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Figure 1: Comparisons of the cross-modal alignment process of different methods. (a) The overview
pipeline of CLIP (Radford et al., 2021) for zero-shot cross-modal alignment and classification. Some image
features and their corresponding text features are not well-aligned (e.g., difficult class ). (b-d) The alignment
process of three typical types of state-of-the-art PEFT approaches, which adjust image or text features in one
single step. The arrow shows the adjustment of corresponding features during the adaptation. For difficult
classes, the image features still may be far from the corresponding text features by one step adjustment. (e) FMA
achieves multi-step cross-modal alignment, which succeeds in aligning text-image features for difficult classes.

ABSTRACT

Aligning features from different modalities, is one of the most fundamental chal-
lenges for cross-modal tasks. Although pre-trained vision-language models can
achieve a general alignment between image and text, they often require parameter-
efficient fine-tuning (PEFT) for further adjustment. Today’s PEFT methods (e.g.,
prompt tuning, LoRA-based, or adapter-based) always selectively fine-tune a subset
of parameters, which can slightly adjust either visual or textual features, and avoid
overfitting. In this paper, we are the first to highlight that all existing PEFT methods
perform one-step adjustment. It is insufficient for complex (or difficult) datasets,
where features of different modalities are highly entangled. To this end, we propose
the first model-agnostic multi-step adjustment approach by learning a cross-modal
velocity field: Flow Matching Alignment (FMA). Specifically, to ensure the cor-
respondence between categories during training, we first utilize a fixed coupling
strategy. Then, we propose a noise augmentation strategy to alleviate the data
scarcity issue. Finally, we design an early-stopping solver, which terminates the
transformation process earlier, improving both efficiency and accuracy. Compared
with one-step PEFT methods, FMA has the multi-step rectification ability to achieve
more precise and robust alignment. Extensive results have demonstrated that FMA
can consistently yield significant performance gains across various benchmarks
and backbones, particularly on challenging datasets.
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1 INTRODUCTION

How to align information from different modalities (e.g., text and images), is very important in
almost all cross-modality tasks. Well-aligned cross-modality features play a crucial role in a variety
of domains, such as achieving the impressive reasoning abilities in MLLMs (Hurst et al., 2024; Li
et al., 2022; Liu et al., 2023b), and realistic generation qualities in AIGC models (Rombach et al.,
2022; Esser et al., 2024). Generally, realizing good cross-modal alignment means finding a “golden”
multimodal distribution where corresponding text and image features are as close as possible in
the shared common space. To achieve this goal, many pretrained vision-language models (VLMs)
have been proposed, such as CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). Taking
CLIP for example, as shown in Figure 1(a), it achieves cross-modal alignment by training image and
text encoders jointly with a contrastive objective. By now, VLMs can achieve a general alignment
between image and text, and show promising results on zero-shot tasks, like image recognition.

However, due to the internal complexity of different modalities, pre-trained VLMs cannot achieve
perfect alignment across all scenarios. Therefore, they typically require further fine-tuning steps
to rectify features for better alignment. For instance, in few-shot learning, we usually need to fine-
tune VLMs with a few images from base categories. Since fine-tuning the whole VLM model is
computationally expensive and Linear Probing (LP, only fine-tunes the final fully-connected layer) is
not effective enough, numerous parameter-efficient fine-tuning (PEFT) methods have been proposed.
These PEFT methods can be broadly categorized into three groups: 1) Prompt Tuning (Li & Liang,
2021): Like CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), prompt tuning methods try
to find better text representations (or features) by replacing handcrafted text prompts with learnable
continuous prompts. Compared with original VLMs, they can be interpreted as applying a “movement”
on all text features to better align them with the corresponding image features (cf., Figure 1(b)). 2)
Adapter-based (Houlsby et al., 2019): Such as CLIP-Adapter (Gao et al., 2024), they typically
apply a learnable adapter following the VLMs’ image encoder. After training, they will rectify
the image features towards corresponding text features for better alignment (cf., Figure 1(c)). 3)
LoRA-based (Hu et al., 2022): These methods (e.g., CLIP-LoRA (Zanella & Ben Ayed, 2024))
add trainable low-rank matrices in both text and image encoders to store the new knowledge while
keeping other parameters frozen. As shown in Figure 1(d), they will shift both text and image features
to be closer (i.e., towards the golden distribution).

Figure 2: Performance of CoOp and linear
probing. We experimented with the 16-shot set-
ting and chose CLIP RN50 as the backbone.

