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Abstract001

Low-resource ASR remains a challenging prob-002
lem, especially for languages like Arabic that003
exhibit wide dialectal variation and limited la-004
beled data. We propose context-aware prompt-005
ing strategies to adapt OpenAI’s Whisper for006
Arabic speech recognition without retraining.007
Our methods include decoder prompting with008
first-pass transcriptions or retrieved utterances,009
and encoder prefixing using speech synthesized010
in the target speaker’s voice. We introduce011
techniques such as prompt reordering, speaker-012
aware prefix synthesis, and modality-specific013
retrieval (lexical, semantic, acoustic) to im-014
prove transcription in real-world, zero-shot set-015
tings. Evaluated on nine Arabic linguistic con-016
ditions, our approach reduces WER by up to017
22.3% on Modern Standard Arabic and 9.2%018
on dialectal speech, significantly mitigating hal-019
lucinations and speaker mismatch.020

1 Introduction021

Recent advances in automatic speech recogni-022

tion (ASR), especially those powered by large-023

scale multilingual models, have significantly im-024

proved performance across high-resource lan-025

guages (Pratap et al., 2023; Babu and et al., 2021).026

Among these, OpenAI’s Whisper (Radford et al.,027

2023a) has shown strong results in languages028

such as English and Modern Standard Arabic029

(MSA) (Abdelali et al., 2023). However, its per-030

formance on dialectal Arabic remains significantly031

lower (Team et al., 2025; Talafha et al., 2024), re-032

flecting a persistent challenge in adapting ASR033

systems to the linguistic diversity of Arabic. This034

performance gap stems from phonological, lexi-035

cal, and syntactic differences between MSA and036

regional dialects (Ali et al., 2016a), which are fur-037

ther exacerbated by the scarcity of annotated data038

for many dialects. Collecting labeled speech data039

for each variety is often infeasible due to cost and040

scalability. As a result, zero-shot ASR on dialectal 041

Arabic continues to yield high error rates, as shown 042

in evaluations on the Casablanca corpus (Talafha 043

et al., 2024). 044

In this work, we propose a lightweight, context- 045

aware adaptation framework for Whisper that im- 046

proves its performance on Arabic dialects without 047

any model retraining or architectural changes. Our 048

approach leverages external context, either in the 049

form of first-pass transcriptions or retrieved rele- 050

vant utterances, as decoder prompts or encoder- 051

attached prefixes. These cues offer valuable lexical 052

and topical signals that help guide Whisper’s de- 053

coder toward more accurate transcriptions. We 054

also explore the impact of reordering and speaker- 055

matched synthesis to enhance robustness in multi- 056

speaker and informal speech scenarios. We eval- 057

uate our approach across a range of dialectal and 058

MSA datasets in zero-shot settings. Our context- 059

aware Whisper consistently achieves lower word 060

error rates (WERs) compared to Whisper and Seam- 061

lessM4T baselines. On average, we observe a 062

9.15% WER reduction on dialectal Arabic, 22.29% 063

on MSA, and 20.54% on accented MSA. These re- 064

sults demonstrate the potential of contextual adap- 065

tation as a practical solution for improving ASR on 066

underrepresented Arabic varieties. 067

2 Related Work 068

The persistent performance gap between ASR on 069

high-resource languages and low-resource dialects 070

has motivated a variety of adaptation strategies. 071

Several studies highlight that even state-of-the- 072

art models like Whisper and SeamlessM4T per- 073

form poorly in zero-shot dialectal settings (Talafha 074

et al., 2024; Abdelali et al., 2023). For example, 075

Whisper often produces hallucinated or repetitive 076

outputs when decoding unseen dialects (Talafha 077

et al., 2023). Attempts to address this using dis- 078

tillation, such as uDistil-Whisper (Waheed et al., 079
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(a) Prompt-based adaptation. We inject context into Whis-
per’s decoder using either (Prompt1) a prior transcription or
(Prompt2) a retrieved similar sentence. This lightweight ap-
proach enhances zero-shot transcription quality, especially for
dialectal Arabic.
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(b) Prefix-based context integration. We retrieve similar (au-
dio, text) pairs from a reference set. The text is prepended to
the decoder, and the corresponding audio, retrieved or voice-
cloned, is prepended to the encoder, providing Whisper with
aligned acoustic and linguistic context.

Figure 1: Context-aware adaptation strategies: (A) Prompt-based, (B) Prefix-based. We experiment with multiple
feature extraction methods and compare each method’s performance (see Section 3.1.2). The decoder inputs follow
Whisper’s multitask training format and include: Prev: previous text tokens, SOT: start of transcript, AR: language
tag set to Arabic, and TRAN: transcription mode tag. These tokens configure Whisper’s decoding behavior and
enable contextual prompting.

