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A B S T R A C T   

Mycobacterium tuberculosis (Mtb) is a pathogen of major concern due to its ability to withstand both first- and 
second-line antibiotics, leading to drug resistance. Thus, there is a critical need for identification of novel anti- 
tuberculosis agents targeting Mtb-specific proteins. The ceaseless search for novel antimicrobial agents to combat 
drug-resistant bacteria can be accelerated by the development of advanced deep learning methods, to explore 
both existing and uncharted regions of the chemical space. The adaptation of deep learning methods to under- 
explored pathogens such as Mtb is a challenging aspect, as most of the existing methods rely on the availability of 
sufficient target-specific ligand data to design novel small molecules with optimized bioactivity. In this work, we 
report the design of novel anti-tuberculosis agents targeting the Mtb chorismate mutase protein using a structure- 
based drug design algorithm. The structure-based deep learning method relies on the knowledge of the target 
protein’s binding site structure alone for conditional generation of novel small molecules. The method eliminates 
the need for curation of a high-quality target-specific small molecule dataset, which remains a challenge even for 
many druggable targets, including Mtb chorismate mutase. Novel molecules are proposed, that show high 
complementarity to the target binding site. The graph attention model could identify the probable key binding 
site residues, which influenced the conditional molecule generator to design new molecules with pharmaco
phoric features similar to the known inhibitors.   

1. Introduction 

Tuberculosis is a respiratory infection caused by the bacterium, 
Mycobacterium tuberculosis [1]. Despite being a respiratory pathogen, 
Mtb can also affect multiple organ systems of the human body, including 
spine, kidney and brain, leading to extra-pulmonary tuberculosis (EPTB) 
[2]. Clinically, two types of tuberculosis have been identified based on 
the advent of the infection after exposure to the pathogen: latent 
tuberculosis infection (LTBI) and tuberculosis disease (TB). In case of 
LTBI, the infection is asymptomatic despite exposure to the pathogen, 
making diagnosis and treatment equally challenging [3]. Further, 
human immunodeficiency virus (HIV) infection has been known to in
crease susceptibility to TB, due to the weakening of the immune system 
by the former [2]. As of 2020, an estimated 5.8 million people have been 
infected with TB globally, with India, Indonesia and Phillipines being 
the worst affected countries [4]. With increasing incidence of drug 
resistance in TB patients and the emergence of extensively drug-resistant 

TB strains (XDR-TB), it is essential to rapidly identify novel 
anti-tuberculosis agents to tackle the infection [5]. 

Multiple virulence factors and potential targets of hypervirulent Mtb 
strains have been identified for targeted therapy [6–8]. These targets are 
predominantly involved in the following essential pathways of the 
bacterium: lipids and fatty acid metabolism, mycolic acid biosynthesis, 
complex lipid biosynthesis, cholesterol catabolism, transport, secretion, 
apoptosis and protein degradation. However, protein biosynthesis 
pathways in Mtb remain the least explored, although they encompass 
several pathogen-specific pathways with limited chances to induce side 
effects [9]. One such pathogen-specific pathway of interest is the shi
kimate pathway, which catalyzes the biosynthesis of aromatic com
pounds in bacteria, fungi, algae, and plants, including the essential 
amino acids phenylalanine and tyrosine. The first crucial step of this 
pathway is the conversion of chorismate to prephenate catalyzed by the 
enzyme chorismate mutase (EC 5.4.99.5). This is a unique reaction of 
interest, due to the chair-like endo oxabicyclic transition state formed 
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during the reaction [9]. Consequently, a few studies have attempted to 
design potential transition state analogues (TSA) inhibiting the enzyme 
[10–12], and preventing the biosynthesis of essential amino acids 
necessary for survival of the bacterium. 

In this study, we used a structure-based de novo drug design method 
[13], to design potential small molecules that can inhibit the Mtb cho
rismate mutase enzyme. The structure-based method involves a 
semi-supervised multimodal deep learning model utilizing a graph 
representation of the protein binding site structures and SMILES repre
sentation of the ligand. This model learns from experimentally deter
mined protein-ligand complexes to design novel small molecules for any 
target protein with known structure. A multimodal drug-target affinity 
(DTA) prediction model is used to formulate a reward function for 
target-specific bioactivity maximization, which is utilized as the objec
tive to optimize the molecule generation process in a reinforcement 
learning framework. 

