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ABSTRACT

Recently, data heterogeneity among the training datasets on the local clients (a.k.a.,
Non-IID data) has attracted intense interest in Federated Learning (FL), and many
personalized federated learning methods have been proposed to handle it. However,
the distribution shift between the training dataset and testing dataset on each client
is never considered in FL, despite it being general in real-world scenarios. We
notice that the distribution shift (a.k.a., out-of-distribution generalization) problem
under Non-IID federated setting becomes rather challenging due to the entangle-
ment between personalized and spurious information. To tackle the above problem,
we elaborate a general dual-regularized learning framework to explore the per-
sonalized invariance, compared with the exsiting personalized federated learning
methods which are regularized by a single baseline (usually the global model). Uti-
lizing the personalized invariant features, the developed personalized models can
efficiently exploit the most relevant information and meanwhile eliminate spurious
information so as to enhance the out-of-distribution generalization performance for
each client. Both the theoretical analysis on convergence and OOD generalization
performance and the results of extensive experiments demonstrate the superiority
of our method over the existing federated learning and invariant learning methods,
in diverse out-of-distribution and Non-IID data cases.

1 INTRODUCTION

As data privacy is attached more and more importance to in the field of machine learning, federated
learning (McMahan et al., 2017) (FL) gains increasing attention and dramatic development in recent
years. Federated learning allows the participation of a massive number of data holders (usually called
clients) to train the learning models in a collaborative manner. Most importantly, the participating
clients can preserve their data locally during the collaborative training process, and hence prevent the
leakage of private data. Traditional federated learning approaches develop a shared gloal model by
model aggregation to fit all the local datasets, which can work well when the local data instances on
clients subjects to independent and identically distribution (IID). Conversely, the Non-IID setting
where the local datasets don’t satisfy the IID assumption can degrade the performance (both model
accuracy and convergence rate) of the global model dramatically (Hsieh et al., 2020). To settle the
challenge of Non-IID data, personalized federated learning (PFL) is proposed to train a personalized
model for each client. Contrary to the individually trained local model which is often trapped in
overfitting due to the insufficient local data, the personalized model obtains some generalization
knowledge from the sever or the cooperation with other clients.

Despite the exsiting personalized federated learning methods achieve great success recently, we
notice that all of them focus on ,the model performance on in-distribution testing dataset. In this way,
the produced models can hardly adapt to the scenarios where the testing dataset is out-of-distribution
in terms of the training dataset. Here, we refer to out-of-distribution (OOD) scenario as the case
where there exists distribution shift between the training and testing dataset. In fact, the out-of-
distribution scenario is more genreal and practical in machine learning applications, and has drawn
lots of efforts in the literature on OOD generalization (Arjovsky et al., 2019; Sagawa et al., 2019;
Creager et al., 2021; Ye et al., 2021; Shen et al., 2021; Krueger et al., 2021; Zhang et al., 2021c).
However, to the best of our knowledge, the out-of-distribution generalization problem is mostly

1



Under review as a conference paper at ICLR 2023

studied in centralized setting where all data can be accessed, but has never been considered in the
federated learning. Although some of the methods designed for centralized setting can be naively
applied into the federated learning to generate a shared global model, they cannot cast off the Non-IID
data quagmire because the gained model drops the useful information about personalization. In
summary, the existing federated learning works can hardly handle the out-of-distribution scenarios,
and meanwhile the centralized methods for OOD generalization will be troubled by the Non-IID data
even if they can be implemented in federated learning setting.

What’s worse, we find that the simple combination of the existing PFL and OOD methods, instead
of solving the OOD generalization problem under Non-IID federated setting, will produce much
worse performance than the better one of themselves (the finding will be shown and discussed in
the experiment part). To handle the challenging OOD problem under Non-IID federated setting,
we disscting the data heterogeneity (Non-IID) from two orthogonal perspectives and then introduce
a novel concept: personalized invariance. The proposed personalized invariance can preserve the
personal information, and in the meantime eliminate the spurious information to equip the obtained
personalized models with out-of-distribution generalization. In contrast with the naive combination
of PFL and OOD methods which can easily ‘pick up’ the spurious correlation during the process of
personalization because of the entanglement of personalized and spurious information, we propose
a general learning framework that is regularized by two baselines: global invariance and local
invariance. The global invariance can prevent the personalized models from being stuck in overfitting
due to the insufficiency of local data. However, global invariance will discard both personalized
and spurious information. Therefore, the constraint of local invariance is utilized to exclude the
spurious correlation. With the guidance of the designed dual-constraint, the personalized models can
effectively exploit personalized invariance to solve the challenging OOD problem for every client in
federated setting. The main contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first to consider and handle the challenging out-
of-distribution problem under Non-IID federated learning setting. We propose the novel
concept of personalized invariance and theoretically analyze the advantage of personalized
invariance over the naive global invariance.

• We elaborate a dual-regularized learing framework to explore the personalized invariant
features which can include important personalization information and meanwhile exclude
the spurious correlation. Formally, the OOD problem under Non-IID setting is formulated
as a bi-level optimization where the client-level objective is constrained by a dual-baseline
regularization. Besides, we provide theoretical analysis on convergence rate and OOD
generalization performance which proves the effectiveness of our method.

• We conduct extensive experiments on diverse datasets to compare the performance of our
method with the existing federated learning (including personalized federated learning) and
invariant learning methods. The results show that our method outperforms the state-of-the-art
ones in varied out-of-distribution and Non-IID settings.

2 RELATED WORK

2.1 PERSONALIZED FEDERATED LEARNING

One of the most challenging problems in federated learning (McMahan et al., 2017) is the data
heterogeneity (a.k.a, Non-IID) across the local clients (Hsieh et al., 2020). To handle the Non-IID
data quagmire, personalized federated learning (PFL) methods have been widely explored in many
real-world applications. Jeong et al. (Jeong et al., 2018; Duan et al., 2020) focus on data augmentation
methods by generating additional data to augment its local data towards yielding an IID dataset.
However, these methods usually require the FL server to know some statistical information about the
local data distributions (e.g., class sizes, mean and standard deviation), which may potentially violate
privacy policy (Tan et al., 2021). Another line of work designs special client selection mechanisms to
simulate homogeneous data distribution (Wang et al., 2020; Yang et al., 2020; Lyu et al., 2020).

On the other hand, many model-based PFL methods focus on producing customized model structures
or parameters for different clients, which can also be divided into two types: single-model, multiple-
model based approaches. Single-model based methods extended from the conventional FL algorithms
like FedAvg (McMahan et al., 2017) combine the optimization of the local models and global model,
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including: local fine-tuning (Wang et al., 2019; Schneider & Vlachos, 2019; Arivazhagan et al., 2019),
regularization (T Dinh et al., 2020; Hanzely & Richtárik, 2020; Hanzely et al., 2020), model mixture
(Mansour et al., 2020; Deng et al., 2020), meta learning (Fallah et al., 2020; Jiang et al., 2019) and
parameter decomposition (Bui et al., 2019; Collins et al., 2021; Arivazhagan et al., 2019). Considering
the diversity and inherent relationship of local data, multi-model-based approaches where multiple
global models are trained for heterogeneous clients are more reasonable. Some researchers (Ghosh
et al., 2020; Mansour et al., 2020; Tang et al., 2022) propose to train multiple global models at the
server, where similar clients are clustered into a group to share the in-distribution generalization
knowledge. Another strategy is to collaboratively train a personalized model without explicit global
models, e.g., FedAMP (Huang et al., 2021), FedFomo (Zhang et al., 2021b), MOCHA (Smith et al.,
2017), and KT-pFL (Zhang et al., 2021a). However, all of these works focus on the discrepancy
between training data distributions rather than that between training and testing distributions.

