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Abstract

To reduce reliance on labelled data, learning with noisy labels (LNL) has gained1

increasing attention. However, prevailing works typically assume that such datasets2

are primarily affected by closed-set noise (where the true/clean labels of noisy3

samples come from another known category), and ignore therefore the ubiqui-4

tous presence of open-set noise (where the true/clean labels of noisy samples5

may not belong to any known category). In this paper, we formally refine the6

LNL problem setting considering the presence of open-set noise. We theoret-7

ically analyze and compare the effects of open-set noise and closed-set noise,8

as well as the effects between different open-set noise modes. We also analyze9

common open-set noise detection mechanisms based on prediction entropy values.10

To empirically validate the theoretical results, we construct two open-set noisy11

datasets - CIFAR100-O/ImageNet-O and introduce a novel open-set test set for12

the widely used WebVision benchmark. Our work suggests that open-set noise13

exhibits qualitatively and quantitatively distinct characteristics, and how to fairly14

and comprehensively evaluate models in this condition requires more exploration.15

1 Introduction16

In recent years, the tremendous success of machine learning often relies on the assumption that data17

labels are accurate and free from noise. However, in real-world scenarios, label noise caused by18

factors such as annotation errors and label ambiguity is ubiquitous, posing a pervasive challenge to19

the performance and generalization of models. To address this challenge, various methods have been20

proposed to learn with noisy labels, including noise transition matrix [7, 23], label correction [17, 3],21

robust loss functions [6, 29, 19], and recently dominant sample selection-based approaches [11, 2].22

Most current efforts, however, primarily focus on closed-set noise, where the true labels of noisy23

samples belong to another known class. This includes common noise models like symmetric noise24

(assuming that the labels of samples are randomly flipped with a certain probability to any other25

known classes) or asymmetric noise model (assuming that the probability of label confusion is26

influenced by the classes, such as ’cat’ being more likely to be confused with ’dog’ than with27

’airplane’). Recent advancements have also explored instance-dependent noise models [4, 26], where28

label confusion depends directly on individual instances.29

Unfortunately, unlike the in-depth exploration of closed-set noise, there is noticeably limited research30

on open-set noise, where the true labels of noisy samples may not belong to any known category.31

This gap becomes particularly crucial when considering one of the primary motivations for learning32

with noisy labels: learning with datasets obtained through web crawling. Examining one of the most33

commonly used benchmarks - the WebVision dataset [12], we validate the prevalence of open-set34

noise (fig. 1). In fact, the ‘open-world’ assumption involving open-set samples has received more35

attention in other weakly supervised learning problems, such as open-set recognition and outlier36
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Tench?

Figure 1: Example images of class “Tench" from WebVision dataset. Clean samples are marked in
�extcolorgreenGreen, closed-set noise is marked in Blue and open-set noise is marked in Red. See
appendix F for more details.

detection, but lacks enough exploration in the context of LNL. To this end, we focus on a thorough37

theoretical analysis of open-set noise in this paper. Specifically:38

• Considering the presence of open-set noise, we introduce the concept of a complete noise39

transition matrix and reformulate the LNL problem and label noise definition in this context.40

• To enable offline analysis, we consider two pragmatic cases: fitted case, that the model41

perfectly fits the noisy distribution, and memorized case, that the model completely memorises42

the noisy labels.43

• We analyze and compare the open-set noise vs. closed-set noise on closed-set classification44

accuracy and suggest that open-set noise has a less negative impact in both cases. We also45

analyze and compare the ‘hard’ open-set noise vs. ‘easy’ open-set noise, but find that these46

two different noise modes show opposite trends in two different cases.47

• Since closed-set classification evaluation may be insufficient to fully reflect model perfor-48

mance, we consider introducing an additional open-set detection task and conduct preliminary49

experiments.50

• We derive and analyze the open-set noise detection mechanism based on the entropy values51

of model predictions and suggest that it may be effective only for ‘easy’ open-set noise. We52

also consider two representative LNL methods and combine them with such open-set noise53

detection mechanism for further experiments.54

• For controlled experiments, we construct two novel synthetic open-set noise datasets:55

CIFAR100-O and ImageNet-O. Additionally, we introduce a new open-set test set to the56

WebVision dataset for the open-set detection task.57

2 Related works58

Methods for learning with noisy labels can be roughly categorized into two main directions. The first59

direction typically focuses on estimating noise transition matrix [4, 26, 23, 7] or designing robust60

loss functions [29, 19, 6], aiming to achieve theoretically risk-consistent or probabilistic-consistent61

models. However, most of these works often assume an ideal scenario where the model can learn to62

fit the sampled distribution well, overlooking the over-fitting issues arising from excessive model63

capacity and insufficient data in practical situations. In this paper, we introduce the concept of64

complete noise transition matrix considering the presence of open-set noise and conduct theoretical65

analyses and experimental validations for both ideal case and over-fitting case, namely fitted case66

and memorized case. The second type is often based on sample selection strategies, involving also67

different regularization terms and off-the-shelf techniques such as semi-supervised learning and68

model co-training, to achieve the state-of-the-art performance. Most sample selection methods are69

based on the model’s current predictions, such as the popular ‘small loss’ mechanism [2, 11, 8, 28,70

10, 17, 13, 27, 24, 30], or model’s feature space [21, 22, 15, 5].71

Especially, the investigation on open-set noise is relatively scarce. Wang et al. [18] utilize Local72

Outlier Factor algorithm to identify open-set noise in feature space, Wu et al. [22] propose to identify73

open-set noise with subgraph connectivity, while both Sachdeva et al. [16] and Albert et al. [1] try to74

identify open-set noise based on entropy-related dynamics. Instead, Feng et al. [5] do not identify75

open-set noise explicitly while avoid relabelling and including open-set noise in the training. More76

closely related to our work, Xia et al. [25] also investigates noise transition matrices involving open-77

set noise but considering all open-set noise belonging to a single meta-class. In this paper, we consider78
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that open-set noise may originate from different classes, and based on this premise, we analyze two79

distinct open-set noise modes. Wei et al. [20] propose leveraging open-set noise to mitigate the80

impact of closed-set noise, as it helps alleviating the model’s over-fitting tendency. Instead, we focus81

on a thorough theoretical analysis of the effects with different noise modes, including open-set noise82

versus closed-set noise, and different open-set noise versus each other.83

3 Methodology84

In section 3.1, we briefly introduce the traditional problem formulation of LNL. In section 3.2, we85

reformulate the LNL problem considering open-set noise. In section 3.3, we formalize how label86

noise influences model generalization, particularly, on the proposed error rate inflation metric. In87

section 3.4, we analyze and compare the impact of open-set vs. closed-set noise, as well as ‘easy’88

open-set noise vs. ‘hard’ open-set noise. In section 3.5, we scrutinize the open-set noise detection89

mechanism based on model prediction entropy values.90

3.1 Traditional formulation of LNL91

Supervised classification learning typically assumes that we sample a certain number of independently92

and identically distributed training samples {xk, yk}Kk=1 from a joint distribution P (x, y; y ∈ Yin),93

i.e., the so-called train set. By default, here all the possible values for yk in the discrete label space94

