems are reduced by a factor of 103, the top eigenvalues for the heat and Burgers problems are
reduced by a factor of 102. Overall, we observe a significant reduction in the number and density of
large eigenvalues in each problem as well.

6 CONCLUSION

This study presented SAFE-NET, a simplified single-layer architecture enhanced by feature en-
gineering, addressing the computational and performance challenges commonly associated with
Physics-Informed Neural Networks (PINNs). By employing the (Adam + L-BFGS)2 optimizer,
SAFE-NET efficiently reduces the prediction error by orders of magnitude using far fewer param-
eters compared to traditional multi-layer PINN architectures. Our results confirm that SAFE-NET
not only expedites the training process but also improves problem conditioning and generalization
across various PDE challenges. These findings advocate for a reevaluation of network complexity in
PINNs, highlighting the potential for achieving significant advancements in PDE solutions through
more efficient and focused network designs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France, Au-
gust 22-27, 2010 Keynote, Invited and Contributed Papers, pp. 177–186. Springer, 2010.

Tilo Burghardt, Alberto M Gambaruto, et al. Rbf-pinn: Non-fourier positional embedding in
physics-informed neural networks. In ICLR 2024 Workshop on AI4DifferentialEquations In Sci-
ence.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific Machine Learning Through Physics–Informed Neural Net-
works: Where We Are and What’s Next. J. Sci. Comput., 92(3), 2022.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bézenac. An operator
preconditioning perspective on training in physics-informed machine learning. arXiv preprint
arXiv:2310.05801, 2023.

Weinan E and Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for
Solving Variational Problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Ameya D Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns):
A generalized space-time domain decomposition based deep learning framework for nonlin-
ear partial differential equations. Communications in Computational Physics, 28(5):2002–2041,
2020.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions
accelerate convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020a.

Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation func-
tions with slope recovery for deep and physics-informed neural networks. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 2020b.

Ameya D. Jagtap, Ehsan Kharazmi, and George Em Karniadakis. Conservative physics-informed
neural networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020c.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Ehsan Kharazmi, Zhongqiang Zhang, and George E.M. Karniadakis. hp-VPINNs: Variational
physics-informed neural networks with domain decomposition. Computer Methods in Applied
Mechanics and Engineering, 374:113547, 2021.

Reza Khodayi-Mehr and Michael Zavlanos. VarNet: Variational Neural Networks for the Solution
of Partial Differential Equations. In Proceedings of the 2nd Conference on Learning for Dynamics
and Control, pp. 298–307, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. In Advances in Neural
Information Processing Systems, 2021.

Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao. D3M: A Deep Domain Decomposition Method
for Partial Differential Equations. IEEE Access, 8:5283–5294, 2020.

Songming Liu, Chang Su, Jiachen Yao, Zhongkai Hao, Hang Su, Youjia Wu, and Jun Zhu. Precon-
ditioning for physics-informed neural networks, 2024.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed
neural networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural net-
works (FBPINNs): a scalable domain decomposition approach for solving differential equations.
Advances in Computational Mathematics, 49(4):62, 2023.

Johannes Müller and Marius Zeinhofer. Achieving High Accuracy with PINNs via Energy Natural
Gradient Descent. In Proceedings of the 40th International Conference on Machine Learning,
2023.

Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-
informed neural networks via importance sampling. Comput.-Aided Civ. Infrastruct. Eng., 36(8):
962–977, 2021.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in train-
ing PINNs: A loss landscape perspective. In Forty-first International Conference on Machine
Learning, 2024.

Honghui Wang, Lu Lu, Shiji Song, and Gao Huang. Learning Specialized Activation Functions for
Physics-Informed Neural Networks. Communications in Computational Physics, 34(4):869–906,
2023.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and Mitigating Gradient Flow
Pathologies in Physics-Informed Neural Networks. SIAM Journal on Scientific Computing, 43
(5):A3055–A3081, 2021a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. On the eigenvector bias of Fourier feature net-
works: From regression to solving multi-scale PDEs with physics-informed neural networks.
Computer Methods in Applied Mechanics and Engineering, 384:113938, 2021b.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022a.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why PINNs fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022b.

Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023a.

Wensi Wu, Mitchell Daneker, Matthew A Jolley, Kevin T Turner, and Lu Lu. Effective data sampling
strategies and boundary condition constraints of physics-informed neural networks for identifying
material properties in solid mechanics. Applied mathematics and mechanics, 44(7):1039–1068,
2023b.

