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Mycobacterium tuberculosis (Mtb) is a pathogen of major concern due to its ability to withstand both first- and
second-line antibiotics, leading to drug resistance. Thus, there is a critical need for identification of novel anti-
tuberculosis agents targeting Mtb-specific proteins. The ceaseless search for novel antimicrobial agents to combat
drug-resistant bacteria can be accelerated by the development of advanced deep learning methods, to explore
both existing and uncharted regions of the chemical space. The adaptation of deep learning methods to under-
explored pathogens such as Mtb is a challenging aspect, as most of the existing methods rely on the availability of
sufficient target-specific ligand data to design novel small molecules with optimized bioactivity. In this work, we
report the design of novel anti-tuberculosis agents targeting the Mtb chorismate mutase protein using a structure-
based drug design algorithm. The structure-based deep learning method relies on the knowledge of the target
protein’s binding site structure alone for conditional generation of novel small molecules. The method eliminates
the need for curation of a high-quality target-specific small molecule dataset, which remains a challenge even for
many druggable targets, including Mtb chorismate mutase. Novel molecules are proposed, that show high
complementarity to the target binding site. The graph attention model could identify the probable key binding
site residues, which influenced the conditional molecule generator to design new molecules with pharmaco-

phoric features similar to the known inhibitors.

1. Introduction

Tuberculosis is a respiratory infection caused by the bacterium,
Mycobacterium tuberculosis [1]. Despite being a respiratory pathogen,
Mtb can also affect multiple organ systems of the human body, including
spine, kidney and brain, leading to extra-pulmonary tuberculosis (EPTB)
[2]. Clinically, two types of tuberculosis have been identified based on
the advent of the infection after exposure to the pathogen: latent
tuberculosis infection (LTBI) and tuberculosis disease (TB). In case of
LTBI, the infection is asymptomatic despite exposure to the pathogen,
making diagnosis and treatment equally challenging [3]. Further,
human immunodeficiency virus (HIV) infection has been known to in-
crease susceptibility to TB, due to the weakening of the immune system
by the former [2]. As of 2020, an estimated 5.8 million people have been
infected with TB globally, with India, Indonesia and Phillipines being
the worst affected countries [4]. With increasing incidence of drug
resistance in TB patients and the emergence of extensively drug-resistant
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TB strains (XDR-TB), it is essential to rapidly identify novel
anti-tuberculosis agents to tackle the infection [5].

Multiple virulence factors and potential targets of hypervirulent Mtb
strains have been identified for targeted therapy [6-8]. These targets are
predominantly involved in the following essential pathways of the
bacterium: lipids and fatty acid metabolism, mycolic acid biosynthesis,
complex lipid biosynthesis, cholesterol catabolism, transport, secretion,
apoptosis and protein degradation. However, protein biosynthesis
pathways in Mtb remain the least explored, although they encompass
several pathogen-specific pathways with limited chances to induce side
effects [9]. One such pathogen-specific pathway of interest is the shi-
kimate pathway, which catalyzes the biosynthesis of aromatic com-
pounds in bacteria, fungi, algae, and plants, including the essential
amino acids phenylalanine and tyrosine. The first crucial step of this
pathway is the conversion of chorismate to prephenate catalyzed by the
enzyme chorismate mutase (EC 5.4.99.5). This is a unique reaction of
interest, due to the chair-like endo oxabicyclic transition state formed

Received 19 August 2022; Received in revised form 10 September 2022; Accepted 7 October 2022

Available online 13 October 2022
1093-3263/© 2022 Elsevier Inc. All rights reserved.


mailto:roy.arijit3@tcs.com
www.sciencedirect.com/science/journal/10933263
https://www.elsevier.com/locate/jmgm
https://doi.org/10.1016/j.jmgm.2022.108361
https://doi.org/10.1016/j.jmgm.2022.108361
https://doi.org/10.1016/j.jmgm.2022.108361
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmgm.2022.108361&domain=pdf

S.R. Krishnan et al.

during the reaction [9]. Consequently, a few studies have attempted to
design potential transition state analogues (TSA) inhibiting the enzyme
[10-12], and preventing the biosynthesis of essential amino acids
necessary for survival of the bacterium.