It is widely acknowledged that PEFT typically out-
performs linear probing. However, we observed that
their advantages compared with LP are not consistent
across different datasets. To better illustrate this, we
introduce the concept of dataset difficulty: A dataset
with lower CLIP zero-shot performance is considered
more difficult. This definition is reasonable because
lower zero-shot performance means that the cross
modal distribution is more complicated, thus more
difficult to adjust. In this paper, we found that while
PEFT methods work pretty well on relatively simple
datasets, they fail to generalize to difficult ones. For
example, as shown in Figure 2, the prevailing PEFT
method CoOp can obtain remarkable improvements
over the LP baseline on relatively simple datasets,
like OxfordPets. However, the improvements on
more challenging datasets, such as FGVCAircraft,
are marginal. To explain this phenomenon, we propose a new perspective for all existing PEFT
approaches: these methods try to adjust their general aligned multimodal distribution towards the
golden distribution by one rectification step. This is because during the inference, the adjustments
consist of a single forward pass of the trained model. Since PEFT methods involve only a small
number of learnable parameters, they are usually unable to learn very complex transformations.
Therefore, for difficult datasets where some multimodal features are highly entangled, these one-step
methods are unable to align them, as shown in Figure 1(bcd). This leads to our core motivation: Can
we make multi-step rectifications to realize better cross-modal alignment?
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To address this, we turn to the Flow Matching (FM) theory (Liu et al., 2022; Lipman et al., 2022;
Albergo & Vanden-Eijnden, 2022), which is developed for multi-step transformation between any two
distributions. Generally, FM learns a velocity field that transports samples from a source distribution
to a target distribution through an iterative process, i.e., while one-step adjustment is not accurate, it
is possible for the following steps to rectify prior errors. Therefore, if a velocity field can be trained
to transform image features to corresponding text features, we can utilize its multi-step rectification
ability for more accurate classification. Specifically, we can formulate all encoded image features as
the source distribution. For the target distribution, the simplest method is to encode all prompts with
category names as target features. For each velocity training step, an image and text feature will be
sampled independently to compose a training pair. This velocity field will transform any given image
feature (source distribution) to a corresponding text feature (target distribution), i.e., classification.

Unfortunately, there are two potential issues for this straightforward approach. Firstly, although
a well-trained velocity field can achieve transformation between two given distributions, it is not
guaranteed to preserve local structure (e.g., category correspondence). For example, as shown in
Figure 3(a), it may transform image features from one class to text features of another class, resulting
in wrong classification. Therefore, the first challenge is to figure out how to train a velocity field,
which can transfer image features from source distribution, not only to the target distribution (near
text features), but also close to their right class embeddings. Secondly, in the inference stage, the goal
of flow matching for the generation task is to generate features in the target distribution, which are
then decoded to real samples. But for the classification task, what we really need is to transfer image
features closer to positive embeddings (i.e., ground-truth class embeddings) than other negative ones.
This inconsistency suggests that the previous flow matching inference strategy may not be the best
practice for classification scenarios. Thus, the second challenge is that how to design an appropriate
inference method for classification.

𝒕𝟎

𝒕𝟎.𝟓 𝒕𝟏
(inaccurate)

(inefficient)

Class 1

Class 2

Class 3

(a)

(b)

Class 2

Class 1

Class 3

Figure 3: Explanation of the two chal-
lenges. (a) A flow matching example to trans-
form image features (red) to text features
(blue) distribution. Each distribution consists
of features of three categories. (b) Two ex-
amples of how a trained velocity transforms
an image feature into a text feature using the
vanilla flow matching inference strategy.

To overcome both challenges, we propose a novel frame-
work for few-shot learning: Flow Matching Alignment
(FMA). Specifically, we have three designs:
• Coupling Enforcement: Firstly, for any given image

feature, we choose the one that corresponds to its class
label to compose a training pair. Theoretically, this fixed
coupling strategy can guarantee that the trained velocity
field will act like a classifier, moving image features
towards the correct direction.

• Noise Augmentation: However, compared with ran-
domly pairing, this coupling strategy also reduces the
number of training pairings dramatically, making it
harder to train the velocity field. To solve this issue,
we further add a pre-defined noise to the sampled pair
during training. This augmentation makes the train-
ing data not constrained in a low-dimensional manifold,
making the learning process more stable and robust.

