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ABSTRACT

The recent availability of Electronic Health Records (EHR) has allowed for the
development of algorithms predicting inpatient risk of deterioration and trajectory
evolution. However, prediction of disease progression with EHR is challenging
since these data are sparse, heterogeneous, multi-dimensional, and multi-modal
time-series. As such, clustering is used to identify similar groups within the pa-
tient cohort to improve prediction. Current models have shown some success in
obtaining cluster representation of patient trajectories, however, they i) fail to ob-
tain clinical interpretability for each cluster, and ii) struggle to learn meaningful
cluster numbers in the context of the imbalanced distribution of disease outcomes.
We propose a supervised deep learning model to cluster EHR data based on the
identification of clinically understandable phenotypes with regard to both outcome
prediction and patient trajectory. We introduce novel loss functions to address
the problems of class imbalance and cluster collapse, and furthermore propose a
feature-time attention mechanism to identify cluster-based phenotype importance
across time and feature dimensions. We tested our model in over 100,000 unique
trajectories from hospitalised patients with Type-II respiratory failure to predict
four different outcomes. Our model yielded added interpretability to cluster for-
mation and outperformed benchmarks by at least 5% in mean AUROC.

1 INTRODUCTION

Chronic conditions such as Chronic Obstructive Pulmonary Disease (COPD) and Cardiovascular
Disease (CVD) describe a broad spectrum of medical ailments, and affect a significant percentage
of the overall population (Adeloye et al., 2015). Such diseases are characterized by the existence
of multiple distinct patient subgroups, largely distinguished by differences in pathology and in the
response to different treatments and medical interventions Turner et al. (2015); Vogelmeier et al.
(2018). Exacerbation of COPD, a condition of respiratory failure, can result in emergency hospital
admission and mortality if it is not well treated and managed. Early identification of COPD patients’
subgroups is therefore of high medical importance and relevance. EHR time-series data are typically
used to determine clinically relevant COPD inpatient subgroups, and have been applied to detect risk
of deterioration (Pikoula et al., 2019).

However, modelling disease progression and risk prediction is challenging due to the extreme data
heterogeneity nature of EHRs. Firstly, EHR data contains a mixture of demographic or static vari-
ables (i.e. time independent such as age and sex), and multi-dimensional time-series (e.g Heart Rate,
HR, and laboratory measurements, such as blood tests). Secondly, EHR time-series are multi-modal
as different features are collected from different devices, representing distinct clinical properties of
relevance. Similarly, time-series features are sampled at different times and have low and distinct
sampling rates, as well as different missing value properties. Furthermore, each feature is associated
with different noise and evolution patterns.

Recent advances in deep learning (DL) approaches have shown promising results in EHR modelling
due to their capacity to handle complex data (Rajkomar et al., 2018). Nonetheless, DL approaches
lack relevant interpretability frameworks to be scaled and applied in hospital settings. Several such
models have since been proposed to tackle this issue (Mayhew et al., 2018), however, most of them
focus on a subset of EHR features (usually vital signs only) and fail to provide a clinically-focused
phenotypic analysis of learnt patient sub-groups (via clustering).
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This work builds on previous research in literature to introduce a cluster-based feature-time attention
mechanism to predict patient outcomes based on EHR data. Our method also leverages phenotypic
information to aid in clinical interpretability, not only making use of demographics and vital-signs
information but also of relevant laboratory measurements (all present in the EHR) to provide a more
complete patient physiological status. Our contributions include the following:

• An end-to-end DL supervised model to cluster EHR patient data based on the identification
of clinically understandable cluster phenotypes with regard to both outcome prediction and
patient trajectory in a multi-class setting;

• A weighted loss to address data imbalance for both tasks of clustering and prediction, a
common issue in the medical domain;

• The incorporation of a novel loss mechanism in the model, to address the issue of cluster
collapse and promote sample assignment to all available clusters;

• Finally, the inclusion of a novel interpretability framework, derived from a cluster-based
feature-time attention layer, aiming to identify relevant timestamps and feature variables to
represent the patient physiology, cluster assignment and, ultimately, outcome prediction.

This paper is structured as follows. In Section 2, we describe previous research in EHR time-series
modelling, clustering and attention methods. Section 3 introduces the dataset used for analysis and
provides description of the proposed model. The experimental setup and results of our analysis are
presented in Section 4 and discussion takes place in Section 5. Finally, concluding remarks and
future work are available in Section 6.

2 RELATED WORK

EHR data comprise complex time-series data, being high-dimensional, multi-modal and heteroge-
neous, and thus presenting challenges when used in machine learning models (Keogh & Kasetty
(2003); Rani & Sikka (2012)). An important goal in a medical setting is to identify phenotypically
separable clusters with distinct phenotypic profiles (which we denote as phenotypic clustering here-
after). For the purpose of this work, cluster phenotypes result from the combination of two distinct
components: a) the evolution profile of patient trajectories’ within the cluster, and b) the character-
isation of the cluster with regards to clinical variables of interest. The latter may include features
not used for clustering and may provide information about the underlying or future health status.
Traditional clustering models such as K-Means or hierarchical clustering have been shown to fail
to capture the existing time-dependent feature relationships. As such, variants have been proposed
to mitigate this problem. A temporal version of the K-Means algorithm, Time-Series K-Means
(TSKM, Tavenard et al. (2020)), models the distance between time-series of different datapoints,
using the Euclidean distance (which is equivalent to considering all temporal observations as an
independent feature value for the corresponding patient admission), or time-series alignment strate-
gies such as Dynamic-Time Warping (DTW, Berndt & Clifford (1994)) and soft-DTW (Cuturi &
Blondel (2017)).