In this study, we used a structure-based de novo drug design method
[13], to design potential small molecules that can inhibit the Mtb cho-
rismate mutase enzyme. The structure-based method involves a
semi-supervised multimodal deep learning model utilizing a graph
representation of the protein binding site structures and SMILES repre-
sentation of the ligand. This model learns from experimentally deter-
mined protein-ligand complexes to design novel small molecules for any
target protein with known structure. A multimodal drug-target affinity
(DTA) prediction model is used to formulate a reward function for
target-specific bioactivity maximization, which is utilized as the objec-
tive to optimize the molecule generation process in a reinforcement
learning framework.

With just the knowledge of the conformation of binding site residues
extracted from the available crystal structure of a TSA-CM complex [14],
the binding site graph was constructed and used to design novel
anti-tuberculosis agents. The designed molecules were compared with
the existing inhibitors reported for chorismate mutase [9]. The method
could produce molecules with similarity to existing inhibitors and new
molecules with high complementarity to the Mtb chorismate mutase
binding site. The generated molecules also preserved features of the
existing inhibitors although the model had information about only the
binding site of the target protein. Finally, based on the graph attention
model, a set of key binding site residues were identified which could be
responsible for favorable interaction of the generated small molecules
with Mtb chorismate mutase.

2. Materials and methods

2.1. Learning the binding site features of the target protein using the GAT-
VAE model

The binding site is the region where the small molecule binds and
modulates the function of a target protein. Consequently, the aim of the
model is to learn the structure and the type of interactions between the
key amino acid residues forming the binding site, which can potentially
influence the molecule generation process. To facilitate this, the binding
site was represented in a ligand-agnostic manner using a residue inter-
action graph where, nodes represent residues and edges represent in-
teractions between residues within a 4 A distance cutoff [15,16]. Each
node was featurized using a 7-class classification derived from literature
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[17] along with two binary bits representing the hydrogen bond
accepting and donating potential of the residue. A dataset of 5981 such
non-redundant binding site graphs were collated from the PDBbind [18]
and scPDB [19] databases. Binding sites were also filtered such that they
contained only the 20 standard amino acids. A variational autoencoder
(VAE) model composed of graph attention (GAT) layers was trained with
the one-hot encoded node feature vector and the unweighted adjacency
matrix of the binding site graphs as input (Fig. 1a). The GAT-VAE
encoder included five parallel attention heads of 128 dimensions each
and a single head GAT layer for output aggregation from the heads of the
parallel layer. The encoder embeds the input binding site graph into a
256-dimensional latent vector (z), which is input to the GAT-VAE
decoder. The dimension of latent vector for the GAT-VAE model was
determined based on the smallest latent vector dimension for the
SMILES-VAE model that could produce the best benchmarking results in
terms of the GuacaMol benchmark metrics (see supplementary infor-
mation 1 - Table S1). The decoder is trained to reconstruct the adjacency
matrix from the latent vector. The model was trained using the Adam
optimizer with an initial learning rate of 0.001 and a batch size of 256
for 100 epochs in a Tesla V100 GPU. All implementations were done
using PyTorch.

2.2. Learning the grammar of small molecules using the SMILES-VAE
model

The dataset of ~1.6 million drug-like small molecules was obtained
from the ChEMBL database in SMILES format. The SMILES dataset was
pre-processed by following the procedure from our previous study [13]
using the RDKit library. The SMILES-VAE model is composed of an
encoder and a decoder (Fig. 1b) made of stack-augmented bidirectional
gated recurrent units (GRU). An embedding layer was used to pass the
input to the encoder and a dense layer with log softmax activation was
used to convert model outputs to probabilities at the decoder. The model
was trained using the AMSGrad optimizer with an initial learning rate of
0.0005 and a batch size of 256 for 100 epochs on a Tesla V100 GPU.
Learning rate decay and gradient clipping were used to prevent van-
ishing and exploding gradients, respectively. All implementations were
done using PyTorch.