Yin : {1, 2, ..., A} (referred here as inlier classes), are known in advance. With a certain loss function,95

given the train set {xk, yk}Kk=1 we aim to train a model f : x → y whose predictions can achieve the96

minimum error rate under the whole clean distribution P (x, y; y ∈ Yin).97

Under LNL problem setting, we believe that the joint distribution P (x, y; y ∈ Yin) has been perturbed98

to Pn(x, y; y ∈ Yin); especially, the conditional distribution Pn(y|x; y ∈ Yin) changes — normally99

we assume the sampling prior is free of the label noise (P (x; y ∈ Yin) = Pn(x; y ∈ Yin)), leading100

to the presence of noisy labels ynk in the noisy train set {xk, y
n
k }Kk=1 that do not conform to the clean101

conditional distribution P (y|x; y ∈ Yin).102

3.2 Revisiting LNL considering open-set noise103

We here formally revisit the problem formulation of learning with noisy labels considering the104

existence of open-set noise. Instead of assuming all the possible classes are known (y ∈ Yin), we105

consider samples from some unknown outlier classes may also exist in the train set. Let us denote106

these classes as outlier classes Yout : {A+ 1, A+ 2, ..., A+B} with B as the number of possible107

outlier classes. Then, we expand the support of joint distribution to contain both inlier and outlier108

classes, denoted as P (x, y; y ∈ Yin ∪ Yout) and Pn(x, y; y ∈ Yin ∪ Yout) for the clean and noisy109

ones, respectively. For brevity, we denote as Yall ≜ Yin ∪ Yout. Similarly as above, we still assume110

the noisy labelling will not affect the sampling prior (P (x; y ∈ Yall) = Pn(x; y ∈ Yall)). For111

subsequent analysis, we first define below complete noise transition matrix:112

Definition 3.1 (Complete noise transition matrix). For a specific sample x, we define as T (sample113

index omitted here for simplicity) the complete noise transition matrix1:114

T =

[
T in

A×A 0A×B

T out
B×A 0B×B

]
.

T in corresponds to the confusion process between inlier classes Yin : {1, 2, ..., A}, and T out115

corresponds to the confusion process from outlier classes Yout : {A+ 1, A+ 2, ..., A+B} to inlier116

classes Yin : {1, 2, ..., A}.117

For brevity, we denote as Tij ≜ P (yn = j|y = i,x = x; yn, y ∈ Yall). We have further118 ∑A+B
j=1 Tij = 1 for i ∈ {1, ..., A + B} - noise transition from each clean class sums to 1 over all119

possible noisy classes. With such a complete noise transition matrix T , we can connect the clean120

1The right part of the transition matrix is all-zero as we assume in the noisy labelling process all outlier
classes are confused into inlier classes, i.e., all of its samples been labelled as one of the inlier classes.
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conditional distribution P (y|x = x; y ∈ Yall) with the noisy conditional distribution Pn(y|x =121

x; y ∈ Yall) as below:122

Pn(y = j|x = x; y ∈ Yall) =

A+B∑
l=1

P (y = l|x = x; y ∈ Yall) · Tlj (1)

Label noise Recent works usually discriminate label noise into closed-set noise and open-set noise.123

Before continuing with the further discussion, we feel it is necessary to elucidate these two concepts124

here clearly to avoid any ambiguities, as we will try to comparably discriminate and analyze them125

later. Specifically, most of recent works define open-set noise as ‘a sample with its true label from126

unknown classes but mislabelled with a known label’. Formally, we have:127

Definition 3.2 (Label noise). For sample x with clean label y and noisy label yn:128

• When y = yn, (x, y, yn) is a clean sample;129

• When y ̸= yn and y ∈ Yin, (x, y, yn) is a closed-set noise;130

• When y ̸= yn and y ∈ Yout, (x, y, yn) is an open-set noise.131

Specifically, we have y ∼ P (y = y|x = x; y ∈ Yall) while yn ∼ Pn(y = yn|x = x; y ∈ Yall).132

However, we can only identify label noise type with (x, y, yn) — y, yn yet to be sampled even with133

known conditional probability. To enable sample-wise analysis on the impact of different label noise,134

we further introduce below (Ox, Cx) label noise:135

Definition 3.3 ((Ox, Cx) label noise). For sample x with clean conditional probability P (y|x =136

x; y ∈ Yall) and complete noise transition matrix T :137

Ox =

A+B∑
i=A+1

A∑
j=1

TijP (y = i|x = x; y ∈ Yall) =

A+B∑
i=A+1

P (y = i|x = x; y ∈ Yall),

Cx =

A∑
i=1

A∑
j=1,j ̸=i

TijP (y = i|x = x; y ∈ Yall).

(2)

Here, Ox is the expected open-set noise ratio, Cx is the expected closed-set noise ratio. We then138

define sample x as an (Ox, Cx) label noise. Intuitively speaking, sample x is expected to be an139

open-set noise with probability as Ox and to be a closed-set noise with probability Cx.140

With Definition 3.3, we formalize the concept of noise ratio for the whole distribution, as the141

accumulated (Ox, Cx) label noise at all sample points x ∈ X :142

N =

∫
x

(Ox + Cx) · P (x = x; y ∈ Yall)dx (3)

3.3 Analyzing classification error rate inflation in LNL143

In this section, we try to analyze the impact of different label noise. Please note, while the reformulated144

LNL setting encompasses outlier classes Yout, in both the training and evaluation stage, they are145

unknown (agnostic); the learned model f is still tailored for the classification of inlier classes Yin.146

That is to say, the default classification evaluation protocol is still concerned with the classification147

error rate over the inlier conditional probability, denoted as P f (y|x = x; y ∈ Yin).148

Error rate inflation With P f (y|x = x; y ∈ Yin), in the evaluation phase, for specific sample x149

we have its prediction as: yf = argmaxkP
f (y = k|x = x; y ∈ Yin) ∈ Yin, and the corresponding150

expected classification error rate as:151

Ex =
∑

y ̸=yf

P (x, y; y ∈ Yin) = (1− P (y = yf )|x; y ∈ Yin)) · P (x; y ∈ Yin). (4)

Specifically, we have the Bayes error rate corresponds to the Bayes optimal model f∗:152

E∗
x = (1−maxkP (y = k|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin). (5)
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To measure the negative impacts of noisy labels, we care about how much extra errors have been153

introduced, measured by the error rate inflation of learned model f compared to the Bayes optimal154

model f∗:155

Definition 3.4 (Error rate inflation). With E∗
x as the Bayes error rate, we define the error rate inflation156

for sample x as: ∆Ex = Ex − E∗
x.157

Two pragmatic cases However, P f (y|x = x; y ∈ Yin), as the prediction of the final learned158

model f , is affected by many factors (model capacity/dataset size/training hyperparameters such159

as training epochs, etc.), which is non-trivial to determine its specific value for an offline analysis2.160

Thus, we consider two specific pragmatic cases:161

• Fitted case: the model perfectly fits the noisy distribution: P f (y|x = x; y ∈ Yin) = Pn(y|x =162

x; y ∈ Yin);163

• Memorized case: the model completely memorises the noisy labels: P f (y|x = x; y ∈ Yin) =164

P yn

(y|x = x; y ∈ Yin); Here P yn

denotes the one-hot encoding of the noisy label yn.165

Nonetheless, these two cases are very realistic and important; Empirically, it is highly possible that166

the memorized case can correspond to scenarios such as scratch training based on a single-label167

dataset with a normal deep neural network - as normally such model has enough capacity to memorize168

all the labels, while the fitted case can correspond to scenarios such as fine-tuning a linear classifier169

with a pre-trained model - as the pre-trained model already captures good sample representations and170

the capacity of a linear classifier is limited.171

3.4 Error rate inflation analysis w.r.t different label noise172

In this section, we focus on analyzing the error rate inflation of different label noise. Let us recall the173

clean conditional distribution as P (y|x; y ∈ Yall). For ease of analysis, we contemplate a simple174

scenario, wherein the entire clean conditional distribution remains unchanged, except only one of the175

sample points, say x, is afflicted by label noise:176

Pn(y|x ̸= x; y ∈ Yall) = P (y|x ̸= x; y ∈ Yall), Pn(y|x = x; y ∈ Yall) ̸= P (y|x = x; y ∈ Yall). (6)