Recent DL architectures, ranging from Auto-Encoders (AE, Ma et al. (2019)), Convolutional Neural
Networks (CNN, Munir et al. (2018)) and others, have shown great promise when applied to time-
series data across a variety of domains. Fortuin et al. (2019) proposed a Self-Organising Map - Varia-
tional Auto-Encoder (SOM-VAE), is a state-of-the-art, unsupervised, DL clustering algorithm which
extends a variational auto-encoder architecture (Kingma & Welling, 2013) for observation learning
and representation, through the addition of a Markov model (Gagniuc, 2017), to infer temporal evo-
lution within the latent space. Clustering is performed in the low dimensional latent space through
the use of self-organising maps (Kohonen, 1982) to obtain a discrete, topologically-interpretable
latent representation of the learnt clusters. In a supervised setting, AC-TPC (Lee & Van Der Schaar,
2020) serves as the current state-of-the-art for identifying phenotypically separable clusters in pa-
tient trajectories in EHR data. AC-TPC maps EHR data into a latent space via an encoder, and uses
an actor-critic network (Konda & Tsitsiklis, 2000) which leverages clinical outcomes to aid in clus-
ter formation and obtaining cluster phenotypes. Neither SOM-VAE and AC-TPC provide clinically
meaningful interpretation of feature-time importance or outcome of interest.
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Attention mechanisms have recently been proposed to provide greater interpretability to Recurrent
Neural Networks (RNN) and to aid in dealing with long-term dependencies (Vaswani et al., 2017; Xu
et al., 2015), and have also been used in modelling EHR time-series (Schwab et al., 2017; Shashiku-
mar et al., 2018). RETAIN (Choi et al., 2016) proposes a two-level reverse attention mechanism to
mimic physician’s decision process and predict a future diagnosis. In other recent works, attention
mechanisms based on bi-directional RNN and CNN outperformed standard classification models
in predicting high risk vascular diseases with the addition of medication information as input data
(Kim et al., 2017). A drawback of such attention mechanisms is the focus on temporal interpretabil-
ity only, and inability to look at individual features, which is key in a medical setting. To solve this
issue, Shamout et al. (2019) considered independent RNN per feature, with a concatenation of the
resulting latent vectors. However, the latter does not allow the joint modelling across both feature
and time dimensions. Alternatively, Kaji et al. (2019); Gandin et al. (2021) proposed learning atten-
tion weights directly on the original inputs, prior to being transformed by a RNN, which does not
allow modelling of the resulting latent representations. To the best of our knowledge, no existing
models have been proposed that jointly leverage both feature and time dimensions (feature-time) to
determine clinical observation relevance on clustered EHR data.

3 METHODS

3.1 DATASET AND PRE-PROCESSING

Our dataset was retrieved from a retrospective database of routinely collected observations from
concluded hospital admissions between March 2014 and March 2018 (the HAVEN project, REC
reference: 16/SC/0264 and Confidential Advisory Group reference 08/02/1394). The database in-
cludes EHR measurements of adult patients admitted to four hospitals from the Oxford University
Hospitals NHS Foundation Trust. Note that the HAVEN dataset does not include data from Inten-
sive Care Units (ICU), and we have excluded observations taken in the Emergency Department. Key
characteristics of HAVEN cohort data include a) heterogeneity, b) multi-modality, and difference in:
c) noise distributions, d) sampling rates, e) missing values, etc. Such properties are common across
EHR settings, and are challenging with respect to learning useful representations and predictions.

We used the protocol defined in Pimentel et al. (2019) to subset the cohort to those patients at risk of
developing Type-II Respiratory Failure (T2RF) in hospital (a diagram of the data selection steps can
be found in Figure A.1 in the Appendix). Four patient outcomes were considered in our analysis: i)
no event during hospital stay, leading to successful discharge from the hospital, or the first instance
of one of three possible events, ii) unplanned entry to ICU, iii) cardiac arrest (also named ”Cardiac”
hereafter) and iv) death. Outcome groups are not clearly separable (see Tables A.2, A.3 in the
Appendix), so patient clusters will naturally contain a mix of different admission outcomes. In
this setting, the clinically relevant component of a cluster phenotype (henceforth denoted as cluster
outcome propensity or cluster outcome) is represented as a categorical distribution indicating the
corresponding propensity for cluster-assigned patients to each corresponding outcome.

For each admission, observations were grouped according to mean window observation value into
4 hour blocks based on the time to outcome (discharge in the case of no event during stay) - only
observations within 24 and 72 hours before the outcome were considered. This time window was se-
lected based on those traditionally used for validating Early Warning Score (EWS) systems (baseline
models used by UK NHS staff to track inpatient physiology, (Royal College of Physicians, 2017)
and clinical input, such that the target phenotype represents the patient status in the subsequent 24
hours. Features were transformed according to min-max normalization due to skewness and het-
erogeneity in their distributions. Patient admissions were randomly split into train, validation and
test sets. Missing values were imputed based on the previously observed time block - all remaining
missing observations were imputed according to the feature median from the aggregated validation
and test data (see Section 4 for description of train-test data split). Imputed values were flagged in a
three-dimensional mask matrix.