2.3. Combining the pre-trained VAE models to form the conditional
molecule generator

The pre-trained GAT-VAE and SMILES-VAE models were combined
to obtain the conditional VAE model (Fig. 1c). A joint latent vector was
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Fig. 1. Structure-based drug design pipeline. The components of the pipeline are: (a) Learning the binding site graph using the GAT-VAE model; (b) Learning the
molecular grammar using the SMILES-VAE model; (c¢) Conditional molecule generator; (d) Drug-target affinity (DTA) prediction model.
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constructed by combining the binding site graph latent vector (zg) from
the GAT-VAE model, and the primer string latent vector (z;) from the
SMILES-VAE model. This joint latent vector was used to condition the
decoder of the SMILES-VAE model to generate novel target-specific
small molecules. It is a pre-requisite for the latent vectors z; and zg to
be of same dimensions to enable addition [20,21]. The conditional
molecule generator was subject to a short pre-training phase with a
dataset of binding site graph — small molecule pairs curated from the
PDBbind dataset [18]. This enabled the SMILES-VAE decoder to learn
how to decode the joint latent vector into chemically valid small mol-
ecules, and retain model stability during further optimization with
reinforcement learning.

2.4. Optimizing the conditional molecule generator using a drug-target
affinity (DTA) prediction model

With the pre-trained conditional molecule generator as the agent and
a generic drug-target affinity (DTA) prediction model as the critic, the
binding affinity of the generated small molecules was optimized using
reinforcement learning (RL). The generic DTA model was trained to be
target-agnostic, and can predict the binding affinity towards any given
target protein (Fig. 1d) using extended connectivity interaction finger-
prints (ECIF) as the input representation [22]. The model was trained,
tuned and validated based on the model architecture and hyper-
parameters indicated in the previous study [22]. PDBbind core set and
Astex diversity set [23] were used for model validation and testing,
respectively.

ECIF fingerprints for a protein-ligand complex were obtained
through on-the-fly docking of molecules to the target binding site using
gnina [24]. The DTA model predicts the pICsy value of the
protein-ligand interaction, which is used to optimize the model based on
the following reward formulation (1).

r(x) =exp (%) @

where, x refers to the predicted pICsg value of the generated molecule.
The reinforcement learning process is terminated when the bioactivity
distribution for the generated small molecules is well optimized.
Termination of the RL training process is target protein-dependent, and
multiple criteria are considered as discussed in our previous study [21].

2.5. Validation of the generated small molecules after RL training

An in silico validation was performed to understand the quality of the
generated molecules. Since Mtb chorismate mutase is an under-explored
target protein, only 37 inhibitors could be identified in literature which
were tested against the chorismate-binding site [9]. These 37 inhibitors,
for which bioactivity data is available, were considered as the validation
set for comparison with the generated molecules after RL. A set of 10000
small molecules with predicted bioactivity values was obtained after RL
training. As a first step of validation, the Tanimoto similarity of gener-
ated small molecules with the 37 known inhibitors was calculated [25],
along with similarity of various physicochemical property distributions.
Due to the unavailability of a large enough validation dataset, a
pharmacophore-based screening was also performed to understand if
the diverse designed small molecules have spatial features similar to the
known chorismate mutase inhibitors. The PharmaGist program [26] was
used for ligand-based pharmacophore analysis. A random set of 32
molecules from the set of known inhibitors was used as input to the
PharmagGist program. From the PharmaGist output, coverage of binding
site was used to choose the top 2 composite ligand-based pharmaco-
phores for further screening of generated small molecules.

