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Abstract

Low-resource ASR remains a challenging prob-
lem, especially for languages like Arabic that
exhibit wide dialectal variation and limited la-
beled data. We propose context-aware prompt-
ing strategies to adapt OpenAI’s Whisper for
Arabic speech recognition without retraining.
Our methods include decoder prompting with
first-pass transcriptions or retrieved utterances,
and encoder prefixing using speech synthesized
in the target speaker’s voice. We introduce
techniques such as prompt reordering, speaker-
aware prefix synthesis, and modality-specific
retrieval (lexical, semantic, acoustic) to im-
prove transcription in real-world, zero-shot set-
tings. Evaluated on nine Arabic linguistic con-
ditions, our approach reduces WER by up to
22.3% on Modern Standard Arabic and 9.2%
on dialectal speech, significantly mitigating hal-
Iucinations and speaker mismatch.

1 Introduction

Recent advances in automatic speech recogni-
tion (ASR), especially those powered by large-
scale multilingual models, have significantly im-
proved performance across high-resource lan-
guages (Pratap et al., 2023; Babu and et al., 2021).
Among these, OpenAI’s Whisper (Radford et al.,
2023a) has shown strong results in languages
such as English and Modern Standard Arabic
(MSA) (Abdelali et al., 2023). However, its per-
formance on dialectal Arabic remains significantly
lower (Team et al., 2025; Talafha et al., 2024), re-
flecting a persistent challenge in adapting ASR
systems to the linguistic diversity of Arabic. This
performance gap stems from phonological, lexi-
cal, and syntactic differences between MSA and
regional dialects (Ali et al., 2016a), which are fur-
ther exacerbated by the scarcity of annotated data
for many dialects. Collecting labeled speech data
for each variety is often infeasible due to cost and

scalability. As a result, zero-shot ASR on dialectal
Arabic continues to yield high error rates, as shown
in evaluations on the Casablanca corpus (Talaftha
et al., 2024).

In this work, we propose a lightweight, context-
aware adaptation framework for Whisper that im-
proves its performance on Arabic dialects without
any model retraining or architectural changes. Our
approach leverages external context, either in the
form of first-pass transcriptions or retrieved rele-
vant utterances, as decoder prompts or encoder-
attached prefixes. These cues offer valuable lexical
and topical signals that help guide Whisper’s de-
coder toward more accurate transcriptions. We
also explore the impact of reordering and speaker-
matched synthesis to enhance robustness in multi-
speaker and informal speech scenarios. We eval-
uate our approach across a range of dialectal and
MSA datasets in zero-shot settings. Our context-
aware Whisper consistently achieves lower word
error rates (WERs) compared to Whisper and Seam-
lessM4T baselines. On average, we observe a
9.15% WER reduction on dialectal Arabic, 22.29%
on MSA, and 20.54% on accented MSA. These re-
sults demonstrate the potential of contextual adap-
tation as a practical solution for improving ASR on
underrepresented Arabic varieties.

2 Related Work

The persistent performance gap between ASR on
high-resource languages and low-resource dialects
has motivated a variety of adaptation strategies.
Several studies highlight that even state-of-the-
art models like Whisper and SeamlessM4T per-
form poorly in zero-shot dialectal settings (Talatha
et al., 2024; Abdelali et al., 2023). For example,
Whisper often produces hallucinated or repetitive
outputs when decoding unseen dialects (Talatha
et al., 2023). Attempts to address this using dis-
tillation, such as uDistil-Whisper (Waheed et al.,
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(a) Prompt-based adaptation. We inject context into Whis-
per’s decoder using either (Prompt1) a prior transcription or
(Prompt2) a retrieved similar sentence. This lightweight ap-
proach enhances zero-shot transcription quality, especially for
dialectal Arabic.
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(b) Prefix-based context integration. We retrieve similar (au-
dio, text) pairs from a reference set. The text is prepended to
the decoder, and the corresponding audio, retrieved or voice-
cloned, is prepended to the encoder, providing Whisper with
aligned acoustic and linguistic context.
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Figure 1: Context-aware adaptation strategies: (A) Prompt-based, (B) Prefix-based. We experiment with multiple
feature extraction methods and compare each method’s performance (see Section 3.1.2). The decoder inputs follow
Whisper’s multitask training format and include: Prev: previous text tokens, SOT: start of transcript, AR: language
tag set to Arabic, and TRAN: transcription mode tag. These tokens configure Whisper’s decoding behavior and

enable contextual prompting.

2024a), are limited by their reliance on pseudo-
labels generated by models that already underper-
form in this context. Recently, prompting-based
approaches have emerged as a powerful alterna-
tive to fine-tuning. Suh et al. (2024) show that
injecting manually written or automatically gen-
erated prompts into Whisper’s decoder input im-
proves transcription of domain-specific content.
Complementarily, Wang et al. (2024b) propose
Speech-based In-Context Learning (SICL), which
adapts Whisper at inference time by concatenat-
ing a few support examples to the encoder input
and prepending their transcripts as prefixes. This
method achieves over 30% relative WER reduc-
tion on unseen Chinese dialects using a k-nearest
neighbor retrieval mechanism. These approaches
enable test-time adaptation without any gradient
updates, making them ideal for low-resource and
multilingual scenarios. While these works focus
primarily on English and Chinese, the core ideas of
leveraging textual or audio context are directly ap-
plicable to Arabic, where context-aware prompting
can help address the challenges of dialectal vari-
ation and data scarcity in ASR. Our work builds

on this foundation and adapts these techniques to
the Arabic language, introducing novel strategies
such as prompt reordering, voice-cloned prefix syn-
thesis, and modality-specific retrieval to enhance
transcription quality in real-world, zero-shot sce-
narios.