After processing, input data contained over 100,000 unique patient trajectories corresponding to
4,266 unique patient admissions (only last patients admissions were considered in our analysis).
Original trajectories for the patient cohort are shown in the Appendix in Figures A.4, A.5, A.6
for different variables/features. A lack of clear outcome group separability can be observed across
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temporal and static variables. Furthermore, we note the high degree of imbalance in the data -
admissions with no event account for over 86.8% of the total number of admissions, while event
classes correspond to 10.3% Death, 1.8% ICU and 1.1% Cardiac.

3.2 PROPOSED MODEL

We propose a novel model, which we denote by Cluster-bAsed iMportancE Learning fOr Time-
series (CAMELOT). Our proposed methodology is displayed in Figure 11. Our model builds on
previous literature on 3 key items: a) a modified loss function to target the multi-class imbalance,
b) a novel loss function to ensure cluster assignment and phenotype are representative, and c) a
novel feature-time attention-level framework to boost representation and introduce feature-time in-
terpretability for cluster assignment.
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Figure 1: Diagram of proposed model. MLP - Multilayer Perceptron neural network blocks; RNN - Recurrent
Neural Network.

Let N denote the number of patients and Df the number of input features. Input data consists of
a set of patient trajectories X = {{xn,t}Tn

t=1}Nn=1, where Tn is the maximum number of temporal
observations for patient n, and a set of patient outcomes Y = {yn}Nn=1. Input trajectory data for
the n-th patient is represented as Xn = [xn,1, ...,xn,Tn

], where each xn,t ∈ RDf is referred to as
an observation (vector), with a maximum of observed Df feature values. The corresponding patient
outcome is a one-hot encoded vector yn ∈ R4 (more generally, the dimension of yn equals to the
number of possible outcomes).

Our DL model can be decomposed into 3 neural network blocks: an Encoder, Identifier and Predic-
tor. We refer the action of each network respectively as E, I and P (for example, I(x) denotes the
output of the Identifier given some input vector x). Both the Identifier and Predictor are Multilayer
Perceptrons (MLP), networks of stacked feed-forward dense layers. On the other hand, the Encoder
block can be further sub-divided into a) a stack of RNN layers and b) our proposed custom attention
layer (see Section 3.3 for further details). Separately, we also consider a set of trainable cluster
representation vectors, C = {c1, ..., cK}. We assign the outcome for cluster i as P (ci).

A model call is as follows: Given the n-th patient input trajectory data Xn, the Encoder network
returns a latent representation zn := E(Xn) ∈ Rl. Consequently, the Identifier network computes
cluster assignment probabilities, πn := I(zn) ∈ RK . Each element of πn, πi

n, represents the
probability assignment of zn to cluster i, given a total of K clusters. A cluster, knsamp is selected
according to categorical sampling (knsamp ∼ Cat(πn)), and the corresponding cluster representation,
cnsamp := ckn

samp
is then selected from C. The output of the model is ypred := P (cnsamp) ∈ R4. We note

that knsamp is only sampled during a training phase; at prediction stage, cluster selection follows the
equation knpred = argmax

i=1,...,K
πi
n.

3.3 ENCODER NETWORK AND A CUSTOM ATTENTION LAYER

The diagram of our proposed Encoder network is presented in Figure 2. The Encoder contains (i)
a Recurrent Neural Network (RNN) block of stacked Long Short-Term Memory (LSTM) layers,
and (ii) a customised attention layer, which computes a latent representation by comparing input
data with the sequence of output states from the RNN block. We use the same notation as above,

1code will be shared online after review
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Figure 2: Diagram of the Encoder network composed of an LSTM Encoder and a custom attention layer.

and write the sequence of output states of the final LSTM layer as on,1, ...,on,Tn
, with on,i ∈ Rl.

Theoretically, each on,t corresponds to a representative summary of input patient information up
until time t. We propose to approximate on,t as a linear combination of latent representations of
each individual feature, thereby allowing the separation of output states into contributions from
each feature. Note that it is important feature transformations be time-independent, to avoid over-
parametrising the model, over-fitting and ensure feature representation maps are similar across time.

Our attention layer behaves as a set of Df feed-forward neural network layers, U1, ...,UDf
, jointly

represented by: (i) a matrix of learnable kernel weights D ∈ Rl×Df
. We write D = [D1, ...,DDf

];
(ii) a matrix of learnable bias vectors B ∈ Rl×Df

. Similarly, we can write B = [B1, ...,BDf
]; and

(iii) an activation function, σ which matches the output activation of the RNN block.

Input data for patient n, Xn is fed as input to the RNN block, which outputs a sequence of latent
output states (on,t)

Tn
t=1. For t = 1, ..., Tn, we compute Df feature representations in latent space as:

Rn,t := σ(D ⊙ xn,t +B) (1)

where Rn,t = [R1
n,t, ...,R

Df

n,t ] is our collection of feature representations, σ is applied element-wise
and A := D ⊙ xn,t is a matrix satisfying Ai,j = Di,j(xn,t)j . Equivalently, Ri

n,t is the output of
a dense layer, Ui with kernel Di, bias Bi, activation σ and input (xn,t)i. We approximate on,t ≈∑Df

i=1 α
i
tR

i
n,t = Rn,tαt. This approximation is minimised following a least squares criterion,

which has a well-known solution, α̂t, and corresponding optimal approximation ôn,t.

Given, ôn,t, a similar procedure is used to compute a context vector as z :=
∑

t βtôn,t, where
weights β are learned to provide a more representative context vector.