With just the knowledge of the conformation of binding site residues 
extracted from the available crystal structure of a TSA-CM complex [14], 
the binding site graph was constructed and used to design novel 
anti-tuberculosis agents. The designed molecules were compared with 
the existing inhibitors reported for chorismate mutase [9]. The method 
could produce molecules with similarity to existing inhibitors and new 
molecules with high complementarity to the Mtb chorismate mutase 
binding site. The generated molecules also preserved features of the 
existing inhibitors although the model had information about only the 
binding site of the target protein. Finally, based on the graph attention 
model, a set of key binding site residues were identified which could be 
responsible for favorable interaction of the generated small molecules 
with Mtb chorismate mutase. 

2. Materials and methods 

2.1. Learning the binding site features of the target protein using the GAT- 
VAE model 

The binding site is the region where the small molecule binds and 
modulates the function of a target protein. Consequently, the aim of the 
model is to learn the structure and the type of interactions between the 
key amino acid residues forming the binding site, which can potentially 
influence the molecule generation process. To facilitate this, the binding 
site was represented in a ligand-agnostic manner using a residue inter
action graph where, nodes represent residues and edges represent in
teractions between residues within a 4 Å distance cutoff [15,16]. Each 
node was featurized using a 7-class classification derived from literature 

[17] along with two binary bits representing the hydrogen bond 
accepting and donating potential of the residue. A dataset of 5981 such 
non-redundant binding site graphs were collated from the PDBbind [18] 
and scPDB [19] databases. Binding sites were also filtered such that they 
contained only the 20 standard amino acids. A variational autoencoder 
(VAE) model composed of graph attention (GAT) layers was trained with 
the one-hot encoded node feature vector and the unweighted adjacency 
matrix of the binding site graphs as input (Fig. 1a). The GAT-VAE 
encoder included five parallel attention heads of 128 dimensions each 
and a single head GAT layer for output aggregation from the heads of the 
parallel layer. The encoder embeds the input binding site graph into a 
256-dimensional latent vector (z), which is input to the GAT-VAE 
decoder. The dimension of latent vector for the GAT-VAE model was 
determined based on the smallest latent vector dimension for the 
SMILES-VAE model that could produce the best benchmarking results in 
terms of the GuacaMol benchmark metrics (see supplementary infor
mation 1 - Table S1). The decoder is trained to reconstruct the adjacency 
matrix from the latent vector. The model was trained using the Adam 
optimizer with an initial learning rate of 0.001 and a batch size of 256 
for 100 epochs in a Tesla V100 GPU. All implementations were done 
using PyTorch. 

2.2. Learning the grammar of small molecules using the SMILES-VAE 
model 

The dataset of ~1.6 million drug-like small molecules was obtained 
from the ChEMBL database in SMILES format. The SMILES dataset was 
pre-processed by following the procedure from our previous study [13] 
using the RDKit library. The SMILES-VAE model is composed of an 
encoder and a decoder (Fig. 1b) made of stack-augmented bidirectional 
gated recurrent units (GRU). An embedding layer was used to pass the 
input to the encoder and a dense layer with log softmax activation was 
used to convert model outputs to probabilities at the decoder. The model 
was trained using the AMSGrad optimizer with an initial learning rate of 
0.0005 and a batch size of 256 for 100 epochs on a Tesla V100 GPU. 
Learning rate decay and gradient clipping were used to prevent van
ishing and exploding gradients, respectively. All implementations were 
done using PyTorch. 

2.3. Combining the pre-trained VAE models to form the conditional 
molecule generator 

The pre-trained GAT-VAE and SMILES-VAE models were combined 
to obtain the conditional VAE model (Fig. 1c). A joint latent vector was 

Fig. 1. Structure-based drug design pipeline. The components of the pipeline are: (a) Learning the binding site graph using the GAT-VAE model; (b) Learning the 
molecular grammar using the SMILES-VAE model; (c) Conditional molecule generator; (d) Drug-target affinity (DTA) prediction model. 
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constructed by combining the binding site graph latent vector (zg) from 
the GAT-VAE model, and the primer string latent vector (zs) from the 
SMILES-VAE model. This joint latent vector was used to condition the 
decoder of the SMILES-VAE model to generate novel target-specific 
small molecules. It is a pre-requisite for the latent vectors zs and zg to 
be of same dimensions to enable addition [20,21]. The conditional 
molecule generator was subject to a short pre-training phase with a 
dataset of binding site graph – small molecule pairs curated from the 
PDBbind dataset [18]. This enabled the SMILES-VAE decoder to learn 
how to decode the joint latent vector into chemically valid small mol
ecules, and retain model stability during further optimization with 
reinforcement learning. 

