Under review as a conference paper at ICLR 2026

EXPLORING CROSS-MODAL FLOWS FOR FEW-SHOT
LEARNING

Anonymous authors
Paper under double-blind review

e i ~ P it ~
A photo of Swiss |' [ 4—". ! I{ H--> X «—--0 !
Mountain Dog 1 1 I @ 1
1 o 1 1 1
i -- P i
2 3 1 P
LA o Al e
AU, Sk P NN X W
(b) Prompt Tuning (c) LoRA-based
( ‘-; -------------- N (/ ------------------ ™
! -~ X e SN . o |
1 S -
! 1 O-->~<p" 1
N e Ml |
: A : : A--_ﬁ-'>~ \/ :
1 —— 1 S 1
‘\ > > J l\\ A _ll
(a) CLIP (d) Adapter-based (e) FMA (Ours)
B ® A CLIP Text features of three classes Text features after few shot adaption
M ® A CLIP Image features of three classes Image features after few shot adaption

Figure 1: Comparisons of the cross-modal alignment process of different methods. (a) The overview
pipeline of CLIP (Radford et al., 2021) for zero-shot cross-modal alignment and classification. Some image
features and their corresponding text features are not well-aligned (e.g., difficult class ll ). (b-d) The alignment
process of three typical types of state-of-the-art PEFT approaches, which adjust image or text features in one
single step. The arrow === shows the adjustment of corresponding features during the adaptation. For difficult
classes, the image features still may be far from the corresponding text features by one step adjustment. (¢) FMA
achieves multi-step cross-modal alignment, which succeeds in aligning text-image features for difficult classes.

ABSTRACT

Aligning features from different modalities, is one of the most fundamental chal-
lenges for cross-modal tasks. Although pre-trained vision-language models can
achieve a general alignment between image and text, they often require parameter-
efficient fine-tuning (PEFT) for further adjustment. Today’s PEFT methods (e.g.,
prompt tuning, LoRA-based, or adapter-based) always selectively fine-tune a subset
of parameters, which can slightly adjust either visual or textual features, and avoid
overfitting. In this paper, we are the first to highlight that all existing PEFT methods
perform one-step adjustment. It is insufficient for complex (or difficult) datasets,
where features of different modalities are highly entangled. To this end, we propose
the first model-agnostic multi-step adjustment approach by learning a cross-modal
velocity field: Flow Matching Alignment (FMA). Specifically, to ensure the cor-
respondence between categories during training, we first utilize a fixed coupling
strategy. Then, we propose a noise augmentation strategy to alleviate the data
scarcity issue. Finally, we design an early-stopping solver, which terminates the
transformation process earlier, improving both efficiency and accuracy. Compared
with one-step PEFT methods, FMA has the multi-step rectification ability to achieve
more precise and robust alignment. Extensive results have demonstrated that FMA
can consistently yield significant performance gains across various benchmarks
and backbones, particularly on challenging datasets.
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1 INTRODUCTION

How to align information from different modalities (e.g., text and images), is very important in
almost all cross-modality tasks. Well-aligned cross-modality features play a crucial role in a variety
of domains, such as achieving the impressive reasoning abilities in MLLMs (Hurst et al., 2024; Li
et al,, 2022; Liu et al., 2023b), and realistic generation qualities in AIGC models (Romhach etal.,
2()22, Esser et al., 2 )24) Generally, realizing good cross-modal alignment means finding a golden’
multimodal distribution where corresponding text and image features are as close as possible in
the shared common space. To achieve this goal, many pretrained vision-language models (VLMs)
have been proposed, such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). Taking
CLIP for example, as shown in Figure 1(a), it achieves cross-modal alignment by training image and
text encoders jointly with a contrastive objective. By now, VLMs can achieve a general alignment
between image and text, and show promising results on zero-shot tasks, like image recognition.

