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Abstract
The progress introduced by pre-trained lan-001
guage models and their fine-tuning has resulted002
in significant improvements in most down-003
stream NLP tasks. The unsupervised fine-004
tuning of a language model combined with fur-005
ther target task fine-tuning has become the stan-006
dard QA fine-tuning procedure. In this work,007
we demonstrate that this strategy is sub-optimal008
for fine-tuning QA models, especially under a009
low QA annotation budget, which is a usual set-010
ting in practice due to the extractive QA label-011
ing cost. We draw our conclusions by conduct-012
ing an exhaustive analysis of the performance013
of the alternatives of the sequential fine-tuning014
strategy on different QA datasets. Our experi-015
ments provide one of the first investigations on016
how to best fine-tune a QA system under a low017
budget, and is therefore of the utmost practical018
interest for the QA practitioner.019

1 Introduction020

In the recent few years, transformer-based lan-021

guage models like BERT (Devlin et al., 2019),022

RoBERTa (Liu et al., 2019), T5 (Raffel et al.,023

2019)) and GPT-3 (Brown et al., 2020), play a024

vital role in the Natural Language Processing025

(NLP) community. Being trained on a tremen-026

dous amount of data in a unsupervised fashion,027

they become the de facto starting point of any mod-028

ern NLP pipeline. The reason is that the adapt-029

ability to new tasks of these so-called foundation030

models (Bommasani et al., 2021) has led to sub-031

stantial improvements in many NLP downstream032

tasks, such as sequence classification (González-033

Carvajal and Garrido-Merchán, 2020), text sum-034

marization (Miller, 2019), text generation (Raffel035

et al., 2019) and question answering (Yang et al.,036

2019). However, this adaptability comes at a cost:037

adapting foundation models to a specific and com-038

plex task requires a significant amount of annotated039

samples in order to fine-tune those models to the040

task at hand (Antonello et al., 2021). In practice,041

the training datasets for domain specific tasks are 042

usually rather small due to budget constraints. Hav- 043

ing access to hundred of labeled samples for a task 044

is common and is not tagged as a few-shots sce- 045

nario, yet the limited annotation budget still makes 046

the fine-tuning task tedious. To circumvent this is- 047

sue, a double fine-tuning step is usually introduced. 048

It consists of fine-tuning the pre-trained foundation 049

model on a large scale training dataset which is as 050

close as possible (domain and objective) to the tar- 051

get task, and is then further fine-tuned on the given 052

domain/task for which training data is scarce. The 053

result is a model that had been trained as a founda- 054

tion model, which is a Pre-trained Language Model 055

(PLM) like BERT (Devlin et al., 2019), then fine- 056

tuned on a large-scale more specific task (LM’), 057

and ultimately refined on the domain/task at hand 058

(LM”). Note that this is applied sequentially. In 059

this work, we explore how to best fine-tune mod- 060

els for domain-specific Question Answering (QA) 061

with limited training data. In this paper, we con- 062

sider extractive QA, and we therefore denote QA 063

as the task of answering questions asked in natu- 064

ral language and finding the answer text-span in 065

a document containing the answer. In the double 066

fine-tuning step stated above, we can use Stanford 067

Question Answering Dataset (SQuAD) (Rajpurkar 068

et al., 2016) which is a high-quality QA dataset 069

that covers diverse knowledge for the PLM to train 070

on. Using a transform-based language model as the 071

PLM starting point, PLM fine-tuned on SQuAD can 072

therefore act as the intermediary model (LM’) for 073

domain specific question answering. This model 074

is the go-to choice for general QA scenarios. The 075

performance of these state-of-the-art QA models 076

have gained traction and given more attention to 077

the QA task. Nonetheless, in many real-life sce- 078

narios, specific-domain QA has a range of field 079

applications which is narrower than SQuAD and 080

may not appear in the SQuAD training data. This 081

calls for building domain-specific dataset to further 082
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fine-tune a QA model for the domain at hand to pro-083