In this condition, we can simplify analyzing the impact of label noise on the whole distribution to177

analyzing the error rate inflation of a single sample x. Specifically, we consider two specific sample178

points x1 and x2, corresponding to two in our later comparative analysis. Let us denote its clean179

conditional probability as P (y|x = x1; y ∈ Yall) = [p11, ..., p
1
A, ..., p

1
A+B ] and P (y|x = x2; y ∈180

Yall) = [p21, ..., p
2
A, ..., p

2
A+B ], and noise transition matrix as T 1 and T 2, respectively. We further181

assume:182

Ox1
+ Cx1

= Ox2
+ Cx2

= δ. (7)
We compare the error rate inflation (∆Ex1

vs ∆Ex2
) with different label noise given same/fixed183

noise ratio for a strictly fair comparison. Note we assume that x1 and x2 hold the same sampling184

prior probability: P (x = x1; y ∈ Yall) = P (x = x2; y ∈ Yall)); so that, we assure that the whole185

noise ratio N is fixed, and more importantly, sample x1 and x2 can be considered as probabilistic186

exchangeable in the dataset collection process.187

For better clarity, we depict the derivation relations for ∆x in fig. 2. Specifically, for our two188

interested cases above, we have corresponding error rate inflation for sample x (sample subscript189

omitted for simplicity) as:190

• Fitted case:191

∆Ex = max[p1, ..., pA]− pargmax[
∑A+B

i=1 piTi1,...,
∑A+B

i=1 piTiA] (8)

• Memorized case:192

∆Ex = max[p1, ..., pA]−
A∑
i=1

(pi ·
A+B∑
j=1

pjTji) (9)

We notice that ∆x in both cases are only affected by clean conditional probability P (y|x = x1; y ∈193

Yall) and complete noise transition matrix T .194

2The reader may refer to [14] for more discussions about related topics such as model generalization.
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Closed-set Noise Ratio:

Clean conditional probability:

Noisy conditional probability:Complete Noise Transition Matrix: 
Noisy conditional probability over

inlier classes:

Clean conditional probability over
inlier classes: Error Rate Inflation: Open-set Noise Ratio:

Figure 2: All-in-one derivation flowchart. Full details in appendix C.

3.4.1 How does open-set noise compare to closed-set noise?195

We first try to elucidate the difference between open-set noise and closed-set noise. Without loss of196

generality, we consider:197

Ox1
> Ox2

, Cx1
< Cx2

. (10)
Intuitively speaking, we consider sample x1 to be more prone to open-set noise compared to sample198

x2, thus corresponding to the ‘more open-set noise’ scenario. However, without extra regularizations,199

there exist infinite T 1 and T 2 fulfilling eq. (7) and eq. (10) given specific P (y|x = x1; y ∈ Yall) and200

P (y|x = x2; y ∈ Yall) (see toy example below), the analysis on ∆Ex1
vs ∆Ex2

is thus infeasible.201

Toy example about agnostic T Assuming a ternary classification, with two known inlier
classes (“0" and “1") and one unknown outlier class “2". Say, we have sample x1 with clean
conditional probability as [0.1, 0.2, 0.7]. Assuming two different noise transition matrices for
T 1 below:

[0.55, 0.45, 0.0] = [0.1, 0.2, 0.7]

[
0.5 0.5 0
0.75 0.25 0
0.5 0.5 0

]

[0.45, 0.55, 0.0] = [0.1, 0.2, 0.7]

[
0 1 0
0.5 0.5 0
0.5 0.5 0

]
We have Ox1

= 0.7, Cx1
= 0.2 in both conditions but we arrive at different noisy conditional

probability, similarly for sample x2.
202

We thus consider a class concentration assumption — in most classification datasets, the majority of203

samples belong to specific class exclusively with high probability. In this condition, we have proved:204

Theorem 3.5 (Open-set noise vs closed-set noise). Let us consider sample x1, x2 fulfilling eq. (7)
and eq. (10) - compared to x2, x1 is considered as more prone to open-set noise. Let us denote
a = argmaxi P (y = i|x = x1; y ∈ Yall) and b = argmaxi P (y = i|x = x2; y ∈ Yall), we
assume (with a high probability): p1a → 1, {p1i → 0}i̸=a and p2b → 1, {p2b → 0}i̸=b. Then, we have:

∆Ex1
< ∆Ex2

in both Fitted case and Memorized case.205

Please refer to appendix D.1 for detailed proof. To summarize, we validate that in most conditions,206

open-set noise is less harmful than closed-set noise in both fitted case and memorized case.207

3.4.2 How does different open-set noise compare to each other?208

We further study how different open-set noise affect the model. Specifically, we consider:209

Ox1
= Ox2

, Cx1
= Cx2

= 0. (11)

Intuitively speaking, we focus on the impacts of different open-set noise modes given the same/fixed210

open-set noise ratio, while excluding the effect of closed-set noise. In this section, we assume211

sample x1 and sample x2 holds the same clean conditional probability: [p11, ..., p
1
A, ..., p

1
A+B ] =212

[p21, ..., p
2
A, ..., p

2
A+B ], to only focus on the impact of different open-set noise modes with the same213

original sample. It is straightforward that Ox1
= Ox2

always holds since
∑A+B

i=A+1 p
1
i =

∑A+B
i=A+1 p

2
i .214

To ensure Cx1
= Cx2

= 0, we simply set T 1
in = T 2

in = I.215
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Thus, we have the flexibility to explore various forms of Tout — corresponding to different open-set216

noise modes. Specifically, we consider two distinct open-set noise modes: ‘easy’ open-set noise217

when the transition from outlier classes to inlier classes involves completely random flipping, and218

‘hard’ open-set noise when there exists an exclusive transition between the outlier class and specific219

inlier class. We denote as T easy for ‘easy’ open-set noise and Thard for ‘hard’ open-set noise, with220

intuitive explanations below:221

T easy =

 1
A ... 1

A
... ... ...
1
A ... 1

A


B×A

(12)

and222

Thard =

[
0 ... 1
... ... ...
1 ... 0

]
B×A

(13)

Especially, for T easy, we have Tij =
1
A everywhere; for Thard, we denote as Hi : {argj(Thard

ji =223

1)}Ai=1 the set of corresponding outlier classes j ∈ Yout confused to inlier class i ∈ Yin. Without224

loss of generality, we consider x1 with ‘easy’ open-set noise T easy and x2 with ‘hard’ open-set225

noise Thard. Please note, that we no longer require class concentration assumption here as the noise226

transition matrix is already known. In this condition, we have proved:227

Theorem 3.6 (‘Hard’ open-set noise vs ‘easy’ open-set noise). Let us consider sample x1, x2228

fulfilling eq. (7) and eq. (11). We set the corresponding noise transition matrix as T 1
out =229

T easy, T 2
out = Thard, T 1

in = T 2
in = I and denote [p11, ..., p

1
A, ..., p

1
A+B ] = [p21, ..., p

2
A, ..., p

2
A+B ] =230

[p1, ..., pA, ..., pA+B ]. Then, we have:231

• Fitted case:
∆Ex1

≤ ∆Ex2
.

• Memorized case:

∆Ex1
−∆Ex2

=

A∑
i=1

aibi.