• Early Stopping Slover: Besides training, vanilla flow
matching inference is not suitable in classification due
to the inconsistency (challenge #2). When intermediate
features are distinguishable enough for classification,
continuing to transfer them to obtain text features is un-
necessary and inefficient. Even worse, we observed that
the following inference steps are likely to move them to
inaccurate text features, as shown in Figure 3(b). This
inaccuracy is because even with the previous training
strategies, it is still difficult to train a perfect velocity field. To tackle this, we devise an early
stopping solver for few-shot learning. Concretely, instead of arriving at the target distribution. We
allow the model to output intermediate features for classification. This early stopping strategy can
not only reduce the inference time when the features are good enough for classification, but also
reduce the risk of transferring to wrong text features.

Additionally, FMA can serve as a plug-and-play module for mult-step rectification. It only requires
two sets of features in the shared space, and it is agnostic to the specific methods used for image or
text feature extraction. Thus, FMA can be easily adapted to different methods, ranging from zero-shot
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CLIP to various PEFT methods. To demonstrate the effectiveness and generality of FMA, we have
integrated it with various backbones. Extensive results on different backbones and benchmarks have
demonstrated consistent performance gains. In summary, our contributions are threefold:
• We propose a new perspective to analyze existing few-shot PEFT approaches: all these methods

are one-step methods, and they usually struggle with difficult datasets.
• We are the first to explore the potential to adapt the multi-step recitification ability of flow matching

for better few-shot learning performance. Based on this, we propose FMA, a novel plug-and-play
multi-step rectification framework.

• Extensive results demonstrate the superiority and robustness of FMA in the few-shot classification.

2 RELATED WORK

Few-Shot Learning in VLMs. Few-Shot Learning (FSL) is a task to learn from a few exam-
ples (Wang et al., 2020; Yue et al., 2020). Currently, the most common scenario in FSL is to fine-tune
a pre-trained VLM (Radford et al., 2021; Jia et al., 2021) with limited data for classification. Be-
cause directly fine-tuning VLMs is computationally expensive, numerous PEFT methods have been
proposed. Current techniques for adapting the VLMs can be broadly classified into four paradigms:
Prompt Tuning, Adapter-Based and LoRA-Based. The Prompt Tuning approaches (Zhou et al.,
2022a;b; Lee et al., 2023; Bulat & Tzimiropoulos, 2023) involves learning textual or visual prompts
that are subsequently inserted into the input or middle layers of the pre-trained VLM encoders for
a few-shot adjustment. LoRA-Based methods (Zanella & Ben Ayed, 2024; da Costa et al., 2023;
Kim et al., 2024; He et al., 2022), instead, insert a small number of trainable parameters (e.g., LoRA
) within the encoders themselves. Adapter-based methods (Zhang et al., 2022; Gao et al., 2024),
append a trainable layer like MLP to the frozen image or text encoders, and they do not require
gradient backpropagation across the encoders, which is more computationaly friendly.

Diffusion Model (DM) and Flow Matching (FM). Recently, diffusion model has developed into the
most powerful framework in generative models (Ho et al., 2020; Song et al., 2020a). It gradually
degrades the data by adding noise, then learn the reverse process. Then Score-SDE (Song et al.,
2020b) points out that the learning process of DM is actually solving stochastic differential equations
(SDE), which can be further interpreted as probabilistic ordinary differential equations (ODE).
Consequently, FM (Liu et al., 2022; Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022) extends
this by learning a velocity field to build transformations between any two distributions. Different
from previous one-step generative models, such as GAN (Goodfellow et al., 2014) and VAE (Kingma
& Welling, 2013), FM generates data through multi-step rectification. So far, FM has gained great
success in a variety of domains, such as text-to-image generation (Esser et al., 2024; Geng et al.,
2025; Albergo et al., 2023), image editing (Kim et al., 2025; Kulikov et al., 2024; Rout et al., 2024),
video generation (Jin et al., 2024; Polyak et al., 2024), and so on. However, although FM can achieve
transformation between two arbitrary distributions, most approaches tend to set one as the prior noise
distribution. Recently, several works (He et al., 2025; Liu et al., 2025) try to transform from text
distribution to image distribution directly for generation. In this paper, we explore the potential of
whether FM is suitable for supervised tasks like few-shot classification.

3 METHOD: FLOW MATCHING ALIGNMENT FOR FEW-SHOT LEARNING

Formulation. We consider the N -way K-shot classification problem: Given a training dataset
consisting of N classes, each class with K examples, the goal is to train a classification model that
can accurately predict the class of any test image from these N classes.

