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Summary
Deep reinforcement learning (RL) has shown remarkable success in complex domains,

however, the inherent black box nature of deep neural network policies raises significant chal-
lenges in understanding and trusting the decision-making processes. While existing explain-
able RL methods provide local insights, they fail to deliver a global understanding of the
model, particularly in high-stakes applications. To overcome this limitation, we propose a
novel model-agnostic framework that bridges the gap between explainability and interpretabil-
ity by leveraging Shapley values to transform complex deep RL policies into transparent repre-
sentations. The proposed approach offers two key contributions: a novel approach employing
Shapley values to policy interpretation beyond local explanations, and a general framework ap-
plicable to off-policy and on-policy algorithms. We evaluate our approach with three existing
deep RL algorithms and validate its performance in three classic control environments. The
results demonstrate that our approach not only preserves the original models’ performance but
also generates more stable interpretable policies.

Contribution(s)
1. This paper presents an novel framework to derive interpretable policies from explainable

methods.
Context: Prior work focused on generate explanation in Reinforcement Learning without
derive interpretable policy from it. (Beechey et al., 2023)

2. This framework generates highly transparent interpretable policies while maintaining model
performance.
Context: It overturns the conventional assumption that there must be a trade-off between
interpretability and performance.

3. This model-agnostic framework is applicable to both off-policy and on-policy reinforcement
learning algorithms
Context: Prior works are mostly model-specific, limiting its ability to generalize across
diverse RL scenarios.
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Abstract
Deep reinforcement learning (RL) has shown remarkable success in complex domains,1
however, the inherent black box nature of deep neural network policies raises signif-2
icant challenges in understanding and trusting the decision-making processes. While3
existing explainable RL methods provide local insights, they fail to deliver a global4
understanding of the model, particularly in high-stakes applications. To overcome this5
limitation, we propose a novel model-agnostic framework that bridges the gap between6
explainability and interpretability by leveraging Shapley values to transform complex7
deep RL policies into transparent representations. The proposed approach offers two8
key contributions: a novel approach employing Shapley values to policy interpretation9
beyond local explanations, and a general framework applicable to off-policy and on-10
policy algorithms. We evaluate our approach with three existing deep RL algorithms11
and validate its performance in three classic control environments. The results demon-12
strate that our approach not only preserves the original models’ performance but also13
generates more stable interpretable policies.14

1 Introduction15

Reinforcement learning (RL) is an important machine learning technique that learns to make deci-16
sions with the best outcomes defined by reward functions (Sutton & Barto, 2018). Recent advances17
in RL have shown remarkable performance when integrating RL with deep learning to solve chal-18
lenging tasks with human-level or superior performance in, e.g., AlphaGo (Silver et al., 2017), Atari19
games (Mnih et al., 2015a), and robotics (Gu et al., 2017). These successes are largely due to the20
powerful function approximation capabilities of deep neural networks (DNNs), which excel at fea-21
ture extraction and generalization. However, the use of DNNs also introduces significant challenges22
as these models are often considered “black boxes", making them difficult to interpret (Zahavy et al.,23
2016). They are often complex to train, computationally expensive, data-hungry, and susceptible to24
biases, unfairness, safety issues, and adversarial attacks (Henderson et al., 2018; Wu et al., 2024;25
Siddique et al., 2020). Thus, an open challenge is to provide quantitative explanations for these26
models such that they can be understood to gain trustworthiness.27

Explainable reinforcement learning (XRL) has become an emerging topic that focuses on addressing28
the aforementioned challenges, aiming at explaining the decision-making processes of RL models29
to human users in high-stakes, real-world applications. XRL employs the concepts of interpretabil-30
ity and explainability, each with a distinct focus. Interpretability refers to the inherent clarity of a31
model’s structure and functioning, often achieved through simpler models like decision trees (Bas-32
tani et al., 2018; Silva et al., 2020a) or linear functions that make a policy “self-explanatory" (Hein33
et al., 2018). On the other hand, explainability is related to the use of external, post-hoc methods34
to provide insights into the behavior of a trained model, aiming to clarify, justify, or rationalize35
its decisions. Examples include employing Shapley values to determine the importance of state36
features (Beechey et al., 2023) and counterfactual states to gain an understanding of agent behav-37
ior (Olson et al., 2021).38
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While explainability can provide valuable insights that build user trust, we argue that in high-stakes39
and real-world applications, explainability alone is insufficient. For instance, Shapley values (Shap-40
ley, 1953)—a well-known explainable model—provide local explanations by assigning numerical41
values that indicate the importance of individual features in specific states. Although such explana-42
tions can help users build trust by aligning with human intuition and prior knowledge when enough43
states are covered, they fail to enable users to fully reproduce or predict agent behavior. This is be-44
cause these local explanations do not provide a comprehensive, global understanding of the model’s45
functionality, leaving critical aspects of the decision-making process in the dark. In contrast, inter-46
pretability offers full transparency and intuitive understanding which is essential for critical appli-47
cations where trust and comprehensibility are essential. However, the trade-off between simplicity48
and performance in interpretable models often results in reduced model performance.49