Here, ai = pi, bi =
∑

j∈Hi
pj − 1

A

∑A+B
i=A+1 pi.232

Please refer to appendix D.2 for detailed proof. Specifically, we further discuss about memo-233

rized case here. Since
∑A

i=1 bi = 0,
∑A

i=1 ai = 1, we can easily infer max(∆Ex1
− ∆Ex2

) ≥234

0,min(∆Ex1
−∆Ex2

) ≤ 0. With theorem D.3, we know when the ranking of {p1i }Ai=1 is completely235

in agreement with the ranking {
∑

j∈Hi
p1j}Ai=1 (constant term − 1

A

∑A+B
i=A+1 p

1
i omitted here), we236

reach its maximum value with ∆Ex1 −∆Ex2 ≥ 0. Intuitively speaking, this implies a scenario that237

the ‘hard’ open-set noise tends to confuse a sample into the inlier class it primarily belongs to (with238

higher semantic similarity), as indicated by its higher probability (the higher the p1i the higher the239 ∑
j∈Hi

p1j ). For example, an outlier ‘tiger’ image is wrongly included as a ‘cat’ rather than a ‘dog’ in240

a ‘cat vs dog’ binary classification dataset. As this is more consistent with the common intuition, we241

default to such noise mode for ‘hard’ open-set noise — assuming the ranking of {p1i }Ai=1 is of high242

agreement with the ranking of {
∑

j∈Hi
p1j}Ai=1.243

To summarize, unlike the general comparison between open-set noise and closed-set noise, the ‘hard’244

open-set noise and the ‘easy’ open-set noise exhibit an opposite trend in two different cases. In the245

fitted case, ‘easy’ open-set noise appears to be less harmful, while in the memorized case, the impact246

of ‘hard’ open-set noise is comparatively smaller.247

3.5 Rethinking open-set noise detection248

In this section, we try to investigate a commonly used open-set noise identification mechanism based249

on entropy dynamics. Within the sample selection paradigm, several methods [1, 16] have proposed250

to further identify open-set noise, based on the empirical phenomenon that samples with relatively251

in-confident predictions are usually open-set samples, characterized by its high prediction entropy.252

Specifically, we consider original sample x without noise transition, x with Thard and x with T easy253
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as a clean sample, a ‘hard’ open-set noise and an ‘easy’ open-set noise, respectively. For simplicity,254

we omit the subscript.255

Empirically, most sample selection method starts from the early training stages after certain epochs256

of warm-up training, expecting the model to learn meaningful information before over-fitting. To257

analyze the entropy dynamics, we thus consider the model predictions in the fitted case as a pragmatic258

proxy. Let us denote as Heasy, Hhard and Hclean the prediction entropy corresponds to these three259

conditions, we have3:260

Hclean = H([
p1∑A
i=1 pi

, ...,
pA∑A
i=1 pi

])

= H([p1 +
p1∑A
i=1 pi

A+B∑
i=A+1

pi, ..., pA +
pA∑A
i=1 pi

A+B∑
i=A+1

pi]),

Heasy = H([p1 +
1

A

A+B∑
i=A+1

pi, ..., pA +
1

A

A+B∑
i=A+1

pi]),

Hhard = H([p1 +
∑
j∈H1

pj , ..., pA +
∑
j∈HA

pj ]).

(14)

We note Heasy ≥ Hclean
4. However, comparing Hhard and Hclean is non-trivial without specific261

values for each entry. Thus, we suggest open-set noise detection based on the prediction entropy may262

only be effective for ‘easy’ open-set noise.263

4 Experiments264

In this section, we try to validate our theoretical findings. In section 4.1, we validate the theoretical265

comparisons of different label noise. In section 4.2, we validate the entropy dynamics with different266

label noise. Moreover, in appendix E.1, we revisit the performance of two existing LNL methods267

involving open-set noise. To conduct more controllable, fair and accurate experiments, we propose268

two synthetic open-set noisy datasets — CIFAR100-O and ImageNet-O, respectively based on269

the CIFAR100 and ImageNet datasets. We also consider closed-set noise in some experiments,270

particularly, the symmetric closed-set noise. Please refer to appendix A for more dataset and271

implementation details and also details about open-set detection protocol.272

4.1 Empirical validation on previous probabilistic findings273

In this section, we conduct experiments to validate the theorem 3.5 and theorem 3.6. Since most deep274

models have sufficient capacity, we consider direct supervised learning from scratch on the noisy275

dataset and consider the final model as the memorized case - as evidenced by nearly 100% train set276

accuracy. Conversely, obtaining a model that perfectly fits the data distribution is often challenging;277

here, we consider training a single-layer linear classifier upon a frozen pretrained encoder. Due to the278

limited capacity of the linear layer, we expect to roughly approach the fitted case.279

We show classification accuracy on CIFAR100-O and ImageNet-O datasets under different noise280

ratios, as shown in fig. 3(a/b). We find that: 1) in both cases, the presence of open-set noise has281

a significantly smaller impact on classification accuracy compared to closed-set noise. 2) ‘hard’282

open-set noise and ‘easy’ open-set noise show opposite trends in the two different scenarios. These283

results align perfectly with our theoretical analysis.284

In addition to closed-set classification accuracy, we also report the model’s open-set detection285

performance using the maximum prediction value as the indicator [9]) in fig. 3(c/d). We find that, in286

both cases, the presence of open-set noise leads to a degraded open-set detection performance, while287

conversely, the presence of closed-set noise can often even enhance open-set detection performance.288

In light of this contrasting trend, we propose that the open-set detection task, in addition to the default289

closed-set classification, may help to offer a more comprehensive evaluation of LNL methods.290

3Please refer to appendix D.2 for full derivation, specifically the eq. (36) and eq. (37).
4Please note, empirically the relative minority of open-set samples can also lead to low-confidence predictions,

which is beyond the scope of this work. We leave it to interested readers.
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(a) Closed-set classification in fitted case (b) Closed-set classification in memorized case

(c) Open-set detection in fitted case (d) Open-set detection in memorized case

Figure 3: Direct supervised training with different noise modes/ratios.

4.2 Inspecting entropy-based open-set noise detection mechanism291

In section 3.5, we briefly analyze the open-set detection mechanism based on the entropy values of292

model predictions and find that it may be effective only for ‘easy’ open-set noise. Here, we again293

utilize the CIFAR100-O and ImageNet-O datasets for validation experiments with different open-set294

noise ratios and modes. Specifically, we adopt the common warm-up idea used in existing LNL295

methods - training with the entire dataset for a certain number of epochs. We report the model’s296

predicted entropy values for each sample at the {5th, 10th, 20th, 30th} epoch in fig. 4.297

Epoch 5 Epoch 10 Epoch 20 Epoch 30 Epoch 5 Epoch 10 Epoch 20 Epoch 30

Epoch 5 Epoch 10 Epoch 20 Epoch 30 Epoch 5 Epoch 10 Epoch 20 Epoch 30

(a) CIFAR100-O with 20% 'easy' open-set noise

(c) ImageNet-O with 40% 'easy' open-set noise

(b) CIFAR100-O with 20% 'hard' open-set noise

(d) ImageNet-O with 40% 'hard' open-set noise

Figure 4: Entropy dynamics w.r.t different datasets/noise modes/noise ratios.

We validate that the entropy dynamics is a more effective indicator for ‘easy’ open-set noise compared298

to ‘hard’ open-set noise ((a) vs (b), (c) vs (d) in fig. 4). However, even for ‘easy’ open-set noise, we299

also notice that the warm-up epoch matters a lot — too early (5th epoch in fig. 4(c)) or too late (30th300

epoch in fig. 4(c)) also make open-set noise difficult to distinguish. We also test with mixed noise301

including both open-set noise and closed-set noise, please refer to appendix B for more discussions.302

5 Conclusions303

This paper focuses on exploring how open-set label noise affects the performance of models. While304

the ‘open world’ setting involving open-set samples has been widely discussed in several other weakly305

supervised learning settings, its application in the context of learning with noisy labels has been306

understudied. In light of this, we reconsider the LNL problem, specifically focusing on the impact of307

open-set noise compared to closed-set noise, and different types of open-set noise compared to each308

other, on the evaluation performance. In light of the challenges existing testing frameworks face in309

handling open-set noise, we explore the open-set detection task to address the deficiencies in model310

evaluation for open-set noise and conducted preliminary experiments. Additionally, we look into311

the common mechanism for detecting open-set noise based on the model’s prediction entropy. Both312

theoretical and empirical results highlight the urgent need for a deeper exploration of open-set noise313

and its complex impact on model performance.314
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A Experiment details403