The generated set of small molecules were filtered further based on
their solvent accessible surface area (SASA) when bound to the cho-
rismate mutase binding site based on the complex structure obtained
from docking using gnina [24]. This criterion filtered out the small
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molecules which can have regions partially residing outside the binding
site. The free and bound SASA values for the small molecule were
calculated using the FreeSASA program [27] with the Shrake-Rupley
algorithm [28] and a default probe radius of 1.4 A. Generated small
molecules with less than 10% of exposed surface area when bound to
chorismate mutase were chosen for further analyses. These molecules
were clustered using Butina clustering [29] with a Tanimoto distance
cut-off of 0.5 and 1024-bit ECFP4 fingerprints for molecular represen-
tation. The interaction of each cluster with the binding site residues
were analyzed to elucidate the major binding site residues governing the
interaction of generated small molecules with chorismate mutase.

3. Results and discussion
3.1. Performance of the pre-trained models

The accuracy, uniqueness and novelty of the SMILES-VAE model
were found to be 93.22%, 99% and 96%, respectively, as per the Gua-
caMol distribution learning benchmark (v0.5.3) [30]. The other
benchmarking results of the SMILES-VAE model are discussed in detail
in the supplementary information 1 (Section S1). The ROC score for the
GAT-VAE model (4 A edge cutoff) was 0.89. Five-fold cross validation of
the DTA model yielded Pearson correlation coefficients (Rp) of 0.851
(RMSE = 1.21) and 0.565 (RMSE = 1.52) for the PDBbind core set and
Astex diversity set, respectively (Table S2). Further, analysis of
SMILES-VAE and GAT-VAE latent vectors using PCA showed that atleast
200 dimensions are required to capture 90% of variance in the input
data (see Supplementary information 1, Section S2).

3.2. Generating novel small molecules targeting chorismate mutase

The structure-based drug design method was used to generate novel
small molecules specific to chorismate mutase (PDB ID: 2FP2) of
Mycobacterium tuberculosis. The limited number of inhibitors reported in
literature for inhibition of the conversion of chorismate to prephenate,
highlights the gap in designing a large and diverse set of small molecules
targeting this essential step. The binding site graph was extracted from
the experimental rotamer conformations observed when chorimsate
mutase is bound to a transition state analogue (PDB ID: 2FP2). The final
bioactivity distribution obtained after optimization is given below
(Fig. 2a). The resultant target-specific conditional VAE model was used
to sample 10000 small molecules, which were processed to omit
chemically invalid molecules and canonicalized. The set of physico-
chemical property distributions after reinforcement learning in com-
parison to that of the known chorismate mutase inhibitors, is provided in
the supplementary information 1 (Supplementary Fig. S1). A random set
of diverse molecules from the model, along with their key physico-
chemical properties are also provided in the supplementary information
1 (Table S3).

3.3. Analysis of the generated small molecules

3.3.1. (A) Similarity of generated molecules based on Tanimoto coefficient

With ECFP4 fingerprints [31] as the molecular representation and
Tanimoto coefficient (TC) as the distance metric, similarity was quan-
tified to known chorismate mutase inhibitors. Generated molecules with
high similarity to existing inhibitors were distinguished based on a TC
value higher than 0.60. The comparison identified 28 generated small
molecules of high similarity (Fig. 2b). However, TC-based scoring
cannot identify pharmacophore-level similarity to existing inhibitors
based on the spatial arrangement of functional groups of similar char-
acteristics, which are crucial for biological response [32].

3.3.2. (B) Similarity of the generated molecules based on ligand-based
pharmacophores
PharmaGist program uses ligand-based pharmacophores to screen



S.R. Krishnan et al.