duce a QA model LM”. This last fine-tuning step084

is domain-dependent, and the practitioner’s goal085

is also to ultimately keep the number of annotated086

training samples low - he is under a low annotation087

budget constraint. In practice, such an annotation088

task pairs remains achievable for a couple of hun-089

dred QA examples and for a single domain, but090

it hardly scales to all the different domains that a091

company building QA systems needs to deal with –092

producing questions and annotating them with their093

corresponding text fragment in a document is much094

more difficult and time-consuming than creating095

text classification labels for instance. As a conse-096

quence, the assumption is that a limited number097

of training QA pairs are usually provided to fine-098

tune LM” to prepare its domain drift towards the099

domain specific QA task. In this paper budget100

refers to the number of domain-specific annotations101

available at the time of fine-tuning LM”. The main102

pending issue is how to best fine-tune a QA model103

down to a target domain under such low annotation104

budget conditions.105

Our contribution is a study of the different strate-106

gies one can use to fine-tune a domain-specific107

extractive QA model. This study is exhaustive108

as we report experiment for 108 different strate-109

gies, applied to 4 different datasets (we discussed110

432 trained models, each ran 5 times, see Sec-111

tion 4). We provide a complete protocol and eval-112

uation scheme freely available to the community1.113

Based on these contributions, we explored different114

low annotation budget scenario for which our find-115

ings are as follows: (1) We demonstrate that the116

standard sequential QA fine-tuning strategy is sub-117

optimal for QA under a budget, (2) Contrary to rea-118

sonable expectations, fine-tuning the text encoder119

using masked language modeling on domain cor-120

pus prior task fine-tuning does not provide an im-121

provement (we even consistently observed a slight122

degradation of performance), (3) A very low anno-123

tation budget goes a long way, that is 200 annotated124

QA pairs is very efficient with respect to the anno-125

tation required, (4) We demonstrate that is it better126

to go either with a small annotation budget with127

a careful choice of the fine-tuning strategies, or128

to go for more than 1, 600 annotations. Anything129

doubling of the annotation budget in between only130

resulting in a 2% improvement in rare cases.131

1code and dataset are available in a github repository, pri-
vate during the review process

2 Related Work 132

In Question Answering there are mainly three fine- 133

tuning strategies to adapt a language model to a 134

specific domain. These strategies are non-exclusive 135

so that the standard process to create a domain ex- 136

tractive QA system is to apply them as a sequential 137

pipeline as depicted in Figure 1. In what follows, 138

we describe and discuss the related works to each 139

of these fine-tuning steps.

Figure 1: Mainstream methods for QA fine-tuning.

140

2.1 Knowledge-Alignment Fine-tuning 141

Knowledge-Alignment Fine-tuning aims to inte- 142

grate information about the underlying text corpus 143

into the LM. It is often achieved using masked 144

language modeling task, inherited from the LM 145

pre-training objective. It helps aligning the knowl- 146

edge from the target domain which can be sub- 147

stantially different from what the used LM is pre- 148

trained on. For different NLP tasks this fine-tuning 149

strategy has shown performance improvements. 150

For example (Lee et al., 2019) fine-tunes BERT 151

via knowledge-alignment on Biological corpora 152

(PubMed). The corresponding model BioBERT, 153

can outperforms the BERT model in many biomed- 154

ical text mining tasks like Named Entity Recogni- 155

tion (NER), Relation Extraction (RE) and QA. Sim- 156

ilarly (Nguyen et al., 2020) generate BERTweet 157

by knowledge-alignment fine-tuning with 850M 158

English tweets. The resulting model gets improve- 159

ments in part-of-speech tagging, NER, and text 160

classification. Nonetheless, it has been shown 161

in (Zhao and Bethard, 2020) that the benefits vary 162

depending on the task and on the flavor (base or 163

large) version of BERT (Devlin et al., 2019) and 164

RoBERTa (Liu et al., 2019) models. (Edwards 165

et al., 2020) also reports difficulties to fine-tune a 166

BERT model with a limited domain corpus, which 167

is usually the case for domain-specific extractive 168

QA. 169
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2.2 Task-Alignment Fine-tuning170