>

However, due to the internal complexity of different modalities, pre-trained VLMs cannot achieve
perfect alignment across all scenarios. Therefore, they typically require further fine-tuning steps
to rectify features for better alignment. For instance, in few-shot learning, we usually need to fine-
tune VLMs with a few images from base categories. Since fine-tuning the whole VLM model is
computationally expensive and Linear Probing (LP, only fine-tunes the final fully-connected layer) is
not effective enough, numerous parameter-efficient fine-tuning (PEFT) methods have been proposed.
These PEFT methods can be broadly categorized into three groups: 1) Prompt Tuning (i & Liang,

021): Like CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), prompt tuning methods try
to find better text representations (or features) by replacing handcrafted text prompts with learnable
continuous prompts. Compared with original VLLMs, they can be interpreted as applying a “movement”
on all text features to better align them with the corresponding image features (cf., Figure 1(b)). 2)
Adapter-based (Houlsby et al., 2019): Such as CLIP-Adapter (Gao et al., 2024), they typically
apply a learnable adapter following the VLMs’ image encoder. After training, they will rectify
the image features towards corresponding text features for better alignment (cf., Figure 1(c)). 3)
LoRA-based (Hu et al., 2022): These methods (e.g., CLIP-LoRA (Zanella & Ben Ayed, 2024))
add trainable low-rank matrices in both text and image encoders to store the new knowledge while
keeping other parameters frozen. As shown in Figure 1(d), they will shift both text and image features

to be closer (i.e., towards the golden distribution).
Comparison between CoOp and Linear Probing

It is widely acknowledged that PEFT typically out- mm= Linear Probing +11.2
performs linear probing. However, we observed that == CoOp Improvement
their advantages compared with LP are not consistent
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across different datasets. To better illustrate this, we 03 am 4638
introduce the concept of dataset difficulty: A dataset
with lower CLIP zero-shot performance is considered
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lower zero-shot performance means that the cross

modal distribution is more complicated, thus more 20

difficult to adjust. In this paper, we found that while

PEFT methods work pretty well on relatively simple 0

datasets, they fail to generalize to difficult ones. For &
example, as shown in Figure 2, the prevailing PEFT \@@‘”
method CoOp can obtain remarkable improvements Difficult Simple
over the LP baseline on relatively simple datasets, Fjgyre 2: Performance of CoOp and linear
like OxfordPets. However, the improvements on probing. We experimented with the 16-shot set-
more challenging datasets, such as FGVCAircraft, ting and chose CLIP RN50 as the backbone.

are marginal. To explain this phenomenon, we propose a new perspective for all existing PEFT
approaches: these methods try to adjust their general aligned multimodal distribution towards the
golden distribution by one rectification step. This is because during the inference, the adjustments
consist of a single forward pass of the trained model. Since PEFT methods involve only a small
number of learnable parameters, they are usually unable to learn very complex transformations.
Therefore, for difficult datasets where some multimodal features are highly entangled, these one-step
methods are unable to align them, as shown in Figure 1(bcd). This leads to our core motivation: Can
we make multi-step rectifications to realize better cross-modal alignment?

\,
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To address this, we turn to the Flow Matching (FM) theory ( s ; , ;
, ), which is developed for multi-step transformation between any two
distributions. Generally, FM learns a velocity field that transports samples from a source distribution
to a target distribution through an iterative process, i.e., while one-step adjustment is not accurate, it
is possible for the following steps to rectify prior errors. Therefore, if a velocity field can be trained
to transform image features to corresponding text features, we can utilize its multi-step rectification
ability for more accurate classification. Specifically, we can formulate all encoded image features as
the source distribution. For the target distribution, the simplest method is to encode all prompts with
category names as target features. For each velocity training step, an image and text feature will be
sampled independently to compose a training pair. This velocity field will transform any given image
feature (source distribution) to a corresponding text feature (target distribution), i.e., classification.

Unfortunately, there are two potential issues for this straightforward approach. Firstly, although
a well-trained velocity field can achieve transformation between two given distributions, it is not
guaranteed to preserve local structure (e.g., category correspondence). For example, as shown in
Figure 3(a), it may transform image features from one class to text features of another class, resulting
in wrong classification. Therefore, the first challenge is to figure out how fo train a velocity field,
which can transfer image features from source distribution, not only to the target distribution (near
text features), but also close to their right class embeddings. Secondly, in the inference stage, the goal
of flow matching for the generation task is to generate features in the target distribution, which are
then decoded to real samples. But for the classification task, what we really need is to transfer image
features closer to positive embeddings (i.e., ground-truth class embeddings) than other negative ones.
This inconsistency suggests that the previous flow matching inference strategy may not be the best
practice for classification scenarios. Thus, the second challenge is that how to design an appropriate
inference method for classification.

