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ABSTRACT

Energy-based learning is a powerful learning paradigm that encapsulates various
discriminative and generative approaches. An energy-based model (EBM) is typ-
ically formed of one (or many) inner-models which learn a combination of the
different features to generate an energy mapping for each input configuration. In
this paper, we focus on the diversity of the produced feature set. We extend the
probably approximately correct (PAC) theory of EBMs and analyze the effect of
the diversity on the performance of EBMs. We derive generalization bounds for
various learning contexts, i.e., regression, classification, and implicit regression,
with different energy functions and we show that indeed increasing the diversity
of the feature set can consistently decrease the gap between the true and empirical
expectation of the energy and boosts the performance of the model.

1 INTRODUCTION

The energy-based learning paradigm was first proposed by LeCun et al. (2006) as an alternative to
probabilistic graphical models (Koller & Friedman, 2009). As their name suggests, energy-based
models (EBMs) map each input ‘configuration’ to a single scalar, called the ‘energy’. In the learning
phase, the parameters of the model are optimized to associate the desired configurations with small
energy values and the undesired ones with higher energy values (Kumar et al., 2019; Song & Ermon,
2019; Yu et al., 2020; Nash & Durkan, 2019; Meng et al., 2020; Arbel et al., 2021). In the inference
phase, given an incomplete input configuration, the energy surface is explored to find the remaining
variables which yield the lowest energy. EBMs encapsulate solutions to several supervised (LeCun
et al., 2006; Fang & Liu, 2016) and unsupervised learning problems (Ranzato et al., 2007b; Haarnoja
et al., 2017; Parshakova et al., 2019; Deng et al., 2020; Bakhtin et al., 2021) and provide a common
theoretical framework for many learning models, including traditional discriminative (Zhai et al.,
2016; Grathwohl et al., 2019; Li et al., 2020; LeCun et al., 2006; Teh et al., 2003) and generative
(Zhao et al., 2016; Dai et al., 2017; Ranzato et al., 2007a; Che et al., 2020; Khalifa et al., 2020;
Arbel et al., 2021) approaches.

Formally, let us denote the energy function by E(W,X,Y ), where W represents the model pa-
rameters to be optimized during training and X,Y are sets of variables. Figure 1 illustrates how
classification, regression, and implicit regression can be expressed as EBMs. In Figure 1 (a), a re-
gression scenario is presented. The input X , e.g., an image, is transformed using an inner model
GW (X) and its distance, D, to the second input Y is computed yielding the energy function. A
valid energy function in this case can be the L1 or the L2 distance. In the binary classification case
(Figure 1 (b)), the energy can be defined as E(W,X,Y ) = −Y GW (X). In the inference phase,
given an input X , the label Y ∗ can be obtained by solving the following optimization problem:

Y ∗ = arg min
Y

E(W,X,Y ). (1)
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Figure 1: An illustration of energy-based models used to solve (a) a regression problem (b) a binary
classification problem (c) an implicit regression problem.

An EBM typically relies on an inner model, i.e., Gw(X), to generate the desired energy landscape
(LeCun et al., 2006). Depending on the problem at hand, this function can be constructed as a linear
projection, a kernel method, or a neural network and its parameters are optimized in a data-driven
manner in the training phase. Formally, Gw(X) can be written as

GW (X) =

D∑
i

wiφi(X), (2)

where {φ1(·), · · · , φD(·)} is the feature set, which can be hand-crafted, separately trained from
unlabeled data (Zhang & LeCun, 2017), or modeled by a neural network and optimized in the
training phase of the EBM model (Du & Mordatch, 2019). In the rest of the paper, we assume
that the inner models GW defined in the energy-based learning system (Figure 1) are obtained as a
weighted sum of different features as expressed in equation 2.