Task-Alignment Fine-tuning aims at adapting the171

pre-trained LM to the target task, that is extractive172

QA in the scope of this work. Generally, pub-173

licly available large datasets are used for this pur-174

pose. In the QA domain, the dataset of choice is175

SQuAD (Rajpurkar et al., 2016) as it contains more176

than 100k questions on significantly different top-177

ics. In order to obtain a neural extractive QA model,178

the LM is used as a text encoder, then two indepen-179

dent softmax layers are added on top of it in order to180

predict the start index and stop index of the answer181

span (Devlin et al., 2019). The added layers being182

shallow, the LM weights are not frozen, and the183

training therefore updates the LM parameters with184

respect to the extractive QA task. This fine-tuning185

strategy is for example used in (Kratzwald et al.,186

2020a; Möller et al., 2020). However, in (Merchant187

et al., 2020), the authors demonstrate that SQuAD-188

based fine-tuning involves only shallow changes189

to the LM and mostly to its top layers. In (Cui190

et al., 2019) the authors try to alleviate this issue191

by introducing sparse attention in BERT attention192

heads when fine-tuning – this however comes to193

a complexity cost and a modest improvement on194

SQuAD fine-tuning. Few methods take interests195

in finding significantly different alternatives, but196

in (Khashabi et al., 2020), the authors do take an197

opposite stance. They train a unified QA model,198

where unified means able to perform multiple form199

of QA (extractive, multiple choice, etc.). As the200

model is trained to generalize to different QA task201

formats and still performs well on all domain tasks,202

it is afterwards fine-tuned on each target dataset203

which ultimately leads to as many QA models.204

2.3 Target Data Fine-tuning205

Target Data Fine-tuning is adapting the LM to206

the target task using target task labeled training207

data. This allows considerable performance im-208

provements, it is limited by the amount of training209

data. There are different variations of this strategy.210

Either the model is directly fine-tuned using the211

target data (as done in (Kratzwald et al., 2020a;212

Möller et al., 2020)) or it is trained on a mix be-213

tween general QA questions and the target ones. In214

the latter case questions from SQuAD can be used215

to mix as it is done in (Kratzwald and Feuerriegel,216

2019). The authors only explore one way to com-217

bine these data, and it is therefore not assumed here218

that this is the best strategy.219

To summarize, the most common fine-tuning strat- 220

egy used in literature for domain adaptation in 221

QA is as follows: first the pre-trained language 222

model (PLM) is optionally further pretrained in 223

a unsupervised fashion on the domain corpus at 224

hand using the masked language modeling task 225

(PLM+), second the PLM (or optionally PLM+) is 226

fine-tuned on SQuAD via Task-Alignment Fine- 227

tuning (LM’), and third the network is fine-tuned 228

again on the domain QA pairs annotations that one 229

may have (LM”). We are not aware of any study 230

that tried to compare the different fine-tuning strate- 231

gies and also considered several ways to combine 232

SQuAD and domain-specific corpora when fine- 233

tuning domain-specific extractive QA systems. 234

3 Methodology 235

We considered the following options. 236

MLM Knowledge-Alignment Fine-tuning: In 237

our experiments, we used the Masked Language 238

Modeling (MLM) task to distill the knowledge 239

of the corpora into the LM as discussed in Sec- 240

tion 2.1. To assess whether knowledge-alignment 241

fine-tuning via MLM helps improve performance 242

under low-budget situations, we conduct the 243

experiments both with and without this procedure 244

for all combinations of fine-tuning strategies 245

presented in Section 3.1. 246

SQuAD Fine-tuning: Following explanations 247

from Section 2.2, we include the possible steps to 248

build a pretrained QA model based on SQuAD. 249

Target Data Fine-tuning and Domain Drift 250

Boosting: Target data fine-tuning (training on the 251

domain labelled QA samples) usually happens 252

after fine-tuning the text encoder on SQuAD, a 253

high-quality rich dataset for aligning the model 254

to the open domain QA setting. However, when 255

it comes to a dataset that is substantially different 256

from SQuAD, both in wording and syntax, this 257

method may become undesirable due to the 258

significant domain drift (Elsahar and Gallé, 2019). 259

Furthermore, it is known that LMs tend to behave 260

unstable (Mou et al., 2016) and lean to overfit the 261

dataset. Since we are experimenting on low budget 262

situations, this effect is amplified and should be 263

avoided. In order to solve this problem, we explore 264

the option to merge the SQuAD and Target QA 265

dataset together in order to make the fine-tuning 266

process stable and avoid the catastrophic forgetting 267

usually happening in QA fine-tuning. The merged 268

fine-tuning approach can benefit from the original 269
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hyper-parameters used in SQuAD fine-tuning and270