To overcome both challenges, we propose a novel frame- 1. Clas€2. " =
_ oo : ; TR TYr Y Yo, L .
work for few-shot learning: Flow Matching Alignment 4 ﬁf’%ﬁa *%‘

(FMA). Specifically, we have three designs:
* Coupling Enforcement: Firstly, for any given image

feature, we choose the one that corresponds to its class  cje0  « Class 1
label to compose a training pair. Theoretically, this fixed e, ‘ {Jﬁ*“}w@ “
coupling strategy can guarantee that the trained velocity VR e 2T

field will act like a classifier, moving image features
towards the correct direction. Class3 .

* Noise Augmentation: However, compared with ran- "} '.,};gg' . = % o
domly pairing, this coupling strategy also reduces the SRR T : vt
number of training pairings dramatically, making it -
harder to train the velocity field. To solve this issue, | _____--\/- ----- > [/ (inefficient) }
we further add a pre-defined noise to the sampled pair | e u X (inaccurate)g
during training. This augmentation makes the train- | !
ing data not constrained in a low-dimensional manifold, | &8~
making the learning process more stable and robust. "x\t" >

» Early Stopping Slover: Besides training, vanilla flow (b)
matching inference is not suitable in classification due Figure 3: Explanation of the two chal-
to the inconsistency (challenge #2). When intermediate lenges. (a) A flow matching example to trans-
features are distinguishable enough for classification, form image features (red) to text features
continuing to transfer them to obtain text features is un- (bluc) distribution. Each distribution consists
necessary and inefficient. Even worse, we observed that ©f features of three categories. (b) Two ex-
the following inference steps are likely to move them to amples of how a trained velocity transforms
. . . an image feature into a text feature using the
inaccurate text features, as sh(?wn in Flgu.re 3(b)..T.hlS vanilla flow matching inference strategy,
inaccuracy is because even with the previous training
strategies, it is still difficult to train a perfect velocity field. To tackle this, we devise an early
stopping solver for few-shot learning. Concretely, instead of arriving at the target distribution. We
allow the model to output intermediate features for classification. This early stopping strategy can
not only reduce the inference time when the features are good enough for classification, but also
reduce the risk of transferring to wrong text features.

Additionally, FMA can serve as a plug-and-play module for mult-step rectification. It only requires

two sets of features in the shared space, and it is agnostic to the specific methods used for image or

text feature extraction. Thus, FMA can be easily adapted to different methods, ranging from zero-shot
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CLIP to various PEFT methods. To demonstrate the effectiveness and generality of FMA, we have
integrated it with various backbones. Extensive results on different backbones and benchmarks have
demonstrated consistent performance gains. In summary, our contributions are threefold:

* We propose a new perspective to analyze existing few-shot PEFT approaches: all these methods
are one-step methods, and they usually struggle with difficult datasets.

* We are the first to explore the potential to adapt the multi-step recitification ability of flow matching
for better few-shot learning performance. Based on this, we propose FMA, a novel plug-and-play
multi-step rectification framework.

* Extensive results demonstrate the superiority and robustness of FMA in the few-shot classification.

2 RELATED WORK

Few-Shot Learnmg in VLMs. Few-Shot Learning (FSL) is a task to learn from a few exam-
ples ( , ). Currently, the most common scenario in FSL is to fine-tune
a pre-trained VLM ( R ) with limited data for classification. Be-
cause directly fine-tuning VLMs is computatronally expensive, numerous PEFT methods have been
proposed. Current techniques for adapting the VLMs can be broadly classified into four paradigms:
Prompt Tuning, Adapter-Based and LoRA-Based. The Prompt Tuning approaches ( ,
:b; , ) involves learning textual or visual prompts
that are subsequently 1nserted into the input or middle layers of the pre- tra1ned VLM encoders for
a few-shot adjustment. LoRA-Based methods ( s
; s ), instead, insert a small number of trarnable parameters (e.g., LoRA
) within the encoders themselves. Adapter-based methods ( s s ),
append a trainable layer like MLP to the frozen image or text encoders, and they do not require
gradient backpropagation across the encoders, which is more computationaly friendly.

Diffusion Model (DM) and Flow Matching (FM). Recently, diffusion model has developed into the
most powerful framework in generatlve models ( , ; , ). It gradually
degrades the data by adding noise, then learn the reverse process. Then Score-SDE ( ,

) points out that the learning process of DM is actually solving stochastic differential equations
(SDE), which can be further 1nterpreted as probab1hst1c ordinary differential equations (ODE).