3 Methodology

Our approach leverages proxy transcriptions from
an auxiliary ASR system to guide Whisper’s
decoding. Specifically, we use SM4T (Barrault
et al., 2023) to generate first-pass hypotheses
that serve as contextual prompts or prefixes.
Although SMA4T is not designed for prompt-based
decoding, its high-quality ASR outputs offer
lightweight, plug-in contextual cues that improve
Whisper’s recognition, especially in dialectal and
low-resource settings, without requiring joint
training or architectural changes.

We build upon Whisper (Radford et al., 2023b),
a multilingual encoder-decoder Transformer
(Vaswani et al., 2017) model for ASR. Whisper
consists of an audio encoder and an autoregressive



token-based decoder. The encoder takes a log-Mel
spectrogram of the input audio and produces a
sequence of latent audio representations, which
are then decoded into text tokens by the decoder.
Whisper is trained on a large-scale collection
of diverse audio-text pairs and is known for its
robust performance across 98 languages covering
different domains. Whisper’s decoding process
is autoregressive and conditioned on a sequence
of special tokens and optional user-provided
prompts. As illustrated in Figurel, the decoder
input typically follows this structure: |PREV|
— [prompt tokens] — |SOT| — |lang| —
|[TASK| — [output]. The |PREV| token marks
the beginning of the prompt section, followed
by the prompt tokens, which can include lexical
or semantic information related to the target
utterance. The token | SOT| signals the beginning
of the expected output, followed by language
and task specification tags (e.g., <|ar|> and
<|transcribe|> for Arabic transcription). We
explore context-aware decoding by leveraging
Whisper’s support for decoder prompts under two
strategies: prompt-based and prefix-based context
integration.

3.1 Prompt-based Methods

Here, we explore injecting the transcribed or re-
trieved textual context into Whisper’s decoder di-
rectly after the |PREV| token to guide the tran-
scription of dialectal words. We explore two types
of prompts: the first-pass transcription of the tar-
get audio and a semantically similar retrieved text.
These configurations are illustrated in Figure 1a as
Promptl and Prompt2, respectively.

3.1.1 First-Pass Transcription as Prompt

We use first-pass transcriptions generated by
SMA4T! (Barrault et al., 2023) as contextual
prompts for Whisper. Our choice of SM4T is moti-
vated by the findings of Waheed et al. (2024a),
which reported state-of-the-art zero-shot perfor-
mance across nearly all Arabic dialects. We hypoth-
esize that providing recognized dialectal words as
prompts can guide Whisper toward outputting more
accurate and dialect-aware transcriptions. For-
mally, the model generates the output sequence

1h'ctps ://huggingface.co/facebook/
seamless-m4t-v2-large

7 autoregressively as:
T
j = argmax [ [ P(ye | y<i, %, p; )
t=1
where x is the input audio, p is the textual prompt
(e.g., SMAT output), y; is the token at time step ¢,
and 6 are the model parameters.

3.1.2 Retrieved Similar Text as Prompt

A limitation of the first-pass approach is its reliance
on the accuracy of the ASR model used to gener-
ate first-pass transcriptions (i.e., SeamlessM4T);
if the model misrecognizes a dialectal word, the
error may propagate to Whisper’s final output. To
address this, we propose retrieving a similar sen-
tence from a large, human-written text corpus as
an alternative prompt source.

In this approach, we retrieve similar sentences from
a large textual corpus. In our experiments, we use
a 500K ASR speech-transcription dataset (Waheed
et al., 2024a). Since the retrieval operates purely
on text, it is speech-independent, an important ad-
vantage in low-resource settings where large text
corpora are more readily available than labeled
speech data. We define a sentence as similar if
it has high lexical or semantic overlap with the
reference first-pass transcription te,;, following a
rationale similar to WER and CER computation.
We evaluate two models to produce these transcrip-
tions: (a) a character-level ASR (MMS (Pratap
et al., 2024)) and (b) a subword-level ASR (SM4T).
As shown in the "feature extractor" block in Fig-
ure la, we experiment with four similarity met-
rics to retrieve the most relevant candidate p € C
for each test utterance. These include (1) lexical
features based on character-level TF-IDF (Pisko-
rski and Jacquet, 2020), (2) semantic features
based on sentence embeddings via SentenceTrans-
former (Reimers and Gurevych, 2019), (3) speech
embeddings derived from Whisper’s encoder (Rad-
ford et al., 2023a), and (4) speaker embeddings
from ECAPA-TDNN (Desplanques et al., 2020).
For each test utterance with audio input x, we first
obtain a first-pass transcription t;.,;, which is em-
bedded using a feature extractor f(-). We then
embed all candidate sentences s; € C from a refer-
ence corpus using the same extractor and compute
cosine similarity:

p = argmax cos (f(bieat), f(si))

The retrieved sentence p is then used as a contex-
tual prompt injected into Whisper’s decoder input
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to guide the transcription of x. The output sequence
7 is generated autoregressively as:

T

i = arg max H P(y: | y<i,x,p;0)
=1

3.2 Prefix-based Methods

In contrast to the prompt-based approach, which
injects contextual information solely into the de-
coder, prefix-based methods augment both the en-
coder and decoder inputs of Whisper with contex-
tual (audio, text) pairs. These pairs are selected
to be semantically similar to the target utterance
and are prepended to the input stream, thereby en-
abling Whisper to perform context-aware transcrip-
tion across the full encoder-decoder pipeline. This
approach builds on the Speech-based In-Context
Learning (SICL) framework introduced by Wang
et al. (2024b), which demonstrates that Whisper
can adapt to new dialects and speakers by con-
ditioning on a few relevant speech-text examples
at test time, without requiring any updates to the
model parameters. Figure 1b illustrates the overall
setup. Given a test utterance with audio input x,
we retrieve a similar (X, p) pair from a reference
dataset, where x4, is the context audio and p is
the corresponding transcript. Following the SICL
paradigm, we concatenate X4, and X, separated by
a 1-second silence, and feed the resulting sequence
into the encoder. The text prefix p is prepended
to the decoder input. This paired context enables
Whisper to leverage both acoustic and linguistic
cues during generation. The final output sequence
7 is generated autoregressively as:

T
g = argm;XH P(ys | y<tsXcta ® %, p;0)
=1

where x., @ x denotes the concatenation of the
context and test audio, and p is the text prefix used
to guide the decoder.

3.2.1 Retrieval-based Prefixing

We begin by identifying a semantically similar
training example using character-level TF-IDF sim-
ilarity over transcriptions, which we found to out-
perform other retrieval methods in this context (see
Section 5.2). The retrieved speech x., and its
corresponding transcript p are then prepended to
the test utterance and used as contextual inputs to
Whisper’s encoder and decoder, respectively.

In the work by Wang et al. (2024b), the dataset
features repeated speakers across training and test

utterances, making the concatenation of x.;, & x
more seamless and coherent, often resembling a
single extended utterance. This aligns well with
Whisper’s design, which assumes single-speaker
input’. However, in our setting, the context and
test utterances often come from different speakers.
We observe that this speaker mismatch can result in
inconsistent behavior, with Whisper frequently ig-
noring one of the speakers or producing fragmented
outputs. For example, in the absence of speaker
alignment, Whisper may truncate the first utterance
or hallucinate speaker turns. This issue of speaker
mismatching is addressed in the next section.

3.2.2 Retrieval-based Prefixing with Voice
Cloning

To address the speaker mismatch issue discussed
earlier, we synthesize the contextual audio using
a cloned voice that matches the speaker identity
of the target test utterance. Specifically, we take
the retrieved transcription p and synthesize a new
contextual audio signal X, using a TTS model
(XTTS (Casanova et al., 2024)) conditioned on the
speaker embedding extracted from the test audio x.
This results in a speaker-consistent input that Whis-
per perceives as originating from a single speaker.
Formally, we model the synthesized contextual au-
dio X jone as:

)N(clone = TTS(p’ SPK(X))

where p is the retrieved text prompt, x is the test
utterance audio, S P K (x) extracts the speaker em-
bedding from x, and T'T'S is conditioned on both
the text and the target speaker identity. This ap-
proach not only aligns the speaker characteristics
of the context and test segments but also removes
the need for parallel speech-text data, an impor-
tant advantage in low-resource and dialectal set-
tings where such data is often scarce. By enabling
Whisper to process a seamless input with unified
acoustic characteristics, this method enhances both
transcription accuracy and inclusivity. Formally,
the input to Whisper becomes the concatenated au-
dio X jone P X, With p serving as the corresponding
decoder prefix.

3.3 First-Pass Transcription Prefixing with
Voice Cloning

Instead of retrieving external examples, this
method constructs the prefix directly from the test

2https://github.com/openai/whisper/
discussions/434
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utterance itself. We begin by transcribing the test
audio x to obtain a first-pass transcription t;c,
as described in Section 3.1.1. We then synthesize
the corresponding audio using a voice cloned from
the same test utterance. As in the retrieval-based
prefixing method, the synthesized audio Xy, fol-
lowed by a 1-second silence and the test audio x,
is fed into Whisper’s encoder. The corresponding
text tier¢ 1S used as the decoder prefix.

4 [Experiments

In this section, we evaluate our proposed methods
under varying linguistic conditions, including Mod-
ern Standard Arabic (MSA), Accented MSA, and
both external and internal dialectal datasets.

4.1 Datasets

Common Voice 15.0 (CV15). A crowd-sourced
dataset of read Arabic speech (Ardila et al., 2019).
Utterances written in MSA, the formal variety used
widely across the Arab world in news broadcasts,
education, and official contexts.

MGB-2/3/5. This collection comes from the Ara-
bic Multi-Genre Broadcast (MGB) challenges (Ali
et al., 2016b, 2017, 2019), which feature speech
from real-world broadcast content. MGB-2
(around 1,200 hours) contains MSA with other di-
alects mixed in. MGB-3 (=6 hours) focuses on
Egyptian dialect, while MGB-5 (=6 hours) fo-
cuses on Moroccan Arabic. We present MGB-3
and MGB-5 as external dialectal data. We manu-
ally validated MGB samples and found errors like
omissions, mismatches, and typos.