bypass the errors that may occur during extensive271

hyper-parameters searching. Ultimately we would272

want to have as many target samples than general273

samples, but accumulating high-quality training274

datasets of SQuAD’s size for every domains275

is expensive and hardly realistic (Section 1).276

Inspired by the techniques from classification with277

imbalance classes, we choose to undersample278

or oversample the datasets in order to put more279

emphasis on the domain-specific data. In our case,280

options available will be either undersampling281

SQuAD or oversampling the target dataset. The282

expectation is that the model does not overfit the283

target training data as it has also to optimize the284

general QA training samples that are not included285

in the domain. Nonetheless, the merging of both286

general and target QA samples is rarely used in the287

literature, and the ratio on how to best merge the288

general and target datasets is heavily understudied.289

For this reason, we devised different merging290

options that we will later compare – we will show291

that merging is actually the best strategy and that292

all of the merging options are not equal.293

294

To best describe these merging options, we295

will use the following notations. Let Dg be the296

general QA training dataset, Dt the target QA297

training dataset and Df the final merge training298

dataset we want to build given a dataset merging299

option. We then define the following merging300

options :301

• TargetQA, that is only the target samples – in302

other words no merge, s.t. Df = Dt303

• MP, Merge Partial SQuAD based on a a 1:1304

merge. Since |Dg| >> |Dt|, we take all305

samples from Dt, and we sample n samples306

from Dg, s.t. Df = Dt ∪ {s1, . . . , sn} where307

si
i.i.d.∼ U(Dg) and U(Dg) denotes the uniform308

distribution over the set Dg and n = |Dt|.309

• MPO, Merge Partial SQuAD with Oversam-310

pling is close to the previous MP strategy, but311

in MPO we sample three times the set Dt so312

that the resulting merged QA training dataset313

Df is twice larger – in MPO the model will314

see three times more the target samples (as315

the best reported value in the work (Kratzwald316

and Feuerriegel, 2019)) in order to amplify the317

learning signals for the target domain while318

still having to satisfy the samples sampled319

from Dg. More formally in that merging op- 320

tion: Df = Dt∪Dt∪Dt∪{s1, . . . , sn} where 321

si
i.i.d.∼ U(Dg). 322

• MW, Merge Whole SQuAD, that is the union 323

of both training dataset s.t. Df = Dt ∪ Dg. 324

For that merging option, the QA model will 325

be trained on much more training samples for 326

better QA in general, at the expense to learn 327

from a weaker signal coming from the target 328

task. It is interesting to note that under this 329

merging option, the training data are abso- 330

lutely the same than the mainstream sequen- 331

tial approach to fine-tuning, although there 332

are not drawn sequentially when training but 333

mixed in a single training step. This single 334

difference, embarrassingly simple, accounts 335

however for 5 and up to 10 macro-f1 increase 336

for all datasets but one when the budget is set 337

to 100 annotations. 338

• MWO, Merge Whole SQuAD with Oversam- 339

pling is close to the previous MW strategy but 340

we do the same oversampling as MPO, then 341

we have Df = Dt ∪Dt ∪Dt ∪Dg where Dg 342

keeps its original size. 343

We also considered a curriculum learning ap- 344

proach (Bengio et al., 2009), in which more sim- 345

ple QA pairs will be used and we would intro- 346

duce more and more difficult QA samples as the 347

training progresses. Since evaluating the QA pair 348

difficulty is not trivial, we explore this possibil- 349

ity by brute-force as we generated a large number 350

of experiments with different QA pairs splits that 351

are introduced as the training progress. We ob- 352

served no significant changes in the target model 353

performances, suggesting that either a curriculum 354

approach is not applicable here, or that there is only 355

a very limited number of QA pair sequences that 356

can actually serve a curriculum learning approach. 357

While this was not the primary focus of our work, 358

the existence or nonexistence of such “golden se- 359

quences" has yet to be investigated. Moreover, 360

note that we propose merging options in this paper 361

while, as stated in Section 2, sequential transfer 362

learning (PLM → SQuAD → TargetQA) is the 363

go-to method used in most, if not close to all, QA 364

model fine-tuning pipeline in practice. 365

3.1 Fine-tuning combinations 366

As stated above, there are a series of options that 367

we can choose to improve the performance of QA 368
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models fine-tuning. Combining the options in dif-369

ferent manner lead to as many fine-tuning strategies.370

In our experiments, we include strategies that can371

reasonably yield fine-tuning improvements – we372

especially discard the combination that first per-373

form fine-tuning on the target dataset and then on374

SQuAD. The meaningful strategies of fine-tuning375

options we consider for extractive QA fine-tuning376

in this work are the following:377

• PLM → SQuAD378

• PLM → TargetQA379

• PLM → SQuAD → TargetQA380

• PLM → SQuAD → MP381

• PLM → SQuAD → MPO382

• PLM → MP383

• PLM → MPO384

• PLM → MW385

• PLM → MWO386

All the methods listed above will be experimented387

with knowledge-alignment fine-tuning (unsuper-388

vised masked language modeling on the target doc-389

ument corpus) as well, so that we end up with 18390

different fine-tuning strategies.391

Figure 2: Fine-tuning strategies and combinations con-
sidered in our study.

3.2 Datasets392

SQuAD is a QA dataset introduced in (Rajpurkar393

et al., 2016). The dataset contains 100,000 triplets394

(passages, question, answer). The passages come395

from 536 Wikipedia articles. The questions and396

answers are constructed mainly by crowdsourcing:397

annotators are allowed to ask up to 5 questions on398

an article, and need to mark the correct answers in399

the corresponding passage. The major difference400

between SQuAD and previous QA datasets such as 401

CNN/DM (Hermann et al., 2015), CBT (Hill et al., 402

2016), etc, is that the answers in SQuAD are not a 403

single entity or word, but may be a phrase, which 404

makes its answers more difficult to predict. 405

As target domain QA datasets, we consider the fol- 406

lowing four domain-specific datasets: 407

COVID-QA (Möller et al., 2020) is a question an- 408

swering dataset on COVID-19 publications. The 409

dataset contains 147 scientific articles. The quality 410

of the dataset is assured as all the question-answer 411

pairs are annotated by 15 experts with at least a 412

master degree in biomedicine. 413

CUAD-QA (Hendrycks et al., 2021) contains ques- 414

tions about legal contracts in the commercial do- 415

main. The corpus, curated and maintained by the 416

Atticus Project, contains more than 13, 000 anno- 417

tations in 510 contracts. The original task is to 418

highlight important parts of a contract that are nec- 419

essary for human to review. We convert it into a 420

question-answering task in SQuAD fashion. The 421

passages to select are lengthy compared to SQuAD 422

paragraphs. 423

MOVIE-QA contains questions about movie plots 424

extracted from Wikipedia. We constructed the 425

dataset from the DuoRC (Saha et al., 2018) dataset. 426

The original dataset is an English language dataset 427

of questions and answers collected from crowd- 428

sourced AMT workers on Wikipedia and IMDb 429

movie plots. It contains two sub-datasets SelfRC 430

and ParaphraseRC. We sampled questions from the 431

SelfRC since the answers of the ParaphraseRC sub- 432

set are paraphrased from the movies plot. 433

KG-QA is a dataset that we constructed from the 434

Wikidata knowledge base. It contains keyword 435

questions that are constructed semi-automatically 436

as it is done in a knowledge extraction task using 437

QA techniques borrowed from (Kratzwald et al., 438

2020b). More specifically, We extracted 982 enti- 439

ties accompanied by their related Wikipedia pages 440

containing predicates like game platform, devel- 441

oper, game mode and etc. 442

Those four datasets were chosen so that they 443

represent different domains and contain ques- 444

tion/answer/context with different characteristics. 445

For the purpose of budget analysis, we randomly 446

sampled 2, 000 examples from each dataset for 447

comparison, and we split our datasets in 5-fold 448

cross validation manner to reduce randomness in 449

our experiments. All datasets are in SQuADv1.1 450

version i.e. all the questions are answerable. 451
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3.3 Budget Setting452

Inspired by the training size analysis in (Edwards453

et al., 2020), we choose the following experiment454

budget sizes: 100, 200, 400, 800, 1200, 1600.455

Those examples are randomly extracted from the456

training set. As for evaluation of the QA systems457

in different situations, we use the hold-out test sets458

(400 examples) for comparison.459

3.4 Dataset Analyses460

In the following, we are trying to measure the gap461

between SQuAD and each dataset from different462

perspectives.463

3.4.1 Corpus Analysis464

COVID-QA CUAD-QA MOVIE-QA KG-QA
SQuAD 36.0 34.8 41.4 50.6

Table 1: Vocabulary overlap (%) between domain spe-
cific datasets and general dataset SQuAD.