In (Zhang, 2013), it was shown that simply minimizing the empirical energy over the training data
does not theoretically guarantee the minimization of the expected value of the true energy. Thus,
developing and motivating novel regularization techniques is required (Zhang & LeCun, 2017). We
argue that the quality of this feature set, i.e., {φ1(·), · · · , φD(·)}, plays a critical role in the overall
performance of the global model. In this work, we extend the theoretical analysis of (Zhang, 2013)
and focus on the ‘diversity’ of this set and its effect on the generalization ability of the EBM models.
Intuitively, it is clear that a less correlated set of intermediate representations is richer and thus able
to capture more complex patterns in the input. Thus, it is important to avoid redundant features for
achieving a better performance. However, a theoretical analysis is missing. We start by quantifying
the diversity of a set. To this end, we introduce ϑ-diversity:
Definition 1. (ϑ-diversity) A set of feature functions, {φ1(·), · · · , φD(·)} is called ϑ-diverse, if there
exists a constant ϑ ∈ R, such that for every input X we have

D∑
i 6=j

(φi(X)− φj(X))2 > ϑ (3)

with a high probability τ .

Intuitively, if two feature maps φi(·) and φj(·) are different, then with high probability they have
different outputs for the same input. However, if for example the features are extracted using a neural
network with a ReLU activation function, then there is a high probability that some of the features
associated with the input will be zero. Thus, defining a lower bound for the pair-wise diversity
directly is impractical. To this end, we quantify diversity as the lower-bound over the sum of the
pair-wise distances of the feature maps as expressed in equation 3. ϑ measures the diversity of a set.

In machine learning context, diversity has been explored in ensemble learning (Li et al., 2012; Yu
et al., 2011), sampling (Derezinski et al., 2019; Bıyık et al., 2019; Gartrell et al., 2019), ranking
(Yang et al., 2019; Gan et al., 2020), pruning (Kondo & Yamauchi, 2014; He et al., 2019; Singh
et al., 2020; Lee et al., 2020), and neural networks (Xie et al., 2015; 2017). In Xie et al. (2015;
2017), it was shown theoretically and experimentally that employing a diversity strategy over the
weights of a neural network using the mutual angles improves the generalization ability of the
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model. In this work, we explore a new line of research, where diversity is defined over the feature
maps directly, using the ϑ-diversity, in the context of energy-based learning. We theoretically study
the generalization ability of EBMs in different learning contexts, i.e., regression, classification,
implicit regression, and we derive new generalization bounds using the ϑ-diversity providing
theoretical guarantees that a diverse set of features indeed improves the generalization ability of the
model. The contributions of this paper can be summarized as follows:

• We explore a new line of research, where diversity is defined over the features representing
the input data and not over the model’s parameters. To this end, we introduce ϑ-diversity
as a quantification of the diversity of a given feature set.

• We extend the theoretical analysis (Zhang, 2013) and study the effect of the diversity of the
feature set on the generalization of the energy-based models (EBMs).

• We derive approximation bounds for the expectation of the true energy in different learn-
ing contexts, i.e., regression, classification, and implicit regression, using different energy
functions. Our analysis consistently shows that increasing the diversity of the feature set
can boost the performance of an energy based model.

2 PAC-LEARNING OF EBMS WITH ϑ-DIVERSITY

In this section, we derive a qualitative justification for ϑ-diversity using probably approximately
correct (PAC) learning (Valiant, 1984). The PAC-based theory for standard energy based models has
been established in (Zhang, 2013). Based on the Rademacher complexity (Bartlett & Mendelson,
2002), several EBMs learning guarantees have been shown. In Lemma 1, we present the principal
PAC-learning bound for energy functions with finite outputs.
Definition 2. (Bartlett & Mendelson, 2002) For a given dataset with m samples S = {xi, yi}mi=1
generated by a distribution D and for a model space F : X → R with a single dimensional output,
the empirical Rademacher complexityRm(F) of the set F is defined as follows:

Rm(F) = Eσ
[

sup
f∈F

1

m

N∑
i=1

σif(xi)

]
, (4)

where the Rademacher variables σ = {σ1, · · · , σN} are independent uniform random variables in
{−1, 1}.
Lemma 1. (Zhang, 2013) For a well-defined energy function E(h,x,y) over hypothesis class H,
input set X and output set Y (LeCun et al., 2006), the following holds for all h in H with a proba-
bility of at least 1− δ

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 2Rm(E) +M

√
log(2/δ)

2m
, (5)

where E is the energy function class defined as E = {E(h,x,y)|h ∈ H},Rm(E) is its Rademacher
complexity, and M is the upper bound of E .