2.2 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-Distribution (OOD) generalization problem refers to a challenging setting where the testing
distribution is unknown and different from the training. In order to deal with the OOD generalization
problem, tremendous efforts have been made and vary greatly ranging from causality to representation
learning and from structure-based to optimization-based. The existing methods can be categorized
into three parts: unsupervised representation learning (e.g., to analyse causal relationships between
data) (Schölkopf et al., 2021; Shen et al., 2020a; Yang et al., 2021; Träuble et al., 2021; Locatello et al.,
2019), supervised model learning (e.g., design various model architectures and learning strategies
to achieve OOD generalization, including domain generalization (Wang et al., 2021; Zhao et al.,
2020; Garg et al., 2021; Du et al., 2020), causal & invariant learning (Gamella & Heinze-Deml,
2020; Oberst et al., 2021; Krueger et al., 2021; Kamath et al., 2021; Arjovsky et al., 2019) and stable
learning (Shen et al., 2018; 2020b; Zhang et al., 2021c)) and optimization approaches (focus on
distributed robust optimization across different distributions (Liu et al., 2021c; Sagawa et al., 2019)
or capturing invariant features (Liu et al., 2021a; Chang et al., 2020; Koyama & Yamaguchi, 2020)).
All of the above OOD generalization methods are studied in centralized scenarios, where all training
data can be accessed. In some real-world applications, the data are usually generated locally and the
data owners are not willing to share data with others due to the concern about privacy. Therefore, we
are motivated to investigate the OOD generalization problem under the federated setting.

3 PROBLEM FORMULATION

In this section, we first introduce the preliminary knowledge of invariant learning and then deconstruct
the data heterogeneity into two orthogonal levels to investigate what information is necessary and
what is spurious for solving the OOD problem under the Non-IID federated learning. For the purpose
of fully exploiting the useful invariant information, we propose the personalized invariance which
retains the important personalized information and concurrently excludes the spurious information to
equip the obtained models with both personalization and out-of-distribution generalization.

Notations. LetX denotes the input space, Y denotes the target space, and correspondingly (X, y) ∈
(X ,Y) is the data instance. The sets of training and testing environments are represented by Etrain
and Etest respectively. We use Eall as the set of all possible environments in the task concerned, i.e.,
Etrain, Etest ⊂ Eall. Suppose that there are N clients and the local dataset Di, i ∈ [N ] contains
mi data instances on client i. For convenience, we separate the learning model or parameterized
mapping from the input space X to Y into two consecutive parts: the feature extractor Φ and the
classifier w. Specifically, the feature extractor Φ maps from the input space X to the latent feature
space H, i.e., Φ(X) ∈ H, and the classifier w generates a hard prediction ŷ from a latent feature
Φ(X). Therefore, the overall learning model is denoted by fθ = Φ ◦ w, where fθ indicates the
function f parameterized by θ. In this paper, we define the expected empirical loss on dataset D as
R(fθ;D) := E(X,y)∈D[`(fθ(X), y)], where ` is the loss function.

3.1 INVARIANT LEARNING

Invraint learning has been emerged as a promising approach for handling OOD generalization
problem (Arjovsky et al., 2019; Ahuja et al., 2020; Liu et al., 2021a;b; Creager et al., 2021). The
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Table 1: The coverage of the related works.
Methods Collaboration Personalization OOD Generalization

Federated learning, e.g., (McMahan et al., 2017) ! % %

Personalized FL, e.g., (T Dinh et al., 2020; Fallah et al., 2020; Li et al., 2021; Cheng et al., 2021) ! ! %

Invariant learning, e.g., (Arjovsky et al., 2019; Sagawa et al., 2019; Creager et al., 2021) % % !

PerInvFL (Ours) ! ! !

prevalent invariant learning assumes that there exists some invariant feature Φ(X) satisfying the
invariance property:

E[y|Φ(X) = h, e] = E[y|Φ(X) = h, e′],∀h ∈ H, ∀e, e′ ∈ Eall (Invariance)

To discover the invariant representation Φ : X → H that elicits an invariant predictor w ◦ Φ across
all environments, IRM (Arjovsky et al., 2019) is proposed as a constrained optimization problem
based on the empirical data from multiple accessible training environments Etrain. Out of efficiency
concerns, a practical version of IRM is offered in that work:

min
fθ :X→Y

∑
e∈Etrain

R(fθ; e) + λ · ‖∇w̄|w̄=1.0R(w̄ · fθ; e)‖2, (IRMv1)

whereR(fθ; e) is the expected empirical loss on environment e. In particular, fθ is used as the entire
invariant predictor, and w̄ is a scalar and fixed ”dummy” classifier as in (Arjovsky et al., 2019). We
define that LIRM (θ; Etrain) =

∑
e∈Etrain R(fθ; e) + λ · ‖∇w̄|w̄=1.0R(w̄ · fθ; e)‖2 in this paper.

Apart from IRM, another branch of approaches to OOD problem is worst-case generalization (Sagawa
et al., 2019). The target of worst-case generalization is to minimize the expected risk of the training
enviroment which produces the worst risk such that the generated predictor can be simultaneously
optimal for all environments. One typical method is GroupDRO given in (Sagawa et al., 2019), of
which the objective is:

min
fθ :X→Y

max
q∈∆g

∑
e∈Etrain

qe · R(fθ; e), (GroupDRO)

where g = |Etrain| is the numbers of accessible training environments. Similarly, we define that
LGroupDRO(θ; Etrain) = maxq∈∆g

∑
e∈Etrain qe · R(fθ; e) in this paper.

3.2 PERSONALIZED INVARIANCE

In order to study the OOD generalization problem under Non-IID federated setting, we first dissect
the data heterogeneity from two orthogonal perspectives and categorize the related works in Table 1
according to the coverage of their methods.

Client-level heterogeneity. The distributions of training datasets are usually heterogeneous across the
clients. Since the local data on every client is scarce and of limited diversity, the clients in FL frame-
work need to collaborate to mine the common/generalization knowledge with some shared/global
objective. However, the client-level heterogeneity can result in the discrepancy between the optimas of
local objective and global objective. In other words, the client-independent representation (i.e., global
knowledge) can be biased for some participating clients. Therefore, preserving the personalization
information is of great importance for dealing with the client-level data heterogeneity.

Context-level heterogeneity. In addition to the heterogeneity among the training datasets, the
heterogeneity between the training and testing dataset is also worthy of attentions. In FL, the local
training and testing dataset on each client may be generated in distinct contexts/environments1. For
example, the training image samples on a client are mainly captured from the local cameras, while
the testing images may come from the web and with different styles. From the perspective of context,
the target learning models must be equipped with OOD generalization so that they can perform both
well on unknown and distinct contexts.

As discussed above, we can conclude that solving the OOD problem under Non-IID federated
setting needs to discover the invariant representation without dropping the important personalized
information. When we consider to implement the distributed version of invariant learning, such as
IRM and GroupDRO, each client can be regarded as an environment. In this way, both the context-
specific (i.e., spurious) representation and the client-related (personalized) representation will be

1In this paper, environment, context and domain are used equivalently.
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treated as spurious representations. Only the common invariant representation across the clients is
extracted and utilized to elicit the invariant predictors. Consequently, the important personalized
representation is dropped.