2024a), are limited by their reliance on pseudo-080

labels generated by models that already underper-081

form in this context. Recently, prompting-based082

approaches have emerged as a powerful alterna-083

tive to fine-tuning. Suh et al. (2024) show that084

injecting manually written or automatically gen-085

erated prompts into Whisper’s decoder input im-086

proves transcription of domain-specific content.087

Complementarily, Wang et al. (2024b) propose088

Speech-based In-Context Learning (SICL), which089

adapts Whisper at inference time by concatenat-090

ing a few support examples to the encoder input091

and prepending their transcripts as prefixes. This092

method achieves over 30% relative WER reduc-093

tion on unseen Chinese dialects using a k-nearest094

neighbor retrieval mechanism. These approaches095

enable test-time adaptation without any gradient096

updates, making them ideal for low-resource and097

multilingual scenarios. While these works focus098

primarily on English and Chinese, the core ideas of099

leveraging textual or audio context are directly ap-100

plicable to Arabic, where context-aware prompting101

can help address the challenges of dialectal vari-102

ation and data scarcity in ASR. Our work builds103

on this foundation and adapts these techniques to 104

the Arabic language, introducing novel strategies 105

such as prompt reordering, voice-cloned prefix syn- 106

thesis, and modality-specific retrieval to enhance 107

transcription quality in real-world, zero-shot sce- 108

narios. 109

3 Methodology 110

Our approach leverages proxy transcriptions from 111

an auxiliary ASR system to guide Whisper’s 112

decoding. Specifically, we use SM4T (Barrault 113

et al., 2023) to generate first-pass hypotheses 114

that serve as contextual prompts or prefixes. 115

Although SM4T is not designed for prompt-based 116

decoding, its high-quality ASR outputs offer 117

lightweight, plug-in contextual cues that improve 118

Whisper’s recognition, especially in dialectal and 119

low-resource settings, without requiring joint 120

training or architectural changes. 121

122

We build upon Whisper (Radford et al., 2023b), 123

a multilingual encoder-decoder Transformer 124

(Vaswani et al., 2017) model for ASR. Whisper 125

consists of an audio encoder and an autoregressive 126
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token-based decoder. The encoder takes a log-Mel127

spectrogram of the input audio and produces a128

sequence of latent audio representations, which129

are then decoded into text tokens by the decoder.130

Whisper is trained on a large-scale collection131

of diverse audio-text pairs and is known for its132

robust performance across 98 languages covering133

different domains. Whisper’s decoding process134

is autoregressive and conditioned on a sequence135

of special tokens and optional user-provided136

prompts. As illustrated in Figure1, the decoder137

input typically follows this structure: |PREV|138

→ [prompt tokens] → |SOT| → |lang| →139

|TASK| → [output]. The |PREV| token marks140

the beginning of the prompt section, followed141

by the prompt tokens, which can include lexical142

or semantic information related to the target143

utterance. The token |SOT| signals the beginning144

of the expected output, followed by language145

and task specification tags (e.g., <|ar|> and146

<|transcribe|> for Arabic transcription). We147

explore context-aware decoding by leveraging148

Whisper’s support for decoder prompts under two149

strategies: prompt-based and prefix-based context150

integration.151

3.1 Prompt-based Methods152

Here, we explore injecting the transcribed or re-153

trieved textual context into Whisper’s decoder di-154

rectly after the |PREV| token to guide the tran-155

scription of dialectal words. We explore two types156

of prompts: the first-pass transcription of the tar-157

get audio and a semantically similar retrieved text.158

These configurations are illustrated in Figure 1a as159

Prompt1 and Prompt2, respectively.160

3.1.1 First-Pass Transcription as Prompt161

We use first-pass transcriptions generated by
SM4T1 (Barrault et al., 2023) as contextual
prompts for Whisper. Our choice of SM4T is moti-
vated by the findings of Waheed et al. (2024a),
which reported state-of-the-art zero-shot perfor-
mance across nearly all Arabic dialects. We hypoth-
esize that providing recognized dialectal words as
prompts can guide Whisper toward outputting more
accurate and dialect-aware transcriptions. For-
mally, the model generates the output sequence

1https://huggingface.co/facebook/
seamless-m4t-v2-large

ŷ autoregressively as:

ŷ = argmax
y

T∏
t=1

P (yt | y<t,x,p; θ)

where x is the input audio, p is the textual prompt 162

(e.g., SM4T output), yt is the token at time step t, 163

and θ are the model parameters. 164

3.1.2 Retrieved Similar Text as Prompt 165

A limitation of the first-pass approach is its reliance 166

on the accuracy of the ASR model used to gener- 167

ate first-pass transcriptions (i.e., SeamlessM4T); 168

if the model misrecognizes a dialectal word, the 169

error may propagate to Whisper’s final output. To 170

address this, we propose retrieving a similar sen- 171

tence from a large, human-written text corpus as 172

an alternative prompt source. 173

In this approach, we retrieve similar sentences from
a large textual corpus. In our experiments, we use
a 500K ASR speech-transcription dataset (Waheed
et al., 2024a). Since the retrieval operates purely
on text, it is speech-independent, an important ad-
vantage in low-resource settings where large text
corpora are more readily available than labeled
speech data. We define a sentence as similar if
it has high lexical or semantic overlap with the
reference first-pass transcription ttext, following a
rationale similar to WER and CER computation.
We evaluate two models to produce these transcrip-
tions: (a) a character-level ASR (MMS (Pratap
et al., 2024)) and (b) a subword-level ASR (SM4T).
As shown in the "feature extractor" block in Fig-
ure 1a, we experiment with four similarity met-
rics to retrieve the most relevant candidate p ∈ C
for each test utterance. These include (1) lexical
features based on character-level TF-IDF (Pisko-
rski and Jacquet, 2020), (2) semantic features
based on sentence embeddings via SentenceTrans-
former (Reimers and Gurevych, 2019), (3) speech
embeddings derived from Whisper’s encoder (Rad-
ford et al., 2023a), and (4) speaker embeddings
from ECAPA-TDNN (Desplanques et al., 2020).
For each test utterance with audio input x, we first
obtain a first-pass transcription ttext, which is em-
bedded using a feature extractor f(·). We then
embed all candidate sentences si ∈ C from a refer-
ence corpus using the same extractor and compute
cosine similarity:

p = argmax
si∈C

cos (f(ttext), f(si))