General Framework. The overall pipeline of our proposed FMA is shown in Figure 4. Specifically,
FMA consists of three steps: 1) Encoding all text and images into features in the shared common
space. 2) Training a velocity field to transform image features to text features for better alignment. 3)
Using the trained velocity field to transform the feature of the given test image for classification.

3.1 FEATURE EXTRACTION

Given the training dataset D = {Ii, Ci}N ·K
i=1 , where Ii, Ci represent an image and its corresponding

class label, the simplest way to encode them into the shared space is using a pre-trained VLM Fϕ, like
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Figure 4: Overview of Flow Matching Alignment (FMA). The main idea of the training stage is to learn a
velocity field, which can transform image features to corresponding text features. Two designs are proposed:
coupling enhancement and noise augmentation. During the inference, FMA applies an early-stopping solver that
can output intermediate features for classification.
CLIP. Specifically, CLIP contains an image encoder EI and a text encoder ET . The image (source)
distribution is obtained by encoding all images into a feature representation by: x0 = EI(I) ∈ Rd

where d is the dimension of the feature. Here we omit the superscript for simplicity. For the text
(target) distribution, CLIP first transforms all label C into text descriptions T using their class name
and a handcrafted template like “a photo of {class}”. Then the text encoder will encode
these descriptions into text features by: x1 = ET (T ), with the same dimension as the image feature.
Notably, our method is agnostic to the feature extraction process. While we use CLIP zero-shot as
an example, other methods like CoOp can also be used to extract image and text features. In the
experiment section, we discuss the influence of different feature extraction methods on FMA.

After obtaining all image and text features, FMA trains a velocity field to perform further alignment.
For simplicity, we denote distributions p0 and p1 as the collections of image features and text features.

3.2 TRAINING STAGE

Typically, in flow matching training, we randomly sample an image feature x0 ∼ p0 and a text feature
x1 ∼ p1 to compose a training pair. Following Rectified Flow (Liu et al., 2022), a transfer trajectory
is defined as linear interpolation between x0 and x1 on time t ∈ [0, 1]: xt = tx1 + (1− t)x0. The
conditional velocity field vt(xt|x1) is defined as the derivative of the trajectory with respect to time t:
vt(xt|x1) =

dxt

dt = x1 − x0. The marginal velocity field uθ
t (xt) can be learned by solving a simple

least square regression problem between vt(xt|x1) and uθ
t :

LFM (θ) = Ext∼pt,t∼[0,1][∥uθ
t (xt)− (x1 − x0)∥2], (1)

where we use the distribution pt to denote the collection of all intermediate features xt. However, the
learned velocity field learned uθ

t (xt) cannot guarantee class-level correspondence because it is an
estimation of vt(xt), an expectation of the vt(xt|x1) over all possible text features x1:

vt(xt) =

∫
vt(xt|x1)

pt(xt|x1)p1(x1)

pt(xt)
dx1. (2)

Consequently, the learned uθ
t will drive an image feature towards the average of all text features,

which usually results in incorrect classification.

Coupling Enforcement. To solve this issue, we propose coupling enforcement. Specifically, for a
given image feature x0, we exclusively sample its corresponding ground-truth text feature x1. Due to
the sparsity in the high-dimensional manifold, their transfer trajectories can be considered as mutually
non-crossing when the dataset is small. This means for given xt, there exists only one potential text
feature x1 in Eq. (2). Consequently, the marginal velocity is equivalent to the conditional one:

vt(xt) = vt(xt|x1). (3)
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This means we are secretly using the conditional velocity field vt(xt|x1) to move the image feature
to the direction of x1. If x1 corresponds to the right class label, the flow matching can then transform
the image feature to the correct text feature in the target distribution.

While this coupling enforcement strategy is intuitive, it induces another new challenge: data scarcity.
Since we only pair one image feature with its target text feature, the model is trained on only 1

N of the
potential data compared with randomly pairing, where N is the number of classes in the dataset. As a
result, large portions of the velocity field’s domain remain unsampled, preventing it from providing
reliable instructions to move image features.

Noise Augmentation. We design another strategy, noise augmentation, to solve this problem.
It injects a time-dependent Gaussian noise into the intermediate features xt during the training
process. Adding random noise ensures the distribution xt does not collapse to a low-dimensional
manifold (Song & Ermon, 2019), thus learning more accurate velocity estimation. Concretely, the
noise schedule is chosen as a time-dependent sequence. Inspired by Schrödinger bridge (Liu et al.,
2023a), we sample the new noise-augmented features x̂t from a Gaussian distribution:

x̂t ∼ N
(
x̂t|xt, t · (1− t) · σ2(xt)

)
. (4)

After obtaining x̂t, the new ground truth uθ
t (x̂t) is the direction pointing to the target text feature x1:

vt(x̂t|x1) =
x1 − x̂t

1− t
. (5)

Then Eq. (1) can be applied for training uθ(xt). The training is summarized in Algorithm 1.