Assumption 1 (Heterogeneity of invariance) For each client i, there exists a set of invariant repre-
sentations Φi that satisfies the invariance property on the local set of environments E iall as defined in
equation Invariance. There are K = pN clients ([NK ] ⊂ [N ]) on each of which the corresponding
set of invariant representations Φj(j ∈ [NK ]) contain some representations Zj satisfying:

(i) Heterogeneity: Zj is a subset of Φj and not contained in the intersection
⋂
i 6=j,i∈[N ] Φi,

(ii) Informativeness: maxz⊂Zj I(Y ; z) = δ > 0, where I(·; ·) measures the mutual information
(MI) between two random variables.

The heterogeneity condition in Assumption 1 is consistent with the Non-IID assumption in FL, and
the informativeness assumption claims the existence of meaningful personalization. If we define
global invariant representation as Φg =

⋂
i∈[N ] Φi and personalized invariant representation as Φi,

i ∈ [N ]. In the prediction task, the optimal global and personalized invariant representations are
given by Φ?i = arg maxS⊂Φi I(Y ;S) and Φ?g = arg maxS⊂Φg I(Y ;S), respectively.

Theorem 1 If the Assumption 1 holds in FL, the proposed personalized invariant representations can
be constantly more informative than the global invariant representations obtained by the distributed
implementation of existing invariant learning, for the prediction performance. That is,

1

N

N∑
i=1

I(Y ; Φ?i ) ≥
1

N

N∑
i=1

I(Y ; Φ?g) + pδ, (1)

where 0 < p < 1 is a constant and δ is a positive constant that is independent of N .

Theorem 1 demonstrates the importance of the proposed personalized invariance in improving the
average prediction performance for OOD problems under Non-IID federated setting. The detailed
proof of Theorem 1 is provided in the Appendix.

4 DUAL-REGULARIZATION CONSTRAINED LEARNING FRAMEWORK

Adhering to the prevalent setup of invariant learning, we suppose there are totally K training contexts
in the federated learning system. On client i, the training data (X, y) ∈ Di is generated from Ki

contexts while the testing data comes from unknown contexts. That is, E itrain = {eij |j ∈ Si}, where
Si is a subset of [K] and the size of Si equals Ki.

4.1 ALGORITHM DESIGN

In ideal circumstances, we can elicit the personalized invariant predictor for each client i (i ∈ [N ])
using θ?i ∈ arg minθi LINV (θi; E itrain), where LINV ∈ {LIRM ,LGroupDRO}. We refer to ‘ideal’
circumstances as the scenarios where the following two conditions are met: 1) the number of training
contexts on every client is sufficient for deriving the invariant predictor, 2) the data samples in every
training context are of sufficient diversity. Unfortunately, both of the above two conditions can hardly
be satisfied in FL setting since the local data is usually scarce (McMahan et al., 2017). On the one
hand, the latest efforts prove that the minimizer of LIRM will necessarily utilize the non-invariant
features and therefore cannot universally generalize to unknown testing contexts when the number
of training contexts is not sufficient (Rosenfeld et al., 2021). On the other hand, the limited data
diversity in each training contexts will make the obtained model easily trapped by overfitting.

To handle the challenges of insufficient training contexts and limited data diversity in each available
context . In this paper, we elaborate a dual-regularization constrained optimization framework to
handle these challenges of OOD generalization problems in federated scenarios. The overall objective
on client i(i ∈ [N ]) is:

min
θi
LINV (θi; Eitrain) + β‖θi − ν?‖2 (2)

s.t. ν? ∈ arg min
ν

LINV (ν; ED) (3)
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where ED = {Di|i = 1, 2, ..., N} and LINV ∈ {LIRM ,LGroupDRO}. Different from the popular
single-regularized (i.e., global-regularized) personalized federated learning schemes (T Dinh et al.,
2020; Hanzely & Richtárik, 2020; Deng et al., 2020; Hanzely et al., 2020; Li et al., 2021), the
objective on each client is constrained by two regularizations. One is the ‘local invariance’ expressed
by the first term LINV (θi; E itrain) and nother is the ‘global invariance’ represented by the second term
‖θi − ν?‖2. The ‘local invariance’ is necessary for discovering the personalized invariant predictor,
while the ‘global invariance’ is adopted to deal with the challenges of insufficient training contexts
and limited data diversity in each context. Without loss of generality, we focus on studying the case
where LINV = LIRM in this paper. Therefore, the detailed objective on client i can be written as

min
θi

Ki∑
j=1

R(fθi ; e
i
j) + λ · ‖∇ω̄|ω̄=1.0R(ω̄ · fθi ; e

i
j)‖

2
+ β‖θi − ν?‖2 (4)

s.t. ν? ∈ arg min
ν

N∑
i=1

R(fν ;Di) + λ · ‖∇ω̄|ω̄=1.0R(ω̄ · fν ;Di)‖2 (5)

On each client, the outer problem in objective (2) can be solved locally with the guidance of the
global model ν? downloaded from the server. In order to solve the inner problem in a collaborative
manner, the objective (3) needs to be decomposed into N subproblems that can be individually and
parallelly solved at the local clients. In fact, the objective of IRM (LIRM (ν; ED)) can be naturally
decomposed into N subproblems: LiIRM = R(fν ;Di) + λ · ‖∇w̄|w̄=1.0R(w̄ · fν ;Di)‖2, i ∈ [N ].
As regard to GroupDRO, the objective LGroupDRO(ν; ED) can be decomposed into LiGroupDRO =

qi ·R(fν ;Di), i ∈ [N ]. The weight qi can be updated on the server using the uploadedR(fν ;Di), i ∈
[N ] following the update law in (Sagawa et al., 2019). Our algorithm is shown in Algorithm 1.

Algorithm 1 PerInvFL: Personalized Invariant Federated Learning
Input: T,R, S, β, η, γ, α.
1: Initialize the models ν0, {θ0

i |i ∈ [N ]}.
2: for t = 0 to T − 1 do
3: Server sends the global model (νt) to the participating clients.
4: for local device i = 1 to N in parallel do
5: Initialization: νti,0 ← νt.
6: for r = 0 to R− 1 do
7: for s = 0 to S − 1 do
8: Update the personalized model: θs+1

i ← θsi − η
(
∇LINV (θsi ; Eitrain) + 2β(θsi − νti,r)

)
.

9: Local update for global model: νti,r+1 ← νti,r − γ∇LINV (νti,r;Di).
10: Global aggregation: νt+1 ← νt − α

(
νt − 1

N

∑
i∈[N ] ν

t
i,R

)
.

11: return the personalized models {θSi |i ∈ [N ]} and global model νT .

4.2 THEORETICAL ANALYSIS

In this section, we will provie detailed theoretical analysis on convergence rate and out-of-
distribution generalization guarantee of the proposed algorithm, and discuss how to improve the
practical performance of our method based on the theoretical outcomes. For simplicity, we define
L(ν) := 1

NLIRM (ν; ED) in this section. It’s mentioned that the penalty term of IRM is generally
non-convex in (Arjovsky et al., 2019). Therefore, we figure out the convergence rate of our algorithm
under the non-convex and smooth case.

Assumption 2 (Bounded variance) The variance of local gradients to the aggregated average is upper
bounded by 1

N

∑N
i=1 ‖∇LiIRM (ν;Di)−∇LIRM (ν; ED)‖2 ≤ δ2

L, where δL is a finite constant.

