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ABSTRACT

Training large language models (LLMs) from scratch can yield models with unique
functionalities and strengths, but it is costly and often leads to redundant capabilities.
A more cost-effective alternative is to fuse existing pre-trained LLMs with different
architectures into a more powerful model. However, a key challenge in existing
model fusion approaches is their dependence on manually predefined vocabulary
alignment strategies, which may not generalize well across diverse contexts, leading
to performance degradation in several evaluation tasks. To address this challenge,
we draw inspiration from distribution learning and propose the probabilistic token
alignment method as a general and soft mapping solution for alignment, resulting in
PTA-LLM. Our approach innovatively reformulates token alignment into a classic
mathematical problem: optimal transport, seamlessly leveraging distribution-aware
learning to facilitate more coherent model fusion. Apart from its inherent generality,
PTA-LLM exhibits interpretability from a distributional perspective, offering
insights into the essence of the token alignment task. Our approach is validated
across diverse benchmarks and tasks using three prominent LLMs with distinct
architectures—Llama-2, MPT, and OpenLLaMA. Empirical results demonstrate
that probabilistic token alignment enhances the target model’s performance across
multiple capabilities.

1 INTRODUCTION
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Figure 1: PTA-LLM (ours) vs concurrent arts (i.e., model ensemble (Monteith et al., 2011) and
weight merging (Gupta et al., 2020)) under model fusion paradigm. Our knowledge fusion based
method yields general performance gains across multiple capabilities in (d), where all scores are
normalized for better visualization and the detailed scores are reported in Table 1.

The rise of large language models (LLMs) such as Llama-2 (Touvron et al., 2023), OpenLLaMA
(Geng & Liu, 2023), and MPT (Team, 2023), driven by scaling laws (Kaplan et al., 2020), has yielded
significant advancement across a broad range of tasks (see Fig. 1 (d), where the narrow dashed line
area indicates its respective fields of advantage). Nevertheless, the reliance on scaling laws introduces
substantial computational demands, necessitating access to extensive data and high processing power
(Brown et al., 2020). Such requirement poses a noticeable impediment to the development of more
robust baselines, particularly in academia. Thus, a critical question naturally emerges: ① How can
we construct stronger baselines without resorting to the naive application of scaling laws?
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Fortunately, pioneering research has begun to address the aforementioned question through the
concept of model fusion (Sagi & Rokach, 2018; Gupta et al., 2020; Wortsman et al., 2022; Li et al.,
2023), focusing on model ensemble and weight merging paradigms. The former involves combining
the predictions of multiple independently trained models to improve overall performance (see Fig.1
(a)), while the latter creates a new model by merging the weights of several models (see Fig.1
(b)). Recently, a prominent technique called knowledge fusion (Wan et al., 2024a) aggregates the
probabilistic distributions generated by individual LLMs and transfers this fused representation to a
target model via distillation (see Fig.1 (c)), enabling it to be more inference-efficient. Furthermore,
after employing token alignment (Fu et al., 2023), the misalignment issues arising from the use
of different tokenizers across models are mitigated, allowing the approach to remain architecture-
agnostic. Consequently, question ① can potentially be addressed through knowledge fusion, reframing
it as ②: How can we further optimize LLM models through knowledge fusion?

Question ② compels us to investigate the current knowledge fusion paradigm more deeply. Although
the current paradigm shows promise for model fusion, two significant token alignment challenges
remain unresolved, which hinders its further application in various fields. ❶ The manually designed
mapping strategy is overly simplistic, failing to capture the intricate patterns within the data. Tokens
appearing in varying contexts often align with different objectives, and the bias introduced by this
"rigid" alignment reduces the model’s capacity to fully learn from the data, ultimately diminishing
performance. ❷ The alignment of top-k predicted token sets from the source and target LLMs
is performed independently, without taking into account their associated probabilities or overall
distribution. This isolated strategy may achieve local optimality at each step alignment, but it does
not guarantee a whole coherent fused matric. Thus, the core question ② becomes more specific: ③
How can we effectively fusion LLM models with an adaptive and coherent fused matrix?