Jiachen Yao, Chang Su, Zhongkai Hao, Songming Liu, Hang Su, and Jun Zhu. MultiAdam:
Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural
Networks. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed
neural networks for forward and inverse PDE problems. Computer Methods in Applied Mechanics
and Engineering, 393:114823, 2022.

Chengxi Zeng, Tilo Burghardt, and Alberto M Gambaruto. Training dynamics in physics-informed
neural networks with feature mapping. arXiv preprint arXiv:2402.06955, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL DETAILS ON PROBLEM SETUP

In this section of the appendix, we present the differential equations we study in our experiments.

A.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) are a class of neural networks that incorporate physical
laws described by Partial Differential Equations (PDEs) into the training process. PINNs solve
forward and inverse problems involving PDEs by embedding the physics constraints into the loss
function. They aim to solve PDE systems of the form:

D[u(x), x] = 0, x ∈ Ω

B[u(x), x] = 0, x ∈ ∂Ω

I[u(x), x] = 0, x ∈ Ω

Where D represents the differential operator defining the PDE, B represents the boundary condi-
tions. I represents the initial conditions, important for time-dependent problems, and Ω ⊆ Rn is the
domain of the PDE.

Loss Function in PINNs. PINNs minimize a non-linear least-squares loss consisting of three terms:

L(w) =
1

2nres

nres∑
i=1

(D[u(xr
i ;w), x

r
i])

2
+

1

2nbc

nbc∑
j=1

(
B[u(xb

j ;w), x
b
j]
)2
+

1

2nic

nic∑
k=1

(
I[u(xi

k;w), x
i
k]
)2

here the first term (D) represents the PDE residual loss, the second term (B) represents the boundary
condition loss, and the third term (I) ensures the initial condition loss for time-dependent problems.

A.2 WAVE

The wave equation, a type of hyperbolic partial differential equation (PDE), is commonly encoun-
tered in the study of phenomena such as acoustics, electromagnetism, and fluid dynamics. Our focus
is on the following wave equation:

∂2u

∂t2
− 4

∂2u

∂x2
= 0, x ∈ (0, 1), t ∈ (0, 1),

with the initial conditions:

u(x, 0) = sin(πx) +
1

2
sin(5πx), x ∈ [0, 1],

∂u(x, 0)

∂t
= 0, x ∈ [0, 1],

and boundary conditions:
u(0, t) = u(1, t) = 0, t ∈ [0, 1].

The analytical solution for this PDE, setting β = 5, is given by u(x, t) = sin(πx) cos(2πt) +
1
2 sin(5πx) cos(10πt).

A.3 CONVECTION

The convection equation, another hyperbolic PDE, models processes such as fluid flow, heat transfer,
and biological dynamics. We examine this equation:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ (0, 2π), t ∈ (0, 1),

with the initial condition:
u(x, 0) = sin(x), xin[0, 2π],

and the cyclic boundary condition:

u(0, t) = u(2π, t), t ∈ [0, 1].

The exact solution to this equation with β = 40 is u(x, t) = sin(x− 40t).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.4 HEAT

The heat equation is fundamental in the mathematical modeling of thermal diffusion processes. It is
widely applied in fields such as thermodynamics, material science, and environmental engineering
to analyze heat distribution over time within solid objects. This equation is also crucial in under-
standing temperature variations in earth sciences, predicting weather patterns in meteorology, and
simulating cooling processes in manufacturing industries. We study this parabolic PDE, expressed
as:

∂u

∂t
− 4

∂2u

∂x2
= 0, x ∈ [0, 2], t ∈ [0, 0.2],

with the initial profile:
u(x, 0) = x2(2− x), x ∈ [0, 2],

and fixed boundary conditions:

u(0, t) = u(2, t) = 0, t ∈ [0, 0.2].

The experiments use κ = 2.

A.5 BURGERS

The Burgers equation, a fundamental partial differential equation (PDE) in fluid mechanics, is used
to model various nonlinear phenomena including shock waves and traffic flow. We examine the
following form of the Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1],

where ν = 0.01
π represents the viscosity, crucial for modeling the diffusion effects.

The boundary conditions are periodic:

u(−1, t) = u(1, t), t ∈ [0, 1],

and the initial condition is given by:

u(x, 0) = − sin(πx), x ∈ [−1, 1].

The analytical solution to this PDE, which can be derived under certain conditions, represents the
evolution of the wave profile influenced by both convection and diffusion. This equation helps
illustrate the balance between nonlinear advection and viscosity, essential for understanding the
dynamics of the modeled system.