Theorem 2 (Convergence) Suppose the IRM loss function LIRM (θ; eij) is LF -smooth, ∀ i, j, and
Assumption 2 holds. If γ ≤ γ0

αR ∀ α ≤ 1, R ≥ 1 and γ0 := α√
32(R+3)LF

. Then we have

1. The convergence rate of the global model is given by:

E
[
‖∇L(νt?)‖2

]
≤ O

(
E
[
‖∇L(νt?)‖2

])
:= O

(∆LR
1
2LF

βT
+

(∆LLF )
3
4 (Rδ2

L)
1
4

α
1
2 T

3
4

+
(∆LδLLF )

2
3

α
2
3 T

2
3

)
.
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2. And, the convergence rate of the personalized models is given by:

1

N

N∑
i=1

E
[
‖θSi (νt?)− νt?‖

2] ≤ O(E[‖∇L(νt?)‖2
])

+ C,

where ∆L := L(ν0) − L(νT ), C is a finite positive constant, and t? is uniformly sampled from
{0, 1, ..., T − 1}. The constant C exists since the number of local iterations S is finite.

Corollary 1 Theorem 2 proves that the proposed algorithm achieves a convergence rate ofO(1/T 2/3)
under the non-convex and smooth case. The detailed proof is provided in the Appendix.

Theorem 3 (Out-of-distribution Generalization) As discussed in Section 3, the learning model can
be written as f = Φ · ω. Suppose Assumption 1 is satisfied. Let the global invariant featurizer
Φ?g ∈ Rd×d have rank τ > 0, and the personalized invariant featurizer Φ?i have rank τ + qi where
qi > 0 (i ∈ [N ]) and d > maxi∈[N ] qi + τ . Denote the minimizers of our designed objective by
{fθ̂i = Φ̂i · ω̂i}. Then, if there are at least d− τ + d

τ local datasets in ED lying in a linear general
position of degree τ , the following holds on each client i (i ∈ [N ]):

1. When there are at least d − (τ + qi) + d
τ+qi

training contexts in E itrain lying in a
linear general position of degree τ + qi, with β appropriately chosen, we can guar-
antee that E[Y |Φ̂i(X), e] = E[Y |Φ̂i(X), e′], for all e, e′ ∈ E iall, and the test error
E(X,Y )∼Pe [`(fθ̂i(X), Y )] = minω,Φ?i E(X,Y )∼Pe [`(ω(Φ?i (X)), Y )] for any e ∈ E iall.

2. Otherwise, with β appropriately chosen, we can guarantee that E[Y |Φ̂i(X), e] =

E[Y |Φ̂i(X), e′], for all e, e′ ∈ E iall.

Remark 1 Theorem 3 provides the personalized models with performance guarantee on any unseen
contexts, even if both challenges of insufficient training contexts and limited data diversity in each
available context exist. The detailed proof of Theorem 3 can be found in the Appendix. In particular,
we find that choosing a appropriate value for the balancing weight β is significant for guaranteeing
the out-of-distribution performance on each client. Empirically, the less training contexts a client has,
the smaller the value of β should be. Therefore, personalized β can be adopted on heterogeneous
clients by themselves, according to the number of available training contexts.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We evaluate the effectiveness of our method on three datasets that are frequently adopted
in the related literature: 1) Rotated CMNIST (RC-MNIST), a variant of CMNIST (Arjovsky et al.,
2019). Firstly, We construct the CMNIST dataset according to the same law as in (Arjovsky et al.,
2019): each image having label 0 is colored green with probability pe and colored red with probability
1− pe. In contrary, each image having label 1 is colored red with probability pe and colored green
with probability 1 − pe. In the training and testing contexts, we set pe = petrain and pe = petest
to generate the data respectively. On the basis of CMNIST, we add rotation property to simulate
the personal writing style and regard the rotation property as useful personalized information. To
distribute the data to the clients in a Non-IID scheme, we construct four training contexts with
petrain = 0.95, 0.90, 0.85, 0.80 and assign each context to a client as training data. For the testing
data, we constrcut a out-of-distribution context with petest = 0.10 for every client. The data used
for constructing the four training/testing contexts is randomly sampled from the train-set/test-set
of MNIST (LeCun et al., 1998) without replacement. In addition, all images (from both training
and testing sets) in the four clients are rotated by 0◦, 90◦, 180◦ and 270◦ respectively. 2) Rotated
Colored Fashion-MNIST (RC-FMNIST) (Ahuja et al., 2020), which is constructed using the
same strategy as RC-MNIST, except that the original images come from FashionMNIST dataset. 3)
WaterBird (Sagawa et al., 2019), which is constructed by placing the waterbird photographs onto
the water background with probability pe and onto water background with probability 1− pe. In the
meanwhile, the landbird photographs are placed onto the land background with probability pe and
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onto water background with probability 1− pe. In this paper, we construct four training contexts with
petrain = 0.95, 0.90, 0.85, 0.80 and the testing contexts with petest = 0.10. To distribute the data in a
Non-IID manner, we construct the four training contexts using the bird photograghs of disjoint bird
classes from the bird dataset and background photographs randomly selected from the background
dataset without replacement. Each training context is assigned to a client as training data. For the
testing data in each client, we construct a testing contexts with probability petest = 0.10, using the
bird photographs of same bird classes (but distinct instances) as the corresponding training context
and the background photographs are randomly selected from the background dataset.

Model selection and Competitors For RC-MNIST and RC-FMNIST dataset, we adopt a deep
neural network with two hidden layers as the feature extractor and an subsequent fully-connected layer
as the classifier. In the evaluation on WaterBird dataset, we adopt the ResNet-18 (He et al., 2016) as
learning model. Similarly, the part before the last fully-connected layer works as the feature extractor
and the last fully-connected layer works as the classifier. We compare our method (PerInvFL) with
six state-of-the-art algorithms in federated learning and invariant learning, including one traditional
federated learning method (FedAvg (McMahan et al., 2017)), three personalized learning methods
(pFedMe (T Dinh et al., 2020), Ditto (Li et al., 2021), and FTFA (Cheng et al., 2021)), and two
invariant learning methods (IRM (Arjovsky et al., 2019) and GroupDRO (Sagawa et al., 2019)).