The retrieved sentence p is then used as a contex-
tual prompt injected into Whisper’s decoder input
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to guide the transcription of x. The output sequence
ŷ is generated autoregressively as:

ŷ = argmax
y

T∏
t=1

P (yt | y<t,x,p; θ)

3.2 Prefix-based Methods174

In contrast to the prompt-based approach, which
injects contextual information solely into the de-
coder, prefix-based methods augment both the en-
coder and decoder inputs of Whisper with contex-
tual (audio, text) pairs. These pairs are selected
to be semantically similar to the target utterance
and are prepended to the input stream, thereby en-
abling Whisper to perform context-aware transcrip-
tion across the full encoder-decoder pipeline. This
approach builds on the Speech-based In-Context
Learning (SICL) framework introduced by Wang
et al. (2024b), which demonstrates that Whisper
can adapt to new dialects and speakers by con-
ditioning on a few relevant speech-text examples
at test time, without requiring any updates to the
model parameters. Figure 1b illustrates the overall
setup. Given a test utterance with audio input x,
we retrieve a similar (xctx,p) pair from a reference
dataset, where xctx is the context audio and p is
the corresponding transcript. Following the SICL
paradigm, we concatenate xctx and x, separated by
a 1-second silence, and feed the resulting sequence
into the encoder. The text prefix p is prepended
to the decoder input. This paired context enables
Whisper to leverage both acoustic and linguistic
cues during generation. The final output sequence
ŷ is generated autoregressively as:

ŷ = argmax
y

T∏
t=1

P (yt | y<t,xctx ⊕ x,p; θ)

where xctx ⊕ x denotes the concatenation of the175

context and test audio, and p is the text prefix used176

to guide the decoder.177

3.2.1 Retrieval-based Prefixing178

We begin by identifying a semantically similar179

training example using character-level TF-IDF sim-180

ilarity over transcriptions, which we found to out-181

perform other retrieval methods in this context (see182

Section 5.2). The retrieved speech xctx and its183

corresponding transcript p are then prepended to184

the test utterance and used as contextual inputs to185

Whisper’s encoder and decoder, respectively.186

In the work by Wang et al. (2024b), the dataset187

features repeated speakers across training and test188

utterances, making the concatenation of xctx ⊕ x 189

more seamless and coherent, often resembling a 190

single extended utterance. This aligns well with 191

Whisper’s design, which assumes single-speaker 192

input2. However, in our setting, the context and 193

test utterances often come from different speakers. 194

We observe that this speaker mismatch can result in 195

inconsistent behavior, with Whisper frequently ig- 196

noring one of the speakers or producing fragmented 197

outputs. For example, in the absence of speaker 198

alignment, Whisper may truncate the first utterance 199

or hallucinate speaker turns. This issue of speaker 200

mismatching is addressed in the next section. 201

3.2.2 Retrieval-based Prefixing with Voice 202

Cloning 203

To address the speaker mismatch issue discussed
earlier, we synthesize the contextual audio using
a cloned voice that matches the speaker identity
of the target test utterance. Specifically, we take
the retrieved transcription p and synthesize a new
contextual audio signal x̃clone using a TTS model
(XTTS (Casanova et al., 2024)) conditioned on the
speaker embedding extracted from the test audio x.
This results in a speaker-consistent input that Whis-
per perceives as originating from a single speaker.
Formally, we model the synthesized contextual au-
dio x̃clone as:

x̃clone = TTS(p, SPK(x))

where p is the retrieved text prompt, x is the test 204

utterance audio, SPK(x) extracts the speaker em- 205

bedding from x, and TTS is conditioned on both 206

the text and the target speaker identity. This ap- 207

proach not only aligns the speaker characteristics 208

of the context and test segments but also removes 209

the need for parallel speech-text data, an impor- 210

tant advantage in low-resource and dialectal set- 211

tings where such data is often scarce. By enabling 212

Whisper to process a seamless input with unified 213

acoustic characteristics, this method enhances both 214

transcription accuracy and inclusivity. Formally, 215

the input to Whisper becomes the concatenated au- 216

dio x̃clone⊕x, with p serving as the corresponding 217

decoder prefix. 218

3.3 First-Pass Transcription Prefixing with 219

Voice Cloning 220

Instead of retrieving external examples, this 221

method constructs the prefix directly from the test 222

2https://github.com/openai/whisper/
discussions/434
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utterance itself. We begin by transcribing the test223