A.1 Dataset details404

Previous works involving open-set noise also try to build synthetic noisy datasets, typically treating405

different datasets as open-set noise for each other to construct synthetic noisy dataset [16, 22]. In406

this scenario, potential domain gaps could impact a focused analysis of open-set noise. In this407

work, we propose selecting inlier/outlier classes from the same dataset to avoid this issue. Besides,408

in previous works, the consideration of open-set noise patterns often focused on random flipping409

from outlier classes to all possible inlier classes, which is indeed the ‘easy’ open-set noise adopted410

here. However, both our theoretical analysis and experimental findings demonstrate that ‘easy’411

open-set noise and ‘hard’ open-set noise exhibit distinct characteristics. Therefore, relying solely412

on experiments with ‘Easy’ open-set noise is insufficient, emphasizing the necessity to explore and413

understand the complexities associated with different types of open-set noise. We also evaluate with414

closed-set noise in some experiments, by default, we consider the common symmetric closed-set415

noise in this work.416

CIFAR100-O For the original CIFAR100 dataset, in addition to the commonly-used 100 fine417

classes, there exist 20 coarse classes each consisting of 5 fine classes. To build CIFAR100-O, we418

select one fine class from each coarse class as an inlier class (20 classes in total) while considering419

the remaining classes as outlier classes (80 classes in total). Then, we consider ‘Hard’ and ‘Easy’420

open-set noise as below:421

• ‘Hard’: Randomly selected samples from the same coarse category as the target category422

were introduced as open-set noise.423

• ‘Easy’: Regardless of the target category, samples from the remaining categories were424

randomly introduced as open-set noise.425

ImageNet-O For a more challenging benchmark, we consider ImageNet-1K datasets - consisting of426

1,000 classes. Specifically, we randomly select 20 classes and artificially identify another 20 classes427

similar to each of them:428

inliers= [’tench’, ’great white shark’, ’cock’, ’indigo bunting’, ’European fire salamander’, ’African429

crocodile’, ’barn spider’, ’macaw’, ’rock crab’, ’golden retriever’, ’wood rabbit’, ’gorilla’, ’abaya’,430

’beer bottle’, ’bookcase’, ’cassette player’, ’coffee mug’, ’shopping basket’, ’trifle’, ’meat loaf’]431

outliers= [’goldfish’, ’tiger shark’, ’hen’, ’robin’, ’common newt’, ’American alligator’, ’garden432

spider’, ’sulphur-crested cockatoo’, ’king crab’, ’Labrador retriever’, ’Angora’, ’chimpanzee’,433

’academic gown’, ’beer glass’, ’bookshop’, ’CD player’, ’coffeepot’, ’shopping cart’, ’ice cream’,434

’pizza’]435

Then, we consider ‘Hard’ and ‘Easy’ open-set noise as below:436

• ‘Hard’: Randomly select samples from the corresponding similar outlier class as the target437

category were introduced as open-set noise.438

• ‘Easy’: Samples from the remaining categories were randomly introduced as open-set noise.439

For open-set detection, we directly use the corresponding test sets of these classes from the original440

datasets.441

WebVision WebVision [12] is an extensive dataset comprising 1,000 classes of images obtained442

through web crawling, which thus contains a large amount of open-set noise. In line with previous443

studies [10, 11, 15], we evaluate our methods using the first 50 classes from the Google Subset of444

WebVision. To test the performance of open-set detection on the WebVision dataset, we collect a445

separate test set consisting of open-set images, following the same collection process as the WebVision446

dataset. Specifically, we utilize the Google search engine with the class names as keywords and447

identify those open-set samples that haven’t been included in the train set for this test set.448
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A.2 Implementation details449

Here, we provide detailed implementation specifications for the fitted case and memorized case in450

section 4.1. We also briefly the applied open-set detection protocol.451

Fitted case For the fitted case, we train a randomly initialized classifier - a single linear layer based452

on the encoder of the ResNet18 model with pretrained weights. In the case of the CIFAR100-O453

dataset, a weak augmentation strategy involving image padding and random cropping is applied454

during training, with a batch size of 512. The weight decay (wd) is set to 0.0005, and the model455

undergoes training for 100 epochs, utilizing a learning rate (lr) of 0.02. The learning rate schedule456

follows a cosine annealing strategy.457

For the ImageNet-O dataset, no augmentation is applied during training. The batch size is maintained458

at 512, with a weight decay (wd) of 0.01. The model is trained for 100 epochs, employing a learning459

rate (lr) of 0.02. The learning rate schedule for this case also adheres to a cosine annealing strategy.460

Memorized case In this case, we train a PreResNet18 model from scratch. For both datasets, a461

weak augmentation strategy involving image padding and random cropping is applied during training,462

with a batch size of 128. The weight decay (wd) is set to 0.0005, and the model undergoes training463

for 200 epochs, utilizing a learning rate (lr) of 0.02. The learning rate schedule also follows a cosine464

annealing strategy.465

Open-set detection protocol We use the maximum softmax probability in [9] for the open-set466

detection task. Specifically, assume the trained model f outputs a softmax vector pi for each sample467

xi. We then choose a threshold value t between 0 and 1. For evaluation, we consider binary labels468

indicating whether a sample belongs to a known class (closed-set) or the open-set and convert the469

open-set detection task into a binary classification problem. Samples with a maximum softmax value470

pmax
i below the threshold are considered potential open-set samples. This is because a low maximum471

value indicates the model is less confident in any specific class for that sample.472

B Entropy dynamics for mixed label noise473

In addition to the open-set noise only scenario, we also inspect the entropy dynamics with mixed474

label noise in fig. 5. Here, we use the notation ‘0.2all_0.5easy’ to represent a scenario where the475

total noise ratio is 0.2, and within this, half of them are ’easy’ open-set noise. In the presence of476

mixed label noise, the existence of closed-set noise severely interferes with identifying open-set477

noise. For example, in fig. 5(d), the entropy values of open-set noise even exceed those of clean478

samples. Though not theoretically analyzed, this further suggests that entropy dynamics based on479

model predictions, may be fragile, and we need to handle open-set noise more cautiously.

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(a) CIFAR100-O 0.2all_0.5easy

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(b) CIFAR100-O 0.2all_0.5hard
Epoch 5 Epoch 10 Epoch 20 Epoch 30

(c) ImageNet-O 0.4all_0.5easy

Epoch 5 Epoch 10 Epoch 20 Epoch 30

(d) ImageNet-O 0.4all_0.5hard

Figure 5: Entropy dynamics w.r.t mixed label noise.

480

C Error rate inflation in two different cases481

In this section, we present the computation details of error rate inflation in two interested cases - fitted482

case and memorized case. Specifically, we have:483
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• Fitted case:484

Ex = (1−P (y = argmaxkP
n(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)) ·P (x = x; y ∈ Yin).

(15)

• Memorized case:485

Ex = (1− P (y = argmaxkP
yn

(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin)

=
∑

yn∈Yin

(1− P (y = yn|x = x; y ∈ Yin))Pn(y = yn|x = x; y ∈ Yin) · P (x = x; y ∈ Yin)

= [1−
∑

yn∈Yin

P (y = yn|x = x; y ∈ Yin)Pn(y = yn|x = x; y ∈ Yin)] · P (x = x; y ∈ Yin)

(16)

While E∗
x denotes the Bayes optimal error rate:486

E∗
x = (1−maxkP (y = k|x = x; y ∈ Yin)) · P (x = x; y ∈ Yin). (17)

We thus have ∆Ex in both cases as:487

• Fitted case:488

∆Ex = [maxkP (y = k|x = x; y ∈ Yin)− P (y = argmaxkP
n(y = k|x = x; y ∈ Yin)|x = x; y ∈ Yin)]

· P (x = x; y ∈ Yin).
(18)

• Memorized case:489

∆Ex = [maxkP (y = k|x = x; y ∈ Yin)−
∑

yn∈Yin

P (y = yn|x = x; y ∈ Yin)Pn(y = yn|x = x; y ∈ Yin)]

· P (x = x; y ∈ Yin).