3.4 ATTENTION MAP VISUALISATION

Given cluster representation vectors, ck, we can compute a cluster-wise feature-time attention visu-
alisation map as follows. First, we normalise feature-weights α̂t according to a softmax function,
st = σ(α̂t) ∈ RDf , where σ is the softmax function: σ(x) = exp |x|

∥ exp |x|∥1
. Secondly, we compute

cluster-wise weights, γk
t according to a least-square approximation of ck ≈

∑Tn

t=1 ôn,tγ
k
n,t, and

solved as before. We similarly normalise γk
n,t to obtain cluster temporal scores, ekn,t = σ(γk

n,t).
Finally, we can compute K scoring matrices, M1

n, ...,M
K
n ∈ RTn×Df

:
(
Mk

n

)
t,f

= ekn,ts
f
t . Note

that: ∥Mk
n∥1 =

∑
t e

k
n,t

∑
f s

f
t =

∑
t e

k
n,t = 1. Given that Matrices Mk

n are normalised, they may
be consequently, visualised as a normalised feature-time map for cluster assignment relevance and
provide further model interpretability.
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3.5 LOSS OPTIMISATION

The model is optimised through consideration of three distinct loss functions. We introduce a
weighted cross-entropy loss function:

Lpred(ytrue, ypred) = −
C∑

c=1

wcy
c
true log

(
ycpred

)
= −wc′ log(ypred)c′ (2)

where c′ is the true outcome for a particular patient. We propose inversely proportional normalised
weights:

∑C
c=1 wc = 1 and wc is inversely proportional to the class distribution, i.e., wc ∝ N

Nc
with

N being the number of patients and Nc being the number of patients with outcome label c. Class
weighting penalises misclassification more heavily on less sampled classes.

We also propose a novel distribution loss function, Ldist(π). We define the average cluster prob-
ability of assignment as πC := 1

N

∑
n πn. Then we introduce Ldist(π) = −H(πC), where H

denotes entropy. Note that Ldist is minimised when πC is uniform, ensuring all clusters are ’ex-
plored’ and have comparable number of samples. While clusters should not necessarily be assigned
the same number of samples, this loss helps to overcome a concern of cluster collapse, where clus-
ters do not separate and samples are assigned to a very small number of non-representative clus-
ters. Finally, to separate cluster representation vectors, we define the cluster separation loss as
Lclus(C) = − 1

K(K−1)

∑
i,j ∥ci − cj∥2

To optimise our model, iterative gradients are applied according to weighted combinations of the
above loss functions with hyper-parameter weights α, β:

1. Outcome Predictor is updated according to Lpred;

2. Encoder and Identifier are trained according to Lpred + αLdist;

3. Cluster representation vectors are updated with regards to Lpred + βLclus.

3.6 INITIALISATION

Our proposed model also follows a set of initialisation pre-training procedures. Firstly, the Encoder
and Outcome Predictor are pre-trained according to a classification task (ỹ = P (E(x))), with cor-
responding loss Lpred. Latent state representations E(x) are clustered through a K-means algorithm
with K clusters across the whole training set. Cluster representation vectors are initialised as given
by the resulting cluster centroids, and finally the Cluster Identifier network is pre-trained to identify
clusters as predicted by the K-Means algorithm with categorical cross-entropy loss. Implementation
was completed in Python, with TensorFlow 2, scikit-learn and NumPy. All experiments were run
with 1 Tesla v100 GPU, and 8 CPUs Intel(R) Xeon(R) Gold 6246 @ 3.30GHz.

4 RESULTS

For Benchmark purposes, we considered TSKM as a classic clustering benchmark, and SOM-VAE
and AC-TPC as state-of-the-art phenotypic clustering methods. AC-TPC considers temporal subse-
quences of a complete patient set of observations - for comparison purposes, we consider only the
model output for the complete patient sequence. For simplicity, we present results with all input
features considered.

All models were trained on the same training set (60% of the complete input data) and evaluated
against the same test set (remaining 40%). For DL models, we further split the training set into a
purely training and validation sets. All experiments with varying hyper-parameters were repeated 10
times with a fixed set of 10 distinct seeds, and results are reported according to average metric and
standard deviation. A complete list of the hyper-parameters considered for each model is included
in Table A7 in the Appendix. In bold, top-performing hyper-parameters are indicated. Optimal
integer hyper-parameters (K, l) were selected according to an “Occam’s Razor” approach - for
each parameter, we assign it the highest value such that increasing this amount does not lead to a
significant increase in performance according to mean AUROC and a Friedman’s hypothesis test.
Neural network size parameters were kept consistent across all DL models where applicable. All
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other optimal hyper-parameters were selected according to highest AUROC performance conditional
on the model predicting each class (e.g. not making predictions solely for no event or Death Events).