To this end, we introduce Probabilistic Token Alignment for Large Language Model Fusion (PTA-
LLM). During the matrix fusion, we first employ dynamic algorithm to determine an optimal token
pairing between the generated sequence from the source and target model. After obtaining the token
pairings, a logit-level alignment will be conducted to resolve the token ID misalignment. Specifically,
for the top-k predicted token sets from both source and target models, we hypothesize and further
prove (see empirical results in Table 1 and 2) that the probabilistic distributions generated by distinct
LLMs are coherent and reflective of their respective inherent knowledge. Therefore, PTA-LLM lever-
ages the global generative distributions of each model’s logits during token alignment, externalizing
their collective knowledge and facilitating more precise mapping. To achieve this, our approach
is grounded in Optimal Transport (OT), which optimally transforms one probability distribution
into another while minimizing a predefined cost. By harnessing OT, we align or “transport" logit
distributions between models, offering an effective solution. In contrast to hard mapping strate-
gies, which align each token independently of its context, our proposed PTA-LLM employs a soft
probabilistic alignment (detailed in §3.2). This approach better captures the intricacies of various
linguistic context and thus establishes a stronger performance baseline, addressing the challenge ❶.
Additionally, by incorporating distribution-aware learning, this method facilitates more consistent
model representations (through the visualization results in §4.4), leading to marked improvements in
generalization across a wide range of tasks (see Table §1), thereby addressing the challenge ❷.

PTA-LLM enjoys a few attractive qualities. I. Generality. The global probabilistic distribution
transport enhances the coherence of the representations, thereby improving the model’s ability to
generalize across a wide range of tasks and supporting the transfer of underlying representations
for effective evaluation (see Table 1). II. Stability. The reframing through an optimal transport
perspective introduces a soft probabilistic alignment, offering a flexible and adaptive solution to
diverse contexts and performing stablly even in difficult tasks (see Table 2). III. Interpretability.
The effectiveness of our approach is supported by theoretical insights from distribution learning and
further validated through visualization results. It investigates the underlying mechanisms of token
alignment, a critical operation in knowledge fusion that has been largely overlooked in prior research.
This distinguishes PTA-LLM from most existing knowledge fusion models, which fail to elucidate
precisely how token alignment works (see §4.4).

Comprehensive experiments are conducted to evaluate the performance of PTA-LLM. In §4.2, we
present compelling experimental results on various benchmarks, achieving superior performance
without complex engineering design. Specifically, our approach achieves an average improvement
of 1.72% in accuracy across six benchmarks. In §4.4, we demonstrate that the distribution-aware
alignment significantly enhances the coherence of the fused representation intuitively (i.e., the
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marginal distribution are more closely aligned with the target token) and quantitatively (i.e., our
method demonstrates a 83.75% and 7.13% improvement in similarity and compactness respetively
compared with FUSELLM). We trust that this work provides valuable insights.

2 RELATED WORK

Model Fusion has garnered significant attention as a means to enhance the general performance of
LLMs. The fusion techniques can be classified into three primary categories: model ensembling,
weight merging, and knowledge fusion. Model ensembling combines the predictions of independently
trained models to improve overall performance. Common approaches include weighted averaging (Lit-
tlestone & Warmuth, 1994), majority voting (Monteith et al., 2011), and pairwise ranking (Jiang et al.,
2023). Although model ensembling often leads to significant improvements in predictive accuracy
and model robustness, it requires maintaining multiple models during inference, leading to higher
memory consumption and increased latency. This makes it less efficient for resource-constrained
environments. Weight merging combines the parameters of multiple models to synthesize a new,
unified model. This method is especially effective when the models share identical architectures,
as their parameters can be merged seamlessly (Gupta et al., 2020; Wortsman et al., 2022). Weight
merging is enhanced by linear mathematical operations on adapter parameters, which has proven
useful for improving model performance and generalization (Wang et al., 2022b; Huang et al., 2023;
Zhang et al., 2023). Despite these advantages, weight merging suffers from significant limitations:
It relies on architectural uniformity across models and requires manual tuning, which constrains its
applicability across diverse model architectures (i.e., low generalizability).