FLEURS. The Arabic portion of FLEURS (Con-
neau et al., 2023). Features read speech sourced
from news and web content. The speech is in MSA
but spoken with an Egyptian accent, as known as
accented MSA (Waheed et al., 2024b; Talafha et al.,
2023).

In-House Dialectal Sets. This group includes
five conversational test sets: Algerian, Jordanian,
Palestinian, Emirati (UAE), and Yemeni. Each con-
sists of multi-speaker dialogue recordings in re-
gional dialects, collected and manually annotated
and validated. We present these as internal dialec-
tal data.

4.2 Baseline Models

Table 1 presents WER/CER for all dialectal varia-
tions. All error rates are measured after perform-

ing preprocessing on the reference and prediction
texts. See Appendix A.1. We kept all models
on their default settings. See model details in
Appendix A.2. We begin with baselines: zero-
shot Whisper-large-v3? and SM4T*. In line with
the experiments done by Waheed et al. (2024a),
SMA4T yields lower error rates than Whisper on
most dialectal sets in our experiments. Overall,
both Whisper and SM4T perform better on MSA
(~ 15.79% and ~ 14.24%, respectively) than on
dialects (= 57.85% and ~ 57.48%, respectively),
illustrating the large gap between MSA and dialec-
tal ASR.

4.3 MSA (CV15,MGB-2)

For MSA, although Whisper is already relatively
strong (WER 15.55% on CV15, 16.02% on MGB-
2), prompt-based methods further improve MSA
accuracy. For instance, prompting with the
SMAT transcription reduces CV15 error rates to
(10.40/3.18), a roughly 33% relative reduction.
However, on MGB-2, we observe a surprising
degradation: WER spiked to 47.61%. Upon an-
alyzing selected samples, we identify several con-
sistent failure modes: completions (i.e., Whisper
attempting to continue the prompt), empty tran-
scriptions, and hallucinated phrases. These behav-
iors reflect inherent properties of autoregressive
decoding where Whisper generates text token by
token, which can lead it to overfit on the prompt
and treat it as prior context to be continued. We
noticed that randomly shuffling the prompt words
sharply reduces this behavior in MGB-2, bringing
the WER to 15.01, overcoming vanilla Whisper.
Changing the order of the prompt disrupts Whis-
per’s tendency to depend on the prompt as a coher-
ent sequence and perceives it as a bag of words in-
stead. To better understand the impact of reversed
prompting on hallucination reduction, we manu-
ally analyzed 30 samples from the development set
where sentence-level WER dropped from > 1 to
0 when using the reversed prompt. We found that
hallucinations typically occurred in cases of incom-
plete utterances (16 samples), background music
(4), simultaneous interpretation or voice-over (4),
and multi-speaker dialogue (6). In many cases,
Whisper hallucinated generic filler content (e.g.,

sl 3 bfj..ﬂ or_as d.JU 47 ), which trans-

3https://huggingface.co/openai/
whisper-large-v3

4https://huggingface.co/facebook/
seamless-m4t-v2-large
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Language Baselines Ours: Prompt-based (<) Ours: Prefix-based (—)
Condition SMAT W3 WeFPT W¢Rand WeRev WeSMms WeSSea oV ooca W=SSea W=Pt
No-Clone Clone Clone
MSA
CV15.0 WER/ 11.12/ 15.55/ 10.40/ 12.01/ 12.12/ 13.69/ 12.69/ 15.67/ 11.26/  10.28/
CER 3.55 5.06 3.18 3.93 3.88 4.59 4.29 7.45 3.46 3.29
MGB2 WER/ 1735/ 16.02/ 47.61/ 16.7/ 15.01/ 17.28/ 16.51/ 17.15/ 14.66/  14.26/
CER 8.73 7.64 36.61 9.09 7.66 7.48 7.24 7.94 5.97 6.36
Avg MSA WER/ 14.24/ 15.79/ 29.01/ 14.36/ 13.57/ 15.49/ 14.60/ 16.41/ 12.96/  12.27/
CER 06.14 06.35 19.90 06.51 05.77 06.04 05.77 07.70 04.72 04.83
Accented MSA
Fleurs WER/ 7.66/ 9.2/ 17.34/ 7.36/ 7.31/ 12.18/ 12.21/ 11.56/ 10.22/  9.31/
CER 4.0 2.77 12.56 3.73 3.76 3.93 4.34 4.69 3.60 2.72
External Dialects
MGB3 WER/ 31.48/ 35.9/ 63.47/ 31.62/ 31.14/ 37.15/ 35.45/ 35.45/ 34.22/ 33.51/
CER 15775 17.67 50.14 15.98 15.26 18.43 17.47 17.22 15.90 18.64
MGB5 WER/ 77.43/ 79.16/ 76.04/ 69.37/ 69.89/ 76.90/ 75.23/ 7435/  73.70/  68.21/
CER 43.62 45.1 45.66 35.55 35.49 42.02 40.37 38.90 37.13 33.96
Avg Ext WER/ 54.46/ 57.53/ 69.76/ 50.50/ 50.52/ 57.03/ 55.34/ 54.90/ 5396/ 50.86/
CER 29.69 31.39 47.90 25.77 25.38 30.23 28.92 28.06 26.52 26.30
Internal Dialects
ALG WER/ 86.89/ 78.6/ 77.83/ 73.07/ 73.13/ 76.59/ 74.68/ 76.87/  74.53/  70.08/
CER 455 37.81 39.19 31.26 30.38 34.70 34.17 36.57 31.28 31.85
JOR WER/ 3829/ 40.79/ 37.34/ 37.52/ 37.34/ 38.01/ 35.90/ 36.96/ 35.00/  36.04/
CER 1201 13.55 12.12 12.25 12.12 13.39 12.59 13.61 11.79 14.10
PAL WER/ 48.82/ 50.38/ 46.12/ 46.55/ 46.12/ 45.28/ 45.24/ 44.38/ 4294/  52.78/
CER 1649 17.52 14.98 149 14.96 16.48 16.69 16.65 14.92 27.16
UAE WER/ 51.79/ 55.03/ 49.1/ 49.45/ 48.98/ 50.22/ 48.32/ 51.02/ 4790/ 5191/
CER 19.75 22098 18.13 18.48 18.05 21.01 20.06 23.26 19.03 24.53
YEM WER/ 70.22/ 62.51/ 60.74/ 60.35/ 60.21/ 64.82/ 62.60/ 63.32/  60.73/ 64.70/
CER 2897 2442 23.49 22.97 23.28 26.51 25.47 27.30 23.01 30.56
Avg Int WER/ 59.20/ 57.46/ 54.23/ 53.39/ 53.16/ 54.98/ 53.35/ 54.51/ 5222/  55.10/
CER 2454 2326 21.58 19.97 19.76 22.42 21.80 23.48 20.01 25.64
Avg All WER/ 44.11/ 44.31/ 48.60/ 40.40/ 40.13/ 43.21/ 41.88/ 42.67/ 40.52/  41.11/
CER 19.84 1945 25.61 16.81 16.48 18.85 18.27 19.36 16.61 19.32
Avg Dia WER/ 57.85/ 57.48/ 58.66/ 52.56/ 52.40/ 54.98/ 53.35/ 54.51/  52.22/  55.10/
CER 2601 2558 29.10 21.63 21.36 22.42 21.80 23.48 20.01 25.64