2.4. Optimizing the conditional molecule generator using a drug-target 
affinity (DTA) prediction model 

With the pre-trained conditional molecule generator as the agent and 
a generic drug-target affinity (DTA) prediction model as the critic, the 
binding affinity of the generated small molecules was optimized using 
reinforcement learning (RL). The generic DTA model was trained to be 
target-agnostic, and can predict the binding affinity towards any given 
target protein (Fig. 1d) using extended connectivity interaction finger
prints (ECIF) as the input representation [22]. The model was trained, 
tuned and validated based on the model architecture and hyper
parameters indicated in the previous study [22]. PDBbind core set and 
Astex diversity set [23] were used for model validation and testing, 
respectively. 

ECIF fingerprints for a protein-ligand complex were obtained 
through on-the-fly docking of molecules to the target binding site using 
gnina [24]. The DTA model predicts the pIC50 value of the 
protein-ligand interaction, which is used to optimize the model based on 
the following reward formulation (1). 

r(x)= exp
( x

3.0

)
(1)  

where, x refers to the predicted pIC50 value of the generated molecule. 
The reinforcement learning process is terminated when the bioactivity 
distribution for the generated small molecules is well optimized. 
Termination of the RL training process is target protein-dependent, and 
multiple criteria are considered as discussed in our previous study [21]. 

2.5. Validation of the generated small molecules after RL training 

An in silico validation was performed to understand the quality of the 
generated molecules. Since Mtb chorismate mutase is an under-explored 
target protein, only 37 inhibitors could be identified in literature which 
were tested against the chorismate-binding site [9]. These 37 inhibitors, 
for which bioactivity data is available, were considered as the validation 
set for comparison with the generated molecules after RL. A set of 10000 
small molecules with predicted bioactivity values was obtained after RL 
training. As a first step of validation, the Tanimoto similarity of gener
ated small molecules with the 37 known inhibitors was calculated [25], 
along with similarity of various physicochemical property distributions. 
Due to the unavailability of a large enough validation dataset, a 
pharmacophore-based screening was also performed to understand if 
the diverse designed small molecules have spatial features similar to the 
known chorismate mutase inhibitors. The PharmaGist program [26] was 
used for ligand-based pharmacophore analysis. A random set of 32 
molecules from the set of known inhibitors was used as input to the 
PharmaGist program. From the PharmaGist output, coverage of binding 
site was used to choose the top 2 composite ligand-based pharmaco
phores for further screening of generated small molecules. 

The generated set of small molecules were filtered further based on 
their solvent accessible surface area (SASA) when bound to the cho
rismate mutase binding site based on the complex structure obtained 
from docking using gnina [24]. This criterion filtered out the small 

molecules which can have regions partially residing outside the binding 
site. The free and bound SASA values for the small molecule were 
calculated using the FreeSASA program [27] with the Shrake-Rupley 
algorithm [28] and a default probe radius of 1.4 Å. Generated small 
molecules with less than 10% of exposed surface area when bound to 
chorismate mutase were chosen for further analyses. These molecules 
were clustered using Butina clustering [29] with a Tanimoto distance 
cut-off of 0.5 and 1024-bit ECFP4 fingerprints for molecular represen
tation. The interaction of each cluster with the binding site residues 
were analyzed to elucidate the major binding site residues governing the 
interaction of generated small molecules with chorismate mutase. 

3. Results and discussion 

3.1. Performance of the pre-trained models 

The accuracy, uniqueness and novelty of the SMILES-VAE model 
were found to be 93.22%, 99% and 96%, respectively, as per the Gua
caMol distribution learning benchmark (v0.5.3) [30]. The other 
benchmarking results of the SMILES-VAE model are discussed in detail 
in the supplementary information 1 (Section S1). The ROC score for the 
GAT-VAE model (4 Å edge cutoff) was 0.89. Five-fold cross validation of 
the DTA model yielded Pearson correlation coefficients (Rp) of 0.851 
(RMSE = 1.21) and 0.565 (RMSE = 1.52) for the PDBbind core set and 
Astex diversity set, respectively (Table S2). Further, analysis of 
SMILES-VAE and GAT-VAE latent vectors using PCA showed that atleast 
200 dimensions are required to capture 90% of variance in the input 
data (see Supplementary information 1, Section S2). 