In contrast, knowledge fusion offers a more flexible and efficient means of integrating models,
particularly when the underlying architectures differ (i.e., a common case in LLMs). It distills
knowledge from multiple teacher models into a single student model, transferring the knowledge
in a more compact and efficient form. One of the key innovations is the minimum edit distance
(MinED) token alignment strategy, first introduced by (Wan et al., 2024a), which facilitates effective
knowledge transfer by aligning tokens across models. This approach was further refined by (Wan
et al., 2024b), who proposed a mapping statistics-based strategy designed to enhance conversational
model performance. Compared to model ensembling and weight merging, knowledge fusion presents
a more scalable and architecture-agnostic solution, making it highly suitable for integrating multiple
LLMs while minimizing the performance degradation typically associated with stepwise optimization.

Token Alignment was first introduced as a solution to address the misalignment problem between
tokenizers with different size of vocabulary, specifically when aligning their respective distributions.
The concept was initially formalized by (Fu et al., 2023), who employs a search algorithm to minimize
the alignment cost between token sequences. This method relies on the assumption that an optimal
one-to-one mapping between tokens can be found, enabling the direct alignment of their respective
distributions. However, in cases where such a precise mapping is not feasible, the solution defaults
to a one-hot vector representation, which may oversimplify the complexities inherent in real-world
token distributions. Building upon this work, (Wan et al., 2024a) introduced a more flexible approach
by replacing the exact match requirement with MinED strategy for more robust token alignment,
especially in cases where slight variations between tokens could still preserve semantic equivalence.
Later, (Wan et al., 2024b) refined further in cross-lingual applications, incorporating statistical
mapping frequencies between source and target tokens to better account for the probabilistic nature
of token co-occurrence, leadning to a prominent chat performance.

However, existing methods remain limited by their reliance on surface-level token correspondences
(i.e., based solely on the strings it comprises), which leverage minimum edit distance to align the
logit. However, besides using edit distance as one metric, our method advances this by incorporating
the corresponding logit values into the individual cost within the transport framework. Optimization
is performed at both the "surface-level" and "logit-level."

3 PTA-LLM

In this section, we present PTA-LLM, a novel probabilistic token alignment method for achieving
general and coherent fusion of large language models (LLMs), as illustrated in Fig.2. Specifically,
we outline our comprehensive knowledge fusion framework and tuning strategy in §3.1. Following
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Figure 2: Probabilistic token alignment under the knowledge fusion paradigm. (a) The overall
knowledge fusion pipeline (see §3.1), and (b) two-stage probabilistic token alignment (see §3.2),
including dynamic token pairing and probabilistic alignment using optimal transport reformulation.

this, we elaborate on the design of our probabilistic token alignment approach in §3.2, where the
probabilistic distribution matrices from source LLMs are aligned into a fused representation via
a dynamic pipeline, which involves two primary stages: dynamic token pairing and probabilistic
alignment. Last but not least, in §3.3, we provide a detailed description of the implementation and
the algorithm utilized in our approach. More implementation details will be provided in §A.

3.1 PROBLEM STATEMENT & OVERALL OBJECTIVE

Let t represent a sequence of text sampled from a corpus C. A probabilistic distribution matrix
P ∈ RN×V is obtained by evaluating a large language model (LLM) on t, where N corresponds to
the sequence length, and V denotes the size of the vocabulary. The i-th row of this matrix represents
the predicted probability distribution over the vocabulary for the i-th token in the sequence. In
the context of combining two LLMs (source and target), we consider the probabilistic distribution
matrices Ps ∈ RL×V s for the source model and Pt ∈ RN×Vt for the target model, where L and
N denote the sequence lengths, and Vs and Vt represent the vocabulary sizes of the source and
target models, respectively. When these models employ different tokenization schemes, misalignment
between the tokens of the source and target models arises, thereby complicating the integration of
their probabilistic outputs. Addressing this issue is essential for effectively combining the outputs
of both models. The traditional approach seeks to ensure consistency between the target model’s
predictions, denoted as Qt, and the fused representation Pf , which encapsulates the knowledge from
the source model. The knowledge fusion loss is formulated as LFusion = −Et∼C [D(Qt,Pf )], where
D(·, ·) is a discrepancy function (such as cross-entropy or KL divergence) measuring the difference
between the predicted and fused probability distributions. The fused output Pf is a probabilistic
distribution matrix that represents the combined strengths of both the source and target models,
formally defined as Pf = MatrixAlignment(Ps,Pt).