Table 2: Results on Rotated-Colored MNIST dataset
OOD case 1 OOD case 2 OOD case 3 OOD case 4 OOD case 5 Average

petest 0.10 0.20 0.30 0.40 0.50

FedAvg 20.77(±0.0) 29.66(±0.0) 37.74(±0.0) 45.15(±0.0) 54.12(±0.0) 37.49(±11.6)
Ditto 23.62(±0.0) 31.85(±0.0) 39.57(±0.2) 46.40(±0.0) 54.92(±0.0) 39.27(±10.9)
FTFA 19.86(±0.1) 28.87(±0.1) 37.37(±0.0) 43.75(±0.1) 53.69(±0.0) 36.71(±11.7)
pFedMe 30.28(±0.0) 38.98(±0.0) 40.05(±0.0) 44.48(±0.0) 49.67(±0.0) 40.69(±6.43)
GroupDRO 29.32(±0.1) 35.68(±0.0) 41.50(±0.0) 46.93(±0.0) 53.77(±0.2) 41.44(±8.51)
IRM 51.48(±0.0) 51.70(±0.1) 52.17(±0.1) 51.53(±0.0) 51.18(±0.0) 51.61(±0.33)

PerInvFL 53.46(±0.2) 52.75(±0.1) 53.63(±0.1) 51.41(±0.3) 52.73(±0.1) 52.80(±0.78)

Table 3: Results on Rotated Colored-FMNIST dataset
OOD case 1 OOD case 2 OOD case 3 OOD case 4 OOD case 5 Average

petest 0.10 0.20 0.30 0.40 0.50

FedAvg 10.70(±0.0) 20.80(±0.0) 29.85(±0.0) 41.84(±0.0) 50.54(±0.0) 30.75(±14.3)
Ditto 16.35(±0.0) 25.75(±0.1) 34.11(±0.0) 45.09(±0.0) 52.59(±0.0) 34.78(±13.0)
FTFA 17.32(±0.1) 26.48(±0.0) 34.36(±0.0) 45.43(±0.0) 53.03(±0.0) 35.32(±12.8)
pFedMe 20.32(±0.0) 27.40(±0.1) 34.40(±0.0) 42.85(±0.0) 48.63(±0.0) 34.72(±10.2)
GroupDRO 30.13(±0.0) 36.00(±0.0) 41.33(±0.0) 47.55(±0.1) 52.59(±0.0) 41.52(±7.99)
IRM 47.35(±0.1) 48.99(±0.1) 50.53(±0.1) 51.57(±0.0) 52.66(±0.1) 50.22(±1.88)

PerInvFL 51.71(±0.2) 52.10(±0.1) 50.77(±0.2) 53.12(±0.1) 53.64(±0.1) 52.27(±1.02)

Table 4: Results on WaterBird dataset.
OOD case 1 OOD case 2 OOD case 3 OOD case 4 OOD case 5 Average

petest 0.10 0.20 0.30 0.40 0.50

FedAvg 51.33(±0.77) 60.08(±0.47) 57.75(±0.21) 62.50(±0.61) 59.25(±1.62) 58.18(±3.76)
Ditto 51.17(±1.31) 60.58(±0.68) 58.74(±0.53) 63.50(±0.74) 60.17(±0.66) 58.83(±4.13)
FTFA 51.67(±0.69) 61.50(±0.71) 59.00(±0.43) 63.00(±0.83) 60.25(±0.94) 59.08(±3.94)
pFedMe 52.17(±0.12) 56.42(±0.12) 58.75(±0.01) 65.00(±0.03) 62.25(±0.00) 58.92(±4.47)
GroupDRO 61.33(±0.31) 63.25(±0.35) 65.75(±1.03) 69.05(±1.08) 62.58(±0.31) 64.39(±2.74)
IRM 62.75(±0.41) 62.75(±0.00) 65.25(±0.23) 66.42(±0.12) 63.42(±0.59) 64.12(±1.47)

PerInvFL 71.17(±0.44) 74.15(±0.37) 73.67(±0.21) 75.13(±0.11) 75.83(±0.34) 73.99(±1.60)

5.2 EXPERIMENTAL RESULTS

In order to comprehensively compare the performance of our method with that of the baselines,
we conduct evaluation on five out-of-distribution (OOD) testing cases for each dataset, including
petest = 0.10, 0.20, 0.30, 0.40 and 0.50. All hyperparameters of the algorithms are tuned optimal,
and more details are provided in the Appendix. We run each algorithm three times with different
random seeds to record the mean and standard deviation of the test accuracy in every OOD case.
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Performance Comparison. The overall results on RC-MNIST, RC-FMNIST and WaterBird are
displayed in Table 2, Table 3 and Table 4, respectively. In each table, the last column gives the mean
and standard deviation of the results in the five OOD cases. From the results shown in the three
tables, we can find that 1) our method PerInvFL can constantly outperform the baseline methods
on both worst-case accuracy and average accuracy for diverse datasets. In particular, our method
achieves an average accuracy of 73.99% which is about 9% higher than the second highest one on
WaterBird dataset. 2) As shown in the last columns, the performance deviation of our method is
much smaller than the existing federated learning methods and approximate to the invariant learning
approach IRM, demonstrating that our method can effectively obtain the invariant predictor and
hence achieve consistent performance in different out-of-distribution cases. These findings verify
that the proposed method can effecrively extract the invarinat features and concurrently exploit the
personalized information to improve the performance on out-of-distribution testing data.

Table 5: The effect of the elaborated dual-regularization
Rotated-CMNIST WaterBird

petest 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

IRM 51.48 51.70 52.17 51.53 51.18 62.75 62.75 65.25 66.42 63.42
IRM-L2 31.19 29.35 36.53 43.06 51.83 56.83 62.75 58.75 66.00 59.42
IRM-FT 21.43 22.37 32.42 40.32 50.96 55.67 62.50 65.05 66.00 63.75

PerInvFL 53.46 52.75 53.63 51.41 52.73 71.17 74.15 73.67 75.13 75.83

Effect of dual-regularized optimization. As explained in section 4, the elaborated dual-regularized
optimization is formulated as the objective (2). To demonstrate the effect of the designed dual-
regularized franework, we replace the dual-regularized optimization with some prevalent single-
regularized methods that are usually adopted in the state-of-the-art personalized federated learning,
and keep the rest part of the overall objective (shown in equation (2) and (3)) unchanged. Concretely,
we implement two typical personalization skills with the global model being achieved by distributional
IRM that we introduce in section 4.1. One is the L2-norm regularizer which is widely used in
PFL (T Dinh et al., 2020; Hanzely & Richtárik, 2020; Hanzely et al., 2020; Li et al., 2021), and we
call this implementation IRM-L2. Another one is the local-finetune skill which is proved simple
and effective in (Cheng et al., 2021). In particular, the local-finetune skill can be viewed as a ‘none’
regularizer. We name the implementation with local-finetune skill as IRM-FT.

The comparison of results is shown in Table 5. We can find that combining the existing personalization
terms with IRM cannot improve the performance of OOD problem under federated setting. On the
contrary, the widely adopted personalization term (L2-norm and local-finetune) can even degrade
the OOD performance, compared with the distributional version of IRM. The underlying reason is
that the local objective with these personalization terms is to minimize the expected loss as long
as the target model is not too different from the global model. However, when the realtionship
with the global model is satisfied, minimizing the expected loss can readily make the trained model
pick up the spurious correlations and hence decrease the performance on OOD testing data. By
comparison, the designed dual-regularized optimization in our algorithm contains two constraints: 1)
being close/similar to the ‘global invariance’ and 2) satisfying the ‘local invariance’ to exclude the
spurious features. Therefore, our method can effectively exploit the personalized information and
avoid ‘picking up’ the spurious information concurrently, so as to improve the OOD performance.

6 CONCLUSION

In this paper, we are the first to investigate the out-of-distribution problem under the Non-IID
federated setting. Atfer formally analyzing the challenges, we propose the novel concept personalized
invariance which can improve the model performance, by preserving the important personalized
information and meanwhile eliminating the spurious correlations. To explore the optimal personalized
invariance, we propose a objective: dual-regularization constrained optimization and design a practical
algorithm PerInvFL to solve it. Both the theoretical and experimental results demonstrate the
superiority of our method over the state-of-the-art federated learning and invariant learning methods.
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Filip Hanzely and Peter Richtárik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.
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A APPENDIX

In this appendix, we provide more details that are simplified in the main text duo to page limitation,
including the complemte proofs, more details on experimental setup, and some further discussions.