A.6 REACTION

The reaction equation, a nonlinear ordinary differential equation (ODE), is useful for modeling
chemical kinetics. We analyze it under the conditions:

∂u

∂t
− 5u(1− u) = 0, x ∈ (0, 2π), t ∈ (0, 1),

u(x, 0) = exp

(
− (x− π)2

2(π/4)2

)
, x ∈ [0, 2π],

u(0, t) = u(2π, t), t ∈ [0, 1].

The solution formula for this ODE with ρ = 5 is expressed as u(x, t) = h(x)e5t

h(x)e5t+1−h(x) , where

h(x) = exp
(
− (x−π)2

2(π/4)2

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ADDITIONAL THEORETICAL REMARKS

B.1 PRELIMINARIES; DOMINANT FREQUENCIES

From Fourier theory, it is known that the Fourier expansion of a periodic single variable function
f(t) can be expressed as follows:

f(t) =

∞∑
n=0

(an cos (nω0t) + bn sin (nω0t))

where ω0 is the fundamental angular frequency, T is the period of the function, and an and bn are
the Fourier coefficients. Similarly, to express a two-variable periodic function f(x, t) using Fourier
series, we represent it as a sum of sinusoidal functions in both the spatial variable x and the temporal
variable t as

f(x, t) =

∞∑
m=0

∞∑
n=0

[
amn cos(mκ0x− nω0t) + bmn cos(mκ0x+ nω0t)

+cmn sin(mκ0x− nω0t) + dmn sin(mκ0x+ nω0t))
]
.

Here, amn, bmn, cmn, dmn are the Fourier coefficients, which can be computed based on the function
f(x, t). Moreover, κ0 represents the spatial frequency and ω0 represents the temporal frequency.
However, in the general case, when the function f(x, t) is not periodic in x or t, we would instead
use the continuous Fourier transform,

f(x, t) =

∫ ∞

−∞

∫ ∞

−∞
[A(k, ω) cos(mκx− nωt) +B(k, ω) cos(mκx+ nωt)

+C(k, ω) sin(mκx− nωt) +D(k, ω) sin(mκx− nωt)
]
dk dω.

In general, the function f(x) can be reconstructed from its Fourier transform using the inverse
Fourier transform given by

f(x) =

∫ ∞

−∞
f̂(κ)e2πiκ·x dκ.

Using this formulation, one can attempt to approximate f(x) using only the “dominant frequencies”,
which are frequencies κ where |f̂(κ)| is large. By summing only over these dominant frequencies,
we get f(x) ≈

∑
κ dominant f̂(κ)e

2πiκ·x. Since f̂(κ) can be complex, it can be expressed as

f(x) ≈
∑

κ dominant

(Aκ cos(2πκ · x) +Bκ sin(2πκ · x)) .

Here, Aκ and Bκ are real coefficients derived from f̂(κ). Clearly, any information on dominant
frequencies κ and coefficients Aκ and Bκ would help us better approximate f .

Remark on the number of frequencies. Suppose x = (x1, x2, . . . , xn) is an n-dimensional vector,
and we aim to choose features to approximate a function f(x). Each dimension can be associated
with a sine or cosine function at a particular frequency ωi. For a fixed set of frequencies, this setup
yields 2n combinations of sine and cosine functions. When allowing the frequencies to vary within
a set such as {1, 2, . . . , M}, the number of possible frequency combinations for each function would
be (2M)n, illustrating an exponential growth in the number of potential features. This exponential
increase could become computationally challenging for problems with high dimensions. However,
this approach offers significant advantages for lower-dimensional problems, where the comprehen-
sive coverage of frequency space can greatly enhance the approximation quality of f(x).

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 IMPACT OF INCREASING THE NUMBER OF LAYERS WITH FEATURE SET S

As discussed in Section 5.1 of Experiments, Table 4 summarizes the best performance of each opti-
mizer on different network structures—single-layer without features, PINN, and SAFE-NET—over

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

20,000 epochs. In this section, we provide further in Table 3 results concerning additional network
structures, demonstrating that when employing the feature set S, increasing the number of neural
network layers does not significantly enhance the final result. Consequently, using fewer layers,
which implies fewer parameters, renders SAFE-NET substantially faster and more efficient.