audio x to obtain a first-pass transcription ttext,224

as described in Section 3.1.1. We then synthesize225

the corresponding audio using a voice cloned from226

the same test utterance. As in the retrieval-based227

prefixing method, the synthesized audio x̃clone, fol-228

lowed by a 1-second silence and the test audio x,229

is fed into Whisper’s encoder. The corresponding230

text ttext is used as the decoder prefix.231

4 Experiments232

In this section, we evaluate our proposed methods233

under varying linguistic conditions, including Mod-234

ern Standard Arabic (MSA), Accented MSA, and235

both external and internal dialectal datasets.236

4.1 Datasets237

Common Voice 15.0 (CV15). A crowd-sourced238

dataset of read Arabic speech (Ardila et al., 2019).239

Utterances written in MSA, the formal variety used240

widely across the Arab world in news broadcasts,241

education, and official contexts.242

MGB-2/3/5. This collection comes from the Ara-243

bic Multi-Genre Broadcast (MGB) challenges (Ali244

et al., 2016b, 2017, 2019), which feature speech245

from real-world broadcast content. MGB-2246

(around 1,200 hours) contains MSA with other di-247

alects mixed in. MGB-3 (≈6 hours) focuses on248

Egyptian dialect, while MGB-5 (≈6 hours) fo-249

cuses on Moroccan Arabic. We present MGB-3250

and MGB-5 as external dialectal data. We manu-251

ally validated MGB samples and found errors like252

omissions, mismatches, and typos.253

FLEURS. The Arabic portion of FLEURS (Con-254

neau et al., 2023). Features read speech sourced255

from news and web content. The speech is in MSA256

but spoken with an Egyptian accent, as known as257

accented MSA (Waheed et al., 2024b; Talafha et al.,258

2023).259

In-House Dialectal Sets. This group includes260

five conversational test sets: Algerian, Jordanian,261

Palestinian, Emirati (UAE), and Yemeni. Each con-262

sists of multi-speaker dialogue recordings in re-263

gional dialects, collected and manually annotated264

and validated. We present these as internal dialec-265

tal data.266

4.2 Baseline Models267

Table 1 presents WER/CER for all dialectal varia-268

tions. All error rates are measured after perform-269

ing preprocessing on the reference and prediction 270

texts. See Appendix A.1. We kept all models 271

on their default settings. See model details in 272

Appendix A.2. We begin with baselines: zero- 273

shot Whisper-large-v33 and SM4T4. In line with 274

the experiments done by Waheed et al. (2024a), 275

SM4T yields lower error rates than Whisper on 276

most dialectal sets in our experiments. Overall, 277

both Whisper and SM4T perform better on MSA 278

(≈ 15.79% and ≈ 14.24%, respectively) than on 279

dialects (≈ 57.85% and ≈ 57.48%, respectively), 280

illustrating the large gap between MSA and dialec- 281

tal ASR. 282

4.3 MSA (CV15, MGB-2) 283

For MSA, although Whisper is already relatively 284

strong (WER 15.55% on CV15, 16.02% on MGB- 285

2), prompt-based methods further improve MSA 286

accuracy. For instance, prompting with the 287

SM4T transcription reduces CV15 error rates to 288

(10.40/3.18), a roughly 33% relative reduction. 289

However, on MGB-2, we observe a surprising 290

degradation: WER spiked to 47.61%. Upon an- 291

alyzing selected samples, we identify several con- 292

sistent failure modes: completions (i.e., Whisper 293

attempting to continue the prompt), empty tran- 294

scriptions, and hallucinated phrases. These behav- 295

iors reflect inherent properties of autoregressive 296

decoding where Whisper generates text token by 297

token, which can lead it to overfit on the prompt 298

and treat it as prior context to be continued. We 299

noticed that randomly shuffling the prompt words 300

sharply reduces this behavior in MGB-2, bringing 301

the WER to 15.01, overcoming vanilla Whisper. 302

Changing the order of the prompt disrupts Whis- 303

per’s tendency to depend on the prompt as a coher- 304

ent sequence and perceives it as a bag of words in- 305

stead. To better understand the impact of reversed 306

prompting on hallucination reduction, we manu- 307

ally analyzed 30 samples from the development set 308

where sentence-level WER dropped from ≥ 1 to 309

0 when using the reversed prompt. We found that 310

hallucinations typically occurred in cases of incom- 311

plete utterances (16 samples), background music 312

(4), simultaneous interpretation or voice-over (4), 313

and multi-speaker dialogue (6). In many cases, 314

Whisper hallucinated generic filler content (e.g., 315
�
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3https://huggingface.co/openai/
whisper-large-v3

4https://huggingface.co/facebook/
seamless-m4t-v2-large
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Language
Condition

Baselines Ours: Prompt-based (←) Ours: Prefix-based (→)