Consequently, FM ( s s ) extends
this by learnmg a velocity field to bu1ld transformat10ns between any two distributions. Different
from previous one-step generative models, such as GAN ( , ) and VAE (

, ), FM generates data through multi-step rectification. So far, FM has ga1ned great
success in a variety of domains, such as text-to-image generat10n ( , ; ,

R ), nnage editing ( ; ),
v1de0 generation ( , ), and so on. However, although FM can ach1eve
transformation between two arbrtrary distributions, most approaches tend to set one as the prior noise
distribution. Recently, several works ( s ; s ) try to transform from text

distribution to image distribution directly for generation. In this paper, we explore the potential of
whether FM is suitable for supervised tasks like few-shot classification.

3 METHOD: FLOW MATCHING ALIGNMENT FOR FEW-SHOT LEARNING

Formulation. We consider the N-way K-shot classification problem: Given a training dataset
consisting of NV classes, each class with K examples, the goal is to train a classification model that
can accurately predict the class of any test image from these [V classes.

General Framework. The overall pipeline of our proposed FMA is shown in Figure 4. Specifically,
FMA consists of three steps: 1) Encoding all text and images into features in the shared common
space. 2) Training a velocity field to transform image features to text features for better alignment. 3)
Using the trained velocity field to transform the feature of the given test image for classification.

3.1 FEATURE EXTRACTION

Given the training dataset D = {I?, C*}N-K where I', C? represent an image and its corresponding
class label, the simplest way to encode them into the shared space is using a pre-trained VLM F, like
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Figure 4: Overview of Flow Matching Alignment (FMA). The main idea of the training stage is to learn a
velocity field, which can transform image features to corresponding text features. Two designs are proposed:
coupling enhancement and noise augmentation. During the inference, FMA applies an early-stopping solver that
can output intermediate features for classification.

CLIP. Specifically, CLIP contains an image encoder E and a text encoder E2. The image (source)
distribution is obtained by encoding all images into a feature representation by: zq = E;(I) € R?
where d is the dimension of the feature. Here we omit the superscript for simplicity. For the text
(target) distribution, CLIP first transforms all label C' into text descriptions 7" using their class name
and a handcrafted template like “a photo of {class}”. Then the text encoder will encode
these descriptions into text features by: z; = E7(T'), with the same dimension as the image feature.
Notably, our method is agnostic to the feature extraction process. While we use CLIP zero-shot as
an example, other methods like CoOp can also be used to extract image and text features. In the
experiment section, we discuss the influence of different feature extraction methods on FMA.

After obtaining all image and text features, FMA trains a velocity field to perform further alignment.
For simplicity, we denote distributions py and p; as the collections of image features and text features.

3.2 TRAINING STAGE

Typically, in flow matching training, we randomly sample an image feature zy ~ pg and a text feature
1 ~ p1 to compose a training pair. Following Rectified Flow ( , ), a transfer trajectory
is defined as linear interpolation between xo and 7 on time ¢ € [0, 1]: z; = tz1 + (1 — ). The
conditional velocity field v¢(x+|x1) is defined as the derivative of the trajectory with respect to time ¢:
ve(z¢|21) = Lt = 21 — z. The marginal velocity field u () can be learned by solving a simple

least square regression problem between v, (x¢|x;) and u? :

L (0) =Ey,op, tmpollluf () — (z1 — 20) %], )]

where we use the distribution p; to denote the collection of all intermediate features x;. However, the
learned velocity field learned uf (2¢) cannot guarantee class-level correspondence because it is an
estimation of v;(z;), an expectation of the v;(x;|x1) over all possible text features x1:

vg(y) :/”t(xtxl)wdxl- 2

Consequently, the learned u¢ will drive an image feature towards the average of all text features,
which usually results in incorrect classification.

Coupling Enforcement. To solve this issue, we propose coupling enforcement. Specifically, for a
given image feature x(, we exclusively sample its corresponding ground-truth text feature x;. Due to
the sparsity in the high-dimensional manifold, their transfer trajectories can be considered as mutually
non-crossing when the dataset is small. This means for given x;, there exists only one potential text
feature x; in Eq. (2). Consequently, the marginal velocity is equivalent to the conditional one:

ve(x1) = ve(@e|21). (€)
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This means we are secretly using the conditional velocity field v;(z¢|z1) to move the image feature
to the direction of x;. If 21 corresponds to the right class label, the flow matching can then transform
the image feature to the correct text feature in the target distribution.