A.1 PROOF OF THEOREM 1

Theorem 1 If the Assumption 1 holds in FL, the proposed personalized invariant representations can
be constantly more informative than the global invariant representations obtained by the distributed
implementation of existing invariant learning, for the prediction performance. That is,

1

N

N∑
i=1

I(Y ; Φ?i ) ≥
1

N

N∑
i=1

I(Y ; Φ?g) + pδ, (6)

where 0 < p < 1 is a constant and δ is a positive constant that is independent of N .

Proof: According to the definition, there are N clients in the federated learning system. The set of
all possible environments on each client i is given by E iall, i ∈ [N ]. Then, the set of all possible
environments on all the clients is the union:

Eall =
⋃
i∈[N ]

E iall (7)

Because of the data heterogeneity across the clients, we have E iall 6= Eall, i.e., E iall ⊂ Eall, ∀i ∈ [N ].
For every invariant feature φg ∈ Φg across all the environments Eall, we can get

φg ∈ Φi,∀i ∈ [N ]. (8)

But, the converse is not true, due to the result in equation 7. Therefore, we have

Φg ⊆ Φi,∀i ∈ [N ] (9)

When the Heterogeneity condition in Assumption 1 is satisfied, we can conclude that{
Φg ⊂ Φj ,∀j ∈ [NK ],

Φg = Φj ,∀j /∈ [NK ] and j ∈ [N ].
(10)
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When the Informativeness condition in Assumption 1 is satisfied, we can derive the average mutual-
information among the clients by

1

N

N∑
i=1

I(Y ; Φ?i ) =
1

N

N∑
i=1

max
Si⊆Φi

I(Y ;Si)

=
1

N

∑
i∈[NK ]

max
Si⊆Φi

I(Y ;Si) +
1

N

∑
i/∈[NK ]

max
Si⊆Φi

I(Y ;Si)

≥ 1

N

∑
i∈[NK ]

{
max

Si,1⊆Φg
I(Y ;Si,1) + max

Si,2⊆Zi
I(Y ;Si,2)

}
+

1

N

∑
i/∈[NK ]

max
Si⊆Φi

I(Y ;Si)

≥ 1

N

∑
i∈[NK ]

max
Si,1⊆Φg

I(Y ;Si,1) +
K

N
δ +

1

N

∑
i/∈[NK ]

max
Si⊆Φg

I(Y ;Si)

=
1

N

∑
i∈[NK ]

I(Y ; Φ?g) +
K

N
δ +

1

N

∑
i/∈[NK ]

I(Y ; Φ?g)

=
1

N

N∑
i=1

I(Y ; Φ?g) + pδ.

Proof ends.

As discussed in the main content, the Theorem 1 demonstrates the superiority of personalized
invariance on improving the average prediction performance in OOD and Non-IID federated setting,
compared with the global invariance which is elicited by the distributional implementation of existing
invariant learning methods. In paticular, the improvement pδ is independent of the number of clients
and p is the percentage of the clients with heterogeneous invariance. In other words, p can represent
the extent of data heterogeneity across the clients. Therefore, we can conclude that the performance
improvement caused by the proposed personalized invariance can be enlarged as the herteroheneity
of invariance among the clients increases.

A.2 PROOF OF THEOREM 2

Theorem 2 Suppose the IRM loss function LIRM (θ; eij) is LF -smooth, ∀ i, j, and Assumption 2
holds. If γ ≤ γ0

αR ∀ α ≤ 1, R ≥ 1 and γ0 := α√
32(R+3)LF

. Then we have

1. The convergence rate of the global model is given by:

E
[
‖∇L(νt?)‖2

]
≤ O

(
E
[
‖∇L(νt?)‖2

])
:= O

(∆LR
1
2LF

βT
+

(∆LLF )
3
4 (Rδ2

L)
1
4

α
1
2 T

3
4

+
(∆LδLLF )

2
3

α
2
3 T

2
3

)
.

2. And, the convergence rate of the personalized models is given by:

1

N

N∑
i=1

E
[
‖θSi (νt?)− νt?‖

2] ≤ O(E[‖∇L(νt?)‖2
])

+ C,

where ∆L := L(ν0) − L(νT ), C is a finite positive constant, and t? is uniformly sampled from
{0, 1, ..., T − 1}. The constant C exists since the number of local iterations S is finite.

Proof: We know the local update of global model follows

νti,r+1 = νti,r − γ∇LIRM (νti,r)︸ ︷︷ ︸
=:gti,r

(11)
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and the global update is

νt+1 = νt − α(νt −
1

N

N∑
i=1

νti,R)

= νt −
α

N

N∑
i=1

(νt − νti,R)

= νt − αγR︸︷︷︸
=:γ̂

1

NR

N∑
i=1

R−1∑
r=0

gti,r︸ ︷︷ ︸
=:gt

,

Since the loss function is L-smooth, we have

E[L(νt+1)− L(νt)]

≤ E[〈∇L(νt), νt+1 − νt〉] +
LF
2

E[‖νt+1 − νt‖2]

= −γ̂E[〈∇L(νt), gt〉] +
γ̂2LF

2
E[‖gt‖2]

= −γ̂E[‖∇L(νt)‖2]− γ̂E[〈∇L(νt), gt −∇L(νt)〉] +
γ̂2LF

2
E[‖gt‖2]

≤ −γ̂E[‖∇L(νt)‖2] +
γ̂

2
E[‖∇L(νt)‖2] +

γ̂

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇L(νt)‖2] +
γ̂2LF

2
E[‖gt‖2]

= − γ̂
2
E[‖∇L(νt)‖2] +

γ̂

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇Li(νt)‖2] +
γ̂2LF

2
E[‖gt‖2]

= − γ̂
2
E[‖∇L(νt)‖2] +

γ̂

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇Li(νt)‖2]

+
γ̂2LF

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇Li(νt) +
1

N

N∑
i=1

∇Li(νt)‖2]

≤ − γ̂
2
E[‖∇L(νt)‖2] +

γ̂

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇Li(νt)‖2]

+
γ̂2LF (1 +R)

2
E[‖ 1

NR

N,R∑
i,r

gti,r −∇Li(νt)‖2] +
γ̂2LF (1 +R)

2R
E[‖∇L(νt)‖2]

≤ − γ̂
2

(1− (R+ 1)γ̂LF
R

)E[‖∇L(νt)‖2] +
γ̂[1 + (1 +R)γ̂LF ]

2

1

NR

N,R∑
i,r

E[‖gti,r −∇Li(νt)‖2]

Because

E[‖gti,r −∇Li(νt)‖2] = E[‖∇Li(νti,r)−∇Li(νt)‖2] ≤ L2
FE[‖νti,r − νt‖2], (12)
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we first deal with E[‖νti,r − νt‖2]. We can figure out that

E[‖νti,r − νt‖2]

= E[‖νti,r−1 − νt − γ∇Li(νt) + γ∇Li(νt)− γgti,r−1‖2]

≤ (1 +
1

R
)E[‖νti,r−1 − νt − γ∇Li(νt)‖2] + (1 +R)γ2E[‖gti,r−1 −∇Li(νt)‖2]

≤ (1 +
1

R
)(1 +

1

2R
)E[‖νti,r−1 − νt‖2] + (1 +

1

R
)(1 + 2R)γ2E[‖∇Li(νt)‖2]

+ (1 +R)γ2L2
FE[‖νti,r−1 − νt‖2]