We evaluated clustering performance through standard clustering metrics, including Silhouette score
(SIL, Rousseeuw (1987)), Davies-Bouldin Index (DBI, Davies (1979)), Variance Ratio Criterion
(VRI, Caliński & Harabasz (1974)). Results for all clustering models are displayed in Table 3.
In Table 4, we evaluated the (multi-class) prediction performance with regards to Area-under-the-
Receiver-Operating-Curve (AUROC), unweighted mean F1-score, unweighted mean Recall, and
Normalised Mutual Information (NMI). For purely unsupervised models (SOM-VAE and TSKM),
an outcome predictive pipeline was constructed by assigning patient admissions to clusters, and
consequently to the empirical outcome distribution in the corresponding cluster. The prediction task
was also benchmarked against traditional classifiers for outcome prediction in EHR data, namely
Support Vector Machines (SVM), XGBoost (XGB) and NEWS2 (i.e., the National Early Warning
Score used in the UK hospitals). Furthermore, to evaluate other Neural Network models as bench-
marks and also justify both proposed mechanisms, we furthermore considered two other bench-
marks: a) ENC-PRED: a stacked LSTM Encoder, followed by a MLP network for outcome predic-
tion, and b) ATTEP; a model equivalent to CAMELOT, except the original entropy loss is considered
over the clustering dist loss. Supervised performance for all the above models is included in Table4.
As noted, convergence was particularly difficult for ATTEP due to cluster collapse.

Metric TSKM SOM-VAE AC-TPC CAMELOT (proposed)

SIL 0.35 (±0.01) 0.25 (± 0.08) 0.04 (± 0.01) 0.11 (±0.04)
DBI 1.19 (±0.08) 1.89 (± 0.63) 4.34 (± 0.80) 3.12 (±0.53)
VRI 554.6 (±2.50) 12.8 (± 9.32) 66.5 (± 18.7) 216.7 (±6.2)

Table 3: Clustering separability results by the different clustering methodologies given input data with all
available features (static, vital-signs, serum and haematological variables). For each metric and model, the
average score and standard deviation are returned. The best values for each metric are indicated in bold.

Metric AUROC F1-score Recall NMI

SVM 0.50 (± 0.02) 0.23 (± 0.00) 0.25 (± 0.00) 0.01 (± 0.02)
XGB 0.65 (± 0.01) 0.23 (± 0.00) 0.22 (± 0.00) 0.03 (± 0.04)

NEWS2 0.61 0.29 0.34 0.01
TSKM 0.55 (± 0.01) 0.24 (± 0.03) 0.26 (± 0.02) 0.01 (± 0.03)

SOM-VAE 0.61 (± 0.09) 0.27 (± 0.05) 0.27 (± 0.03) 0.05 (± 0.03)
AC-TPC 0.68 (± 0.01) 0.38 (±0.01) 0.36 (± 0.01) 0.17 (± 0.02)

ENC-PRED 0.57 (± 0.02) 0.25 (±0.02) 0.26 (± 0.02) 0.06 (± 0.03)
ATTEP 0.67 (± 0.02) 0.36 (±0.02) 0.36 (± 0.02) 0.16 (± 0.03)

CAMELOT (proposed) 0.73 (±0.02) 0.36 (±0.01) 0.38 (±0.02) 0.20 (±0.03)

Table 4: Outcome prediction scores across all models, displayed with an average and standard deviation of a
set of 10 seeds (except NEWS2, which is deterministic). The best values for each metric are indicated in bold.
For clustering algorithms, cluster outcome distributions were taken to be the empirically observed distribution
in each cluster.

On top of performance evaluation with regards to clustering separability and outcome prediction,
we display a comparison between the learnt cluster phenotypes of the proposed model and that of
phenotypic clustering benchmark AC-TPC. For each cluster, the corresponding outcome propensity
P (c) is shown as a bar plot over the 4 possible outcomes with corresponding probability value. We
also display cluster outcome propensity plots for both TSKM and SOM-VAE in the Appendix (Fig-
ures A.8 and A.9). We note that the cluster outcome propensity distributions learnt by CAMELOT
also align with the empirical outcome relevance in the learnt clusters (Table A.12). Lastly, we also
display feature-time cluster relevance attention maps in Figure 6. For each cluster, a patient was
randomly selected from the set of patients in the corresponding cluster, and a corresponding feature-
time attention matrix and visualised as a heatmap.

5 DISCUSSION

Our proposed model shows an improvement in clustering performance ( see Table 3) when compared
to the current phenotypic clustering benchmark (AC-TPC), and outperforms SOM-VAE according
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AC-TPCProposed Model

Figure 5: Comparison of bar plots of cluster outcome propensity distributions for the proposed model and
benchmark AC-TPC. On the left (blue), distributions are displayed for each cluster (out of a total of 6), and
each phenotype corresponds to the probability of an outcome. Similar results are shown on the right (yellow)
for AC-TPC. The title of each sub-plot indicates the cluster considered, as well as the number of patients as-
signed to a given cluster.

Attention Maps for Sampled Patients from each Cluster

Figure 6: Feature-Time Cluster Relevance Map. Each Heatmap represents a feature-time relevance matrix for a
random patient assigned to a given cluster. Vertical Axis indicates time to outcome, in hours, while horizontal
axis indicates different input features.

to VRI. Although the cluster separability metrics are superior in the case of TSKM, this is expected
given a metric bias towards convex clusters, and the convexity of the K-Means based algorithm. In
particular, DL clustering occurs in a latent space, which, unfortunately, is not easily comparable with
an algorithm targetting the input space (such as K-Means). Furthermore, we argue clusters learnt by
TSKM are less relevant that our model’s as a) TSKM clusters are extremely hard to distinguish with
regards to outcome propensity (as evidenced by very low performance on a prediction task (Table
4)), and b) TSKM clusters are less separable with regards to trajectory evolution, as there is less
separation of mean HR trajectories, and less cluster separation when data is projected to a two-di-
mensional domain with t-stochastic neighbour embedding (tSNE) - both figures are in the Appendix,
Figures A10 and A11.