(19)

Details on the derivation of error rate inflation (fig. 2) Then, we describe the essential concepts490

depicted in fig. 2 in detail. For better clarity, we here restate the notations in section 3.4. We explicitly491

consider two specific sample points x1 and x2 being perturbed independently, corresponding to two492

different label noise modes. Let us assume its clean conditional probability as:493

P (y|x = x1; y ∈ Yall) = [p11, ..., p
1
A, ..., p

1
A+B ],

P (y|x = x2; y ∈ Yall) = [p21, ..., p
2
A, ..., p

2
A+B ],

(20)

and denote its noise transition matrix as T 1 = {T 1
ij}

A+B
i,j=1 and T 2 = {T 2

ij}
A+B
i,j=1, respectively. Here,494

{T 1
ij = 0}, {T 2

ij = 0} for all j > A.495

With eq. (1), we compute the corresponding noisy conditional probability for both samples as:496

Pn(y|x = x1; y ∈ Yall) = [

A+B∑
i=1

p1iT
1
i1, ...,

A+B∑
i=1

piT
1
iA, 0, ..., 0],

Pn(y|x = x2; y ∈ Yall) = [

A+B∑
i=1

p2iT
2
i1, ...,

A+B∑
i=1

p2iT
2
iA, 0, ..., 0].

(21)

Note that the error rate inflation is dependent on the clean conditional probability over inlier classes,497

noisy conditional probability over inlier classes and sampling prior over inlier classes as shown in498

eq. (18) and eq. (19).499
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Specifically, for sample x1, we have:500

P (y = k|x = x1; y ∈ Yin) =
P (y = k|x = x1;y ∈ Yall)∑

i∈Yin P (y = i|x = x1; y ∈ Yall)
=

p1k∑A
i=1 p

1
i

,

Pn(y = k|x = x1; y ∈ Yin) =
Pn(y = k|x = x1;y ∈ Yall)∑

i∈Yin Pn(y = i|x = x1; y ∈ Yall)
=

A+B∑
i=1

p1iT
1
ik,

P (x = x1; y ∈ Yin) =

∑
y∈Yin P (x = x1, y = y; y ∈ Yall)∫ ∑
y∈Yin P (x = x, y = y; y ∈ Yall)dx

∝
∑

y∈Yin

P (x = x1, y = y; y ∈ Yall)

∝
∑

y∈Yin

P (y = y|x = x1; y ∈ Yall)P (x = x1; y ∈ Yall)

P (x=x1;y∈Yall)=P (x=x2;y∈Yall)=δ−−−−−−−−−−−−−−−−−−−−−−−−→

∝
∑

y∈Yin

P (y = y|x = x1; y ∈ Yall) =

A∑
i=1

p1i .

(22)

Simply changing the subscript leads us to the formulations for sample x2. To summarize, wrapping501

the above together, we have:502

P (y|x = x; y ∈ Yin) = [
p1∑A
i=1 pi

, ...,
pA∑A
i=1 pi

],

Pn(y|x = x; y ∈ Yin) = [

A+B∑
i=1

piTi1, ...,

A+B∑
i=1

piTiA],

P (x = x1; y ∈ Yin) =

A∑
i=1

pi.

(23)

We here omit the sample subscript and abbreviate the proportional symbol for simplicity. With503

eq. (18), eq. (19) and eq. (23), we can then compute and compare ∆Ex in both fitted case and504

memorized case:505

∆Ex = max[p1, ..., pA]− pargmax[
∑A+B

i=1 piTi1,...,
∑A+B

i=1 piTiA] (Fitted case) (24)
506

∆Ex = max[p1, ..., pA]−
A∑
i=1

(pi ·
A+B∑
j=1

pjTji) (Memorized case) (25)

D Full proof of theorem 3.5 and theorem 3.6507

Error rate inflation comparison s.t. same noise ratio To ensure a fair comparison, in this work,508

we focus on the impact of different label noise given the same noise ratio - modifying Ox and Cx509

while analyzing the trend of ∆Ex. Specifically, for above mentioned x1 and x2, we further assume:510

Ox1
+ Cx1

= Ox2
+ Cx2

= δ. (26)
which leads us to:511

A+B∑
i=A+1

p1i +

A∑
i=1

A∑
j=1,j ̸=i

T 1
ijp

1
i =

A+B∑
i=A+1

p2i +

A∑
i=1

A∑
j=1,j ̸=i

T 2
ijp

2
i −→

A∑
i=1

T 1
iip

1
i =

A∑
i=1

T 2
iip

2
i (27)

Please note, here the clean conditional probability is considered as known and fixed, while eq. (27)512

restricts the values of the noise transition matrix T 1 and T 2, given specific clean conditional513

probability. We then analyze and compare the error rate inflation in both conditions.514
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D.1 Proof of theorem 3.5 — Open-set noise vs Closed-set noise515

In this section, we try to compare open-set noise and closed-set noise. Without loss of generality, we516

consider:517

Ox1 > Ox2 . (28)

Intuitively speaking, sample x1 is more affected by open-set noise compared to sample x2, thus518

corresponding to the interested ‘open-set noise’.519

As clarified by the toy example in section 3.4.1, without extra regularizations, the noise transition520

matrix is not identifiable. We thus consider a simple compromise situation - in most classification521

problems, the majority of samples (with a high probability) belong to a specific class exclusively with522

high probability.523

Let us denote:
a = argmax

i
P (y = i|x = x1; y ∈ Yall)

and
b = argmax

i
P (y = i|x = x2; y ∈ Yall).

We assume :
p1a → 1, {p1i → 0}i ̸=a, p

2
b → 1, {p2i → 0}i ̸=b,

and we have:

Ox1 =

A+B∑
i=A+1

p1i , Ox2 =

A+B∑
i=A+1

p2i .

With eq. (28), we easily infer that: a ∈ Yout while b ∈ Yin. Intuitively speaking, x1 is an open-set524

noise, with its clean conditional probability concentrated on one of the outlier classes, and vice versa525

for x2.526

With eq. (27), we further have:

A∑
i=1

T 1
iip

1
i ≈

A∑
i=1

T 1
ii × 0 ≈ 0,

A∑
i=1

T 2
iip

2
i ≈

A∑
i=1,i̸=b

T 2
ii × 0 + T 2

bb × 1 ≈ T 2
bb.

Thus we have: T 2
bb ≈ 0, which enables us to analyze and compare ∆Ex1

and ∆Ex2
:527

Fitted case In this case, according to eq. (24), we have:528

∆Ex1
= max[p11, ..., p

1
A]− pargmax[

∑A+B
i=1 p1

iT
1
i1,...,

∑A+B
i=1 p1

iT
1
iA]

< max[p11, ..., p
1
A]−min[p11, ..., p

1
A]

p1
a→1,{p1

i→0}i̸=a,a∈Yout

−−−−−−−−−−−−−−−−→
≈ 0,

(29)

529

∆Ex2
= max[p21, ..., p

2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

[
∑A+B

i=1 p2
iT

2
i1,...,

∑A+B
i=1 p2

iT
2
iA]≈[T 2

a1,T
2
a2,...,

b︷︸︸︷
0 ,...,T 2

aA]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
= p2b − p2n
p2
b→1,{p2

i→0}i̸=b,b∈Yin,n̸=b−−−−−−−−−−−−−−−−−−−→
≈ 1.