In this work, we propose PTA-LLM, a framework designed to resolve discrepancies between the
tokenization schemes of the source and target models. The principal objective is to minimize the
divergence between the target model’s probabilistic predictions Pt and the corresponding one-hot
encoded label matrix Ot ∈ 0, 1N×V , where each row of Ot indicates the correct token as a one-
hot vector. Specifically, we define a causal language modeling (CLM) loss, which measures this
divergence, as LCLM = −Et∼C [D(Qt,Ot)], where D(·, ·) is a discrepancy function, such as cross-
entropy or Kullback-Leibler divergence, between the predicted probabilities and the true labels.
Consequently, the overall training objective of our proposed method is to optimize a weighted
combination of the CLM loss and the fusion loss, formalized as L = λLCLM + (1− λ)LFusion, where
λ ∈ [0, 1] is a hyperparameter controlling the trade-off between the causal language modeling loss
and the fusion objective. This ensures that the target model can effectively learn from both its own
predictions and the knowledge transferred from the source model.
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3.2 PROBABILISTIC TOKEN ALIGNMENT

Dynamic Token Pairing The task of aligning two distinct probabilistic distribution matrices,
Ps ∈ RL×Vs and Pt ∈ RN×Vt , where L and N represent the sequence lengths and Vs and Vt

represent the vocabulary sizes, respectively, poses a significant computational challenge due to the
inherent differences in both sequence length and vocabulary size. The core problem involves finding
a suitable alignment between tokens from the source model’s distribution Ps and those from the
target model’s distribution Pt. More precisely, for each token Sj (j ∈ [1, L]) from Ps, we aim to pair
it with a corresponding token Tk (k ∈ [1, N ]) from Pt.

Given that there are L×N potential pairings between these tokens, employing brute-force methods
to explore all possible combinations would be computationally prohibitive, especially as the sequence
lengths and vocabulary sizes grow. To address this, we introduce dynamic token pairing, which
provides an efficient way to systematically explore the space of possible pairings and compute an
optimal alignment. This approach allows for the minimization of computational complexity while
ensuring the best mapping between the source and target tokens.

Formally, given two sequences of tokens [S1:L,T1:N ], our objective is to find an alignment that
minimizes the overall cost associated with transforming one sequence into the other. Thus, we define
the recursion function as:

f(k, j) = min{f(k − 1, j) + c(Tk,Sj),

f(k, j − 1) + c(Tk,Sj),

f(k − 1, j − 1) + c(Tk,Sj)}, k ∈ [1, N ], j ∈ [1, L]

(1)

where f(k, j) represents the total cost of aligning the subsequences T1:k and S1:j , while c(Tk,Sj)
denotes the predefined cost or distance metric between tokens. In contrast to traditional alignment
methods (Mingers, 1989; Peterson, 2009), which typically enforce a one-to-one correspondence
between elements in the two sequences, our approach introduces generality by relaxing this constraint.
Specifically, our formulation allows for the dynamic possibility that one token in s may align with
multiple tokens in t and vice versa, depending on the characteristics of the tokenization schemes and
the specific requirements of the alignment task.

By adopting this dynamic token paring strategy, our method is able to handle discrepancies between
the tokenization schemes of the source and target models, ensuring that the probabilistic distributions
Ps and Pt can be meaningfully aligned, even in cases where their underlying token structures differ
significantly. This enhanced flexibility is particularly useful in scenarios where the vocabulary sizes
and token sequences vary substantially, providing a more robust solution to the alignment problem in
the context of knowledge fusion between models.