While this coupling enforcement strategy is intuitive, it induces another new challenge: data scarcity.
Since we only pair one image feature with its target text feature, the model is trained on only % of the
potential data compared with randomly pairing, where NN is the number of classes in the dataset. As a
result, large portions of the velocity field’s domain remain unsampled, preventing it from providing
reliable instructions to move image features.

Noise Augmentation. We design another strategy, noise augmentation, to solve this problem.

It injects a time-dependent Gaussian noise into the intermediate features z; during the training

process. Adding random noise ensures the distribution z; does not collapse to a low-dimensional

manifold ( s ), thus learning more accurate velocity estimation. Concretely, the

noise schedule is chosen as a time-dependent sequence. Inspired by Schrodinger bridge ( ,
), we sample the new noise-augmented features Z; from a Gaussian distribution:

ii'tN./\/—(Zi't|$t,t'(1—t)'0'2($t)). (4)

After obtaining 7, the new ground truth u? () is the direction pointing to the target text feature x:
N @1 — Iy

=— 5

ve(Z¢|21) =1 )

Then Eq. (1) can be applied for training u? (x;). The training is summarized in Algorithm 1.

3.3 INFERENCE STAGE

1.2-

—— Distance ~ 770 —— Correct Class

After learning a velocity field u? (z;), N omecttass

—e— Accuracy

we use it to transform any image fea- 1.0 TS g 130
ture x for classification. Vanilla flow -760 £
matching inference process adapts an @ o.s- _55 0 @125
ODE solver, such as the Euler Method, & L0 g 2
to iteratively transform xg into a text .g 0.6 ' é(‘j B 120
feature z1 by M steps: TsS 2
0 047 -74.0 5
Ti+h = Tt + h- Uy (xt), (6) w 115
where h = {7 is the integration step- 0.2~ 73S
size. x1, is an approximation of a 110
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similarity as the prediction. for classification. (b) At different timesteps, the distance between

However, this inference method may the intermediate features and the correct/incorrect text feature.

lead to the inconsistency issue in few-shot learning, as we mentioned before. Specifically, as
shown in Figure 5(a), with ¢ approaching 1, the distance between intermediate features x; and their
corresponding text features becomes smaller, which means they are indeed moving towards to the
target distribution. However, the classification accuracy using x first increases, then decreases. This
indicates that although the coupling enhancement strategy is adapted, some features may still move
towards text features of incorrect classes. To better illustrate this, we show an example in Figure 5(b)
where this inference method leads to a classification error. As the transformation continues, x;
becomes closer to the incorrect text feature than to the correct one. In this situation, the vanilla
inference method, which use z; for classification, will lead to incorrect results.

Early Stopping Solver (ESS). To solve this problem, We propose a simple yet effective inference
strategy: utilizing an early stopping solver (ESS) to terminate the transformation when the interme-
diate features are discriminative for classification. Specifically, instead of integrating over the full
time interval [0, 1], we fix the stepsize h in Eq. (6) as a constant and choose a constant number of
inference steps M. uf(z;) then transforms an initial image feature 7 to an intermediate feature T
at the final time 7' = h - M, as shown in Algorithm 2. Subsequently, = is used for classification.
Notably, the optimal strategy is to find a sample-specific ¢ for each input image feature, and we left
this as a promising direction for future research.
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Algorithm 1 Training Algorithm 2 Inference
1: Input: paired image features and text features 1: Input: image features x, trained uf (),
D = {(z}, x})} V5K steps M, stepsize h
2: repeat 2:t=0
3 t~U(0,1]), (xo,x1) ~D 3: forn =1to M do
4 xp=(1—t)xo+ta; 4 xpep = a0+ heul (zy)
50 @y~ N(Eglwg, t- (1 —1) - 02(2))) 5 t=t+h
6:  Take gradient descent on u! (i) 6: end for
7: until converges 7: return xj.;; as new image feature