With regards to predictive power, it can be seen in Table 4 that our model outperforms both standard
classifiers (at least 8%) and benchmarking clustering methods (at least 5%) according to mean AU-
ROC. A similar increase can be seen in other classification metrics, with the exception of F1-score,
where model performance is slightly below to that of AC-TPC. Our model is able to more accu-
rately determine patterns in the data than the previously proposed models, as EHR data is extremely
complex and heterogeneous. It is particularly promising that the model obtains good predictive task
results despite a clustering bottleneck (i.e. sample predicted outcomes are done through the assigned
cluster, as opposed to tailored to the precise input data). While it is possible that other models could
show better performance on the direct task of outcome prediction given EHR input, such models
can potentially be associated with lack of robustness or input sensitivity difficulties. Furthermore, it
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is likely they would struggle with identifying relevant trends and properties of clinical interest. As
such, for new admissions, such models could provide a prediction for the overall outcome, but no
robust understanding of how this outcome will occur, and how to prevent potential risks of deterio-
ration, let alone the ability to pool data from other similar patients.

Figure 5 shows the advantage of two key aspects of our methodology. Our model identifies clear,
separable cluster outcome distribution and provides a useful layer of interpretability to clinicians to
understand a potential risk of deterioration. Our model also identifies a more diverse set of cluster
outcomes than AC-TPC, which only picks up 3 different cluster outcome distributions, and doesn’t
identify the presence of the ”ICU” and ”Cardiac” classes. We also show other cluster-phenotype
benchmark results in Appendix A.8 and A.9. With regards to clusters learnt by CAMELOT, clusters
0 and 3 are the clusters with most ill cohort - they are largely representative of death and cardiac
events on the subsequent 24 hours. On the other hand, while cluster 2, 5 are healthier, with a smaller
chance of adverse events. Clusters 1 and 4 are largely “healthy” cluster, with reduced risks of the
most intense adverse events. We note cluster outcome propensity distributions learnt by AC-TPC
are unable to provide this level of detailed information. Furthermore, the propensity distribution
learnt by our model matches with the empirical number outcome events observed in each cluster
(displayed in Appendix Table A12). Note, furthermore, that the model managed to successfully
navigate a heavy class-imbalance setting. Representative clusters are able to capture different-sized
sub-populations, yet still identify potential risks of deterioration.

On the other hand, learnt cluster attention maps introduced in Figure 6 introduce yet another layer
of interpretability to our proposed clustering model. The personalised attention maps highlight the
relevant feature-time pairs driving patient cluster assignment, and can be used to identify the most
important clinical variables. For instance, analysing Figure 5 suggests clusters with highest propen-
sity for either of Death or Cardiac Arrest events are Cluster 0, 3 (and 2 to a slightly smaller extent).
This reflects in the resulting attention maps, where SBP and FIO2 are highlighted as key clinical
variables for cluster assignment. This conclusion is further corroborated when considering descrip-
tive statistics of CAMELOT clusters (Table A13), as SBP and FIO2 are some of the few variables
with some significant separation across clusters, and when considering trajectory evolutions (Figure
A14). Lastly, note that feature-time weights are also relevant if potential deterioration events did not
take place - so that we are more confident on a patient’s health status. As an example, attention maps
for clusters 1 and 4 (reasonably healthy clusters) indicate FIO2 as very relevant towards the latter
stages of the admission - this is likely due to these patients not showing an increase in oxygen intake
(as they did not need it). Thus, attention maps can be very versatile.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a novel deep learning model for the task of identification of phenotypically
separable clusters applied to EHR data for. As part of our proposed model, we propose 2 distinct
loss functions and introduce a novel feature-time attention layer to better represent patient data and
to introduce a feature-time relevance map for each cluster. Our experiments show promising results
with the addition of both methodological tools above, on both cluster separability and outcome
prediction performance. The addition of the feature-time layer has the added benefit of introducing
key interpretability tools for researchers to understand relevant regions for good patient physiology
representation as well as an indication of what can lead to patient deterioration.

There are multiple interesting avenues of investigation building on this work. On the other hand,
the current attention layer mechanisms could potentially be improved with the addition of temporal
weight smoothness, or, alternatively, weight regularization to encourage exploration of the complete
feature-time space. Alternatively, cluster selection through a neural network mechanism introduces
high capacity at the potential cost of robustness and cluster collapse. Potentially, more traditional
methods incorporated into a similarly complex pipeline can achieve better performing through a
clearer identification of cluster regions in latent space. Furthermore, methodological improvements
will also benefit from a more extensive testing across other diverse datasets and other potential areas
of application.
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self-organization: Interpretable discrete representation learning on time series. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=rygjcsR9Y7.

Paul A Gagniuc. Markov chains: from theory to implementation and experimentation. John Wiley
& Sons, 2017.

Ilaria Gandin, Arjuna Scagnetto, Simona Romani, and Giulia Barbati. Interpretability of time-
series deep learning models: A study in cardiovascular patients admitted to intensive care unit.
Journal of Biomedical Informatics, 121:103876, 2021. ISSN 1532-0464. doi: https://doi.
org/10.1016/j.jbi.2021.103876. URL https://www.sciencedirect.com/science/
article/pii/S1532046421002057.

Deepak A Kaji, John R Zech, Jun S Kim, Samuel K Cho, Neha S Dangayach, Anthony B Costa, and
Eric K Oermann. An attention based deep learning model of clinical events in the intensive care
unit. PloS one, 14(2):e0211057, 2019.