Lemma 1 provides a generalization bound for energy-based models with well-defined (non-negative)
and bounded energy. The expected energy is bounded using the sum of three terms: The first
term is the empirical expectation of energy over the training data, the second term depends on the
Rademacher complexity of the energy class, and the third term involves the number of the training
data m and the upper-bound of the energy function M . This shows that merely minimizing the
empirical expectation of energy, i.e., the first term, may not yield a good approximation of the true
expectation. In (Zhang & LeCun, 2017), it has been shown that regularization using unlabeled data
reduces the second and third terms, thus, leading to better generalization. In this work, we express
these two terms using the ϑ-diversity and show that employing a diversity strategy may also decrease
the gap between the true and empirical expectation of the energy. In Section 2.1, we consider the
special case of regression and derive two bounds relative to two energy functions based on L1 and
L2 distances. In Section 2.2, we derive the bound relative to the binary classification task using as
energy function E(W ,x, y) = −yGW (x) (LeCun et al., 2006). In Section 2.3, we consider the
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case of implicit regression, which encapsulates different learning problems such as metric learning,
generative models, and denoising (LeCun et al., 2006). For this case, we use theL2 distance between
the inner models as the energy function.

2.1 REGRESSION TASK

Regression can be formulated as an energy-based learning problem (Figure 1 (a)) using the inner
model GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x). We also suppose that the feature set is well-defined

over the input domain X , i.e., ∀x ∈ X ||Φ(x)||2 ≤ A. The two valid energy functions which can
be used for regression are: E2(W ,x, y) = 1

2 ||GW (x)− y||22 and E1(W ,x, y) = ||GW (x)− y||1
(LeCun et al., 2006). Theorem 1 and Theorem 2 express the special cases of Lemma 1 using the
ϑ-diversity of the feature set {φ1(·), · · · , φD(·)}.
Theorem 1. For the energy function E(h,x,y) = 1

2 ||GW (x) − y||22, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 8D||w||∞(||w||∞
√
DA2 − ϑ2 +B)Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (6)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .
Theorem 2. For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ 2(||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (7)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y .

The proofs are available in the Appendix. We note that, in Theorem 1 and Theorem 2, we consis-
tently find that the bound of the true expectation of the energy is a decreasing function with respect
to ϑ. This proves that that for the regression task employing a diversity strategy can improve the
generalization performance of the energy-based model.

2.2 TWO-CLASS CLASSIFIER

Here, we consider the problem of binary classification, as illustrated in Figure 1 (b). Using the same
assumption as in regression for the inner model, i.e., GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x), energy

function ofE(W ,x, y) = −yGW (x) (LeCun et al., 2006), and the ϑ-diversity of the feature set,we
express Lemma 1 for this specific configuration in Theorem 3.
Theorem 3. For the energy function E(h,x,y) = −yGW (x), over the input set X ∈ RN , hy-
pothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | Φ ∈ F , ∀x ||Φ(x)||2 ≤ A}, and

output set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with
a probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (8)
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The proof is available in the Appendix. Similar to the regression task, we note that the upper-bound
of the true expectation is a decreasing function with respect to the diversity term. Thus, a more
diverse feature set, i.e., higher ϑ, has a lower upper-bound for the true energy.

2.3 IMPLICIT REGRESSION

In this section, we consider the problem of implicit regression. This is a general formulation of
a different set of problems such as metric learning, where the goal is to learn a distance function
between two domains, image denoising, or object detection as illustrated in (LeCun et al., 2006).
This form of EBM (Figure 1 (c)) has two inner models, G1

W (·) and G2
W (·), which can be equal or

different according to the problem at hand. Here, we consider the general case, where the two models
correspond to two different combinations of different features, i.e., G1

W (x) =
∑D(1)

i=1 w1
i φ

1
i (x) and

G
(2)
W (y) =

∑D(2)

i=1 w2
i φ

2
i (y). Thus, we have a different ϑ-diversity term for each set. The final result

is presented in Theorem 4.