Probabilistic Alignment After determining the optimal token pairings, the next fundamental step
involves accurately performing logit-level alignment to address the token ID misalignment that
arises due to the use of different tokenization schemes. Specifically, for each token pair Sj ∈ RVs

and Tk ∈ RVt , the objective of token alignment is to match the logits from the source token with
the corresponding logits from the target token in order to achieve consistent token representations
between the models. The resulting fused token distribution, denoted as T̂k, can be formally defined
as:

T̂k = TokenAlignment (Sj ,Tk) , (2)

where TokenAlignment is a function that fuses the logits from the source and target models for each
token pairing. This fusion process aims to produce a unified token distribution by combining the
outputs of both the source and target language models. In addition, Equation 2 highlights that the
token fusion for each pairing can be reformulated from the perspective of distribution learning, where
the goal is to minimize discrepancies between the two token distributions. More formally, this can be
expressed as:

P̂ = argminL (Sj ,Tk) , (3)

where the loss function L represents the information loss incurred during the alignment process.
The goal is to minimize this loss, ensuring that the information from the source logits is effectively
transferred to the target logits without significant degradation.
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This optimization problem is conceptually analogous to the classical problem of optimal transport.
Our objective is to find a “transport plan"P̂ that minimizes the total cost of transferring probability
mass from one distribution, µ, to another distribution, ν. Hence, in the context of token alignment,
we can reinterpret the task as an OT problem, where the aim is to determine a global transport plan
that transfers the logits of the source tokens Sj to the logits of the target tokens Tk at minimal cost.
This process is formalized as:

P̂ = argmin
P≥0

{
n∑

x=1

m∑
y=1

cxy pxy

∣∣∣∣ m∑
y=1

pxy = Sj [x]∀x,
n∑

x=1

pxy = Tk[y]∀y

}
, n = m = 10 (4)

where P̂ is an n×m matrix of non-negative entries pxy , representing the amount of logit probability
transported from the x-th source token to the y-th target token. The cost matrix c captures the
alignment cost between source token Sj and target token Tk, where we define cxy as the minimum
edit distance between the x-th source token and the y-th target token (i.e., the L in Equation 3).
The constraints

∑m
y=1 pxy = Sj [x] and

∑n
x=1 pxy = Tk[y] ensure "logit probability" conservation

between the source and target token distributions.

Once the "transport plan" P̂ is determined, the next step is to align the logits by selecting the target
token logits with the highest probability for each source token logit, which can be reformulated as:

T̂k =

{
(r, pxy)

∣∣∣∣ r ∈ Rx

}
. (5)

Here each pair consists of the index r and the corresponding transport probability pxy from the
optimal transport plan P̂. The set Rx represents the indices corresponding to the largest values in the
x-th row of P̂, which indicate the most probable target token logits for alignment with the x-th source
token logit. We demonstrate that our probabilistic token alignment can generate an more adaptive
(see empirical results in Table 1) and coherent (see the visualization of token in §4.4) fused matrix.

3.3 IMPLEMENTATION DETAIL

In this section, we present the implementation details of optimal transport and the fusion strategy for
fusing different LLMs in our PTA-LLM method.

Optimal Transport As stated in Equation 4 and 5, the token alignment tasks are transformed into
OT problem. Consequently, how to efficiently compute the global transport plan P becomes crucial.
To address this, we employ the Sinkhorn algorithm (Cuturi, 2013) to solve the optimal transport
problem following common practice (Wang et al., 2022a). The implementation of Sinkhorn algorithm
is shown in Algorithm 1.

Algorithm 1 Sinkhorn Algorithm for Optimal Transport

Require: Cost matrix C, source token distribution Sj , target token distribution Tk, temperature λ
1: Initialize P = exp (−λC)
2: repeat
3: scale the rows of P such that the row sums match Sj

4: scale the columns of P such that the column sums match Tk

5: until convergence
6: return P̂.

Fusion Strategy To effectively merge the collective knowledge of source LLMs while retaining
their individual strengths, it’s crucial to assess the quality of each LLM and assign different levels of
importance to their respective distribution matrices. To do this, when processing text t, we employ
cross-entropy loss between the distribution matrices and the gold labels as a measure of the LLMs’
prediction quality (Marion et al., 2023). A lower cross-entropy score for a source LLM indicates
a more accurate understanding of the text, and its prediction should thus be given greater weight.
Following this principle, we select the distribution matrix with the lowest cross-entropy score as the
source LLM distribution matrix. More fusion strategy ablative studies results are shown in Table 3b

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training details. We fine-tune the Llama-2 7B model using a batch size of 256 and a maximum
sequence length of 2048 tokens with a combination weight (i.e., the λ in §3.1 ) of 0.8 on MiniP-
ile (Kaddour, 2023) following Wan et al. (2024a).