= (1 +
1

R
)(1 +

1

2R
+Rγ2L2

F )E[‖νti,r−1 − νt‖2] + (1 +
1

R
)(1 + 2R)γ2E[‖∇Li(νt)‖2]

Suppose γ2 < 1
2R2L2

F
, then we can get

E[‖gti,r −∇Li(νt)‖2]

≤ L2
FE[‖νti,r − νt‖2]

≤ R(R+ 1){[(1 +
1

R
)2]r − 1}γ2L2

FE[‖∇Li(νt)‖2]

≤ R(R+ 1)[(1 +
1

R
)2]rγ2L2

FE[‖∇Li(νt)‖2]

Thus, with Assumption 2, we can get

1

NR

N,R∑
i,r

E[‖gti,r −∇Li(νt)‖2]

≤ 1

NR

N,R∑
i,r

R(R+ 1)γ2L2
FE[‖∇Li(νt)‖2][(1 +

1

R
)2]r

≤ 1

N

N∑
i=1

(R+ 1)γ2L2
F

(e2 − 1)

2R+ 1
E[‖∇Li(νt)‖2]

≤ 8R2γ2L2
F

1

N

N∑
i=1

E[‖∇Li(νt)‖2]

= 8R2γ2L2
F

1

N

N∑
i=1

E[‖∇Li(νt)−∇L(νt) +∇L(νt)‖2]

≤ 8R2γ2L2
F

1

N

N∑
i=1

{
2E[‖∇Li(νt)−∇L(νt)‖2] + 2E[‖∇L(νt)‖2]

}
≤ 16R2γ2L2

F

1

N

N∑
i=1

E[‖∇Li(νt)−∇L(νt)‖2] + 16R2γ2L2
FE[‖∇L(νt)‖2]

≤ 16R2γ2L2
F δ

2
L + 16R2γ2L2

FE[‖∇L(νt)‖2]
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Therefore, we can write

E[L(νt+1)− L(νt)]

≤ − γ̂
2

(
1− (1 +R)γ̂LF

R

)
E[‖∇L(νt)‖2]

+
γ̂[1 + (1 +R)γ̂LF ]

2

{
16R2γ2L2

F δ
2
L + 16R2γ2L2

FE[‖∇L(νt)‖2]
}

= − γ̂
2

{
1− (R+ 1)γ̂LF

R
− 16[1 + (1 +R)γ̂LF ]γ̂2L2

F

α2

}
E[‖∇L(νt)‖2]

+
8γ̂[1 + (1 +R)γ̂LF ]γ̂2L2

F δ
2
L

α2

Let γ ≤ γ0
αR ∀ α ≤ 1,R ≥ 1 and γ0 := α√

32(R+3)LF
, then 1− (R+1)γ̂LF

R − 16[1+(1+R)γ̂LF ]γ̂2L2
F

α2 > 1
2 .

Furthermore, we can get

E[L(νt+1)− L(νt)]

≤ − γ̂
4
E[‖∇L(νt)‖2] +

8γ̂3L2
F δ

2
L

α2
+

8(1 +R)γ̂4L3
F δ

2
L

α2

That is

E[‖∇L(νt)‖2] ≤
4
{
E[L(νt)− L(νt+1)]

}
γ̂

+
32γ̂2L2

F δ
2
L

α2
+

32(1 +R)γ̂3L3
F δ

2
L

α2
.

We can get

1

T

T−1∑
t=0

E[‖∇L(νt)‖2] ≤
4
∑T−1
t=0 E[L(νt)− L(νt+1)]

γ̂
+

32γ̂2L2
F δ

2
L

α2
+

32(1 +R)γ̂3L3
F δ

2
L

α2
.

=
C1

γ̂T
+
C2γ̂

2

α2
+
C3γ̂

3

α2
,

where C1 = 4(L(ν0)− L(νT )), C2 = 32δ2
LL

2
F and C3 = 32(1 +R)δ2

LL
3
F .

We consider the following two cases:

• When γ0 ≥ min
{(

C1α
2

C3T

) 1
4

,
(
C1α

2

C2T

) 1
3
}

, we choose γ̂ = min
{(

C1α
2

C3T

) 1
4

,
(
C1α

2

C2T

) 1
3
}

, we
have

1

2T

T−1∑
t=0

E[‖∇L(νt)‖2] ≤ C
3
4
1 C

1
4
3

α
1
2T

3
4

+
C

2
3
1 C

1
3
2

α
2
3T

2
3

.

• When γ0 ≤ min
{(

C1α
2

C3T

) 1
4

,
(
C1α

2

C2T

) 1
3
}

, we can choose γ̂ = γ0. We can get

1

2T

T−1∑
t=0

E[‖∇L(νt)‖2] ≤ C1

γ0T
+
C

3
4
1 C

1
4
3

α
1
2T

3
4

+
C

2
3
1 C

1
3
2

α
2
3T

2
3

.

Therefore, we have

1

T

T−1∑
t=0

E[‖∇L(νt)‖2] ≤ O
( C1

γ0T
+
C

3
4
1 C

1
4
3

α
1
2T

3
4

+
C

2
3
1 C

1
3
2

α
2
3T

2
3

)
. (13)

As regard to the convergence rate of the personalized models, the personalized models are locally
updated via

θ?i (ν) ∈ arg min
θ
LIRM (θ; E itrain) + β‖θ − ν‖2. (14)
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When LIRM (θ; E itrain) is LF -smooth, after S local iterations, we have (T Dinh et al., 2020)

E[‖θSi (ν)− θ?i (ν)‖2] ≤ δ2,

where δ is a finite constant. We can easily get from the proof of Theorem 2 in (T Dinh et al., 2020)
that

1

N

N∑
i=1

E
[
‖θSi (νt?)− νt?‖

2] ≤ O(E[‖∇L(νt?)‖2
])

+ C, (15)

where C is a positive constant and it exists since the number of local iterations S is finite.

Proof ends.

A.3 PROOF OF THEOREM 3

Adopting the similar assumptions in (Arjovsky et al., 2019), we first define a structural equation
model (SEM) for each client to interpret the generating process of local data. On client i(i ∈ [N ]),
the data is generated according to:

Y ei = He
i · ρi + εei , He

i ⊥ εei , E[εei ] = 0,

Xe
i = Gi(H

e
i , Z

e
i )

where ρ ∈ Rc. The random variables Xe
i , H

e
i and Zei take values in Rd,Rc and Rl, respectively. Be-

sides, the H component of Gi is invertible. That is, there exists G̃i satisfying that G̃i(Gi(h, z)) = h,
for all h ∈ Rc, z ∈ Rl. Note that the above assumptions about linearity, statistical independence
between the causal variables He

i and the noise εei , and zero-mean noise are also required in IRM (Ar-
jovsky et al., 2019).

Theorem 3 As discussed in Section 3, the learning model can be written as f = Φ · ω. Suppose
Assumption 1 is satisfied. Let the global invariant featurizer Φ?g ∈ Rd×d have rank τ > 0, and the
personalized invariant featurizer Φ?i have rank τ+qi where qi > 0 (i ∈ [N ]) and d > maxi∈[N ] qi+τ .
Denote the minimizers of our designed objective by {fθ̂i = Φ̂i · ω̂i}. Then, if there are at least
d− τ + d

τ local datasets in ED lying in a linear general position of degree τ , the following holds on
each client i (i ∈ [N ]):

1. When there are at least d − (τ + qi) + d
τ+qi

training contexts in E itrain lying in a
linear general position of degree τ + qi, with β appropriately chosen, we can guar-
antee that E[Y |Φ̂i(X), e] = E[Y |Φ̂i(X), e′], for all e, e′ ∈ E iall, and the test error
E(X,Y )∼Pe [`(fθ̂i(X), Y )] = minω,Z⊂Φi E(X,Y )∼Pe [`(ω(Z(X)), Y )] for any e ∈ E iall.