Q

—— Model before RL
—— Model after AL

Journal of Molecular Graphics and Modelling 118 (2023) 108361

\‘N/
b Q Z O Q 7 ‘
¥ 0 "l’ i \u

|
Hir\t“/©\
s OH ~ ol
N/ 'OH (8]
I
o}

1.4

. Mol_1689 CID2803174 Mol_4919  CID10364
2 TC=0.75 TC =0.69
£1.0
5 -]
E 0.8
206
<
0.4 H

\@@ @
0.2 H—N OH OH
L0 4 5 6 7 8 H/
Predicted bioactivity Mol_1505 CHEMBL2041310
TC=0.65
Mol_3066 CID2803174
TC =064

Fig. 2. (a) Predicted bioactivity distribution before and after optimization of the generated small molecules specific to Mtb chorismate mutase (b) examples of
generated small molecules with high similarity to existing inhibitors of chorismate mutase. The similarity between the generated molecule and the known inhibitor is

provided in terms of the Tanimoto coefficient (TC).

datasets of small molecules and provides a feature overlap score sum-
marizing the functional group-level similarity to the pharmacophores.
Molecules with high score can therefore be considered as efficient in-
hibitors of the target protein, irrespective of their Tanimoto similarity to
existing inhibitors. A small molecule was considered as a hit, if the
feature overlap score of the molecule with the target pharmacophore
was at least half of the maximum feature overlap score [21]. Based on
the results (Table 1), the two selected composite pharmacophores
(Supplementary Figs. S2-a) could cover 100% of the chorismate
mutase-specific generated molecules.

From the pharmacophore-based screening results, the generated
small molecules were found to capture the key pharmacophore features
of the target binding site. To further confirm the pharmacophore-level
similarity of the generated small molecules to the existing inhibitors,
two pharmacophore fingerprints (ErGFP and PharmacoPFP) were
calculated following a recent study [33] and compared using cosine
similarity. The distribution of the cosine similarity values from all
pairwise comparisons (Supplementary Figs. S2-b) shows that above
75% of the generated small molecules have high pharmacophore-level
similarity (cosine similarity above 0.8) to existing inhibitors. It is
important to note that only limited number of small molecules (mole-
cules from the validation dataset) have been tested against chorismate
mutase, which is still an ongoing research area. The current comparison
of generated small molecules with the validation set through Tanimoto
coefficient and the ligand-based pharmacophore analysis, were per-
formed for in silico validation of the proposed approach.

3.4. GAT-VAE model identified important binding site residues

The attention coefficients from the GAT-VAE model were analyzed
for each residue (node) and its neighborhood in the binding site graph.
The biological significance of the latent representation from the GAT-
VAE model can be understood by elucidating residue pairs with high

Table 1

attention coefficient (Fig. 3).

Residue pairs with attention coefficient above 0.5 were considered
important. For the binding site of Mtb chorismate mutase (PDB ID:
2FP2), only 10 of the 244 interactions had attention coefficient (ay)
above 0.50 from the GAT-VAE model. These 10 interactions involved the
following 16 binding site residues: Leu50, Ala53, Lys60, Pro66, lle67,
Asp69, Arg72, Val73, Phe98, 1le102, Ala107, Lys117, Argl103, Glul09,
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Fig. 3. Attention coefficient heatmap for the binding site residues of Mtb
chorismate mutase (PDB ID: 2FP2). Darker boxes indicate more importance to
the residue pair in the binding site graph.

Results from the pharmacophore-based screening of generated small molecules for chorismate mutase (CM).

Protein Pharmacophore Hits® (%)  Screened count”  Not screened count  Screened by the other pharmacophore ~ Not screened by both pharmacophores
CM validation set ~ Pharmacophore 1 71.42 32 4 2 2

Pharmacophore 2 68.57 28 8 6
CM generated set ~ Pharmacophore 1 ~ 88.49 7483 973 973 0