Theorem 4. For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i φ

(1)
i (x) = w(1)T Φ(1)(x), G

(2)
W (y) =∑D(2)

i=1 w
(2)
i φ

(2)
i (y) = w(2)T Φ(2)(y) | Φ(1) ∈ F1, Φ(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤

A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {φ(1)1 (·), · · · , φ(1)
D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {φ(2)1 (·), · · · , φ(2)
D(2)(·)} is ϑ(2)-diverse with a

probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+ 2
(
J1 + J2

)√ log(2/δ)

2m
, (9)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

The proof of Theorem 4 is available in the Appendix. The upper-bound of the energy model depends
on the diversity variable of both feature sets. Moreover, we note that the bound for the implicit
regression decreases proportionally to ϑ2, as opposed to the classification case for example, where
the bound is proportional to ϑ.

We note that the theory developed in our paper (Theorems 1 to 4) is agnostic to the loss function
(LeCun et al., 2006) or the optimization strategy used (Kumar et al., 2019; Song & Ermon, 2019; Yu
et al., 2020). We show that increasing the diversity of the features consistently decreases the upper-
bound of the true expectation of the energy and, thus, can boost the generalization performance of
the energy-based model. We note that our analysis is independent of how the features are obtained,
e.g., handcrafted or optimized. In fact, in the recent state-of-the-art EBMs (Khalifa et al., 2020;
Bakhtin et al., 2021; Nash & Durkan, 2019; Yu et al., 2020), the features are typically parameterized
using a deep learning model and optimized during the training. Thus, our theory suggests the use
of a diversity strategy, for example in the form of a regularization as in (Cogswell et al., 2016), to
avoid learning redundant features can improve the performance of the model and decrease the gap
between the expectation of the true and the empirical energy.

3 CONCLUSION

The energy-based learning is a powerful learning paradigm that encapsulates various discriminative
and generative systems. An EBM is typically formed of one (or many) inner models which learn a
combination of different features to generate an energy mapping for each input configuration. In this
paper, we introduced the feature diversity concept, i.e., ϑ-diversity, and we used it to extend the PAC
theory of EBMs. We derived different generalization bounds for various learning contexts, i.e., re-
gression, classification, and implicit regression, with different energy functions and we consistently
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found that increasing the diversity of the feature set can improve the approximation error of the true
expectation of the energy function. We also note that our theory is independent of the loss function
or the training strategy used to optimize the parameters of the EBM.

Future directions include developing practical strategies to promote the diversity of the feature set
in case the features are optimized following a data-driven process, like the training phase of a neural
network.
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4 APPENDIX

4.1 PROOF OF THEOREM 1

Lemma 2. With a probability of at least τ , we have

sup
x,h
|h(x)| ≤

√
J , (10)

where J = ||w||2∞
(
DA2 − ϑ2

)
and A = supx ||φ(x)||2,

Proof.

h2(x) =

(
D∑
i=1

wiφi(x)

)2

≤

(
D∑
i=1

||w||∞φm(x)

)2

= ||w||2∞

(
D∑
i=1

φi(x)

)2

= ||w||2∞

(∑
i,j

φi(x)φj(x)

)
= ||w||2∞

∑
i

φi(x)
2 +

∑
i 6=j

φi(x)φj(x)

 (11)

We have ||Φ(x)||2 ≤ A. For the first term in equation 11, we have
∑
m φm(x)2 ≤ A2. By using

the identity φm(x)φn(x) = 1
2

(
φm(x)2 + φn(x)2 − (φm(x)− φn(x))2

)
, the second term can be

rewritten as ∑
m 6=n

φm(x)φn(x) =
1

2

∑
m 6=n

(
φm(x)2 + φn(x)2 −

(
φm(x)− φn(x)

)2)
. (12)

In addition, we have with a probability τ , 1
2

∑
m6=n ||φm(x)− φn(x)||2 ≥ ϑ. Thus, we have with a

probability at least τ :∑
m6=n

φm(x)φn(x) ≤ 1

2
(2(D − 1)A2 − 2ϑ2) = (D − 1)A2 − ϑ2. (13)