2. Otherwise, with β appropriately chosen, we can guarantee that E[Y |Φ̂i(X), e] =

E[Y |Φ̂i(X), e′], for all e, e′ ∈ E iall.

Proof : We denote the minimizer of the objective (5) by

fν? ∈ arg min
ν

N∑
i=1

R(fν ;Di) + λ · ‖∇ω̄|ω̄=1.0R(ω̄ · fν ;Di)‖2,

where fν? := Φν? · ων? .

When there are at least d− τ + d
τ local datasets in ED lying in a linear general position of degree

τ , using Theorem 9 in (Arjovsky et al., 2019) we can conclude that Φν? elicits the global invariant
prefictor fν? = Φν? · ων? for all e ∈ Eall, where E iall ⊂ Eall holds for all i ∈ [N ].

Proof of conclusion 1 Clue: we can prove conclusion 1 by constructing a contradiction.
Firstly, when there are at least d− (τ + qi) + d

τ+qi
training contexts in E itrain lying in a linear general

position of degree τ + qi, we can conclude that Φ̂i elicits the invariant prefictor fθ̂i = Φ̂i · ω̂i for all
e ∈ E iall. For the test error guarantee,
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Suppose there exists a model fθ̄i = Φ̄i · ω̄i that is the minimizer of upper objective (4), but
there isn’t any apppropriate β such that fθ̄i guarantees the test error E(X,Y )∼Pe [`(fθ̄i(X), Y )] =

minω,Z⊂Φi E(X,Y )∼Pe [`(ω(Z(X)), Y )] for any e ∈ E iall.

As regard to the objective (2): minθi
∑Ki
j=1R(fθi ; e

i
j)+λ·‖∇ω̄|ω̄=1.0R(ω̄ · fθi ; eij)‖

2
+β‖θi − ν?‖2.

We know that there always exists an appropriate β makes it equivalent to

min
θi

Ki∑
j=1

R(fθi ; e
i
j) + λ · ‖∇ω̄|ω̄=1.0R(ω̄ · fθi ; eij)‖

2

s.t. ‖θi − ν?‖2 ≤ δ2
d

where δd is a constant. In other word, with appropriate β chosen, fθ̄i = Φ̄i · ω̄i can guarantee
that E(X,Y )∼Pe [`(fθ̄i(X), Y )] is minimized for all e ∈ E iall. This result contradicts the previous
assumption.

Therefore, the conclusion 1 in Theorem 2 is proved.

Proof of conclusion 2 When the training contexts on local client is insufficient, the minimizer of
the objective (4) can necessarily rely on the spurious features. However, with an appropriate β chosen,
the minimizers can be constrained to be fθ̂i = Φ̂i · ω̂i = fν? . It has been proved fν? can guarantee
E[Y |Φν?(X), e] = E[Y |Φν?(X), e′], for all e, e′ ∈ Eall. Because E iall ⊂ Eall holds for all i ∈ [N ],
fν? can naturally guarantee that E[Y |Φν?(X), e] = E[Y |Φν?(X), e′], for all e, e′ ∈ E iall.

Proof ends.

A.4 DETAILED EXPERIMENTAL SETUP

In this chapter, we will provide the detailed experimental setup, including the dataset setup, model
selection and more implementation details.

Dataset setup We give the detailed setup of the adopted datasets in Table 6. For the RC-MNIST
dataset, we use the first 50000 images in the train-set of MNIST LeCun et al. (1998) to constrcut the
train-sets for the clients, and use the other 10000 images in the train-set of MNIST LeCun et al. (1998)
to constrcut the test-sets for the clients. Finally, in every trial, each client has 12500 data instances for
training and 2500 data instances for testing. In the original MNIST dataset, the shape of the images
is 28 ∗ 28. After the construction, the images in the obtained RC-MNIST dataset have the size of
28∗28∗2. To save the computation cost, we downsample the images to 14∗14∗2 before they are input
into the first layer of the neural network. The RC-FMNIST dataset is constructed and processed using
the same strategies as the RC-MNIST dataset. The WaterBird dataset is constructed using the bird
dataset (Caltech-UCSD Birds-200-2011 Wah et al. (2011)) and the background dataset (Places Zhou
et al. (2017)), as first introduced in Sagawa et al. (2019). We adopt the same law as in Sagawa
et al. (2019) to construct our datasets. However, we only use the bird photographs in the train-set of
Caltech-UCSD Birds-200-2011 which contains 5994 instances. For each client, we randomly sample
400 instances from the index range (shown in Table 6) of bird dataset to generate the train-set and 100
instances from the same range to generate the test-set. Besides, all of the corresponding background
photographs are randomly sampled from the background dataset (Places Zhou et al. (2017)) without
replacement.

Model selection For RC-MNIST and RC-FMNIST dataset, we adopt a deep neural network
with two hidden layers (the dimension is 390 and 390 respectively) as the feature extractor and an
subsequent fully-connected layer (the dimension is 390) as the classifier. Besides, after each haidden
layer, there is a ReLU layer in the feature extractor. In the evaluation on WaterBird dataset, we
adopt the standard ResNet-18 He et al. (2016) as learning model. Similarly, the part before the last
fully-connected layer works as the feature extractor and the last fully-connected layer works as the
classifier, and the output dimension of the feature extractor is 512.
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Table 6: The detailed setup of the local datasets
Client 1 Client 2 Client 3 Client 4

RC-MNIST
Train-set petrain = 0.95 petrain = 0.90 petrain = 0.85 petrain = 0.80

Rotated by 0◦ Rotated by 90◦ Rotated by 180◦ Rotated by 270◦

Test-set petest = 0.10 petest = 0.10 petest = 0.10 petest = 0.10
Rotated by 0◦ Rotated by 90◦ Rotated by 180◦ Rotated by 270◦

RC-FMNIST
Train-set petrain = 0.95 petrain = 0.90 petrain = 0.85 petrain = 0.80

Rotated by 0◦ Rotated by 90◦ Rotated by 180◦ Rotated by 270◦

Test-set petest = 0.10 petest = 0.10 petest = 0.10 petest = 0.10
Rotated by 0◦ Rotated by 90◦ Rotated by 180◦ Rotated by 270◦

WaterBird

Train-set
petrain = 0.95 petrain = 0.90 petrain = 0.85 petrain = 0.80
Birds sampled Birds sampled Birds sampled Birds sampled
from [0, 1715] from [1716, 2908] from [2909, 3844] from [3845, 5993]

Test-set
petest = 0.10 petest = 0.10 petest = 0.10 petest = 0.10

Birds sampled Birds sampled Birds sampled Birds sampled
from [0, 1715] from [1716, 2908] from [2909, 3844] from [3845, 5993]

Implementation Besides, the experiments are implemented in PyTorch. We simulate a set of
clients and a centralized server on one deep learning workstation (Intel(R) Core(TM) i9-12900K
CPU @ 3.50GHz with one NVIDIA GeForce RTX 3090 GPU).
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