Despite its limitations, explainability remains a valuable tool for uncovering insights into model50
behavior. It can facilitate the development of interpretable policies by abstracting key information51
from explanations and guiding policy formulation. In this paper, we propose a model-agnostic52
approach to generate interpretable policies by leveraging insights from explainability techniques in53
RL environments. This approach aims at balancing transparency and high performance, ensuring54
that the resulting models are both understandable and effective.55

Contributions. In this paper, we present a novel approach that bridges the gap between explain-56
able and interpretable reinforcement learning. Our main contribution is the development of an ap-57
proach that leverages insights from explainable models to derive interpretable policies. In particular,58
instead of focusing on the local explanations provided by explainable models, the proposed model-59
agnostic approach aims to achieve highly transparent and interpretable policies without sacrificing60
model performance. Additional contributions include the application of the new approach to both61
off-policy and on-policy RL algorithms and the creation of three adaptations to deep RL methods62
that learn interpretable policies using insights from model explanation. Finally, we evaluate the ef-63
fectiveness of our framework in three environments to demonstrate its effectiveness in generating64
interpretable policies.65

2 Related Work66

One popular approach used in explainable artificial intelligence (XAI) is to use Shapley values67
that provide a quantitative measure of the contributions of features to the output (Štrumbelj &68
Kononenko, 2010; 2014). In (Ribeiro et al., 2016), a method, called LIME, was proposed based69
on local surrogate models that approximate the predictions made by the original model. In (Wachter70
et al., 2017), the counterfactual is introduced into XAI by producing a perturbation input to change71
the original prediction to study the intrinsic causality of the model. In (Lundberg & Lee, 2017),72
the idea of SHAP was proposed to unify various existing feature attribution methods under a sin-73
gle theoretical framework based on Shapley values, providing consistent and theoretically sound74
explanations for a wide range of machine learning models.75

Most existing explainable methods in RL adopt similar concepts from deep learning via framing the76
observation as input while the action or reward is the output. In (Beechey et al., 2023), on-manifold77
Shapley values were proposed to explain the value function and policy that offers more realistic and78
accurate explanations for RL agents. In (Olson et al., 2021), the counterfactual state explanations79
were developed to examine the impact of altering a state image in an Atari game to understand how80
these changes influence action selection. As RL possesses some unique challenges, such as sequen-81
tial decision-making under a reward-driven framework, specialized methods have been considered82
for its explanation. For example, in (Juozapaitis et al., 2019), reward decomposition was proposed to83
break down a single reward into multiple meaningful components, providing insights into the factors84
influencing an agent’s action preferences. Moreover, understanding the action selection in certain85
critical states of the entire sequence can enhance user trust (Huang et al., 2018). A summary of86
important yet not similar sets of states (trajectories) can provide a broader and more comprehensive87
view of agent behavior (Amir & Amir, 2018).88
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In contrast to the XRL, research in interpretable RL usually focuses on the transparency of the89
decision-making processes via, e.g., a simple representation of policies that are understandable to90
non-experts. The corresponding studies can be divided into direct and indirect approaches (Glanois91
et al., 2024). The direct approach aims to directly search a policy in the environment using the pol-92
icy deemed interpretable by the designer or user. Examples of the direct methods include the use93
of decision tree (Silva et al., 2020b) or a simple closed-form formula (Hein et al., 2018) to repre-94
sent the policy. The direct approach usually requires a prior expert knowledge for initialization to95
achieve good performance, often for small-scale problems. On the other hand, the indirect approach96
provides more flexibility by employing a two-step process: (1) train a non-interpretable policy with97
efficient RL algorithms, and (2) convert this non-interpretable policy into an interpretable one. For98
instance, Bastani et al. (2018) proposed VIPER, a method to learn high-fidelity decision tree poli-99
cies from original DNN policies. Similarly, Verma et al. (2018) proposed PIRL, a method that100
presents a way to transform the neural network policy into a high-level programming language. Our101
proposed methods can be categorized into indirect interpretable approaches using Shapley values102
to transform original policies into simpler but rigorous closed-form function policies. Distinguish-103
ing ourselves from existing indirect interpretation approaches, we uniquely incorporate the Shapley104
value explanation method to generate more accurate and generalizable interpretable policy without105
relying on predefined interpretable structures.106