Domain Similarity. We compute a domain465

similarity metric to objectively identify if a dataset466

is close or far from SQuAD. We consider the467

top-10K most frequent unigrams (stop-words468

excluded) in each datasets and compute the469

vocabulary overlap (see Table 1). We observed470

that MOVIE-QA and KG-QA have a stronger471

similarity with SQuAD dataset than the others.472

This is reasonable since MOVIE-QA and KG-473

QA are based on movie plots from wikipedia474

and wikipedia pages of video game entities475

respectively. COVID-QA and CUAD-QA are476

relatively far from SQuAD since the two domains477

are very specialized either in biology or legal terms.478

479

Dataset Avg tokens
per question

Avg tokens
per answer

Avg tokens
per document Corpus size

RoBERTa-PC - - - 160Gb

SQuAD 10.06 3.16 116.64 13Mb

COVID-QA 9.43 13.93 4021.83 50Mb

CUAD-QA 18.53 41.87 8428.79 153Mb

MOVIE-QA 7.35 2.5 601.81 6.8Mb

KG-QA 3.32 1.65 1373.65 17Mb

Table 2: Characteristics of QA datasets used in our
experiments. RoBERTa-PC is RoBERTa Pre-training
Corpora (PC) reported here for comparison. Candidates
are answer candidates in the corpus.

Corpus size: The size of the text corpus is shown480

in Table 2. Note that the corpus size is a fraction481

of the corpus used for PLMs. 482

3.4.2 Question/Answer/Passage Analysis 483

Different lengths of questions, answers and pas- 484

sages can lead to different inference difficulties. 485

Therefore, the length distribution (see in Table 2) 486

can be a very important metric for evaluating the 487

characteristics of four datasets. First of all, from 488

the answer length, SQuAD together with KG-QA 489

and MOVIE-QA are dominated by short answers. 490

More specifically, the questions in MOVIE-QA 491

are mostly based on character names or dates of 492

specific events. As for KG-QA, the questions are 493

keyword queries and the answers are constructed 494

with the object entities. With this respect, KG-QA 495

and MOVIE-QA can be considered as SQuAD-like 496

but KG-QA is relatively difficult due to the key- 497

word queries. Besides, all the three datasets are 498

based on wikipedia articles with different granu- 499

larity: SQuAD is the built on top of paragraphs, 500

MOVIE-QA is curated from the movie plots while 501

KG-QA is based on the entire article which can be 502

a bit lengthy. Second, the passages of CUAD-QA 503

are collected from commercial legal contracts in 504

a specific format. It is substantially different than 505

Wikipedia articles in the way of sentence expres- 506

sion and wording choices. Also there is an impor- 507

tant gap between CUAD-QA and other datasets 508

in answer length, which infers it is a more diffi- 509

cult and absolutely not SQuAD-like dataset. For 510

COVID-QA, the dataset built on top of biological 511

papers, which is also lengthy to infer. But for the 512

questions and answers, either in the way of asking 513

questions or the type of the answers, COVID-QA is 514

not far from SQuAD. For that matter, COVID-QA 515

is a dataset similar to SQuAD, but relatively more 516

difficult for inference. 517

Overall one can say that the gap between COVID- 518

QA and MOVIE-QA with SQuAD is smaller than 519

the two other datasets since the questions and an- 520

swers length as well as the domain are relatively 521

similar. 522

4 Experiment 523

4.1 Language Model and fine-tuning 524

strategies 525

In our experiments we use RoBERTa (Liu et al., 526

2019) as our starting PLM. RoBERTa is built on 527

BERT: it mainly optimizes key hyper-parameters 528

and simplifies the training objective and training 529

mini-batches size. RoBERTa achieves better per- 530
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formance than BERT in many benchmarks like531