3.3 INFERENCE STAGE

(a) (b)

Figure 5: (a) Red line: Average distance to target figure at different
timesteps. Black line: Accuracy using features at different timesteps
for classification. (b) At different timesteps, the distance between
the intermediate features and the correct/incorrect text feature.

After learning a velocity field uθ
t (xt),

we use it to transform any image fea-
ture x0 for classification. Vanilla flow
matching inference process adapts an
ODE solver, such as the Euler Method,
to iteratively transform x0 into a text
feature x1 by M steps:

xt+h = xt + h · uθ
t (xt), (6)

where h = 1
M is the integration step-

size. x1, is an approximation of a
sample from p1 and used for classi-
fication: first, calculate its cosine sim-
ilarity with text features of all classes,
then select the class with the highest
similarity as the prediction.

However, this inference method may
lead to the inconsistency issue in few-shot learning, as we mentioned before. Specifically, as
shown in Figure 5(a), with t approaching 1, the distance between intermediate features xt and their
corresponding text features becomes smaller, which means they are indeed moving towards to the
target distribution. However, the classification accuracy using xt first increases, then decreases. This
indicates that although the coupling enhancement strategy is adapted, some features may still move
towards text features of incorrect classes. To better illustrate this, we show an example in Figure 5(b)
where this inference method leads to a classification error. As the transformation continues, xt

becomes closer to the incorrect text feature than to the correct one. In this situation, the vanilla
inference method, which use x1 for classification, will lead to incorrect results.

Early Stopping Solver (ESS). To solve this problem, We propose a simple yet effective inference
strategy: utilizing an early stopping solver (ESS) to terminate the transformation when the interme-
diate features are discriminative for classification. Specifically, instead of integrating over the full
time interval [0, 1], we fix the stepsize h in Eq. (6) as a constant and choose a constant number of
inference steps M . uθ

t (xt) then transforms an initial image feature x0 to an intermediate feature xT̂

at the final time T̂ = h ·M , as shown in Algorithm 2. Subsequently, xT̂ is used for classification.
Notably, the optimal strategy is to find a sample-specific t for each input image feature, and we left
this as a promising direction for future research.
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Algorithm 1 Training
1: Input: paired image features and text features

D = {(xi
0, x

i
1)}N×K

i=0
2: repeat
3: t ∼ U([0, 1]), (x0, x1) ∼ D
4: xt = (1− t)x0 + tx1

5: x̂t ∼ N (x̂t|xt, t · (1− t) · σ2(xt)))
6: Take gradient descent on uθ

t (x̂t)
7: until converges

Algorithm 2 Inference
1: Input: image features x0, trained uθ

t (xt),
steps M , stepsize h

2: t = 0
3: for n = 1 to M do
4: xt+h = xt + h · uθ

t (xt)
5: t = t+ h
6: end for
7: return xh·M as new image feature

4 EXPERIMENTS

Datasets. We evaluated FMA on the few-shot classification task. Specifically, We conducted
experiments on 11 benchmarks, including Aircraft (Maji et al., 2013), EuroSAT (Helber et al.,
2019), DTD (Cimpoi et al., 2014), SUN397 (Xiao et al., 2010), UCF101 (Soomro et al., 2012),
StanfordCars (Krause et al., 2013), ImageNet (Deng et al., 2009), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), OxfordPets (Parkhi et al., 2012), Caltech101 (Fei-Fei et al.,
2004), sorted from difficult to easy. To better illustrate the effect of dataset difficulty on our method,
we divided these datasets into two groups: the first five as the difficult set, and the remaining six as
the easy set. For each dataset, we followed the standard protocol to split the training, validation, and
test sets. For K-shot classification, we randomly sample K images from each class as the training set.
Unless otherwise specified, we use pre-trained CLIP ViT-B/16 (Radford et al., 2021) as the backbone.