SM4T W-v3 W←FPT W←Rand W←Rev W←SMms W←SSea
W→SSea
No-Clone

W→SSea
Clone

W→Pt
Clone

MSA

CV15.0
WER/
CER

11.12/
3.55

15.55/
5.06

10.40 /
3.18

12.01/
3.93

12.12 /
3.88

13.69/
4.59

12.69/
4.29

15.67/
7.45

11.26/
3.46

10.28/
3.29

MGB2
WER/
CER

17.35/
8.73

16.02/
7.64

47.61/
36.61

16.7/
9.09

15.01/
7.66

17.28/
7.48

16.51/
7.24

17.15/
7.94

14.66/
5.97

14.26/
6.36

Avg MSA
WER/
CER

14.24/
06.14

15.79/
06.35

29.01/
19.90

14.36/
06.51

13.57/
05.77

15.49/
06.04

14.60/
05.77

16.41/
07.70

12.96/
04.72

12.27/
04.83

Accented MSA

Fleurs
WER/
CER

7.66/
4.0

9.2/
2.77

17.34/
12.56

7.36/
3.73

7.31/
3.76

12.18/
3.93

12.21/
4.34

11.56/
4.69

10.22/
3.60

9.31/
2.72

External Dialects

MGB3
WER/
CER

31.48/
15.75

35.9/
17.67

63.47/
50.14

31.62/
15.98

31.14/
15.26

37.15/
18.43

35.45/
17.47

35.45/
17.22

34.22/
15.90

33.51/
18.64

MGB5
WER/
CER

77.43/
43.62

79.16/
45.1

76.04/
45.66

69.37/
35.55

69.89/
35.49

76.90/
42.02

75.23/
40.37

74.35/
38.90

73.70/
37.13

68.21/
33.96

Avg Ext
WER/
CER

54.46/
29.69

57.53/
31.39

69.76/
47.90

50.50/
25.77

50.52/
25.38

57.03/
30.23

55.34/
28.92

54.90/
28.06

53.96/
26.52

50.86/
26.30

Internal Dialects

ALG
WER/
CER

86.89/
45.5

78.6/
37.81

77.83/
39.19

73.07/
31.26

73.13/
30.38

76.59/
34.70

74.68/
34.17

76.87/
36.57

74.53/
31.28

70.08/
31.85

JOR
WER/
CER

38.29/
12.01

40.79/
13.55

37.34/
12.12

37.52/
12.25

37.34/
12.12

38.01/
13.39

35.90/
12.59

36.96/
13.61

35.00/
11.79

36.04/
14.10

PAL
WER/
CER

48.82/
16.49

50.38/
17.52

46.12/
14.98

46.55/
14.9

46.12/
14.96

45.28/
16.48

45.24/
16.69

44.38/
16.65

42.94/
14.92

52.78/
27.16

UAE
WER/
CER

51.79/
19.75

55.03/
22.98

49.1/
18.13

49.45/
18.48

48.98/
18.05

50.22/
21.01

48.32/
20.06

51.02/
23.26

47.90/
19.03

51.91/
24.53

YEM
WER/
CER

70.22/
28.97

62.51/
24.42

60.74/
23.49

60.35/
22.97

60.21/
23.28

64.82/
26.51

62.60/
25.47

63.32/
27.30

60.73/
23.01

64.70/
30.56

Avg Int
WER/
CER

59.20/
24.54

57.46/
23.26

54.23/
21.58

53.39/
19.97

53.16/
19.76

54.98/
22.42

53.35/
21.80

54.51/
23.48

52.22/
20.01

55.10/
25.64

Avg All
WER/
CER

44.11/
19.84

44.31/
19.45

48.60/
25.61

40.40/
16.81

40.13/
16.48

43.21/
18.85

41.88/
18.27

42.67/
19.36

40.52/
16.61

41.11/
19.32

Avg Dia
WER/
CER

57.85/
26.01

57.48/
25.58

58.66/
29.10

52.56/
21.63

52.40/
21.36

54.98/
22.42

53.35/
21.80

54.51/
23.48

52.22/
20.01

55.10/
25.64

Table 1: WER (↓) and CER (↓) across various Arabic speech conditions using baseline and context-aware Whisper
decoding strategies. Baseline models are SM4T: SM4T and W-v3: Whisper-large-v3. Our prompt-based methods
(←) inject contextual text into the decoder using W←FPT: first-pass transcriptions. ←Rand: randomly shuffling
the prompt’s words and ←Rev: reversing the prompt word’s order. ←SMms and ←SSea: retrieving similar
sentences based on MMS or SM4T, respectively. Prefix-based methods (→) concatenate contextual (speech, text)
pairs at the encoder/decoder inputs. No-Clone: retrieve the speech for that similar example. Clone: Use TTS to
clone the speech for that similar example based on the target utterance.

late to "subscribe to the channel" and "Translated317

by Nancy Kangar", respectively. It seemingly at-318

tempted to ’complete’ utterances it interpreted as319

finished. These behaviors are likely inherited from320

Whisper’s training data, which includes YouTube321

videos and subtitles, where endings often feature322

music or silence. Similar hallucinations were ob-323

served across other languages, such as Untertitel im324

Auftrag des ZDF, 2017 in German5, Tekstet av Nico-325

lai Winther in Norwegian6, or generic tags like [ap-326

5https://gist.github.com/riotbib/
3b3c5f817b55b68801d14b8bdb02df09

6https://medium.com/@lehandreassen/
who-is-nicolai-winther-985409568201

plause] in English7. An example of an incomplete 327

utterance is: �Ë @ 	áÓ ¨ñ
	
K Aî

�
DÓQK.

�
éJ
ÊÒªÊË ù¢«@ A

	
��
@ð 328

("It also gave the whole process a kind of"). This 329

sentence ends with a rising intonation and lacks a 330

complete semantic conclusion, making it a likely 331

candidate for hallucinated completions. Table 2 332

shows some examples of prompt-completion or 333

generic-hallucination cases. 334

For CV15, both shuffling and reversing slightly in- 335

crease error rates to (12.02/3.93) and (12.12/3.88), 336

respectively, in comparison with only using the 337

normal prompt, but still better than vanilla Whisper. 338

7https://github.com/openai/whisper/
discussions/2608

6
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Prompting using similar text also helps MSA339