(30)
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Memorized case In this case, according to eq. (25), we similarly have:530

∆Ex1
= max[p11, ..., p

1
A]−

A∑
i=1

(p1i ·
A+B∑
j=1

p1jT
1
ji) ≈ 0, (31)

∆Ex2
= max[p21, ..., p

2
A]−

A∑
i=1

(p2i ·
A+B∑
j=1

p2jT
2
ji) ≈ 1. (32)

We wrap up above for theorem D.2:531

Theorem D.1 (Open-set noise vs Closed-set noise). Let us consider sample x1, x2 fulfilling eq. (26)
and eq. (28) - compared to x2, x1 is considered as more prone to open-set noise. Let us denote
a = argmaxi P (y = i|x = x1; y ∈ Yall) and b = argmaxi P (y = i|x = x2; y ∈ Yall), we
assume (with a high probability): p1a → 1, {p1i → 0}i̸=a and p2b → 1, {p2b → 0}i̸=b. Then, we have:

∆Ex1
< ∆Ex2

in both fitted case and memorized case.532

D.2 Derivation of theorem 3.5 — ‘hard’ open-set noise vs ‘easy’ open-set noise533

In this part, we try to analyze and compare ‘hard’ open-set noise with ‘easy’ open-set noise. For534

better clarification, we repeat here the essential statements:535

T 1
out = T easy =

 1
A ... 1

A
... ... ...
1
A ... 1

A


B×A

(33)

and536

T 2
out = Thard =

[
0 ... 1
... ... ...
1 ... 0

]
B×A

(34)

and537

T 1
in = T 2

in = I. (35)

Especially, for T easy, we have Tij =
1
A everywhere; for Thard, we denote as Hi : {argj(Thard

ji =

1)}Ai=1 the set of corresponding outlier classes j ∈ Yout confused to inlier class i ∈ Yin. We also
have:

[p11, ..., p
1
A, ..., p

1
A+B ] = [p21, ..., p

2
A, ..., p

2
A+B ]

.538

Fitted case In this case, according to eq. (24), for sample x1 with ‘easy’ open-set noise, we have:539

∆Ex1
= max[p11, ..., p

1
A]− pargmax[

∑A+B
i=1 p1

iT
1
i1,...,

∑A+B
i=1 p1

iT
1
iA]

= max[p11, ..., p
1
A]− pargmax[p1

1+
1
A

∑A+B
i=A+1 p1

i ,...,p
1
A+ 1

A

∑A+B
i=A+1 p1

i ]

= 0,

(36)

and, for sample x2 with ‘hard’ open-set noise, we have:540

∆Ex2
= max[p21, ..., p

2
A]− pargmax[

∑A+B
i=1 p2

iT
2
i1,...,

∑A+B
i=1 p2

iT
2
iA]

= max[p21, ..., p
2
A]− pargmax[p2

1+
∑

b∈H1
p2
b ,...,p

2
A+

∑
b∈HA

p2
b ]

∈ [0, max[p21, ..., p
2
A]−min[p21, ..., p

2
A]].

(37)
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Memorized case In this case, according to eq. (25), for sample x1 with ‘easy’ open-set noise, we541

have:542

∆Ex1
= max[p11, ..., p

1
A]−

A∑
i=1

(p1i ·
A+B∑
j=1

p1jT
1
ji)

= max[p11, ..., p
1
A]−

A∑
i=1

p1i (p
1
i +

1

A

A+B∑
i=A+1

p1i ).

(38)

and, for sample x2 with ‘hard’ open-set noise, we have:543

∆Ex2 = max[p21, ..., p
2
A]−

A∑
i=1

(p2i ·
A+B∑
j=1

p2jT
2
ji)

= max[p21, ..., p
2
A]−

A∑
i=1

p2i (p
2
i +

∑
j∈Hi

p2j )

(39)

We further have:

∆Ex1 −∆Ex2 =

A∑
i=1

p1i (
∑
j∈Hi

p1j −
1

A

A+B∑
i=A+1

p1i ).

Let ai = p1i , bi =
∑

j∈Hi
p1j − 1

A

∑A+B
i=A+1 p

1
i , we have:

∆Ex1
−∆Ex2

=

A∑
i=1

aibi.

To summarize, we wrap up the above together:544

Theorem D.2 (‘Hard’ open-set noise vs ‘easy’ open-set noise). Let us consider sample x1, x2545

fulfilling eq. (26) and eq. (11). We set the corresponding noise transition matrix as in eq. (33), eq. (34)546

and eq. (35). We further assume [p11, ..., p
1
A, ..., p

1
A+B ] = [p21, ..., p

2
A, ..., p

2
A+B ]. Then, we have:547

∆Ex1
≤ ∆Ex2

in fitted case,

∆Ex1
−∆Ex2

=

A∑
i=1

aibi

in memorized case. Here, ai = p1i , bi =
∑

j∈Hi
p1j − 1

A

∑A+B
i=A+1 p

1
i .548

Theorem D.3 (Rearrangement Inequality). For the sequences a1, a2, . . . , an and b1, b2, . . . , bn,
where a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, the rearrangement inequality is given by:

a1 ·b1+a2 ·b2+. . .+an ·bn ≥ a1 ·bσ(1)+a2 ·bσ(2)+. . .+an ·bσ(n) ≥ a1 ·bn+a2 ·bn−1+. . .+an ·b1
Here, σ denotes a permutation of the indices 1, 2, . . . , n. The leftmost expression corresponds to the549

case where σ(i) = i (identity permutation), and the rightmost expression corresponds to the case550

where σ(i) = n+ 1− i (reverse permutation).551

E Revisiting LNL methods552

E.1 Revisiting existing LNL methods with open-set noise553

In this section, we further investigate the learning effectiveness of existing LNL methods on previously554

discussed open-set label noise, especially the dominant ones based on sample selection - these methods555

often integrate different regularization terms and off-the-shelf techniques, resulting in state-of-the-art556

performance. In essence, such methods typically include a sample selection module along with a557
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robust training module. Here, we briefly denote the clean subset selected by the original method558

as Xclean and denote the entire dataset as Xall. Moreover, we consider integrating the previously559

mentioned open-set detection mechanism into current LNL methods - we denote as Xin an inlier560

subset based on entropy dynamics. Then, maintaining the robust training module unchanged, we561

consider below three different variants (the involved LNL method abbreviated as X, the inlier subset562

detection method abbreviated as EntSel):563

• X: Robust training using Xclean, i.e., the original method;564

• EntSel: Robust training using Xin;565

• X + EntSel: Robust training using Xin ∩Xclean.566

Specifically, we test with two representative LNL methods with well-maintained open-source imple-567

mentations: SSR [5] and DivideMix [11]. Please refer to appendix E.2 for more details. In fig. 6, we568

show results on CIFAR100-O and ImageNet-O.569
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Figure 6: Evaluation of directly supervised training with different noise modes/ratios. First row:
Closed-set classification accuracy; Second row: Open-set detection ROC AUC.

First, focusing on the classification accuracy of the model, we observe that 1) using EntSel instead of570

the original method leads to a reduction in classification accuracy in the mixed noise scenario (SSR571

vs EntSel and DivideMix vs EntSel); in pure open-set noise only scenarios, there are no obvious572

trends showing differences in different variant models. 2) the classification accuracy for mixed noise573

is significantly lower than that of only open-set noise at the same noise ratio, which further confirms574

that closed-set noise is more harmful than open-set noise.575

Furthermore, we demonstrate the performance of this model in detecting open-set samples - the576

introduction of EntSel significantly enhances the effectiveness of open-set detection, especially577

when the open-set noise is set to ‘easy’ mode. This also further confirms our theoretical analysis in578

section 3.5 and experimental results in section 4.2.

Table 1: Results on WebVision dataset.