Table 1: WER (]) and CER ({) across various Arabic speech conditions using baseline and context-aware Whisper
decoding strategies. Baseline models are SM4T: SM4T and W-v3: Whisper-large-v3. Our prompt-based methods
(+—) inject contextual text into the decoder using W«FPT: first-pass transcriptions. <—Rand: randomly shuffling
the prompt’s words and <—Rev: reversing the prompt word’s order. <—SMms and <—SSea: retrieving similar
sentences based on MMS or SM4T, respectively. Prefix-based methods (—) concatenate contextual (speech, text)
pairs at the encoder/decoder inputs. No-Clone: retrieve the speech for that similar example. Clone: Use TTS to
clone the speech for that similar example based on the target utterance.

late to "subscribe to the channel" and "Translated
by Nancy Kangar", respectively. It seemingly at-
tempted to ’complete’ utterances it interpreted as
finished. These behaviors are likely inherited from
Whisper’s training data, which includes YouTube
videos and subtitles, where endings often feature
music or silence. Similar hallucinations were ob-
served across other languages, such as Untertitel im
Auftrag des ZDF, 2017 in German®, Tekstet av Nico-
lai Winther in Norwegian®, or generic tags like [ap-

5https ://gist.github.com/riotbib/
3b3c5f817b55b68801d14b8bdbo2df09

6h'ctps ://medium.com/@lehandreassen/
who-is-nicolai-winther-985409568201

plause] in English’. An example of an incomplete
utterance is: J| - &S Lrey ddoall acl Laylg
("It also gave the whole process a kind of"). This
sentence ends with a rising intonation and lacks a
complete semantic conclusion, making it a likely
candidate for hallucinated completions. Table 2
shows some examples of prompt-completion or
generic-hallucination cases.

For CV15, both shuffling and reversing slightly in-
crease error rates to (12.02/3.93) and (12.12/3.88),
respectively, in comparison with only using the
normal prompt, but still better than vanilla Whisper.

7https: //github.com/openai/whisper/
discussions/2608
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Prompting using similar text also helps MSA
modestly; using similar text from data source (i.e.,
500K) based on MMS as prompt yields a WER of
~ 15.5% on average MSA (from vanilla Whisper
at 15.8%). Furthermore, retrieving similar text
from the same dataset based on SM4T transcription
yields an even lower WER of ~ 14.6%. This
similarity-based approach provides the decoder
with salient words that guide whisper’s decoding
process and aligns with the way upon which the
model (i.e., Whisper) was trained.

We observe that prefix-based approaches also im-
prove Whisper’s performance on MSA, but only
when speakers’ characteristics are similar. When
prefixing with a retrieved context utterance without
speaker adaptation®, performance on MSA remains
nearly unchanged or degrades slightly: on CV15,
error rates at (15.67/7.45), compared to Whisper’s
baseline (15.55/5.06), whereas on MGB-2, error
rates increased to (17.15/7.94). In contrast, pre-
fixing with the synthesized similar text in the tar-
get speaker’s voice substantially improves results,
reducing error rates to (11.26/3.46) on CV15 and
(14.66/5.97) on MGB-2, bringing the average MSA
WER down to 12.96. The best performance is
achieved when the cloned prefix uses the synthe-
sized SM4T transcription as a prefix, which yields
(10.28/3.29) on CV15 and (14.26/6.36) on MGB-2,
reducing the average MSA WER to 12.27.