modestly; using similar text from data source (i.e.,340

500K) based on MMS as prompt yields a WER of341

≈ 15.5% on average MSA (from vanilla Whisper342

at 15.8%). Furthermore, retrieving similar text343

from the same dataset based on SM4T transcription344

yields an even lower WER of ≈ 14.6%. This345

similarity-based approach provides the decoder346

with salient words that guide whisper’s decoding347

process and aligns with the way upon which the348

model (i.e., Whisper) was trained.349

350

We observe that prefix-based approaches also im-351

prove Whisper’s performance on MSA, but only352

when speakers’ characteristics are similar. When353

prefixing with a retrieved context utterance without354

speaker adaptation8, performance on MSA remains355

nearly unchanged or degrades slightly: on CV15,356

error rates at (15.67/7.45), compared to Whisper’s357

baseline (15.55/5.06), whereas on MGB-2, error358

rates increased to (17.15/7.94). In contrast, pre-359

fixing with the synthesized similar text in the tar-360

get speaker’s voice substantially improves results,361

reducing error rates to (11.26/3.46) on CV15 and362

(14.66/5.97) on MGB-2, bringing the average MSA363

WER down to 12.96. The best performance is364

achieved when the cloned prefix uses the synthe-365

sized SM4T transcription as a prefix, which yields366

(10.28/3.29) on CV15 and (14.26/6.36) on MGB-2,367

reducing the average MSA WER to 12.27.368

4.4 Accented MSA (Fleurs)369

For Accented MSA, Whisper’s baseline is already370

relatively competitive (9.20/2.77), only slightly be-371

hind the stronger SM4T ASR baseline (7.66/4.00).372

SM4T prompting has mixed effects. We noticed373

that injecting the transcription as is causes sim-374

ilar behavior to MGB-2, yielding (17.34/12.56).375

However, changing the order of the same prompt,376

restores and even improves performance: shuffling377

yields (7.36/3.73), while reversing delivers the best378

result at (7.31/3.76), a 21% relative WER reduc-379

tion over the Whisper baseline. This mirrors the380

prompt-completion pattern in Table 2, where re-381

versing suppresses boilerplate hallucinations such382

as �
èA
	
J
�
®Ë @ ú




	
¯ @ñ»Q

�
�
�
�@. Similar text prompting with383

TF-IDF hindered the performance by nearly 33%,384

as Fleurs is out of the textual corpus domain.385

In the prefix approach, without speaker adaptation,386

8We define speaker adaptation as the process of cloning
the target speaker’s voice from the target audio in hand (i.e.,
test example) and using it to synthesize the prefix.