3 Background107

3.1 Reinforcement Learning108

In Reinforcement Learning, an agent interacts with its environment, which is modeled as a Markov109
Decision Process (MDP) defined by the tuple (S,A,P, r, γ, d0), where S is the set of states and110
A is the set of possible actions, P : S × A × S → [0, 1] is the transition probability function,111
r : S × A → R is the reward function, γ ∈ [0, 1] is discount factor, and d0 : S → [0, 1] specifies112
the initial state distribution. At time step t, the agent observes the current state st ∈ S and performs113
an action at ∈ A. In response, the environment transitions to a new state st+1 ∼ P(·|st, at) and114
provides a reward rt+1. The agent’s objective is to learn a policy (i.e., strategy) π that maximizes115
the expected return Eπ[Gt], where Gt =

∑∞
n=t γ

nrn+1. In RL, policies can be deterministic π :116
S → A or stochastic π : S × A → [0, 1]. consider an environment with n state features, where117
S = S1 × ...× Sn, and each state can be represented as an ordered set s = {si|si ∈ Si}ni=1. Using118
N = {1, ..., n} to represent the set of all state features, a partial observation of the state can be119
denoted as the ordered set sC = {si|i ∈ C} where C ⊂ N .120

3.2 Shapley Values in Reinforcement Learning121

The Shapley value (Shapley, 1953) is a method from cooperative game theory that distributes credit122
for the total value v(N) earned by a team N among its players. It is defined as123

ϕi(v) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

(n!)
[v(C ∪ {i})− v(C)], (1)

where v(C) represents the value generated by a coalition of players C. The Shapley value ϕi(v) is124
the average marginal contribution of player i when added to all possible coalitions C.125

In RL, the state features {s1, ..., sn} can be treated as players, and the policy output π(s) can be126
viewed as the total value generated by their contributions. To compute the Shapley values of these127
players, it is essential to define a characteristic function v(C) that reflects the model’s output for a128
coalition of features sC ⊆ s1, . . . , sn.129

As the trained policy is undefined for partial input sC , it is important to correctly define the charac-130
teristic function for accurate Shapley values calculation. Following the on-manifold characteristic131
value function (Frye et al., 2021; Beechey et al., 2023), we account for feature correlations rather132
than assuming independence.133
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For a deterministic policy π : S → A, which outputs actions, the characteristic function is defined134
as135

vπ(C) := πC(s) =
∑
s′∈S

pπ(s′|sc)π(s′), (2)

where s′ = sC ∪ s′
C̄

and pπ(s′|sC) is the probability of being in state s′ given the limited state136
features sC is observed following policy π. Similarly, for a stochastic policy π : S × A → [0, 1],137
which outputs action probabilities, the characteristic function is defined as138

vπ(C) := πC(a|s) =
∑
s′∈S

pπ(s′|sc)π(a|s′). (3)

4 Method139

In this section, we present our proposed methods in two main parts. First, Shapley vectors analysis140
focuses on extracting and capturing the underneath patterns provided by Shapley values. Secondly,141
interpretable policy formulation focuses on utilizing these patterns to construct interpretable policies142
with comparable performance. The complete algorithm is provided in Algorithm 1.143

4.1 Shapley Vectors Analysis144

Given a well-trained policy π(s) (deterministic) or π(a|s) (stochastic) in RL, Shapley values provide145
a way to explain the policy’s behavior by quantifying the contributions of state features to the RL146
policy. Following the Shapley values methods (Beechey et al., 2023), we substitute (2) or (3) into147
the Shapley value formula, namely, (1), to compute ϕi(v