Eamonn Keogh and Shruti Kasetty. On the need for time series data mining benchmarks: a survey
and empirical demonstration. Data Mining and knowledge discovery, 7(4):349–371, 2003.

You Jin Kim, Yun-Geun Lee, Jeong Whun Kim, Jin Joo Park, Borim Ryu, and Jung-Woo Ha.
Highrisk prediction from electronic medical records via deep attention networks. arXiv preprint
arXiv:1712.00010, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological cyber-
netics, 43(1):59–69, 1982.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Changhee Lee and Mihaela Van Der Schaar. Temporal phenotyping using deep predictive cluster-
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A APPENDIX

A.1 DATA

A description of the complete pipeline of data re-processing, following the protocol defined in Pi-
mentel et al. (2019), is shown in Figure A.1.

A.1: HAVEN processing

A total of 26 input features were considered. Firstly, 4-hourly vital-sign sets which included 8
features: Heart Rate (HR), Respiratory Rate (RR), Systolic Blood Pressure (SBP), Diastolic Blood
Pressure (DBP), peripheral Oxygen Saturation (SpO2), Temperature (TEMP), level of consciousness
via the AVPU scale - Alert, Verbal, Pain, Unresponsive - and estimated Fraction of Inspired Oxygen
(FiO2, available when an oxygen mask is applied to the patient). Each set consisted of a timestamp
and the vital-sign numerical values. Secondly, 4 demographic variables were selected (modelled as
static variables): age, sex, and admission type (elective or surgical). Thirdly, we included 6 fea-
tures resulting from biochemistry blood tests, denoted as ’Serum’: Serum levels of urea, albumin,
creatinine, sodium, potassium and C-reactive protein. Finally, 8 haematological blood test features
were also included: white and haemaglobin cell counts, concentration of eosinophils, basophils,
neutrophils, and lymphocytes, as well as eosinophil-to-basophil and neutrophil-to-lymphocyte ra-
tios. These features were selected based on domain knowledge of features related to severity in the
prognosis and outcome of T2RF inpatients.

Descriptive statistics for all input variables is described in Table A.2. Median and inter-quartile
range (IQR) is displayed for continuous and categorical variables, while binary variables are shown
according to number of counts in the dataset and corresponding cohort proportion. Statistics are
displayed for the complete data (”All”), but also for each sub-cohort defined by the overall outcome.
We can observe that these sub-cohorts are not clearly separable and are hard to identify solely from
this information.

A summary of the patient cohort in relation to outcomes and target phenotypes can be seen in
Table A.3. Challenges with regards to obtaining phenotypically separable clusters can similarly
be observed - there is no clear significant difference between the target outcome sub-cohorts with
regards to demographic input variables. With regards to outcome distribution, we also note the high
degree of imbalance in the dataset - the large majority of the patients in our dataset suffered from no
adverse events (over 86%), while only 48 had a Cardiac event, and 76 were re-directed to the ICU.

The lack of outcome sub-cohort separability can further observed in a temporal domain. Figures
A.4, A.5, A.6 plot the mean trajectories of different temporal variables sets for each outcome sub-
cohort, respectively, according to vital signs, haematological and serum features. Mean is calculated
based on the time to outcome, and missing observations are disregarded and ignored.
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A.2: Descriptive statistics and information of all input data features. Variables are displayed with type, descrip-
tion, units and average statistics. We separate all features according to medical literature, including vital-sign,
static, serum and haematological variables, and we also display statistics per outcome sub-cohort, defined as a
cohort with those patients assigned to a given outcome.
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No Event Death ICU Cardiac

N 3701 441 76 48
Age (IQR) 71 (61 - 80) 81 (74 - 88) 69 (61 - 74) 76 (69 - 82)
Gender, M 1810 (48.9%) 247 (56.0%) 38 (50.0%) 28 (58.33%)
CCI (IQR) 4 (3 - 13) 14 (4 - 21) 7 (4 - 17) 15 (4 - 23)

Elective 1126 (30.4%) 3 (0.7%) 8 (10.5%) 2 (4.2%)
Surgical 1054 (28.5%) 48 (10.1%) 22 (29.0%) 6 (12.5%)

A.3: Descriptive demographic variable information for each outcome sub-cohort.

A.4: Plot of mean vital-sign trajectories (median with respect to SpO2) in solid line as given by the 4 outcome
groups: admissions with a) Cardiac-, b) Death- , or c) ICU-, and d) No-events. The respective standard errors
are represented by the dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or
discharge - the black lines represent the time window (72 - 24 hours prior to an event or discharge) considered
for input to all models.

A.2 MODEL TRAINING

A list indicating the grid-search range of hyper-parameters considered in our experiments are indi-
cated in Table A.7. For simplicity, we define P := {0.001, 0.01, 0.1, 1, 10}, L := {32, 64, 128, 256}
and K := {3, ..., 20}. In bold, top-performing hyper-parameters according to target metrics defined
in Section 4 are highlighted.

A.3 RESULTS COMPARISON

In Figures A.8 and Figures A.9 we display cluster outcome propensity distributions for some of our
experiments with benchmark clustering models SOM-VAE and TSKM, respectively. Both mod-
els do not naturally associate clusters with a distribution - we estimate the cluster outcome as the
empirical outcome distribution for the patient cohort assigned to the corresponding cluster.