4.4 Accented MSA (Fleurs)

For Accented MSA, Whisper’s baseline is already
relatively competitive (9.20/2.77), only slightly be-
hind the stronger SM4T ASR baseline (7.66/4.00).
SMA4T prompting has mixed effects. We noticed
that injecting the transcription as is causes sim-
ilar behavior to MGB-2, yielding (17.34/12.56).
However, changing the order of the same prompt,
restores and even improves performance: shuffling
yields (7.36/3.73), while reversing delivers the best
result at (7.31/3.76), a 21% relative WER reduc-
tion over the Whisper baseline. This mirrors the
prompt-completion pattern in Table 2, where re-
versing suppresses boilerplate hallucinations such
as 8Ll lgSAsl. Similar text prompting with
TF-IDF hindered the performance by nearly 33%,
as Fleurs is out of the textual corpus domain.
In the prefix approach, without speaker adaptation,
8We define speaker adaptation as the process of cloning

the target speaker’s voice from the target audio in hand (i.e.,
test example) and using it to synthesize the prefix.

performance degrades to (11.56/4.69) compared
with the baselines. Synthesising the same text in
a cloned voice aligned to the target speaker yields
slightly better results at (10.22/3.60), and prefix-
ing the cloned SM4T transcription slightly better
at (9.31/2.72), but both approaches still do not
even outperform the baselines. This shows that
the prompt reversal continues to be the most effec-
tive method for Accented MSA.

4.5 External Dialectal Datasets (MGB-3,
MGB-5)

Baseline Whisper performs poorly on dialectal
benchmarks, with 35.90% WER on MGB-3 and
79.16% on MGB-5. Naively prompting with SM4T
transcriptions harms MGB-3, spiking WER to
63.47%, as Whisper often treats the prompt as
ground truth and returns empty or hallucinated out-
puts. On MGB-5, however, this yields a modest
4% relative improvement (76.04% WER). Reorder-
ing prompt words mitigates these issues. Shuf-
fling reduces WER to 31.62% on MGB-3 and
69.37% on MGB-5. Reversing performs best
on MGB-3 (31.14/15.26) and matches shuffling
on MGB-5 (69.89/35.49), confirming that disrupt-
ing prompt syntax discourages premature decod-
ing. Similar-text prompting shows limited gains.
MMS-based retrieval slightly worsens MGB-3
(37.15/18.43) and marginally improves MGB-5
(76.90/42.02). Using SM4T narrows this gap but
remains less effective than prompt reordering. Pre-
fixing proves more stable. Concatenating raw
similar examples yields modest gains (MGB-5
at 74.35/38.90), but speaker mismatch sometimes
leads to dropped content. Voice cloning improves
consistency (34.22/15.90 on MGB-3, 73.70/37.13
on MGB-5). Using cloned SMA4T transcriptions
performs best on MGB-5 (68.21/33.96), cutting
WER by nearly 14% relative. Averaged across
datasets, prefixing with cloned SM4T achieves
50.86/26.30. Still, prompt reordering—shuffling
(50.50/25.77) and reversing (50.52/25.38), delivers
the best overall performance, improving WER by
12% and CER by 19% over baseline for dialectal
ASR.

4.6 Internal Dialectal datasets

Across the five internal dialectal datasets, which
include Algerian from North Africa, Jordanian
and Palestinian from the South Levant, Emirati
from the Gulf, and Yemeni from the southern
Arabian Peninsula, the Whisper baseline averages



(57.46/23.26), which is significantly worse than
on MSA at (15.79/06.35). Error rates vary sub-
stantially between dialects, with Algerian showing
the highest (78.60/37.81) and Jordanian the lowest
(40.79/13.55).

Prompting with the SM4T transcription narrows the
average to (54.23/21.58), driven mainly by gains
in the South Levant dialects (i.e., (37.34/12.12)
for Jordanian and (46.12/14.98) for Palestinian as
well as Emirati at (49.1/18.13)), while Algerian and
Yemeni showed small gains at (77.83/39.19) and
(60.74/23.49), respectively. Shuffling the prompt
was more effective for Algerian as it lowered error
rates to (73.07/31.26), but it did not show signifi-
cant changes for the other dialects compared to the
normal-ordered prompt. Although shuffling low-
ers the mean to (53.39/19.97), reversing yielded
a slightly better average of (53.16/19.76), outper-
forming the baseline WER by just under 7.5%.
Similar text prompting gives a modest boost
when the reference text comes from the same
SMAT pipeline (53.35/21.80) and less when drawn
from MMS (54.98/22.42); Jordanian falls to
(35.90/12.59) but Algerian scarcely budges, imply-
ing lexical overlap (i.e., between MSA and South
Levant dialects) drives the benefit rather than simi-
larity.

Moving to prefix-based methods, concatenating
raw similar audio without speaker adaptation
yields (54.51/23.48), as it causes Whisper to
experience the aforementioned multi-speaker is-
sue where it ignores one of the speakers, with
failures most visible in Yemeni (63.32/27.30).
Injecting a voice-cloned retrieval prefix aligns
speaker characteristics and produces the best over-
all scores, averaging (52.22/20.01), outperforming
the baseline by around 9%; Jordanian improves to
(35.00/11.79), Palestinian to (42.94/14.92), Emi-
rati to (47.90/19.03), and even Algerian drops to
(74.53/31.28). And while using a cloned SM4T
prefix degraded in almost all dialects and caused
the overall error rates to rise to (55.10/25.64), Alge-
rian achieved its best performance at (70.08/31.85),
an improvement of 10.4% relative.