By putting everything back to equation 11, we have with a probability τ ,

h2(x) ≤ ||w||2∞
(
A2 + (D − 1)A2 − ϑ2

)
= ||w||2∞

(
DA2 − ϑ2

)
= J . (14)

Thus, with a probability τ ,
sup
x,h
|h(x)| ≤

√
sup
x,h

h(x)2 ≤
√
J . (15)

Lemma 3. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤ (
√
J +B)2. (16)

Proof. We have supx,y,h |h(x) − y| ≤ 2 supx,y,h(|h(x)| + |y|) = 2(
√
J + B). Thus

supx,y,h|E(h(x), y)| ≤ (
√
J +B)2.

Lemma 4. With a probability of at least τ , we have

Rm(E) ≤ 4D||w||∞(
√
J +B)Rm(F) (17)

Proof. Using the decomposition property of the Rademacher complexity (if φ is a L-Lipschitz func-
tion, thenRm(φ(A)) ≤ LRm(A)) and given thatE(·, y) = ||.−y||2 isK-Lipschitz with a constant
K = supx,y,h||h(x) − y|| ≤ 2(

√
J + B), we have Rm(E) ≤ KRm(F) ≤ 2(

√
J + B)Rm(H),

where H = {GW (x) =
∑D
i=1 wiφi(x) | ||w||1 ≤ D||w||∞}. Next, similar to the proof of The-

orem 2.10 in (Wolf, 2018), we note that
∑D
i=1 wiφi(x) ∈ (D||w||∞)conv(F + −(F)) := G,

where conv denotes the convex hull and F is the set of φ functions. Thus, Rm(H) ≤ Rm(G) =
D||w||∞Rm(conv(F + (−F)) = D||w||∞Rm(F + (−F)) = 2D||w||∞Rm(F).

9



Energy-Based Models Workshop ICLR 2021

Theorem 1 For the energy function E(h,x,y) = 1
2 ||GW (x) − y||22, over the input set X ∈ RN ,

hypothesis class H = {GW (x) =
∑D
i=1 wiφi(x) = wTΦ(x) | ∀x ||Φ(x)||2 ≤ A}, and output

set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with a
probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 8D||w||∞(||w||∞
√
DA2 − ϑ2 +B)Rm(F)

+ (||w||∞
√
DA2 − ϑ2 +B)2

√
log(2/δ)

2m
, (18)

where B is the upper-bound of Y , i.e., y ≤ B, ∀y ∈ Y ,

Proof. We replace the variables in Lemma 1 using Lemma 3 and Lemma 4.

4.2 PROOF OF THEOREM 2

Lemma 5. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤ 2(
√
J +B). (19)

Proof. We have supx,y,h |h(x)− y| ≤ 2 supx,y,h(|h(x)|+ |y|) = 2(
√
J +B).

Lemma 6. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (20)

Proof. |.| is 1-Lipschitz, ThusRm(E) ≤ Rm(H).

Theorem 2 For the energy function E(h,x,y) = ||GW (x) − y||1, over the input set X ∈ RN ,
hypothesis class H = {GW (x) =

∑D
i=1 wiφi(x) = wTΦ(x) | ∀x ||Φ(x)||2 ≤ A}, and output

set Y ⊂ R, if the feature set {φ1(·), · · · , φD(·)} is ϑ-diverse with a probability τ , then with a
probability of at least (1− δ)τ , the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ 2(||w||∞
√
DA2 − ϑ2 +B)

√
log(2/δ)

2m
, (21)

Proof. We replace the variables in Lemma 1 using Lemma 5 and Lemma 6.