GLUE (Wang et al., 2019), SQuAD (Rajpurkar532

et al., 2016) and RACE (Lai et al., 2017), which533

explains this choice over BERT base or large mod-534

els. To build extractive QA models, we apply535

two independent softmax layers for predicting the536

starting and the ending index of the answer span537

as in (Devlin et al., 2019). Parameters of soft-538

max layers and the PLM are updated when fine-539

tuning. As for implementation details, we use the540

pre-trained, 12-layer, 768-hidden, 12-heads, 125M541

parameters, RoBERTa base model from Hugging-542

face hub. AdamW (Loshchilov and Hutter, 2019) is543

used as the optimizer for fine-tuning with learning544

rate set to 3e − 5. The results are reported using545

5-fold cross validation. We explore 18 different546

fine-tuning combinations (see Section 3.1) for 6547

different annotation budget sizes (see Section 3.3)548

over 4 datasets. Moreover each unique experiment549

is actually run 5 times for different data splits to550

get significant results. We therefore hereby provide551

results based on 2, 160 evaluation runs (with 1918552

fine-tuned models). All 2, 160 evaluation runs re-553

quire 62.5 days of 4 Titan XP GPUs to complete.554

4.2 Results555

In what follows, we present the main results and556

analysis we can deduce from our experiments. It557

is important to note that we provide a summary558

table with all our results in appendix2. We hereby559

discuss our findings step by step, sometimes with a560

subset of budget sizes, and the interested reader561

can analyse the complete experiments table in562

supplementary materials that compile all the 2, 160563

evaluation runs.564

(1) The standard fine-tuning strategy for QA565

is sub-optimal with low training budgets, and566

although low training budgets are the de facto567

situations in practice (Section 1 in appendix). Out568

of 24 dataset and budget combinations, it only569

achieves twice the best performance by a small570

margin (Table in appendix). On the contrary, the571

performance difference between the mainstream572

method and the best fine-tuning strategy identified573

is up to 12.5% for KG-QA dataset and budget set574

to 100. The gap is particularly high for low budget575

(k = 100) and tends to be smaller for higher576

budgets (k > 800) see in Table 3. For very low577

2Note that this is provided in appendix at reviewing time,
and that this page will be included in the paper as camera-ready
versions of accepted long papers will be given one additional
page of content (up to 9 pages)

budget (k = 100) the average difference is 6.93%, 578

which is very substantial. A reminder here is that 579

such improvement comes at no additional cost for 580

QA practitioners. 581

582

Annotation Budget
100 200 400 800 1200 1600

Baseline 56.70 61.35 64.88 67.45 68.90 69.90
Best strategy 63.63 65.85 67.78 69.83 70.75 71.40
Difference +6.93 +4.5 +2.9 +2.38 +1.85 +1.5

Table 3: Comparison between the best fine-tuning strat-
egy and baseline strategy: average performance(%) of
QA system in different domain (legal, biology, movie
plots and video games).

(2) Knowledge-Alignment Fine-tuning has lim- 583

ited improvements in domain-specific QA under 584

a budget. For most of the experiments, we can- 585

not observe that knowledge-alignment fine-tuning 586

(more specifically MLM) steadily and repeatedly 587

improves the accuracy of the models, overall we 588

even consistently observed a slight degradation 589

of performance (Table 4). Moreover, over the 590

few occurrences where MLM helps, it does only 591

by a small margin (Table in appendix). While 592

knowledge-alignment fine-tuning was reported to 593

be helpful for other NLP tasks, our experiments 594

show that this is not the case for low annotation 595

budget extractive QA. We associate this to the cor- 596

pora size of the domain datasets that are several 597

order of magnitude smaller then the corpora used 598

in other works where MLM was identified to be 599

useful. Large text corpora are rather exceptional 600

in domain specific QA scenarios, we conclude that 601

MLM fine-tuning is generally not advisable. 602

Dataset
COVID-QA CUAD-QA MOVIE-QA KG-QA

No MLM 55.44 38.70 78.06 77.62
With MLM 52.97 38.97 77,62 63.9
Difference -2.47 +0.27 -0.44 -0.95

Table 4: Average performance (%) difference after
MLM procedure evaluated over all the budgets and
strategies.

(3) A low annotation budget goes a long way. 603

Domain-specific training data is assumed to 604

be the best signal to optimize the network in 605

order to achieve better performances. We show 606

here that, fortunately, even a small number of 607

samples lead to significant improvements. To 608

illustrate this, we compare the baseline QA system 609
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(RoBERTaBase-SQuAD) with other fine-tuning610

strategies. In very low-budget scenarios (k = 100)611

we observe average performance improvements612

range between 3.4% and 27, 8% (Table 5). For613

high budgets it ranges between 5.2% and 40.8%.614

This result is partially consistent with the claim615

by (Hazen et al., 2019) that low budget fine-tuning616

is actually overestimating the budget in the617

practical settings since we have just shown that it618

depends on the domain drift from SQuAD.619

620

Dataset
COVID-QA CUAD-QA MOVIE-QA KG-QA

Zero-shot 53.8 12.2 80.2 41.9

Low Budget 62.3 40.0 83.6 68.6
Difference +8.5 +27.8 +3.4 +26.7

High Budget 67.3 50.2 85.4 82.7
Difference +13.5 +38.0 +5.2 +40.8

Table 5: Performance difference (%) between Zero-
Shot scenarios and Few-Shot scenarios with low budget
(K = 100) and high budget sizes K = 1, 600