π), i.e., the contribution of feature i to the148
policy under state s.149

The computed Shapley values ϕi(v
π) provide insight into how each state feature i influences action150

selection. For example, in an environment with two discrete actions, a1 = −1 and a2 = 1. After151
computing the Shapley value ϕi(v

π), a positive ϕi(v
π) indicates that the feature i encourages the152

selection of a2, while a negative value suggests a preference for a1. Notably, Shapley values gen-153
eralize across features; state features contributing equally to a decision will yield identical values,154
revealing symmetry in policy reasoning. In this paper, we take this property of Shapley values as155
their generalization ability.156

To exploit this generalization, we represent each state s as a Shapley vector composed of contribu-157
tions from all features given by158

Φs = (ϕ1, ..., ϕn). (4)

This enables us to cluster the states with similar action selection behavior which further gives in-159
sights into action-group boundaries.160

4.1.1 Action K-Means Clustering.161

To cluster states based on their Shapley vectors, we employ action K-means clustering. Given a162
set of states (s1, s2, ..., sm), where each state is represented by a n-dimensional Shapley vector163
(ϕ1, ϕ2, ..., ϕn), the algorithm partitions these states into k clusters A = A1, A2, . . . , Ak, where164
k is the number of discrete actions in the environment. The clustering objective is to minimize165
inter-cluster variance given by166

argmin
A

k∑
i=1

∑
Φs∈Ai

∥Φs − µi∥2 , (5)

where µi is the centroid of points in Ai, usually represented as µi =
1

|Ai|
∑

Φs∈Ai
Φs.167
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Algorithm 1 Shapley Vector Decision Boundary Algorithm
Input: Shapley vectors (Φs1 ,Φs2 , ...,Φsm), Original states (s1, s2, ..., sm)
Parameter: Action numbers k
Output: Decision Boundary functions {fij} for each pair of actions (i, j)

1: Initialize empty set of boundary points B = {}
2: A = {A1, ..., Ak} ← Action KMeans({Φsi}mi=1, k)
3: for i = 1 to k do
4: µi ← 1

|Ai|
∑

Φ∈Ai
Φ

5: end for
6: for i = 1 to k − 1 do
7: for j = i+ 1 to k do
8: Xij ← argmin

X
(||X − µi||2 − ||X − µj ||2)

9: B ← B ∪ {Xij}
10: sij ← ϕ−1(Xij)
11: end for
12: end for
13: for each pair of clusters (i, j) do
14: fij(s)← Regression(sij)
15: end for
16: return {fij}

4.1.2 Boundary Point Identification.168

Once clusters are formed, the boundaries between action regions can be identified using boundary169
points. A boundary point X exists at the interface of two clusters Ai and Aj , where the policy is170
equally likely to select either action. This condition arises when the policy is not sure which action171
to take at the current state, and therefore can serve as a boundary decision. Formally, X is found by172
minimizing the difference between distances to cluster centroids173

argmin
X

(
||X − µi||2 − ||X − µj ||2

)
, (6)

where µi and µj are the centroid of points in Ai and Aj , respectively.174

Property 1 (Existence and Uniqueness of Decision Boundaries). For a stationary deterministic175
policy π within an MDP, characterized by a fixed state distribution dπ(s), there exists a unique176
boundary surface in the Shapley vector space such that177

1. the boundary separates the Shapley vectors associated with distinct discrete actions; and178

2. the Euclidean distance from any action’s Shapley vector to this boundary remains constant across179
all states under the stationary policy.180

Proof. The efficiency property of Shapley values ensures that the sum of contributions from all181
features equals the difference between the policy’s action value for state s and the expected action182
value across states, i.e.,183

n∑
i=1

ϕi = π(s)− ES(π(S)). (7)

For states sp and sq that lead to different action selection π(sp) = ap and π(sq) = aq , where184
ap ̸= aq , the difference between their action values defines a gap given by185

|π(sp)− π(sq)| = |ap − aq| = ∆a. (8)
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Given that the policy π is stationary with a fixed state distribution µ(s), the expected action value186
converges to a fixed scalar value given by187

ES∼µ[π(S)] =
1

|S|
∑
s∈S

π(s) = ā. (9)