Evaluation. We evaluate PTA-LLM on six benchmarks that span various core capabilities of LLMs,
including reasoning, coding, commonsense, safty and multilingual ability.

• The Grade School Math (Cobbe et al., 2021), proposed by OpenAI, comprises a wide variety
of conceptually simple grade school-level word problems and serves as a benchmark to assess the
shortcomings of language models in handling multi-step mathematical reasoning. We evaluate it
using the accuracy (8 shot) under the lm-evaluation-harness framework (Gao et al., 2024).
• Big-Bench Hard (BBH) (Suzgun et al., 2022) is a benchmark to evaluate the general reasoning
ability of LLMs, containing 23 multiple-choice tasks and 4 free-form generation tasks from the
Big-Bench (Srivastava et al., 2022). We evaluate it using the EM accuracy based on few-shot
chain-of-thought (CoT) prompts under the open-instruct framework following Wan et al. (2024a).
• MultiPL-E (ME) (Cassano et al., 2022) is a multilingual programming benchmark to assess the
commonsense ability of LLMs, consisting of 18 different programming languages with 17 parallel
datasets translated from the Python benchmark (Chen et al., 2021). We evaluate it using pass@1 (Chen
et al., 2021) based on 20 generated samples for each question in 10 popular programming languages
under the bigcode-evaluation-hardness framework (Ben Allal et al., 2022; Wan et al., 2024a).
• Measuring Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) is a
massive multitask test consisting of multiple-choice questions from various branches of knowledge
to assess the commonsense ability of LLMs, including 17 sub categories (i.e., US history, computer
science and law) that people must study to learn. We evaluate it using the classification accuracy
under the open-instruct framework.
• ToxiGen (Hartvigsen et al., 2022) is a large-scale machine-generated dataset for adversarial and
implicit hate speech detection used to evaluate the safty ability of LLMs, which contains implicitly
toxic and benign sentences mentioning 14 minority groups. We evaluate it using the non-toxicity rate
(i.e., 1 - reported toxicity rate) under the open-instruct framework.
• TyDi QA (Clark et al., 2020) is a benchmark for information-seeking question answering in
typologically diverse languages to asses the multilingual ability of LLMs. It covers 9 different
languages including korean, arabic, indonesian, etc. We evaluate it using the EM accuracy under the
open-instruct framework.

Baselines. In our experiments, we evaluate the performance of PTA-LLM with three sets of
baselines: (1) Source LLMs, including Llama-2 7B (Touvron et al., 2023), OpenLLaMA 7B (Geng
& Liu, 2023), and MPT 7B(Team, 2023); (2) Llama-2 CLM, a Llama-2 7B model that further fine
tuned on MiniPile using the traditional causal language modeling objective; and (3) FUSELLM
(Wan et al., 2024a), a Llama-2 7B model trained on MiniPile with an emphasis on integrating the
capabilities of multiple source models under the knowledge fusion paradigm.

Reproducibility. PTA-LLM is implemented in Pytorch Paszke et al. (2019) using the Huggingface
Transformers library (Wolf et al., 2020), accelerated by FlashAttention (Dao et al., 2022). Training
is conducted on 8 NVIDIA A100-80GB GPUs (approximately 26 hours for a single epoch) and 8
NVIDIA H100-80GB GPUs (approximately 17 hours for a single epoch), while conducting evaluation
on 4 NVIDIA A100-40GB GPUs (time varies depending on the amount of benchmark data used). To
guarantee reproducibility, our full implementation shall be publicly released upon paper acceptance.

4.2 MAIN RESULTS

Table 1 presents the overall performance of PTA-LLM compared to three sets of baseline models (i.e.,
source LLMs, Llama-2 CLM and FUSELLM). The results indicate that the original LLMs exhibit
varying performance across the six benchmarks, with Llama-2 generally achieving the best results,
while MPT demonstrates the weakest overall performance. Following continual training on MiniPile,
Llama-2 CLM shows a modest average improvement of 1.20% over the original Llama-2 model.
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Table 1: Overall results of PTA-LLM and baselines in six various benchmarks, including 78 tasks in
total. The percentages indicate the rate of improvement/decrease compared to FUSELLM. We further
report “Number of Tasks” in [·]. Notably, higher average values indicate better performance in each
benchmark. Per-task results and more experiment details are available in Appendix §C.