(4) Do not compromise: either go small or big621

annotation budget. One of the main issue for the622

practitioners is to know what improvement to ex-623

pect if one invests more in the QA pair annotation624

budget - we remind here that building such anno-625

tations are more difficult and therefore costly than626

text classification for instance. We compare the627

performance improvements that one can achieve by628

increasing the number of training data – more train-629

ing data obviously tend to lead to better models, but630

we want to measure here how worthy is increasing631

training dataset size. For instance, what are the ex-632

pectations a practitioner can have if he is willing to633

double his annotation effort? To answer this ques-634

tion, we compare the best performing fine-tuning635

strategy for each budget (between K = 100 and636

k = 1, 600) for the different datasets, assuming637

that a practitioner is also able to run all strategies to638

compare them and pick the best one for each bud-639

get. We observe the relative gain for each budget640

jump as reported in Figure 3.641

From this experiment we conclude the follow-642

ing. First, providing a small annotation budget643

(100 or 200) samples is very efficient with respect644

to a zero shot setting (as discussed in the previous645

experiment). But we also note that doubling the646

annotation effort lead to only a 1% performance647

improvement in general and 2% at a maximum. In648

practice, doubling the amount of extractive QA la-649

bels available for target domain fine-tuning is very650

Figure 3: Performance difference (%) after x16 data
collection procedure evaluated over low budget (K =
100) and high budget sizes (K = 1, 600).

expensive and therefore do not justify the average 651

1% improvement (it is also supposed that the exper- 652

iments were run for all strategies and that the best 653

one was selected, which add to the complexity to 654

benefit fully from these 1 up to 2% improvement). 655

Complementary, after investing around 10 times 656

the initial budget, the benefit has accumulated and 657

becomes significant with respect to the effort put 658

into the annotation budget. As a rule of thumb, 659

we would advise to either opt for a 200 annota- 660

tion budget with a careful selection of the MWO 661

fine-tuning strategy, or to invest for an annotation 662

budget ≥ 1, 600 without the need to explore differ- 663

ent fine-tuning strategies in this case. Any effort 664

within the [200; 1, 600] range imply a weak return 665

with respect to the time and effort to double each 666

time the number of domain annotations. 667

5 Conclusion 668

In this work we compared different fine-tuning 669

strategies for extractive QA in low budget scenarios. 670

Our experiments show that the standard fine-tuning 671

strategy for QA is sub-optimal, merge fine-tuning 672

is the most robust and effective fine-tuning strat- 673

egy, and Knowledge-Alignment Fine-tuning via 674

MLM does not yield a significant improvement. 675

Those are all counter-intuitive results with respect 676

to common practices by the NLP practitioners who 677

usually apply the standard sequential fine-tuning 678

pipeline. We remind that these improvement come 679

at no overhead cost. Finally, our experiments show 680

what are the performance gains that one can expect 681

by collecting different amounts of training data for 682

different domain-specific QA scenarios depending 683

on similarity with SQuAD. 684
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MACRO-F1

Dataset Fine-tune Strategy K = 100 K = 200 K = 400 K = 800 K = 1200 K = 1600

COVID-QA

RoBERTaBase-SQuAD 53.8 53.8 53.8 53.8 53.8 53.8
RoBERTaBase-MLM-SQuAD 52.9 52.9 52.9 52.9 52.9 52.9
RoBERTaBase-TargetQA 6.5 35.8 46.6 54.3 55.6 59.2
RoBERTaBase-MLM-TargetQA 5.6 17.7 35.1 46.8 53.0 54.5
RoBERTaBase-SQuAD-TargetQA 55.8 58.3 61.0 63.1 64.3 64.1
RoBERTaBase-MLM-SQuAD-TargetQA 55.0 59.4 60.3 64.2 64.9 64.7
RoBERTaBase-MP 8.9 44.7 51.7 57.3 59.1 59.9
RoBERTaBase-MLM-MP 13.9 34.1 45.9 52.6 55.1 59.2
RoBERTaBase-MPO 27.7 39.4 45.1 50.5 54.3 54.2
RoBERTaBase-MLM-MPO 18.8 29.3 37.1 47.4 51.2 52.4
RoBERTaBase-SQuAD-MP 57.1 59.9 62.1 64.0 64.5 64.1
RoBERTaBase-MLM-SQuAD-MP 56.2 58.0 60.7 63.0 62.6 63.4
RoBERTaBase-SQuAD-MPO 54.6 58.5 58.0 60.5 60.4 60.8
RoBERTaBase-MLM-SQuAD-MPO 53.9 56.0 57.0 59.3 58.2 60.2
RoBERTaBase-MW 60.8 62.6 64.2 65.7 66.3 67.3
RoBERTaBase-MLM-MW 60.1 63.0 63.2 64.6 65.5 65.9
RoBERTaBase-MWO 62.3 63.3 64.5 64.1 63.6 64.5
RoBERTaBase-MLM-MWO 62.3 61.2 62.3 62.1 62.8 63.2