Method Accuracy (%) ROC AUC (%)

SSR 77.48 80.84
EntSel 77.08 85.43
SSR + EntSel 76.04 79.90

DivideMix 74.08 86.39
EntSel 62.96 81.66
DivideMix + EntSel 58.94 83.85

579
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We report results for the WebVision dataset in table 1, reaffirming that combining ‘EntSel’ with ‘SSR’580

significantly enhances open-set detection performance. Notably, most open-set noise in WebVision581

seems to arise from factors like text co-occurrence rather than semantic similarity, categorizing582

it more as ‘easy’ open-set noise. This may explain why EntSel effectively improves open-set583

detection in this context. However, when combining EntSel with DivideMix, both classification584

accuracy and open-set detection decrease, indicating that the robustness of the EntSel method itself is585

questionable. Additionally, simply merging SSR/DivideMix with EntSel using subset intersection (X586

+ EntSel) also leads to a decrease in both classification accuracy and open-set detection performance.587

Finally, it’s worth mentioning that, despite having lower classification accuracy than SSR, DivideMix588

outperforms SSR in open-set detection ROC AUC scores. All above illustrates that simply evaluating589

the classification accuracy may be one-sided.590

E.2 Details of involved methods591

DivideMix [11] Denoting as L = {li}Ni=1 the losses of all samples, DivideMix proposes to model592

it (after min-max normalization) with a Gaussian Mixture Model. The probabilities {pi}Ni=1 of each593

sample belonging to the component with a smaller mean value are then extracted. Samples with594

probability pi greater than the threshold θ are then identified as a “clean" subset. Link to code:595

https://github.com/LiJunnan1992/DivideMix.596

SSR [5] In contrast to DivideMix, SSR extracts features for each sample and constructs a neigh-597

bourhood graph. By computing the nearest neighbour labels for each sample, a pseudo-label598

distribution p is obtained through a KNN voting process. The consistency c = py/pmax between599

this voted distribution and the given noisy label y (logit label) is then calculated. Samples with600

consistency c greater than the threshold θ are identified as part of the “clean" subset. Link to code:601

https://github.com/MrChenFeng/SSR_BMVC2022.602

EntSel We also provide a concise overview of the steps involved in EntSel, following a methodology603

similar to DivideMix. Denoting as E = {ei}Ni=1 the entropy of all samples’ predictions, we similarly604

model it (after min-max normalization) with a Gaussian Mixture Model. The probabilities {pi}Ni=1605

of each sample belonging to the component with a smaller mean value are then extracted. Samples606

with probability pi greater than the threshold θ′ are then identified as “inlier" subset.607

Generally, we have a closed-set classifier g and an encoder f, and we use it for training based on608

the selected subset. Existing sample selection methods usually rely on an estimated prediction609

and a threshold to help filter clean samples. Our proposed OpenAdaptor focuses on the difference610

between open-set and closed-set samples. When integrating them, we propose two different strategies:611

absorption and exclusion.612

E.3 Implementation details613

Experiment details For both SSR and DivideMix, we employ model and optimization configu-614

rations on the same dataset. Specifically, for CIFAR100-O and ImageNet-O, we utilize the Pres-615

ResNet18 model, trained for 300 epochs with a batch size of 128 and a learning rate of 0.02, and a616

cosine annealing schedule was implemented. For the WebVision dataset, we utilize the ResNet18617

model, training for 120 epochs with a reduced batch size of 32. The learning rate is set to 0.01 and618

controlled by a cosine annealing scheduler too. Additionally, a warm-up training phase of 10 epochs619

is implemented in the CIFAR100-O and ImageNet-O experiments, while a 5-epoch warm-up training620

phase is utilized in the WebVision experiment.621

Hyperparameters In all experiments, we set the sample selection threshold θ′ = 0.5 for EntSel.622

For SSR, we employ a sample selection threshold θ = 1.0 in all experiments. For DivideMix,623

the sample selection threshold remains constant at θ = 0.5 across all experiments. Both SSR and624

DivideMix incorporate MixUp, and we adhere to the original paper’s choices by setting the MixUp625

coefficient to 4 for experiments on CIFAR100-O and ImageNet-O and to 0.5 for experiments on626

WebVision. Please note, as exploring and comparing these methods are not our focus, we believe627

there exist better hyperparameter settings.628
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Robustness of EntSel A smaller θ′ for EntSel leads to better performance on WebVision - especially629

when EntSel is used with DivideMix. If we set θ′ = 0.2, our classification accuracy increases from630

62.96% to 67.2%, ROC AUC increases from 0.8166 to 0.8599 (table 1). However, we are keen to use631

fixed hyperparameters in all experiments as we emphasize that the hyperparameter robustness is also632

critical for LNL methods.633

F More examples of open-set noise in WebVision dataset634

In this section, we present additional examples of open-set noise within the ‘Tench’ class of the635

WebVision dataset. We trace the origin of web pages containing some open-set noise images.636

Remarkably, we identify that the appearance of the term ‘Tench’ or related keywords is prevalent637

on the web pages hosting these open-set noise images. We posit that this occurrence is attributed638

to the data collection process on the web. Specifically, in the course of keyword searches and639

crawling for images, instances were inadvertently included due to the presence of keywords in image640

descriptions or accompanying text, such as people with ‘tench’ in the name, or related fishing tools.641

As highlighted earlier, the prevalent belief in the current LNL community is that real-world noise642

primarily arises from confusion induced by semantic similarity. Consequently, numerous recent643

studies have concentrated on instance-dependent noise and related theoretical analysis. However, our644

findings here indicate that in real-world scenarios, particularly in web-crawled datasets, noise may645

be unrelated to semantics but instead caused by other latent high-dimensional information, such646

as accompanying text here. Addressing such real-world noise requires increased attention and647

further exploration.

0lv77S5PaW5vlM.jpg http://ukscblog.com/ussc-v-uksc/

fIfzvcQnea4zsM.jpg

m59l4cCfDgox6M.jpg

X051MdLtrztWqM.jpg

usK0NyB0Q9VsVM.jpg

https://charlyanderic.travellerspoint.com/67/

https://www.drennantackle.com/drennan-distance-specialist-tench-bream-12ft-2lb-rod/

https://en.wikipedia.org/wiki/You_Should_Be_So_Lucky

http://pete777-pete777.blogspot.com/2012/04/tench-rigs-27th-april.html

Image Source

Figure 7: Open-set noise examples in class ‘Tench’ of WebVision dataset with path:
/google/q0001/. The source images are resized to fit the layout. Please note that the web links
here are obtained in May 2024, and there is no guarantee that they will always be valid in the future.
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Question: Do the main claims made in the abstract and introduction accurately reflect the651

paper’s contributions and scope?652

Answer: [Yes]653

Justification: We clearly and briefly describe our method and our contributions in the abstract654

and introduction sections.655

Guidelines:656

• The answer NA means that the abstract and introduction do not include the claims657

made in the paper.658

• The abstract and/or introduction should clearly state the claims made, including the659

contributions made in the paper and important assumptions and limitations. A No or660

NA answer to this question will not be perceived well by the reviewers.661
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• The authors should reflect on the scope of the claims made, e.g., if the approach was680

only tested on a few datasets or with a few runs. In general, empirical results often681

depend on implicit assumptions, which should be articulated.682

• The authors should reflect on the factors that influence the performance of the approach.683

For example, a facial recognition algorithm may perform poorly when image resolution684

is low or images are taken in low lighting. Or a speech-to-text system might not be685

used reliably to provide closed captions for online lectures because it fails to handle686

technical jargon.687

• The authors should discuss the computational efficiency of the proposed algorithms688

and how they scale with dataset size.689

• If applicable, the authors should discuss possible limitations of their approach to690

address problems of privacy and fairness.691

• While the authors might fear that complete honesty about limitations might be used by692

reviewers as grounds for rejection, a worse outcome might be that reviewers discover693
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properly respected?892

Answer: [Yes]893
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