By substituting (8) and (9) into the efficiency property (7), the Shapley value that sums for all states188
satisfy a gap189 ∣∣∣∣∣

n∑
i=1

ϕi,sp −
n∑

i=1

ϕi,sq

∣∣∣∣∣ = ∆a,∀sp, sq ∈ S, (10)

where π(sp) = ap ̸= π(sq) = aq . This implies that the gap ∆a exists between all states with190
different action selections. Consequently, we defined the boundary surface B in the Shapley vector191
space as192

B =

{
v⃗ ∈ Rn

∣∣∣∣∣
n∑

i=1

vi = ā+
∆a

2

}
. (11)

The distance from any Shapley vector plane Φ to this boundary surface B is given by193

dist(Φs,B) =
∑n

i=1 ϕi −
∑n

i=1 vi√
n

. (12)

Therefore, for all states, sp, sq ∈ S, the distances from their Shapley vectors to the boundary remain194
constant:195

dist(Φsp ,B) = dist(Φsq ,B) (13)

This proves the existence and uniqueness of the decision boundary in the Shapley vector space.196

The constant distance between the boundary surface and Shapley vector plane lays the foundation197
for an interpretable policy that maps each action region to its corresponding state region.198

4.2 Interpretable Policy Formulation199

With the decision boundary point’s identification in the Shapley vector space, the next step is to map200
it back to the original state space to construct an interpretable policy.201

4.2.1 Inverse Shapley Values.202

To reconstruct the decision boundary in the state space, we model it as the Inverse Shapley Value203
Problem ϕ−1

i : ϕi(v)→ {i}, where the goal is to recover the original state s corresponding to a given204
Shapley vector Φs. We address this problem by systematically storing the original states with their205
corresponding Shapley value vectors, enabling efficient inverse function operations. It allows us to206
map Shapley value vectors back to their original states directly, facilitating precise reconstruction of207
the decision boundary.208

4.2.2 Decision Boundary Regression.209

After the boundary state points sij are discovered using Shapley values, the decision can be drawn210
accordingly. While a variety of regression techniques can be used, we use linear regression due to211
its simplicity and interpretability. The resulting boundary functions fij define the action regions.212

This policy is then reformulated by assigning actions based on the regions characterized by boundary213
functions. Specifically, for a given state s, the action a is determined by the cluster in which s resides214
relative to fij .215
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Figure 1: Visualization of Shapley values and interpretable policy formulation in the CartPole. The
first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions. (Due to the limitations of dimensional plotting, only the first three
features x, ẋ, θ are visualized in the figure)

Algorithm Decision Boundary

DQN f01 = −0.5x− 0.687ẋ− 1.09θ − θ̇ − 0.018

PPO f01 = −0.193x− 0.523ẋ− θ − θ̇ + 0.0014

A2C f01 = −0.4875x− 0.9811ẋ− 1.09θ − θ̇

Table 1: CartPole interpretable policy boundary

5 Experiments216

To evaluate the effectiveness of our proposed method, we performed experiments across three classi-217
cal control environments from Gymnasium (Towers et al., 2024): CartPole and MountainCar. These218
environments were specifically chosen as they represent an important control problem where policy219
interpretability is crucial for real-world deployment. To demonstrate the generality of our frame-220
work, we applied it to both off-policy and on-policy deep RL algorithms. Specifically, we applied221
it to Deep Q-Network (DQN) (Mnih et al., 2015b) as an off-policy method, and Advantage Actor-222
Critic (A2C) (Mnih et al., 2016) and Proximal Policy Optimization (PPO) (Schulman et al., 2017)223
as on-policy methods. Our experimental results demonstrate that the interpretable policies gener-224
ated by our method perform competitively to those of deep RL algorithms, and also exhibit better225
stability and broad applicability.226

5.1 CartPole227

The CartPole environment is a classic control problem in which an inverted pendulum is placed on228
the movable cart. The state space in this environment consists of four features: position of cart x,229
velocity of cart ẋ, angle between the pendulum and the vertical θ, and angular velocity of pendulum230
θ̇. The action space includes two discrete actions, where the first action 0 means push the cart to the231
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Figure 2: Performances of the interpretable policy with original algorithms—DQN, PPO, A2C in
different environments.

left, and the second action 1 means push to the right. A reward of +1 is assigned for each timestep232
the pole remains upright. The goal in this environment is to balance the pendulum by applying233
forces in the left and right direction on the cart.234