Table 3: Final loss for multi-layer neural networks paired with feature set S and various optimizers,
applied to wave (W), convection (C), heat (H), and Burger’s (B) PDEs after 20,000 epochs,

showing negligible difference

Structure Optimizer
Layers Feature Set Adam L-BFGS Adam+L-BFGS (Adam+L-BFGS)2

W
4 S 1.14e-04 1.11e-04 1.01e-04 2.76e-05
3 S 1.43e-04 1.23e-04 1.18e-04 4.92e-05
2 S 1.32e-04 1.27e-04 1.23e-04 1.96e-05

C
4 S 3.99e-06 7.26e-06 2.12e-06 4.39e-07
3 S 9.47e-06 1.26e-05 5.26e-6 1.01e-06
2 S 3.71e-06 6.43e-06 4.44e-06 2.46e-7

H
4 S 1.74e-04 9.39e-05 8.43e-05 1.98e-06
3 S 6.98e-05 2.79e-05 4.66e-05 5.11e-06
2 S 3.31e-05 4.39e-05 1.02e-05 1.45e-06

B
4 S 9.78e-07 8.98e-07 7.17e-07 6.55e-07
3 S 5.98e-06 6.35e-06 9.87e-07 9.17e-07
2 S 4.12e-07 1.19e-06 5.32e-07 4.95e-07

C.2 FINAL LOSS TABLE FOR SECTION 5.1

Table 4 summarizes the best performance of each optimizer on each network structure over 20,000
epochs. Note that S represents the basic feature set defined at the beginning of this section. Once
again, (Adam+L-BFGS)2 demonstrates superior performance compared to using Adam+L-BFGS
or either Adam or L-BFGS alone.

Table 4: Final loss for different network structures and optimizers for the wave (W), convection
(C), heat (H), and Burger’s (B) PDEs after 20k epochs

Structure Optimizer
Layers Feature Set Adam L-BFGS Adam+L-BFGS (Adam+L-BFGS)2

W
4 N/A 1.12e-01 1.15e-02 4.07e-02 7.42e-03
1 N/A 1.23e-01 1.12e-01 1.18e-01 8.92e-02
1 S 1.93e-04 1.12e-04 1.93e-04 3.53e-05

C
4 N/A 2.19e-02 2.16e-02 2.22e-02 1.39e-02
1 N/A 1.49e-01 3.26e-02 9.53e-02 1.25e-02
1 S 4.82e-06 8.11e-06 4.97e-06 3.06e-7

H
4 N/A 8.23e-04 6.67e-04 7.26e-04 3.37e-05
1 N/A 1.92e-02 4.15e-03 3.35e-03 9.89e-04
1 S 3.95e-05 2.69e-05 1.78e-05 2.45e-06

B
4 N/A 6.82e-04 3.91e-04 4.33e-04 2.15e-05
1 N/A 9.35e-02 7.43e-02 5.13e-02 4.67e-02
1 S 9.21e-07 3.47e-06 8.12e-07 5.65e-07

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Early Stages of Training (b) End of Training

(c) Early Stages of Training (d) End of Training

(e) Early Stages of Training (f) End of Training

(g) Early Stages of Training (h) End of Training

(i) Early Stages of Training (j) End of Training

Figure 6: Spectral density plots for the wave, convection, heat, Burgers, and reaction problems at
different stages of training.

C.3 SPECTRAL DENSITY PLOT COMPARISON FOR SECTION 5.3

Figures 6a, 6c, 6e, 6g, and 6i display the spectral density plots at the early stages of training for
the wave, convection, heat, Burgers, and reaction problems respectively, indicating considerable
improvements in the conditioning of the problems even at this initial phase, which suggests that
SAFE-NET possesses a more efficient and better initialization as well. Additionally, Figures 6b, 6d,
6f, 6h, and 6j present the spectral density plots at the end of the training period for each of these
problems. Again, we observe dramatic improvements in the conditioning of each problem using
SAFE-NET. In particular, the top eigenvalues for the wave and convection problems are reduced by
a factor of 103, the top eigenvalues for the heat and Burgers problems are reduced by a factor of 102.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Overall, we observe a significant reduction in the number and density of large eigenvalues in each
problem as well.

18

	Introduction
	Contributions

	Problem Setup
	Related work
	Challenges in learning with PINNs
	Feature engineering in PINNS

	Theory
	Fourier Frequencies and Feature Generation
	Integer Fourier Frequencies
	``Oracle"; Domain Knowledge Features

	Logarithmic and Polynomial Features

	Experiments
	A comparison between network structures and optimizers
	A comparison between feature engineering methods
	A comparison between initialization and problem conditioning

	Conclusion
	Additional Details on Problem Setup
	Physics-informed Neural Networks
	Wave
	Convection
	Heat
	Burgers
	Reaction

	Additional Theoretical Remarks
	Preliminaries; Dominant Frequencies

	Additional Experimental Results
	Impact of Increasing the Number of Layers with Feature Set S
	Final loss table for section 5.1
	Spectral Density Plot comparison for section 5.3