4.1 COMPARISONS WITH STATE-OF-THE-ARTS

Settings. We compared our FMA framework with 8 state-of-the-art methods, including CoOp (Zhou
et al., 2022b), CoCoOp (Zhou et al., 2022a), CLIP-Adapter (Gao et al., 2024), Tip-Adapter (Zhang
et al., 2022), PLOT++ (Chen et al., 2022), KgCoOp (Yao et al., 2023), ProGrad (Zhu et al., 2023)
and CLIP-LoRA (Zanella & Ben Ayed, 2024). We implemented our FMA framework on top of
CLIP-LoRA. Specifically, we first used a pre-trained CLIP-LoRA model to extract image and text
features. After that, a velocity network was trained on these features according to FMA framework.
Notably, the dataset for training CLIP-LoRA and the velocity field are kept the same, which means
no extra knowledge is introduced. The AdamW (Loshchilov & Hutter, 2017) optimizer was used in
FMA training with a learning rate of 0.0002, and we used a cosine annealing learning rate scheduler.
For FMA inference, we set the default stepsize h = 0.1. To find the optimal number of inference
steps M , we first attempted various values in the validation dataset, then chose the one with the
highest performance as the final number of inference steps for test dataset.

Results. We reported the classification accuracy of all methods on 11 datasets in Table 1. For each
dataset, we reported the results of 1-shot, 4-shot, and 16-shot classification. The results show that
FMA achieves the best performance on most datasets. Notably, compared with simple datasets, FMA
shows more significant effectiveness on difficult datasets. This validates our previous conclusion:
Multi-step rectification is necessary when the cross-modal distribution is complicated to align.

4.2 GENERALIZATION ABILITY

Settings. While many PEFT approaches like CoOp can improve the performance of few-shot
classification, they usually result in the degradation of the generalization ability.

Table 2: Evaluation of the generalization ability
of FMA. “D” and “E” mean average performance
on difficult and easy datasets, respectively.

Method
Adaptation Generalization Harmonic

D E D E D E

CLIP 49.1 77.8 47.6 80.0 48.3 78.9

CoOp 71.4 87.1 44.0 76.3 54.4 81.3
+FMA 73.8 88.0 44.3 75.9 55.4 81.5

Therefore, we explored whether FMA will cause this
problem by evaluating the cross-dataset transferabil-
ity. Specifically, we chose Imagenet to train the ve-
locity field based on CoOp, but tested it on difficult
and easy datasets respectively. To conduct a more
comprehensive evaluation, we not only reported the
generalization (cross-dataset transfer) results, but also
provided the adaptation (few-shot learning) perfor-
mance and its harmonic mean.
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Table 1: Comparison with other state-of-the-art approaches. Based on CLIP-LoRA, we add FMA to further
improve the performance. The highest value of each dataset is bolded.

Shots Method Difficult Easy
Aircraft SAT DTD SUN UCF Avg Cars Net Flowers Food Pets Caltech Avg

0 CLIP (2021) 24.8 47.8 43.8 62.5 66.7 47.6 65.5 66.7 67.4 85.3 89.1 92.9 77.7

1

CoOp (2022b) 20.8 56.4 50.1 67.0 71.2 53.1 67.5 65.7 78.3 84.3 90.2 92.5 79.8
CoCoOp (2022a) 28.1 55.4 52.6 68.7 70.4 55.0 67.6 69.4 73.4 84.9 91.9 94.1 80.2
TIP-Adapter (2022) 28.8 67.8 51.6 67.2 73.4 57.8 67.1 69.4 83.8 85.8 90.6 94.0 81.8
CLIP-Adapter (2024) 25.2 49.3 44.2 65.4 66.9 50.2 65.7 67.9 71.3 86.1 89.0 92.0 78.7
PLOT++ (2022) 28.6 65.4 54.6 66.8 74.3 58.0 68.8 66.5 80.5 86.2 91.9 94.3 81.4
KgCoOp (2023) 26.8 61.9 52.7 68.4 72.8 56.5 66.7 68.9 74.7 86.4 92.1 94.2 80.5
ProGrad (2023) 28.9 57.0 52.8 67.0 73.3 55.8 68.2 67.0 80.9 84.9 91.4 93.5 81.0
CLIP-LoRA (2024) 28.0 71.9 54.1 70.3 75.4 60.6 69.4 70.3 81.4 85.1 91.9 93.8 82.0

+FMA (Ours) 28.3 73.0 55.1 70.6 75.9 61.5+0.9 69.8 70.2 84.9 85.2 92.1 94.5 82.8+0.8