As explained in the method (Section 4), our goal is to obtain an interpretable policy for this problem.235
To achieve this, we first train three deep RL methods, namely DQN, PPO, and A2C to obtain the236
optimal policies. Once the models were trained, we evaluated their performance in the CartPole237
environment and sampled state distributions from 100 trajectories for each algorithm. For each238
sampled state, we computed the Shapley values of its features using Equation (1). With this step, we239
construct a Shapley value vector Φs that represents the contribution of state features to this policy’s240
decision. The first row of Figure 1, illustrates the Shapley value vectors for DQN, PPO, and A2C,241
respectively. Using these Shapley values, we performed k-means clustering on the action space to242
identify cluster centroids, where each cluster represents a distinct action region. Each cluster is243
depicted in a different color. We then identified boundary points, which are shown in red in the first244
row of Figure 1. These boundary points indicate the transition between action regions.245

Next, we reconstructed the decision boundary in the original state space using the boundary points246
identified in the Shapley vector space. The second row of Figure 1 shows these boundaries in247
the state space for each algorithm. Finally, as described in the methodology, we applied linear248
regression to derive an interpretable policy fij . The interpretable policies for DQN, PPO, and A2C249
are summarized in Table 1. These policies are obtained through their boundaries which separate the250
states into different action selection regions. In other words, the decision rule for these policies is:251
if f01 > 0, select action 0; otherwise, select action 1. This interpretable policy framework is fully252
transparent, enabling reproducibility and mitigating risks in high-stakes real-world applications.253

To evaluate the performance of the interpretable policies, we tested them alongside the original deep254
RL policies over 10 episodes. The results, shown in Figure 2a, demonstrate that the interpretable255
policies consistently achieved the maximum reward of 500 across all algorithms. This indicates that256
our method preserves the performance of the original deep RL algorithms while providing inter-257
pretability. These results also highlight the generality and model-agnostic nature of the proposed258
framework.259

5.2 MountainCar260

The MountainCar environment is another classic control problem where a car is placed at the bottom261
of a sinusoidal valley. The state space for this environment consists of two features: car position262
along the x-axis x and the velocity of the car ẋ. The actions space contains two discrete actions:263
action 0 applies left acceleration on the car and action 1 applies right acceleration on the car. The264
goal of this environment is to accelerate the car to reach the goal state on top of the right hill. A265
reward of −1 is assigned for each timestep as punishment if the car fails to reach the goal state.266

Following the proposed method (section 4), we perform the Shapley vectors analysis in three trained267
deep RL methods DQN, PPO, and A2C in the MountainCar environment. The result is shown in268
the first row of Figure 3. Each cluster represents a distinct action region, distinguished by a unique269
color and boundary points are highlighted in red. By mapping these boundary points back to the270
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Figure 3: Visualization of Shapley values and interpretable policy formulation in the MountainCar.
The first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions.

Algorithm Decision Boundary

DQN f01 = 0.013x− ẋ+ 0.0033

PPO f01 = 0.35x− ẋ− 0.3

A2C f01 = 0.003x− ẋ− 0.12

Table 2: MountainCar interpretable policy boundary

original state space, we constructed the decision boundaries using linear regression, illustrated in271
the second row of Figure 3 as blue lines. The detailed interpretable policies for DQN, PPO, and272
A2C are in Table 2 and the decision rule is straightforward: when f01 > 0, action 0 is chosen,273
otherwise, action 1 is chosen.274

Performance of the interpretable policies alongside the original algorithms was evaluated over 10275
episodes, with results presented in Figure 2b. Interestingly, interpretable policies derived from PPO276
and A2C surprisingly outperformed their original algorithms, whereas the interpretable policy gen-277
erated from DQN experienced a slight performance reduction. A notable observation is that all278
interpretable policies achieved significantly smaller standard deviations compared to their original279
counterparts, indicating more stable policy performance. This characteristic is particularly valuable280
in real-world applications where consistent and predictable behavior is crucial.281

5.3 Acrobot282

The Acrobot environment is a challenging classic control problem in which a two-link pendulum has283
its second joint actuated. The state space in this environment consists of six features: cosine of the284
first joint angle cos(θ1), sine of the first joint angle sin(θ1), cosine of the second joint angle cos(θ2),285
sine of the second joint angle sin(θ2), angular velocity of the first joint θ̇1, and angular velocity of286
the second joint θ̇2. The action space includes three discrete actions: action 0 for a torque of -1,287
action 1 for a torque of 0, and action 2 for a torque of +1. A reward of -1 is assigned for each288
timestep until the goal is achieved. The goal in this environment is to swing the end-effector of the289
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Shapley
Vectors
Analysis