4 EXPERIMENTS

Datasets. We evaluated FMA on the few-shot classification task. Specifically, We conducted

experiments on 11 benchmarks, including Aircraft ( s ), EuroSAT ( s
), DTD ( s ), SUN397 ( , ), UCF101 ( , ),
StanfordCars ( s ), ImageNet ( s ), Flowers102 ( s
), Food101 ( , ), OxfordPets ( s ), Caltech101 ( s

), sorted from difficult to easy. To better illustrate the effect of dataset difficulty on our method,
we divided these datasets into two groups: the first five as the difficult set, and the remaining six as
the easy set. For each dataset, we followed the standard protocol to split the training, validation, and
test sets. For K -shot classification, we randomly sample K images from each class as the training set.
Unless otherwise specified, we use pre-trained CLIP ViT-B/16 ( s ) as the backbone.

4.1 COMPARISONS WITH STATE-OF-THE-ARTS

Settings. We compared our FMA framework with 8 state-of-the-art methods, including CoOp (

s ), CoCoOp ( , ), CLIP-Adapter ( s ), Tip-Adapter (
s ), PLOT++ ( s ), KgCoOp ( s ), ProGrad ( s )
and CLIP-LoRA ( , ). We implemented our FMA framework on top of

CLIP-LoRA. Specifically, we first used a pre-trained CLIP-LoRA model to extract image and text
features. After that, a velocity network was trained on these features according to FMA framework.
Notably, the dataset for training CLIP-LoRA and the velocity field are kept the same, which means
no extra knowledge is introduced. The AdamW ( , ) optimizer was used in
FMA training with a learning rate of 0.0002, and we used a cosine annealing learning rate scheduler.
For FMA inference, we set the default stepsize h = 0.1. To find the optimal number of inference
steps M, we first attempted various values in the validation dataset, then chose the one with the
highest performance as the final number of inference steps for test dataset.

Results. We reported the classification accuracy of all methods on 11 datasets in Table 1. For each
dataset, we reported the results of 1-shot, 4-shot, and 16-shot classification. The results show that
FMA achieves the best performance on most datasets. Notably, compared with simple datasets, FMA
shows more significant effectiveness on difficult datasets. This validates our previous conclusion:
Multi-step rectification is necessary when the cross-modal distribution is complicated to align.

4.2 GENERALIZATION ABILITY

Settings. While many PEFT approaches like CoOp can improve the performance of few-shot
classification, they usually result in the degradation of the generalization ability.

Therefore, we explqred whether FMA will cause th.is Table 2: Evaluation of the generalization ability
problem by evaluating the cross-dataset transferabil-  of FMA. “D” and “E” mean average performance
ity. Specifically, we chose Imagenet to train the ve- on difficult and easy datasets, respectively.

locity field based on CoOp, but tested it on difficult Method Adaptation  Generalization ~ Harmonic
and easy datasets respectively. To conduct a more et D E D E D E
comprehensive evaluation, we not only reported the cLip 49.1 778 476 800 483 789
generalization (cross-dataset transfer) results, but also  coop 714 871 440 763 544 813

provided the adaptation (few-shot learning) perfor-  +FMA 738 880 443 759 554 815
mance and its harmonic mean.
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Table 1: Comparison with other state-of-the-art approaches. Based on CLIP-LoRA, we add FMA to further
improve the performance. The highest value of each dataset is bolded.