CUAD-QA

RoBERTaBase-SQuAD 12.2 12.2 12.2 12.2 12.2 12.2
RoBERTaBase-MLM-SQuAD 14.2 14.2 14.2 14.2 14.2 14.2
RoBERTaBase-TargetQA 12.2 13.0 39.0 45.9 47.0 48.5
RoBERTaBase-MLM-TargetQA 12.7 26.2 36.9 44.3 48.0 48.3
RoBERTaBase-SQuAD-TargetQA 35.6 42.8 45.9 47.1 48.6 50.2
RoBERTaBase-MLM-SQuAD-TargetQA 39.3 44.0 47.8 48.2 48.9 49.0
RoBERTaBase-MP 12.4 34.6 43.4 45.6 48.2 49.5
RoBERTaBase-MLM-MP 18.2 31.5 40.1 46.5 47.5 49.1
RoBERTaBase-MPO 21.4 35.4 40.5 44.8 45.2 45.5
RoBERTaBase-MLM-MPO 20.0 30.5 35.0 44.2 45.0 45.5
RoBERTaBase-SQuAD-MP 38.3 42.8 46.1 49.1 49.1 48.7
RoBERTaBase-MLM-SQuAD-MP 38.0 45.4 47.2 49.7 49.7 49.8
RoBERTaBase-SQuAD-MPO 35.6 40.6 43.4 45.0 45.6 45.7
RoBERTaBase-MLM-SQuAD-MPO 35.8 41.6 44.4 45.4 46.1 46.8
RoBERTaBase-MW 35.0 42.0 45.6 48.4 50.5 50.0
RoBERTaBase-MLM-MW 34.5 41.5 44.6 48.7 49.4 50.2
RoBERTaBase-MWO 40.0 45.0 46.0 46.6 47.8 47.6
RoBERTaBase-MLM-MWO 39.1 42.7 43.3 45.8 46.2 46.6

MOVIE-QA

RoBERTaBase-SQuAD 80.2 80.2 80.2 80.2 80.2 80.2
RoBERTaBase-MLM-SQuAD 80.0 80.0 80.0 80.0 80.0 80.0
RoBERTaBase-TargetQA 25.0 51.8 67.5 75.0 78.5 80.1
RoBERTaBase-MLM-TargetQA. 25.9 44.5 54.6 74.9 77.7 79.6
RoBERTaBase-SQuAD-TargetQA 79.3 79.9 81.9 83.2 83.4 84.0
RoBERTaBase-MLM-SQuAD-TargetQA 79.7 79.9 82.0 83.5 83.8 83.9
RoBERTaBase-MP 54.6 61.4 73.3 79.5 80.5 81.8
RoBERTaBase-MLM-MP 52.4 63.8 73.2 78.7 79.7 81.8
RoBERTaBase-MPO 57.7 66.6 74.2 77.9 80.0 80.7
RoBERTaBase-MLM-MPO 58.9 67.9 73.3 77.7 79.8 80.2
RoBERTaBase-SQuAD-MP 79.2 80.4 82.2 83.5 83.6 84.6
RoBERTaBase-MLM-SQuAD-MP 78.5 80.9 81.0 83.0 84.0 83.3
RoBERTaBase-SQuAD-MPO 79.7 81.3 82.4 83.3 83.2 83.4
RoBERTaBase-MLM-SQuAD-MPO 79.4 80.5 81.7 83.6 83.4 82.9
RoBERTaBase-MW 83.6 83.1 84.5 84.4 85.1 85.0
RoBERTaBase-MLM-MW 83.0 82.9 84.5 85.1 85.4 85.4
RoBERTaBase-MWO 82.7 84.0 83.9 84.3 84.8 84.0
RoBERTaBase-MLM-MWO 83.1 84.1 84.3 84.9 84.5 84.5

KG-QA

RoBERTaBase-SQuAD 41.9 41.9 41.9 41.9 41.9 41.9
RoBERTaBase-MLM-SQuAD 35.9 35.9 35.9 35.9 35.9 35.9
RoBERTaBase-TargetQA 20.1 26.2 30.4 70.2 76.1 78.6
RoBERTaBase-MLM-TargetQA 24.3 27.2 33.6 53.1 73.4 79.1
RoBERTaBase-SQuAD-TargetQA 56.1 64.4 70.7 76.4 79.3 81.3
RoBERTaBase-MLM-SQuAD-TargetQA 61.2 66.6 72.6 77.0 79.6 81.5
RoBERTaBase-MP 24.5 27.0 64.5 76.0 77.9 78.8
RoBERTaBase-MLM-MP 24.3 28.2 43.8 75.2 78.2 80.5
RoBERTaBase-MPO 28.9 52.2 71.4 76.2 79.9 82.2
RoBERTaBase-MLM-MPO 40.2 40.2 70.4 77.8 79.9 82.5
RoBERTaBase-SQuAD-MP 64.6 65.1 73.3 77.1 78.7 81.1
RoBERTaBase-MLM-SQuAD-MP 65.0 66.7 73.5 77.4 79.0 80.5
RoBERTaBase-SQuAD-MPO 63.9 69.1 73.5 78.4 80.8 82.1
RoBERTaBase-MLM-SQuAD-MPO 63.9 67.8 73.5 77.5 79.8 81.7
RoBERTaBase-MW 66.1 68.2 72.3 75.8 77.7 80.4
RoBERTaBase-MLM-MW 66.2 69.2 73.5 75.8 77.8 81.0
RoBERTaBase-MWO 67.7 69.3 74.2 78.8 80.6 82.5
RoBERTaBase-MLM-MWO 68.6 70.6 74.3 78.0 80.8 82.7

Table 6: Experiment results. K is the budget size. RoBERTaBase-SQuAD-TargetQA is the standard sequential
fine-tuning method, its results are underlined for reference. RoBERTaBase-SQuAD, often referred as the "baseline
method" in many benchmarks, reflects how well a SQuAD model generalizes on other QA tasks. Best result for
each budget size is given in bold.
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