Interpretable
Policy

Formulation

A2CPPODQN

Figure 4: Visualization of Shapley values and interpretable policy formulation in the Acrobot. The
first row depicts the Shapley value vectors for DQN, PPO, and A2C, with clusters represented in
different colors and boundary points highlighted in red. The second row illustrates the corresponding
interpretable policy in the original state space, showing decision boundaries that separate the state
space into distinct action regions (Due to the limitations of dimensional plotting, only the first three
features cos θ1, sin θ1, θ̇2 are visualized in the figure.).

Algorithm Decision Boundary

DQN f01 = 1.79cosθ1 − 1.86sinθ1 − 1.46cosθ2 + 0.28sinθ2 − 0.69θ̇1 − θ̇2 + 0.44

PPO f01 = 0.06cosθ1 − 0.43sinθ1 − 0.04cosθ2 − 0.01sinθ2 − 0.36θ̇1 − θ̇2 − 0.01

A2C f01 = 0.03cosθ1 − 0.19sinθ1 − 0.01cosθ2 − 0.54sinθ2 − 1.15θ̇1 − θ̇2 + 0.01

Table 3: Acrobot interpretable policy boundary

pendulum to a height where the condition− cos(θ1)−cos(θ1+θ2) > 1.0 is satisfied, at which point290
the episode terminates; otherwise, the episode ends after 500 steps.291

Shapley vectors analysis is performed on three trained deep RL methods DQN, PPO and A2C in the292
Acrobot environment to find the action clusters, which is shown in the first row of Figure 4. We293
then constructed the decision boundary using linear regression, represented as the hyperplanes in294
the second row of Figure 4. The detailed interpretable policies are in Table 3 and the decision rule295
is straightforward: when f01 > 0, action 0 is chosen, otherwise, action 1 is chosen.296

Performance of the interpretable policies and original algorithms is presented in Figure 2c. Inter-297
pretable policies derived from PPO and A2C outperformed the original algorithms with more stable298
performance across the 10 episodes evaluations, while interpretable policy obtained from DQN ex-299
perienced a slight performance reduction.300

5.4 Fidelity Score301

To evaluate the behavior difference between interpretable policy and original policy, we introduce a302
straightforward fidelity function to quantify it:303

F (πinterp, πorig) =
1

|S|
∑
s∈S

1{πinterp(s) = πorig(s)}, (14)
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where the πinterp is the interpretable policy, πorig represents the original policy and 1{·} is the304
indicator function. This fidelity score is equivalent to the accuracy when treating the original policy305
as the ground truth.306

Fidelity Score (%) A2C PPO DQN

Cartpole 76.75± 1.70 83.70± 0.53 50.08± 0.01

MountainCar 98.14± 0.30 98.75± 0.03 89.47± 0.25

Acrobot 99.15± 0.06 96.93± 0.09 78.62± 0.39

Table 4: Fidelity scores by environments and algorithms

The fidelity scores across all environments and algorithms are shown in Table 4. The fidelity scores307
highly correlated with the performance. For Cartpole environment, its intrinsic simplicity lowers the308
requirement of fidelity scores, which means low fidelity score can still yield high performance. For309
MountainCar and Acrobot, due to high complexity in these environment, only high fidelity scores310
can obtain high performance. In other words, interpretable policies derived from A2C and PPO311
perform better than that derived from DQN.312

6 Conclusions and Future Work313

In this paper, we formalized and addressed the unsolved problem of extracting interpretable policies314
from explainable methods in RL. We propose a novel approach that leverages Shapley values to315
generate transparent and interpretable policies for both off-policy and on-policy deep RL algorithms.316
Through comprehensive experiments conducted in three classic control environments using three317
deep RL algorithms, we demonstrated that our proposed method achieves comparable performance318
while generating interpretable and stable policies.319

Potential future work includes: (1) extending the current approach to continuous action spaces by320
discretizing the action space, (2) conducting a scalability study of the proposed approach in more321
complex environments with high-dimensional state feature spaces, and (3) exploring performance322
differences across various regression methods.323
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