Shots Method Difficult Easy
Aircraft SAT DTD SUN UCF Avg Cars Net Flowers Food Pets Caltech Avg
0 CLIP ( ) 24.8 478 438 625 66.7 47.6 65.5 66.7 67.4 853 89.1 92.9 71.7
CoOp ( ) 20.8 564 50.1 670 712 53.1 67.5 657 78.3 843 902 925 79.8
CoCoOp ( ) 28.1 554 526 687 704 550 67.6 69.4 73.4 849 919 94.1 80.2
TIP-Adapter ( ) 28.8 678 516 672 734 57.8 67.1 694 83.8 85.8  90.6 94.0 81.8
CLIP-Adapter ( ) 25.2 493 442 654 669 502 65.7 679 71.3 86.1 89.0 92.0 78.7
PLOT++ ( ) 28.6 654 546 668 743 58.0 68.8 665 80.5 86.2 91.9 943 81.4
1 KgCoOp ( ) 26.8 619 527 684 728 565 66.7 689 74.7 864 92.1 94.2 80.5
ProGrad ( ) 28.9 570 528 670 733 558 682 67.0 80.9 849 914 93.5 81.0
CLIP-LoRA ( ) 28.0 719 541 703 754 60.6 69.4 703 81.4 85.1 919 93.8 82.0
+FMA (Ours) 28.3 73.0 551 70.6 759 61.5+109 | 69.8 70.2 84.9 852 921 94.5 82.8+08
CoOp ( ) 30.9 69.7 595 69.7 776 587 744  68.8 92.2 845 925 94.5 84.5
CoCoOp ( ) 30.6 61.7 557 704 753 642 69.5 70.6 81.5 863 927 94.8 82.6
TIP-Adapter ( ) 35.7 76.8 598 70.8 781 52.8 74.1  70.7 92.1 86.5 919 94.8 85.0
CLIP-Adapter ( ) 27.9 512 46.1 68.0 70.6 66.5 67.5 68.6 73.1 86.5 90.8 94.0 80.1
PLOT++ ( ) 353 832 624 717 798 624 763 704 929 86.5 92.7 95.1 85.6
4 KgCoOp ( ) 322 71.8 587 715 776 62.6 69.5 699 87.0 869 92.6 95.0 83.5
ProGrad ( ) 34.1 69.6 59.7 717 779 68.0 75.0 70.2 91.1 854 92.1 94.4 84.7
CLIP-LoRA ( ) 38.8 835 640 728 8l.1 69.7 774 714 92.9 82.6 90.6 95.0 85.0
+EMA (Ours) 40.3 850 67.0 737 824 715118 | 789 72.0 95.0 83.2 908 95.8 86.0-1.0
CoOp ( ) 433 86.0 700 749 831 648 83.1 714 97.2 844 91.1 95.5 87.1
CoCoOp ( ) 33.8 755 658 728 760 722 724 711 87.1 87.4 932 95.2 84.4
TIP-Adapter ( ) 44.6 859 708 760 839 639 823 734 96.2 86.8 92.6 95.7 87.8
CLIP-Adapter ( ) 342 714 594 742 802 723 740 69.8 92.9 87.1 923 94.9 85.2
PLOT++ ( ) 46.7 92.0 714 760 853 639 84.6 726 97.6 87.1 93.6 96.0 88.6
16 KgCoOp ( ) 36.5 762 687 733 81.7 743 748 704 93.4 872 932 95.2 85.7
ProGrad ( ) 43.0 83.6 688 751 827 706 829 721 96.6 858 92.8 95.9 87.7
CLIP-LoRA ( ) 54.7 90.7 73.0 760 862 76.1 86.0 734 97.9 842 91.6 96.1 88.2
+FMA (Ours) 57.8 91.0 754 772 871 77.7+16 | 877 735 99.1 85.1 916 96.5 88.9-0.7

Table 3: Model agnostic results. We implemented FMA on several PEFT approaches using 16-shot settings.

Method Difficult Easy
Aircraft SAT DTD SUN UCF Avg Cars Net Flowers Food Pets Caltech Avg
CLIP ( ) 24.8 478 438 625 667 49.1 65.5  66.7 67.4 853 89.1 92.9 77.8
+FMA 46.4 879 720 733 83.1 72.5+234 | 829 710 98.5 87.0 927 95.8 88.0 +10.2
CoOp ( ) 432 8.0 70.0 749 831 714 83.1 714 97.2 844 911 95.5 87.1
+FMA 47.6 88.1 731 759 844 738:i24 | 854 725 98.2 85.0 914 95.7 88.0 +0.9
CoCoOp ( ) 33.8 755 658 728 760 64.8 724 71.1 87.1 874 932 95.2 84.4
+FMA 36.9 869 719 734 803 699+s51 | 735 719 94.5 87.8 934 95.6 86.1+17
CLIP-Adapter ( ) 33.8 704 593 743 80.1 63.6 742 716 93.6 87.1 924 94.9 85.6
+FMA 35.8 856 692 744 815 693457 | 747 713 95.6 872 929 96.0 86.3 107
CLIP-LoRA ( ) 54.7 90.7 730 760 862 76.1 86.0 734 97.9 842 916 96.1 88.2
+FMA 57.8 91.0 754 772 811 T777+16 | 877 735 99.1 85.1 91.6 96.5 88.9+0.7

Results. The results are shown in Table 2. While FMA improves the few-shot learning performance
(first two columns), it doesn’t result in further degradation of the generalization ability (middle two
columns). Meanwhile, the improvement of the harmonic mean indicates FMA achieves a better
trade-off between the adaptation and generalization ability.