performance degrades to (11.56/4.69) compared 387

with the baselines. Synthesising the same text in 388

a cloned voice aligned to the target speaker yields 389

slightly better results at (10.22/3.60), and prefix- 390

ing the cloned SM4T transcription slightly better 391

at (9.31/2.72), but both approaches still do not 392

even outperform the baselines. This shows that 393

the prompt reversal continues to be the most effec- 394

tive method for Accented MSA. 395

4.5 External Dialectal Datasets (MGB-3, 396

MGB-5) 397

Baseline Whisper performs poorly on dialectal 398

benchmarks, with 35.90% WER on MGB-3 and 399

79.16% on MGB-5. Naively prompting with SM4T 400

transcriptions harms MGB-3, spiking WER to 401

63.47%, as Whisper often treats the prompt as 402

ground truth and returns empty or hallucinated out- 403

puts. On MGB-5, however, this yields a modest 404

4% relative improvement (76.04% WER). Reorder- 405

ing prompt words mitigates these issues. Shuf- 406

fling reduces WER to 31.62% on MGB-3 and 407

69.37% on MGB-5. Reversing performs best 408

on MGB-3 (31.14/15.26) and matches shuffling 409

on MGB-5 (69.89/35.49), confirming that disrupt- 410

ing prompt syntax discourages premature decod- 411

ing. Similar-text prompting shows limited gains. 412

MMS-based retrieval slightly worsens MGB-3 413

(37.15/18.43) and marginally improves MGB-5 414

(76.90/42.02). Using SM4T narrows this gap but 415

remains less effective than prompt reordering. Pre- 416

fixing proves more stable. Concatenating raw 417

similar examples yields modest gains (MGB-5 418

at 74.35/38.90), but speaker mismatch sometimes 419

leads to dropped content. Voice cloning improves 420

consistency (34.22/15.90 on MGB-3, 73.70/37.13 421

on MGB-5). Using cloned SM4T transcriptions 422

performs best on MGB-5 (68.21/33.96), cutting 423

WER by nearly 14% relative. Averaged across 424

datasets, prefixing with cloned SM4T achieves 425

50.86/26.30. Still, prompt reordering—shuffling 426

(50.50/25.77) and reversing (50.52/25.38), delivers 427

the best overall performance, improving WER by 428

12% and CER by 19% over baseline for dialectal 429

ASR. 430

4.6 Internal Dialectal datasets 431

Across the five internal dialectal datasets, which 432

include Algerian from North Africa, Jordanian 433

and Palestinian from the South Levant, Emirati 434

from the Gulf, and Yemeni from the southern 435

Arabian Peninsula, the Whisper baseline averages 436

7



(57.46/23.26), which is significantly worse than437

on MSA at (15.79/06.35). Error rates vary sub-438

stantially between dialects, with Algerian showing439

the highest (78.60/37.81) and Jordanian the lowest440

(40.79/13.55).441

Prompting with the SM4T transcription narrows the442

average to (54.23/21.58), driven mainly by gains443

in the South Levant dialects (i.e., (37.34/12.12)444

for Jordanian and (46.12/14.98) for Palestinian as445

well as Emirati at (49.1/18.13)), while Algerian and446

Yemeni showed small gains at (77.83/39.19) and447

(60.74/23.49), respectively. Shuffling the prompt448

was more effective for Algerian as it lowered error449

rates to (73.07/31.26), but it did not show signifi-450

cant changes for the other dialects compared to the451

normal-ordered prompt. Although shuffling low-452

ers the mean to (53.39/19.97), reversing yielded453

a slightly better average of (53.16/19.76), outper-454

forming the baseline WER by just under 7.5%.455

Similar text prompting gives a modest boost456

when the reference text comes from the same457

SM4T pipeline (53.35/21.80) and less when drawn458

from MMS (54.98/22.42); Jordanian falls to459

(35.90/12.59) but Algerian scarcely budges, imply-460

ing lexical overlap (i.e., between MSA and South461

Levant dialects) drives the benefit rather than simi-462

larity.463

Moving to prefix-based methods, concatenating464

raw similar audio without speaker adaptation465

yields (54.51/23.48), as it causes Whisper to466

experience the aforementioned multi-speaker is-467

sue where it ignores one of the speakers, with468

failures most visible in Yemeni (63.32/27.30).469

Injecting a voice-cloned retrieval prefix aligns470

speaker characteristics and produces the best over-471

all scores, averaging (52.22/20.01), outperforming472

the baseline by around 9%; Jordanian improves to473

(35.00/11.79), Palestinian to (42.94/14.92), Emi-474

rati to (47.90/19.03), and even Algerian drops to475

(74.53/31.28). And while using a cloned SM4T476

prefix degraded in almost all dialects and caused477

the overall error rates to rise to (55.10/25.64), Alge-478

rian achieved its best performance at (70.08/31.85),479

an improvement of 10.4% relative.480

5 Discussion481

5.1 Impact of TTS on Prefix-Based Decoding482

In our prefix-based methods, we rely on synthetic483

speech to provide Whisper with context. A crucial484

concern was whether the quality of the synthesized485

speech would degrade recognition accuracy. To486

assess this, we compared Whisper’s performance 487

when using real versus TTS-generated context 488

across three datasets (CV15, MGB3, FLEURS), 489

as shown in Figure 2. Despite minor increases in 490

WER (e.g., +6.79% on CV15, +4.98% on MGB-3, 491

and +1.05% on Fleurs), the impact was modest, 492

with average degradation across datasets remaining 493

within 4.27% WER and 3.41% CER, indicating 494

that synthesized audio did not significantly alter 495

the decoding behavior of Whisper. These findings 496

suggest that our TTS pipeline, when combined with 497

speaker voice cloning, preserves sufficient acoustic 498

fidelity to act as an effective alternative to labeled 499

speech utterances. 500

5.2 Feature Extractor Design and TF-IDF 501

Effectiveness 502

For text-based prompt retrieval, we evaluated four 503

types of feature extractors as means to measure 504

similarity, TF-IDF, text embeddings, speech embed- 505

dings, and speaker embeddings, using WER/CER 506

as the primary indicators. Among these, character- 507

level TF-IDF consistently outperformed other 508

methods, reducing WER from 22.84% (vanilla) 509

to 17.89%, outperforming dense text embeddings 510

(20.04%), speech-based embeddings (24.78%), and 511

speaker-based embeddings (27.16%) as explained 512

in Table 3 and Appendix ??. In addition, TF-IDF’s 513

independence from speech input makes it particu- 514

larly suitable for low-resource scenarios (i.e., Di- 515

alectal Arabic ASR), as it relies only on textual cor- 516

pora, which are more widely available than labeled 517

audio. This further motivated our use of TF-IDF as 518

the default retrieval method in all experiments. 519

6 Conclusion 520

In this paper, we explored context-aware decoding 521

strategies to improve Whisper’s performance on di- 522

alectal and accented Arabic speech. Our two com- 523

plementary methods, prompt-based, which inject 524

contextual text into the decoder, and prefix-based, 525

which prepend contextual speech and text, show 526

consistent gains. All experiments were conducted 527

in a zero-shot setting, as our goal is to enhance 528

ASR in low-resource conditions without modifying 529

the model architecture. In future work, we plan 530

to explore prompted fine-tuning, support for code- 531

switching, and unified approaches that combine 532

prompting and prefixing within a single context- 533

aware framework. 534
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Limitations535