4.3 PROOF OF THEOREM 3

Lemma 7. With a probability of at least τ , we have

sup
x,y,f

|E(h(x), y)| ≤
√
J (22)

Proof. We have sup− yGW (x) ≤ sup|GW (x)| ≤
√
J

Lemma 8. With a probability of at least τ , we have

Rm(E) ≤ 2D||w||∞Rm(F) (23)

Proof. We note that for y ∈ {−1, 1}, σ and −yσ follow the same distribution. Thus, we have
Rm(E) = Rm(H). Next, we note thatRm(H) ≤ 2D||w||∞Rm(F)

10
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Theorem 3 For a well-defined energy function E(h,x,y) (LeCun et al., 2006), over hypothesis
class H, input set X and output set Y , if it has upper-bound M, then with a probability of at least
1− δ, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y) + 4D||w||∞Rm(F)

+ ||w||∞
√
DA2 − ϑ2

√
log(2/δ)

2m
, (24)

Proof. We replace the variables in Lemma 1 using Lemma 7 and Lemma 8.

4.4 PROOF OF THEOREM 4

Lemma 9. With a probability of at least τ1τ2, we have

sup
x,y,f

|E(h(x), y)| ≤ 2
(
J1 + J2

)
(25)

Proof. We have ||G(1)
W (x) − G

(2)
W (y)||22 ≤ 2(||G(1)

W (x)||22 + ||G(2)
W (y)||22). Similar to Theorem

1, we have sup ||G(1)
W (x)||22 ≤ ||w(1)||2∞

(
D(1)A(1)2 − ϑ(1)

2
)

= J1 and sup ||G(2)
W (y)||22 ≤

||w(2)||2∞
(
D(2)A(2)2 − ϑ(2)2

)
= J2

Lemma 10. With a probability of at least τ1τ2, we have

Rm(E) ≤ 4(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
(26)

Proof. Let f be the square function, i.e., f(x) = 1
2x

2 and E0 = {G(1)
W (x) − G

(2)
W (y) | x ∈

X , y ∈ Y}. We have E = f(E0 + (−E0)). f is Lipschitz over the input space, with a
constant L bounded by supx,W G

(1)
W (x) + supy,W G

(2)
W (y) ≤

√
J1 +

√
J2. Thus, we have

Rm(E) ≤ (
√
J1 +

√
J2)Rm(E0 + (−E0)) ≤ 2(

√
J1 +

√
J2)Rm(E0). Next, we note that

Rm(E0) = Rm(H1 + (−H2)) = Rm(H1) + Rm(H2). Using same as technique as in Lemma
4, we haveRm(H1) ≤ 2D(1)||w(1)||∞Rm(F1) andRm(H2) ≤ 2D(2)||w(2)||∞Rm(F2)

Theorem 4 For the energy function E(h,x,y) = 1
2 ||G

(1)
W (x) − G

(2)
W (y)||22, over the input set

X ∈ RN , hypothesis class H = {G(1)
W (x) =

∑D(1)

i=1 w
(1)
i φ

(1)
i (x) = w(1)T Φ(1)(x), G

(2)
W (y) =∑D(2)

i=1 w
(2)
i φ

(2)
i (y) = w(2)T Φ(2)(y) | Φ(1) ∈ F1, Φ(2) ∈ F2, ∀x ||Φ(1)(x)||2 ≤

A(1), ∀y ||Φ(2)(y)||2 ≤ A(2)}, and output set Y ⊂ RN , if the feature set {φ(1)1 (·), · · · , φ(1)
D(1)(·)} is

ϑ(1)-diverse with a probability τ1 and the feature set {φ(2)1 (·), · · · , φ(2)
D(2)(·)} is ϑ(2)-diverse with a

probability τ2, then with a probability of at least (1− δ)τ1τ2, the following holds for all h inH

E(x,y)∼D[E(h,x,y)] ≤ 1

m

∑
(x,y)∈S

E(h,x,y)

+ 8(
√
J1 +

√
J2)
(
D(1)||w(1)||∞Rm(F1) +D(2)||w(2)||∞Rm(F2)

)
+ 2
(
J1 + J2

)√ log(2/δ)

2m
, (27)

where J1 = ||w(1)||2∞
(
D(1)A(1)2 − ϑ(1)2

)
and J2 = ||w(2)||2∞

(
D(2)A(2)2 − ϑ(2)2

)
.

Proof. We replace the variables in Lemma 1 using Lemma 9 and Lemma 10.
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