5 Discussion

5.1 Impact of TTS on Prefix-Based Decoding

In our prefix-based methods, we rely on synthetic
speech to provide Whisper with context. A crucial
concern was whether the quality of the synthesized
speech would degrade recognition accuracy. To

assess this, we compared Whisper’s performance
when using real versus TTS-generated context
across three datasets (CV15, MGB3, FLEURYS),
as shown in Figure 2. Despite minor increases in
WER (e.g., +6.79% on CV15, +4.98% on MGB-3,
and +1.05% on Fleurs), the impact was modest,
with average degradation across datasets remaining
within 4.27% WER and 3.41% CER, indicating
that synthesized audio did not significantly alter
the decoding behavior of Whisper. These findings
suggest that our TTS pipeline, when combined with
speaker voice cloning, preserves sufficient acoustic
fidelity to act as an effective alternative to labeled
speech utterances.

5.2 Feature Extractor Design and TF-IDF
Effectiveness

For text-based prompt retrieval, we evaluated four
types of feature extractors as means to measure
similarity, TF-IDF, text embeddings, speech embed-
dings, and speaker embeddings, using WER/CER
as the primary indicators. Among these, character-
level TF-IDF consistently outperformed other
methods, reducing WER from 22.84% (vanilla)
to 17.89%, outperforming dense text embeddings
(20.04%), speech-based embeddings (24.78%), and
speaker-based embeddings (27.16%) as explained
in Table 3 and Appendix ??. In addition, TF-IDF’s
independence from speech input makes it particu-
larly suitable for low-resource scenarios (i.e., Di-
alectal Arabic ASR), as it relies only on textual cor-
pora, which are more widely available than labeled
audio. This further motivated our use of TF-IDF as
the default retrieval method in all experiments.

6 Conclusion

In this paper, we explored context-aware decoding
strategies to improve Whisper’s performance on di-
alectal and accented Arabic speech. Our two com-
plementary methods, prompt-based, which inject
contextual text into the decoder, and prefix-based,
which prepend contextual speech and text, show
consistent gains. All experiments were conducted
in a zero-shot setting, as our goal is to enhance
ASR in low-resource conditions without modifying
the model architecture. In future work, we plan
to explore prompted fine-tuning, support for code-
switching, and unified approaches that combine
prompting and prefixing within a single context-
aware framework.



Limitations

Despite the consistent improvements achieved by
our context-aware strategies, several limitations
must be acknowledged. These span computational
trade-offs, model constraints, and coverage gaps,
which may affect real-world applicability and gen-
eralizability.

Computational and Latency Overhead: Our
methods introduce additional processing steps per
utterance, such as proxy ASR for first-pass hypothe-
ses, feature extraction for retrieval, or TTS synthe-
sis for prefix construction, which increase compu-
tational demands. These steps also add latency and
cost, making real-time or edge deployment more
challenging. Prior work integrating retrieval or
kNN with Whisper similarly reports increased de-
coding overhead (Wang et al., 2024a; Nachesa and
Niculae, 2024; Shen et al., 2025).

Model Error Propagation: The performance of
our approach is tied to the quality of auxiliary com-
ponents. Errors in proxy ASR or TTS (e.g., unnatu-
ral prosody, mispronunciations, or lack of dialectal
support) can degrade the effectiveness of contex-
tual prompts.

Prompt Length Constraint: Whisper only con-
siders the final 224 tokens of the prompt during
decoding’, limiting the utility of longer contextual
inputs. While some implementations use a 448-
token window, only half is usable for prompts'?,

Dialectal Coverage Gaps: Although we evaluate
across several datasets and dialects, Arabic remains
underrepresented in ASR resources. Other dialects,
such as Sudanese, Mauritanian, and Iraqi, were not
included in our experiments, and existing bench-
marks may carry domain, genre, or demographic
biases.

Retrieval Limitations: Retrieval quality is in-
fluenced by corpus characteristics and retrieval
method. Lexical techniques like TF-IDF are sen-
sitive to tokenization and spelling variation, while
semantic and acoustic approaches may introduce
bias toward certain genres or speaker types. Ad-
ditionally, large corpora improve recall but incur
higher indexing and search-time costs, which can
further impact latency and scalability.

9https://platform.openai.com/docs/guides/
speech-to-text

10https://github.com/huggingface/transformers/
issues/27445

Limited Exploration of Prompting Strategies:
Our exploration of prompting strategies remains
limited. Beyond TF-IDF and basic reordering
techniques (e.g., reverse, shuffle), many alterna-
tives remain unexplored. For example, LLM-based
prompt generation could be employed to produce
domain-aware cues, such as emphasizing dialect-
specific keywords, similar to the work of Suh et al.
(2024).
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A Appendix

A.1 Preprocessing

Some of the datasets include inconsistencies in
formatting and script usage. For instance, certain
utterances are fully marked with diacritics while
others, sometimes from the same source, lack them
entirely. To ensure consistency across all inputs,
we apply a standard preprocessing pipeline inspired
by Talafha et al. (2023). Specifically, we remove
all punctuation except the % and @ symbols, strip
diacritics, Hamzas, and Maddas, and convert East-
ern Arabic numerals to their Western equivalents
(e.g., yq to 29). Additionally, since our focus is

not on code-switching, we exclude any Latin-script
tokens from the data.