Pharmacophore 2 67.41 5701 2755 2755

@ Molecules with at least half the maximum overlap score.
> Any molecule with a positive overlap score.
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Ile137, and Asnl41. Based on the interactions of the transition state
analogue with these binding site residues in the crystal structure [14],
the importance of the interactions in stabilizing the protein-ligand
complex was verified. According to the previous literature, Lys60 in-
teracts with Glu109, and both residues coordinate the ether oxygen of
the transition state analogue through hydrogen bonding. Both these
interactions with the ligand are thought to be crucial for the enzyme’s
catalytic mechanism [14]. Arg72, being a highly conserved residue in
the chorismate mutase subfamily, was found to coordinate the two
carboxylate groups of the transition state analogue (Supplementary
Fig. S3). Apart from these polar residues, the hydrophobic residues
Ile67, Val73 and Ile102 were also observed to form strong van der
Waal’s interactions with the ligand in the crystal structure. Overall, the
residue pairs with higher attention coefficients were found to provide
stability to the generated molecules and their role in enzyme activity is
also known from previous literature [14]. These residues can influence
the molecule generation process, which can be deduced from the
complementarity of interactions at the chorismate mutase binding site
(Fig. 4).

3.5. Clustering and interaction analysis identified key interactions
between binding site residues and the generated small molecules

The set of 8941 generated small molecules specific to chorismate
mutase were filtered based on their exposed surface area in the docked
complex structure, resulting in a set of 4041 molecules satisfying the
chosen criterion (see Supplementary information 2). These molecules
were clustered using the Butina clustering method [29]. As most of the
clusters were singletons, only clusters with at least 10 molecules were
chosen for further analysis, amounting to 13 distinct clusters of gener-
ated molecules. Each cluster was found to contain a representative
molecule with a minimal scaffold, and other molecules in the cluster
with various substituents attached to one or more positions of the
minimal scaffold. The topmost cluster (cluster 1) included 78 generated
molecules with similar scaffold. The molecules belonging to the top 10
clusters were represented using a TMAP [34] to understand the variation
between clusters (Fig. 5). Based on an analysis of the best docking pose
of each molecule at the chorismate binding site, the interactions pre-
dominant among the molecules within each cluster were identified
(Tables S4 and S5).

Among the polar binding site residues, Arg72, Argl34, GIn76, Lys60
and Thr105 contributed to a major percentage of interactions in all 11
clusters. Similarly, among the non-polar binding site residues, Ile137,
Leul30, Val56 and Ile102 were found to interact with at least 50% of
molecules in each cluster. Histograms of interaction percentages for the
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polar and non-polar binding site residues for the top 5 clusters are shown
in Fig. 6. Interestingly, Arg72, Lys60, Ile137 and Ile102 were also
involved in interactions with high attention coefficients identified from
the binding site graph using the GAT-VAE model (Fig. 3). This indicates
the capability of conditional molecule generation with the GAT-VAE
model to focus on the key binding site residues and design molecules
with favorable interactions at the binding site.

4. Conclusions

Most of the current generative models are ligand-based (Jin et al.,
2018; Balakrishnan et al., 2021; [13,35,36], which limits the applica-
bility of ligand-based generative models against novel target proteins
with limited amount of target-specific ligand dataset. In this study, a
new structure-based deep learning method was used for designing novel
anti-tuberculosis agents. The method utilized the binding site informa-
tion of Mtb chorismate mutase enzyme to condition the molecule gen-
eration process. The graph attention model was able to distinguish the
key binding site residues and inter-residue interactions through the
attention coefficients, which was visualized using the attention coeffi-
cient heatmap. An in silico validation was performed, where the condi-
tional generative model was found to generate small molecules having
high similarity with respect to the existing inhibitors of chorismate
mutase. The generated small molecules were also found to preserve the
key pharmacophoric features required to efficiently bind to the binding
site of the target protein. Analysis of the attention coefficients followed
by clustering and interaction analysis identified key binding site resi-
dues responsible for substrate binding. The approach presented in this
work explains the suitability of conditional molecule generation using
the GAT-VAE model, which provides opportunity for designing drug-like
molecules against novel target proteins whose structure is known.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
0rg/10.1016/j.jmgm.2022.108361.
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