3.2. Generating novel small molecules targeting chorismate mutase 

The structure-based drug design method was used to generate novel 
small molecules specific to chorismate mutase (PDB ID: 2FP2) of 
Mycobacterium tuberculosis. The limited number of inhibitors reported in 
literature for inhibition of the conversion of chorismate to prephenate, 
highlights the gap in designing a large and diverse set of small molecules 
targeting this essential step. The binding site graph was extracted from 
the experimental rotamer conformations observed when chorimsate 
mutase is bound to a transition state analogue (PDB ID: 2FP2). The final 
bioactivity distribution obtained after optimization is given below 
(Fig. 2a). The resultant target-specific conditional VAE model was used 
to sample 10000 small molecules, which were processed to omit 
chemically invalid molecules and canonicalized. The set of physico
chemical property distributions after reinforcement learning in com
parison to that of the known chorismate mutase inhibitors, is provided in 
the supplementary information 1 (Supplementary Fig. S1). A random set 
of diverse molecules from the model, along with their key physico
chemical properties are also provided in the supplementary information 
1 (Table S3). 

3.3. Analysis of the generated small molecules 

3.3.1. (A) Similarity of generated molecules based on Tanimoto coefficient 
With ECFP4 fingerprints [31] as the molecular representation and 

Tanimoto coefficient (TC) as the distance metric, similarity was quan
tified to known chorismate mutase inhibitors. Generated molecules with 
high similarity to existing inhibitors were distinguished based on a TC 
value higher than 0.60. The comparison identified 28 generated small 
molecules of high similarity (Fig. 2b). However, TC-based scoring 
cannot identify pharmacophore-level similarity to existing inhibitors 
based on the spatial arrangement of functional groups of similar char
acteristics, which are crucial for biological response [32]. 

3.3.2. (B) Similarity of the generated molecules based on ligand-based 
pharmacophores 

PharmaGist program uses ligand-based pharmacophores to screen 
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datasets of small molecules and provides a feature overlap score sum
marizing the functional group-level similarity to the pharmacophores. 
Molecules with high score can therefore be considered as efficient in
hibitors of the target protein, irrespective of their Tanimoto similarity to 
existing inhibitors. A small molecule was considered as a hit, if the 
feature overlap score of the molecule with the target pharmacophore 
was at least half of the maximum feature overlap score [21]. Based on 
the results (Table 1), the two selected composite pharmacophores 
(Supplementary Figs. S2–a) could cover 100% of the chorismate 
mutase-specific generated molecules. 

From the pharmacophore-based screening results, the generated 
small molecules were found to capture the key pharmacophore features 
of the target binding site. To further confirm the pharmacophore-level 
similarity of the generated small molecules to the existing inhibitors, 
two pharmacophore fingerprints (ErGFP and PharmacoPFP) were 
calculated following a recent study [33] and compared using cosine 
similarity. The distribution of the cosine similarity values from all 
pairwise comparisons (Supplementary Figs. S2–b) shows that above 
75% of the generated small molecules have high pharmacophore-level 
similarity (cosine similarity above 0.8) to existing inhibitors. It is 
important to note that only limited number of small molecules (mole
cules from the validation dataset) have been tested against chorismate 
mutase, which is still an ongoing research area. The current comparison 
of generated small molecules with the validation set through Tanimoto 
coefficient and the ligand-based pharmacophore analysis, were per
formed for in silico validation of the proposed approach. 

3.4. GAT-VAE model identified important binding site residues 

The attention coefficients from the GAT-VAE model were analyzed 
for each residue (node) and its neighborhood in the binding site graph. 
The biological significance of the latent representation from the GAT- 
VAE model can be understood by elucidating residue pairs with high 

attention coefficient (Fig. 3). 
Residue pairs with attention coefficient above 0.5 were considered 

important. For the binding site of Mtb chorismate mutase (PDB ID: 
2FP2), only 10 of the 244 interactions had attention coefficient (αij) 
above 0.50 from the GAT-VAE model. These 10 interactions involved the 
following 16 binding site residues: Leu50, Ala53, Lys60, Pro66, Ile67, 
Asp69, Arg72, Val73, Phe98, Ile102, Ala107, Lys117, Arg103, Glu109, 

Fig. 2. (a) Predicted bioactivity distribution before and after optimization of the generated small molecules specific to Mtb chorismate mutase (b) examples of 
generated small molecules with high similarity to existing inhibitors of chorismate mutase. The similarity between the generated molecule and the known inhibitor is 
provided in terms of the Tanimoto coefficient (TC). 

Table 1 
Results from the pharmacophore-based screening of generated small molecules for chorismate mutase (CM).  

Protein Pharmacophore Hitsa (%) Screened countb Not screened count Screened by the other pharmacophore Not screened by both pharmacophores 

CM validation set Pharmacophore 1 71.42 32 4 2 2 
Pharmacophore 2 68.57 28 8 6 

CM generated set Pharmacophore 1 88.49 7483 973 973 0 
Pharmacophore 2 67.41 5701 2755 2755  

a Molecules with at least half the maximum overlap score. 
b Any molecule with a positive overlap score. 