A.2 Model Settings

All experiments were conducted using the trans-
formers and datasets libraries from HuggingFace.
All audio segments were resampled to a sampling
rate of 16kHz. Evaluations were performed on a
single computing node equipped with 8 A10 GPUs
(24GB each). For ASR systems, we employed:
Whisper: whisper-large-v3!! (1.55B parame-
ters), SeamlessM4T: seamless-m4t-v2-large!?
(2.3B parameters), and MMS: mms-1 b-alll® (1B
parameters).

For the retrieval-based components, we adopted
the following extractors: TF-IDF: Character-level
n-gram features using analyzer="char_wb" and
ngram_range=(3, 5). Sentence Embeddings:
We used an off-the-shelf Arabic sentence encoder,
14 Speech Embeddings: Extracted from the final
hidden states of the whisper-large-v3 encoder.
Speaker Embeddings: Derived from speaker veri-
fication with ECAPA-TDNN embeddings'> trained
on Voxceleb dataset (Desplanques et al., 2020). All
models were used with their default hyperparame-
ter settings unless otherwise specified.

A.3 Effect of Reversed Prompting on
Hallucination and Output Fidelity

Table 2 presents manually selected examples illus-
trating the impact of reversed prompting on tran-
scription quality. In each case, we compare the
output of Whisper when conditioned on a stan-
dard SM4T-based prompt versus a reversed version
of the same prompt. The examples highlight fail-
ure modes such as hallucinated phrases or overly
short outputs in the standard prompt condition. Re-
versed prompting consistently recovers content that
is more faithful to the reference transcription, with
substantially lower WER.

A.4 Qualitative Analysis of Retrieval Modes

We manually analyzed 1,000 samples from the
CV15 dev set to better understand the behavior
of different retrieval extractors. Table 4 presents

11https://huggingface.co/openai/
whisper-large-v3

Phttps://huggingface.co/facebook/
seamless-m4t-v2-large

Bhttps://huggingface.co/facebook/mms-1b-all

“https://huggingface.co/
Omartificial-Intelligence-Space/
Arabic-mpnet-base-all-nli-triplet

15https://huggingface.co/speechbr‘ain/
spkrec-ecapa-voxceleb

11

Reference

W e 65 ytng dasl) sl Lty

‘Whisper+prompt J 588 Oldgdie
Whisper+Rev o E3 LR Gleal) lasl Lyl
WER (prompt) 1.00
WER (Rev) 0.14
Reference sladll Gb e Iie ool Sl (olod] Ol 1 )
Whisper+prompt Y

Whisper+Rev

il b o e sl St el U

WER (prompt) 1.00
WER (Rev) 0.10
Reference S Gl ol 5K Jordl sy vy st s
‘Whisper+prompt sl J lgsis!
Whisper+Rev Gl oy ool Jasdl res vy 5ies as
WER (prompt) 1.00
WER (Rev) 0.11

Table 2: Manually selected examples showing how re-
versed prompting mitigates hallucinations and improves
WER.

Mode WER/CER
Vanilla - 22.8409.65
TFIDF 17.89/7.96
Text Embedding 20.04/7.83
Speech 24.78/11.08
Speaker 27.16/13.26

Table 3: WER/CER using different feature extractors
for text retrieval on CV15 (sample size = 1000).

six representative query sentences along with the
top matches returned by each method. TF-IDF
consistently retrieved sentences with higher
token-level overlap with the reference, resulting in
more aligned surface-level matches. In contrast,
dense text embeddings often returned semantically
related but lexically divergent paraphrases, while
speech and speaker embeddings frequently
retrieved contextually unrelated content due to
acoustic or speaker similarity. It is important
to note that retrieval comparisons are based on
the first-pass transcription, which serves as the
input to the retrieval system. These qualitative
observations align with our quantitative results,
where TF-IDF achieved the lowest WER and CER
on CV15 (17.89 / 7.96; n=1000; see Table 3).
For example, when querying with the sentence
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Table 4: Examples of top retrieved sentences using different extractors. TF-IDF consistently preserves surface
forms, while dense and acoustic features tend to retrieve semantically related but lexically or contextually divergent
content. Sample size=1000

(las 36 J L &{J‘ o), TE-IDF retrieves
the closely related (Jt:.w Lvl‘ Oigl\ 2

maintaining  both structural and  lexical
overlap. In contrast, the text embedding
method  returns  (las Lo < S 3), se-
mantically related but lexically distinct,
while the speech-based method yields the
more  generic  (Lae 30 O J28Vl N3
and the speaker—base& method  retrieves
(te g w3l all JV Lelss), which shares
little contextual relevance. A similar pattern is seen
for the query (Uad! A ebl), where TF-IDF

returns the precise phrase (Ulall cwd UY),

while speech and speaker retrievals yield vague
or acoustically aligned but semantically distant
matches.

A.5 TTS Efficiency

We measure the performance of the TTS model by
transcribing its synthetic output and comparing it
with real speech under three conditions (i.e., MSA,
Dialect, Accented MSA). See Figure 2.

mReal-speech mTTS-generated m Difference

6.79
4.98 4.27
1.05

CV15 MGB3 Fleurs Average

45

40

35

30

0

Figure 2: Comparison between the performance of
Whisper on real speech vs. TTS-generated speech
across different language settings (sample size=1000).
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