4

CoOp (2022b) 30.9 69.7 59.5 69.7 77.6 58.7 74.4 68.8 92.2 84.5 92.5 94.5 84.5
CoCoOp (2022a) 30.6 61.7 55.7 70.4 75.3 64.2 69.5 70.6 81.5 86.3 92.7 94.8 82.6
TIP-Adapter (2022) 35.7 76.8 59.8 70.8 78.1 52.8 74.1 70.7 92.1 86.5 91.9 94.8 85.0
CLIP-Adapter (2024) 27.9 51.2 46.1 68.0 70.6 66.5 67.5 68.6 73.1 86.5 90.8 94.0 80.1
PLOT++ (2022) 35.3 83.2 62.4 71.7 79.8 62.4 76.3 70.4 92.9 86.5 92.7 95.1 85.6
KgCoOp (2023) 32.2 71.8 58.7 71.5 77.6 62.6 69.5 69.9 87.0 86.9 92.6 95.0 83.5
ProGrad (2024) 34.1 69.6 59.7 71.7 77.9 68.0 75.0 70.2 91.1 85.4 92.1 94.4 84.7
CLIP-LoRA (2024) 38.8 83.5 64.0 72.8 81.1 69.7 77.4 71.4 92.9 82.6 90.6 95.0 85.0

+FMA (Ours) 40.3 85.0 67.0 73.7 82.4 71.5+1.8 78.9 72.0 95.0 83.2 90.8 95.8 86.0+1.0

16

CoOp (2022b) 43.3 86.0 70.0 74.9 83.1 64.8 83.1 71.4 97.2 84.4 91.1 95.5 87.1
CoCoOp (2022a) 33.8 75.5 65.8 72.8 76.0 72.2 72.4 71.1 87.1 87.4 93.2 95.2 84.4
TIP-Adapter (2022) 44.6 85.9 70.8 76.0 83.9 63.9 82.3 73.4 96.2 86.8 92.6 95.7 87.8
CLIP-Adapter (2024) 34.2 71.4 59.4 74.2 80.2 72.3 74.0 69.8 92.9 87.1 92.3 94.9 85.2
PLOT++ (2022) 46.7 92.0 71.4 76.0 85.3 63.9 84.6 72.6 97.6 87.1 93.6 96.0 88.6
KgCoOp (2023) 36.5 76.2 68.7 73.3 81.7 74.3 74.8 70.4 93.4 87.2 93.2 95.2 85.7
ProGrad (2024) 43.0 83.6 68.8 75.1 82.7 70.6 82.9 72.1 96.6 85.8 92.8 95.9 87.7
CLIP-LoRA (2024) 54.7 90.7 73.0 76.0 86.2 76.1 86.0 73.4 97.9 84.2 91.6 96.1 88.2

+FMA (Ours) 57.8 91.0 75.4 77.2 87.1 77.7+1.6 87.7 73.5 99.1 85.1 91.6 96.5 88.9+0.7

Table 3: Model agnostic results. We implemented FMA on several PEFT approaches using 16-shot settings.

Method Difficult Easy
Aircraft SAT DTD SUN UCF Avg Cars Net Flowers Food Pets Caltech Avg

CLIP (2021) 24.8 47.8 43.8 62.5 66.7 49.1 65.5 66.7 67.4 85.3 89.1 92.9 77.8
+FMA 46.4 87.9 72.0 73.3 83.1 72.5+23.4 82.9 71.0 98.5 87.0 92.7 95.8 88.0 +10.2

CoOp (2022b) 43.2 86.0 70.0 74.9 83.1 71.4 83.1 71.4 97.2 84.4 91.1 95.5 87.1
+FMA 47.6 88.1 73.1 75.9 84.4 73.8+2.4 85.4 72.5 98.2 85.0 91.4 95.7 88.0 +0.9

CoCoOp (2022a) 33.8 75.5 65.8 72.8 76.0 64.8 72.4 71.1 87.1 87.4 93.2 95.2 84.4
+FMA 36.9 86.9 71.9 73.4 80.3 69.9+5.1 73.5 71.9 94.5 87.8 93.4 95.6 86.1+1.7

CLIP-Adapter (2024) 33.8 70.4 59.3 74.3 80.1 63.6 74.2 71.6 93.6 87.1 92.4 94.9 85.6
+FMA 35.8 85.6 69.2 74.4 81.5 69.3+5.7 74.7 71.3 95.6 87.2 92.9 96.0 86.3+0.7

CLIP-LoRA (2022) 54.7 90.7 73.0 76.0 86.2 76.1 86.0 73.4 97.9 84.2 91.6 96.1 88.2
+FMA 57.8 91.0 75.4 77.2 87.1 77.7+1.6 87.7 73.5 99.1 85.1 91.6 96.5 88.9+0.7

Results. The results are shown in Table 2. While FMA improves the few-shot learning performance
(first two columns), it doesn’t result in further degradation of the generalization ability (middle two
columns). Meanwhile, the improvement of the harmonic mean indicates FMA achieves a better
trade-off between the adaptation and generalization ability.