4.3 ABLATION STUDY

Architecture Agnostic. In this section We evaluated whether our FMA is effective on other PEFT
approaches. Specifically, we implemented FMA on pre-trained CLIP and four different PEFT
methods: CoOp, CoCoOp, CLIP-Adapter, and CLIP-LoRA. For each PEFT approach, we first fine-
tuned the pre-trained ViT-B/16 CLIP accordingly. After that, we extracted image and text features
using the pre-trained or fine-tuned CLIP. Finally, we trained a velocity network on these features
using the FMA framework. We reported the performance on difficult datasets.

Results. As shown in Table 3, FMA achieves consistent performance improvements on all approaches,
which demonstrates the architecture-agnostic ability of our framework. This means FMA can be
easily adapted to different PEFT methods without significant performance degradation. Meanwhile,
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Figure 6: (a) Performance of different CLIP backbones on difficult datasets. (b) Ablation on different inference
strategies. (c) Ablation on noise augmentation strategy. The average performance on 11 datasets is reported.
across all approaches, improvements on difficult datasets consistently surpass those on easy datasets.
This further supports our conclusion that for difficult datasets with complex cross-modal distribution,
multi-step rectification is more effective.

Different CLIP Backbones. This experiment was to evaluate whether FMA is effective on different
CLIP backbones. We implemented FMA on top of CoOp and chose four different CLIP backbones:
ResNet50, ResNet101, ViT-B/32, and ViT-B/16. Specifically, we first used a trained CoOp model to
extract image and text features. After that, we trained a velocity network on these features according
to our FMA framework. We reported the average performance on difficult datasets.

Results. The accuracy result is shown in Figure 6(a). Across all backbones, FMA achieves better
performance than CoOp, demonstrating the effectiveness of our method. This also shows that FMA
can be easily adapted to different backbones and further boost their performance.

Different Inference Strategies. To evaluate the influence of inference strategies on FMA, we
conducted experiments with different numbers of inference steps using two kinds of strategies:
Vanilla flow matching solver (simulate Eq. (6) over the entire time interval [0, 1]) and our early
stopping solver. Specifically, we used the default stepsize h = 0.1 and enumerated inference steps
M € [0,10]. We conducted the experiments with a setting of 16 shots on the DTD dataset.

Results. As shown in Figure 6(b), as the number of inference steps increases, the performance of ESS
will decrease after a certain step number (8 in this case). This is because training a perfect velocity
field is extremely difficult, so more inference steps mean more accumulated errors. This suggests that
choosing a proper number of inference steps is crucial for achieving good performance. Additionally,
compared with the vanilla solver that is not sensitive to inference steps, ESS achieves better results
when an appropriate inference step is chosen.

Noise Augmentation. To show the influence of noise augmentation in FMA, we trained two velocity
networks on top of CLIP-LoRA, one with noise augmentation and another without any augmentation
technique. We kept all other parts in FMA the same, such as the feature extraction and inference. In
the inference, we use ESS to transform image features for classification.

Results. Performance on difficult datasets is shown in Figure 6(c). We can see that noise augmentation
can improve the performance of FMA compared with no augmentation. And this improvement is
consistent across different sizes of the training dataset, which proves the effectiveness of this strategy
in the velocity field training process.

5 CONCLUSION

In this paper, we study how to achieve better cross-modality alignment based on pre-trained VLMs.
Although many PEFT methods have been proposed, we find that these methods usually struggle
on difficult datasets. In this paper, we conclude that these approaches are “one-step”, which are
not enough to decouple and align features in difficult datasets. To solve this, we propose our FMA
framework to utilize the multi-step rectification ability of flow matching. In the training of FMA, we
design two methods, coupling enforcement and noise augmentation, to learn a velocity field that can
maintain class correspondence. Additionally, we propose an early-stopping solver for better inference
performance. FMA is a plug-and-play module and we have conducted extensive experiments to
demonstrate its effectiveness over a variety of benchmarks. We hope our research can explore a new
potential opportunity, i.e., multi-step rectification in the few-shot learning area.
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