Fig. 3. Attention coefficient heatmap for the binding site residues of Mtb 
chorismate mutase (PDB ID: 2FP2). Darker boxes indicate more importance to 
the residue pair in the binding site graph. 
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Ile137, and Asn141. Based on the interactions of the transition state 
analogue with these binding site residues in the crystal structure [14], 
the importance of the interactions in stabilizing the protein-ligand 
complex was verified. According to the previous literature, Lys60 in
teracts with Glu109, and both residues coordinate the ether oxygen of 
the transition state analogue through hydrogen bonding. Both these 
interactions with the ligand are thought to be crucial for the enzyme’s 
catalytic mechanism [14]. Arg72, being a highly conserved residue in 
the chorismate mutase subfamily, was found to coordinate the two 
carboxylate groups of the transition state analogue (Supplementary 
Fig. S3). Apart from these polar residues, the hydrophobic residues 
Ile67, Val73 and Ile102 were also observed to form strong van der 
Waal’s interactions with the ligand in the crystal structure. Overall, the 
residue pairs with higher attention coefficients were found to provide 
stability to the generated molecules and their role in enzyme activity is 
also known from previous literature [14]. These residues can influence 
the molecule generation process, which can be deduced from the 
complementarity of interactions at the chorismate mutase binding site 
(Fig. 4). 

3.5. Clustering and interaction analysis identified key interactions 
between binding site residues and the generated small molecules 

The set of 8941 generated small molecules specific to chorismate 
mutase were filtered based on their exposed surface area in the docked 
complex structure, resulting in a set of 4041 molecules satisfying the 
chosen criterion (see Supplementary information 2). These molecules 
were clustered using the Butina clustering method [29]. As most of the 
clusters were singletons, only clusters with at least 10 molecules were 
chosen for further analysis, amounting to 13 distinct clusters of gener
ated molecules. Each cluster was found to contain a representative 
molecule with a minimal scaffold, and other molecules in the cluster 
with various substituents attached to one or more positions of the 
minimal scaffold. The topmost cluster (cluster 1) included 78 generated 
molecules with similar scaffold. The molecules belonging to the top 10 
clusters were represented using a TMAP [34] to understand the variation 
between clusters (Fig. 5). Based on an analysis of the best docking pose 
of each molecule at the chorismate binding site, the interactions pre
dominant among the molecules within each cluster were identified 
(Tables S4 and S5). 

Among the polar binding site residues, Arg72, Arg134, Gln76, Lys60 
and Thr105 contributed to a major percentage of interactions in all 11 
clusters. Similarly, among the non-polar binding site residues, Ile137, 
Leu130, Val56 and Ile102 were found to interact with at least 50% of 
molecules in each cluster. Histograms of interaction percentages for the 

polar and non-polar binding site residues for the top 5 clusters are shown 
in Fig. 6. Interestingly, Arg72, Lys60, Ile137 and Ile102 were also 
involved in interactions with high attention coefficients identified from 
the binding site graph using the GAT-VAE model (Fig. 3). This indicates 
the capability of conditional molecule generation with the GAT-VAE 
model to focus on the key binding site residues and design molecules 
with favorable interactions at the binding site. 

4. Conclusions 

Most of the current generative models are ligand-based (Jin et al., 
2018; Balakrishnan et al., 2021; [13,35,36], which limits the applica
bility of ligand-based generative models against novel target proteins 
with limited amount of target-specific ligand dataset. In this study, a 
new structure-based deep learning method was used for designing novel 
anti-tuberculosis agents. The method utilized the binding site informa
tion of Mtb chorismate mutase enzyme to condition the molecule gen
eration process. The graph attention model was able to distinguish the 
key binding site residues and inter-residue interactions through the 
attention coefficients, which was visualized using the attention coeffi
cient heatmap. An in silico validation was performed, where the condi
tional generative model was found to generate small molecules having 
high similarity with respect to the existing inhibitors of chorismate 
mutase. The generated small molecules were also found to preserve the 
key pharmacophoric features required to efficiently bind to the binding 
site of the target protein. Analysis of the attention coefficients followed 
by clustering and interaction analysis identified key binding site resi
dues responsible for substrate binding. The approach presented in this 
work explains the suitability of conditional molecule generation using 
the GAT-VAE model, which provides opportunity for designing drug-like 
molecules against novel target proteins whose structure is known. 
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Fig. 4. 2D interaction diagrams of the representative molecules from the top three clusters with binding site residues. Hydrogen bonds are shown as dotted lines. 
Non-polar hydrogens have been omitted for clarity. The interaction diagrams were prepared using the PoseView tool. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jmgm.2022.108361. 
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