4.3 ABLATION STUDY

Architecture Agnostic. In this section We evaluated whether our FMA is effective on other PEFT
approaches. Specifically, we implemented FMA on pre-trained CLIP and four different PEFT
methods: CoOp, CoCoOp, CLIP-Adapter, and CLIP-LoRA. For each PEFT approach, we first fine-
tuned the pre-trained ViT-B/16 CLIP accordingly. After that, we extracted image and text features
using the pre-trained or fine-tuned CLIP. Finally, we trained a velocity network on these features
using the FMA framework. We reported the performance on difficult datasets.

Results. As shown in Table 3, FMA achieves consistent performance improvements on all approaches,
which demonstrates the architecture-agnostic ability of our framework. This means FMA can be
easily adapted to different PEFT methods without significant performance degradation. Meanwhile,
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(b) (c)(a)

Figure 6: (a) Performance of different CLIP backbones on difficult datasets. (b) Ablation on different inference
strategies. (c) Ablation on noise augmentation strategy. The average performance on 11 datasets is reported.
across all approaches, improvements on difficult datasets consistently surpass those on easy datasets.
This further supports our conclusion that for difficult datasets with complex cross-modal distribution,
multi-step rectification is more effective.

Different CLIP Backbones. This experiment was to evaluate whether FMA is effective on different
CLIP backbones. We implemented FMA on top of CoOp and chose four different CLIP backbones:
ResNet50, ResNet101, ViT-B/32, and ViT-B/16. Specifically, we first used a trained CoOp model to
extract image and text features. After that, we trained a velocity network on these features according
to our FMA framework. We reported the average performance on difficult datasets.

Results. The accuracy result is shown in Figure 6(a). Across all backbones, FMA achieves better
performance than CoOp, demonstrating the effectiveness of our method. This also shows that FMA
can be easily adapted to different backbones and further boost their performance.

Different Inference Strategies. To evaluate the influence of inference strategies on FMA, we
conducted experiments with different numbers of inference steps using two kinds of strategies:
Vanilla flow matching solver (simulate Eq. (6) over the entire time interval [0, 1]) and our early
stopping solver. Specifically, we used the default stepsize h = 0.1 and enumerated inference steps
M ∈ [0, 10]. We conducted the experiments with a setting of 16 shots on the DTD dataset.

Results. As shown in Figure 6(b), as the number of inference steps increases, the performance of ESS
will decrease after a certain step number (8 in this case). This is because training a perfect velocity
field is extremely difficult, so more inference steps mean more accumulated errors. This suggests that
choosing a proper number of inference steps is crucial for achieving good performance. Additionally,
compared with the vanilla solver that is not sensitive to inference steps, ESS achieves better results
when an appropriate inference step is chosen.

Noise Augmentation. To show the influence of noise augmentation in FMA, we trained two velocity
networks on top of CLIP-LoRA, one with noise augmentation and another without any augmentation
technique. We kept all other parts in FMA the same, such as the feature extraction and inference. In
the inference, we use ESS to transform image features for classification.

Results. Performance on difficult datasets is shown in Figure 6(c). We can see that noise augmentation
can improve the performance of FMA compared with no augmentation. And this improvement is
consistent across different sizes of the training dataset, which proves the effectiveness of this strategy
in the velocity field training process.

5 CONCLUSION

In this paper, we study how to achieve better cross-modality alignment based on pre-trained VLMs.
Although many PEFT methods have been proposed, we find that these methods usually struggle
on difficult datasets. In this paper, we conclude that these approaches are “one-step”, which are
not enough to decouple and align features in difficult datasets. To solve this, we propose our FMA
framework to utilize the multi-step rectification ability of flow matching. In the training of FMA, we
design two methods, coupling enforcement and noise augmentation, to learn a velocity field that can
maintain class correspondence. Additionally, we propose an early-stopping solver for better inference
performance. FMA is a plug-and-play module and we have conducted extensive experiments to
demonstrate its effectiveness over a variety of benchmarks. We hope our research can explore a new
potential opportunity, i.e., multi-step rectification in the few-shot learning area.
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