Despite the consistent improvements achieved by536

our context-aware strategies, several limitations537

must be acknowledged. These span computational538

trade-offs, model constraints, and coverage gaps,539

which may affect real-world applicability and gen-540

eralizability.541

Computational and Latency Overhead: Our542

methods introduce additional processing steps per543

utterance, such as proxy ASR for first-pass hypothe-544

ses, feature extraction for retrieval, or TTS synthe-545

sis for prefix construction, which increase compu-546

tational demands. These steps also add latency and547

cost, making real-time or edge deployment more548

challenging. Prior work integrating retrieval or549

kNN with Whisper similarly reports increased de-550

coding overhead (Wang et al., 2024a; Nachesa and551

Niculae, 2024; Shen et al., 2025).552

Model Error Propagation: The performance of553

our approach is tied to the quality of auxiliary com-554

ponents. Errors in proxy ASR or TTS (e.g., unnatu-555

ral prosody, mispronunciations, or lack of dialectal556

support) can degrade the effectiveness of contex-557

tual prompts.558

Prompt Length Constraint: Whisper only con-559

siders the final 224 tokens of the prompt during560

decoding9, limiting the utility of longer contextual561

inputs. While some implementations use a 448-562

token window, only half is usable for prompts10.563

Dialectal Coverage Gaps: Although we evaluate564

across several datasets and dialects, Arabic remains565

underrepresented in ASR resources. Other dialects,566

such as Sudanese, Mauritanian, and Iraqi, were not567

included in our experiments, and existing bench-568

marks may carry domain, genre, or demographic569

biases.570

Retrieval Limitations: Retrieval quality is in-571

fluenced by corpus characteristics and retrieval572

method. Lexical techniques like TF-IDF are sen-573

sitive to tokenization and spelling variation, while574

semantic and acoustic approaches may introduce575

bias toward certain genres or speaker types. Ad-576

ditionally, large corpora improve recall but incur577

higher indexing and search-time costs, which can578

further impact latency and scalability.579

9https://platform.openai.com/docs/guides/
speech-to-text

10https://github.com/huggingface/transformers/
issues/27445

Limited Exploration of Prompting Strategies: 580

Our exploration of prompting strategies remains 581

limited. Beyond TF-IDF and basic reordering 582

techniques (e.g., reverse, shuffle), many alterna- 583

tives remain unexplored. For example, LLM-based 584

prompt generation could be employed to produce 585

domain-aware cues, such as emphasizing dialect- 586

specific keywords, similar to the work of Suh et al. 587

(2024). 588
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A Appendix 724

A.1 Preprocessing 725

Some of the datasets include inconsistencies in 726

formatting and script usage. For instance, certain 727

utterances are fully marked with diacritics while 728

others, sometimes from the same source, lack them 729

entirely. To ensure consistency across all inputs, 730

we apply a standard preprocessing pipeline inspired 731

by Talafha et al. (2023). Specifically, we remove 732

all punctuation except the % and @ symbols, strip 733

diacritics, Hamzas, and Maddas, and convert East- 734

ern Arabic numerals to their Western equivalents 735

(e.g., 29 to 29). Additionally, since our focus is 736

not on code-switching, we exclude any Latin-script 737

tokens from the data. 738
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A.2 Model Settings739

All experiments were conducted using the trans-740

formers and datasets libraries from HuggingFace.741

All audio segments were resampled to a sampling742

rate of 16kHz. Evaluations were performed on a743

single computing node equipped with 8 A10 GPUs744

(24GB each). For ASR systems, we employed:745

Whisper: whisper-large-v311 (1.55B parame-746

ters), SeamlessM4T: seamless-m4t-v2-large12747

(2.3B parameters), and MMS: mms-1b-all13 (1B748

parameters).749

750

For the retrieval-based components, we adopted751

the following extractors: TF-IDF: Character-level752

n-gram features using analyzer="char_wb" and753

ngram_range=(3, 5). Sentence Embeddings:754

We used an off-the-shelf Arabic sentence encoder,755
14, Speech Embeddings: Extracted from the final756

hidden states of the whisper-large-v3 encoder.757

Speaker Embeddings: Derived from speaker veri-758

fication with ECAPA-TDNN embeddings15 trained759

on Voxceleb dataset (Desplanques et al., 2020). All760

models were used with their default hyperparame-761

ter settings unless otherwise specified.762

A.3 Effect of Reversed Prompting on763

Hallucination and Output Fidelity764

Table 2 presents manually selected examples illus-765

trating the impact of reversed prompting on tran-766

scription quality. In each case, we compare the767

output of Whisper when conditioned on a stan-768

dard SM4T-based prompt versus a reversed version769

of the same prompt. The examples highlight fail-770

ure modes such as hallucinated phrases or overly771

short outputs in the standard prompt condition. Re-772

versed prompting consistently recovers content that773

is more faithful to the reference transcription, with774

substantially lower WER.775

A.4 Qualitative Analysis of Retrieval Modes776

We manually analyzed 1,000 samples from the777

CV15 dev set to better understand the behavior778

of different retrieval extractors. Table 4 presents779

11https://huggingface.co/openai/
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14https://huggingface.co/

Omartificial-Intelligence-Space/
Arabic-mpnet-base-all-nli-triplet

15https://huggingface.co/speechbrain/
spkrec-ecapa-voxceleb
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Table 2: Manually selected examples showing how re-
versed prompting mitigates hallucinations and improves
WER.

Mode WER/CER

Vanilla 22.84/9.65

TFIDF 17.89/7.96
Text Embedding 20.04/7.83
Speech 24.78/11.08
Speaker 27.16/13.26

Table 3: WER/CER using different feature extractors
for text retrieval on CV15 (sample size = 1000).

six representative query sentences along with the 780

top matches returned by each method. TF-IDF 781

consistently retrieved sentences with higher 782

token-level overlap with the reference, resulting in 783

more aligned surface-level matches. In contrast, 784

dense text embeddings often returned semantically 785

related but lexically divergent paraphrases, while 786

speech and speaker embeddings frequently 787

retrieved contextually unrelated content due to 788

acoustic or speaker similarity. It is important 789

to note that retrieval comparisons are based on 790

the first-pass transcription, which serves as the 791

input to the retrieval system. These qualitative 792

observations align with our quantitative results, 793

where TF-IDF achieved the lowest WER and CER 794

on CV15 (17.89 / 7.96; n=1000; see Table 3). 795

For example, when querying with the sentence 796
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Table 4: Examples of top retrieved sentences using different extractors. TF-IDF consistently preserves surface
forms, while dense and acoustic features tend to retrieve semantically related but lexically or contextually divergent
content. Sample size=1000
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maintaining both structural and lexical799

overlap. In contrast, the text embedding800

method returns ( @Y 	
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while the speech-based method yields the803

more generic ( A 	JªÓ ú



�
GA
�
K

	
à@ É

	
�
	
¯B@ 	áÓ AÖß.P),804
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little contextual relevance. A similar pattern is seen807
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K @), where TF-IDF808

returns the precise phrase ( �éÊ¾ �
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while speech and speaker retrievals yield vague810

or acoustically aligned but semantically distant811

matches.812

A.5 TTS Efficiency813

We measure the performance of the TTS model by814

transcribing its synthetic output and comparing it815

with real speech under three conditions (i.e., MSA,816

Dialect, Accented MSA). See Figure 2.817

Figure 2: Comparison between the performance of
Whisper on real speech vs. TTS-generated speech
across different language settings (sample size=1000).
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