14



A.5: Plot of mean haematological trajectories in solid line as given by the 4 outcome groups: admissions with
a) Cardiac-, b) Death- , or c) ICU-, and d) No-events. The respective standard errors are represented by the
dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or discharge - the black
lines represent the time window (72 - 24 hours prior to an event or discharge) considered for input to all models.

A.6: Plot of mean serum trajectories in solid line as given by the 4 outcome groups: admissions with a) Cardiac-
, b) Death- , or c) ICU-, and d) No-events. The respective standard errors are represented by the dashed lines.
We visualised trajectories from up to 7 days prior to an outcome event or discharge - the black lines represent
the time window (72 - 24 hours prior to an event or discharge) considered for input to all models.

We note that clusters learnt by both clustering benchmark models have identical outcomes, which
provides no useful clinical interpretability to the cluster-defined populations, as well as likely not
assisting models to learn relevant cluster representations.
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A.8: Bar plots of learnt cluster phenotypes for SOM-VAE with optimal hyper-parameters. Each plot represents
a cluster - its phenotype is the corresponding empirical outcome distribution in its cluster-assigned patient
cohort.

We go further in comparing clusters learnt by TSKM and by our proposed model. We argue clusters
learnt by CAMELOT are much more relevant towards our goal. We show this through two distinct
plots. Firstly, in Figure A10, we display a scatter plot of patients in each cluster (CAMELOT on
the right and TSKM clusters on the left) after projection to two dimensions. Projection was com-
pleted through a principal component analysis reduction to 50 dimensions, followed by t-stochastic
neighbour embedding dimensionality projection to two.

Furthermore, we also demonstrated that TSKM does not learn as separable cluster trajectory evolu-
tion profiles as CAMELOT. This is shown in Figure A11, where Heart-Rate mean trajectories for
each cluster (i.e., average HR observations aligned to the same time until end of observations for
patients in the clusters) are displayed. It is clear that CAMELOT cluster trajectories are easier to
separate.

A complete description of the number of patient admissions with a given outcome per learnt cluster
in our proposed model can be seen in Table A.12.

Parameter TSKM SOM-VAE AC-TPC CAMELOT SVM XGB

seeds {1001, 1012, 1134, 2475, 6138, 7415, 1663, 7205, 9253, 1782}
α - P (0.1) P (0.01) P (0.01) - -
β - P (0.1) P (0.01) P (0.001) - -
γ - - - - - {0.1, 0.2, 0.6}

latent dim - L (64) L (128) L (128) - -
SOM dim - L2

(4, 4) - - - -
K K(7) - K (6) K (6) - -

kernel {’DTW’, ’euclidean’} - - - {’polynomial’, ’rbf’} -
C - - - - P (10) -

n-estimators - - - - - {100, 200, 300}
depth - - - - - {1, 3, 5, 10}

min-child-weight - - - - - {1, 2, 3, 5}

A.7: Parameter range used for Grid-search hyper-parameter optimisation. For each model, the list of parameter
values tested is indicated. In bold, the optimum set of hyper-parameters is indicated for each model.
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A.9: Bar plots of learnt cluster phenotypes for TSKM with K = 6. Each plot represents a cluster - its phenotype
is the corresponding empirical outcome distribution in its cluster-assigned patient cohort.

A.10: Scatter plot of cluster patient data after projection to 2 dimensions.

Outcome Healthy Death ICU Cardiac
Cluster 0 149 44 10 7
Cluster 1 739 28 5 5
Cluster 2 579 15 6 2
Cluster 3 93 92 12 5
Cluster 4 373 2 2 0
Cluster 5 288 84 10 10

A.12: Table with empirical number of outcome admissions observed for each cluster learnt by the proposed
model.
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A.11: Plot of mean Heart-Rate (HR) trajectory in solid line as given by the TSKM learnt clusters (top) and
CAMELOT (bottom). The respective standard errors are represented by the dashed lines. We visualised trajec-
tories from up to 7 days prior to an outcome event or discharge - the black lines represent the time window (72
- 24 hours prior to an event or discharge) considered for input to all models.

We also computed summary statistics for the learnt CAMELOT clusters. For each of the result-
ing clusters, median, and quartile values were computed and plotted, except on the case of binary
variables, where only the number of positive occurrences (and the corresponding proportion in the
cluster) are shown.

Lastly, we plot the mean cluster trajectory evolution for SBP and FIO2 to present supportive evi-
dence for the personalised attention maps in Figure 6. These two features were selected from atten-
tion map analysis.
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A.13: Descriptive statistics and information of all input data features. Variables are displayed with type, de-
scription, units and average statistics. We separate all features according to medical literature, including vital-
sign, static, serum and haematological variables. Statistics are shown for each cohort as learnt by our model.
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A.14: Plot of mean Systolic Blood Pressure (SBP) trajectories in solid line as given by the clusters learnt by our
model (top). In the bottom, mean FIO2 trajectories are displayed. The respective standard errors are represented
by the dashed lines. We visualised trajectories from up to 7 days prior to an outcome event or discharge - the
black lines represent the time window (72 - 24 hours prior to an event or discharge) considered for input to all
models.

20


	Introduction
	Related Work
	Methods
	Dataset and Pre-Processing
	Proposed model
	Encoder Network and a Custom Attention Layer
	Attention Map Visualisation
	Loss optimisation
	Initialisation

	Results
	Discussion
	Conclusion and Future Work
	Appendix
	Data
	Model Training
	Results Comparison