Benchmark [# of Tasks] OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM PTA-LLM
Grade School Math [1] 7.81 9.17 14.18 14.33 14.56 14.71 (+1.03%)
Big-Bench Hard [27] 33.87 33.38 39.70 40.44 41.01 41.08 (+0.17%)
MultiPL-E [10] 18.11 17.26 14.63 14.83 15.56 15.88 (+2.06%)
MMLU [17] 42.11 27.84 46.94 47.65 48.77 49.38 (+1.25%)
ToxiGen [14] 18.94 18.42 18.56 18.33 18.19 18.89 (+3.85%)
TyDi QA [9] 27.32 22.11 31.42 31.80 32.99 34.07 (+3.27%)
Avg. 6 Benchmarks [78] 24.69 21.36 27.57 27.90 28.51 29.00 (+1.72%)

Compared to FUSELLM, PTA-LLM demonstrates an average relative performance gain of 1.72%
across 78 tasks. Notably, in the challenging benchmark of ME, which consists of multiple popular
programming languages, our approach achieves a significant performance gain of +2.06% compared
with Llama-2. Notable improvements are also observed in core areas such as safety and multil-
ing. While a slight performance degradation is observed in the continual training for the ToxiGen
benchmark under FUSELLM, PTA-LLM achieves a 3.85% relative improvement, highlighting the
generality of probabilistic token alignment across diverse contexts. We also find that PTA-LLM
experiences a minor performance improvement (i.e., +0.17%) on the BBH benchmark compared
to FUSELLM. This decline can be attributed to poor performance of source models. Two of the
three source models (i.e., OpenLLaMA and MPT) underperform on these tasks, and thus their more
coherent token alignment may inadvertently hinder continual training effectiveness in a reasonable
jitter. In conclusion, PTA-LLM improves the model’s ability to generalize across a wide range of
tasks and supports the transfer of underlying representations for effective evaluation.

4.3 STUDY OF STABILITY

Table 2: Case study of PTA-LLM in the performance degradation tasks for continue training and
FUSELLM. The percentages indicate the rate of improvement/decrease compared to Llama-2. We
also denotes its corresponding benchmark in [·]. Case studies for BBH are provided in §D.

Task [Benchmark] Llama-2 Llama-2 CLM FUSELLM PTA-LLM
Causal Judgement [BBH] 50.80 46.52 (-8.43%) 46.52 (-8.43%) 50.80 (+0.00%)
Geometric Shapes [BBH] 34.40 19.20 (-44.17%) 22.80 (-33.72%) 26.80 (-22.09%)
Tracking Shuffled Objects (7 objects) [BBH] 11.20 9.60 (-14.29%) 10.40 (-7.14%) 14.00 (+25.00%)
Chemistry [MMLU] 35.97 34.11 (-5.17%) 34.98 (-2.75%) 36.96 (+2.75%)
Jewish [ToxiGen] 27.00 21.60 (-20.00%) 23.80 (-11.85%) 25.20 (-6.67%)
Arabic [TyDi QA] 8.47 5.45 (-35.66%) 5.65 (-33.29%) 7.49 (-11.57%)
Swahili [TyDi QA] 43.69 38.97 (-10.80%) 39.78 (-8.95%) 41.68 (-4.60%)
Avg. 7 Tasks 30.22 25.06 (-17.07%) 26.28 (-13.04%) 28.99 (-4.07%)

We observe that in certain tasks (6 out of 43 tasks), FUSELLM under the knowledge fusion paradigm
exhibits performance degradation, which significantly diminishes its overall efficacy. This suggests
instability when exposed to perturbations, such as more challenging or unseen tasks. Consequently, a
thorough analysis of these tasks is necessary to provide valuable insights for future research.

Our hypothesis is that the hard mapping token alignment strategy employed by FUSELLM is
suboptimal in these contexts, necessitating manual specification of alignment strategies tailored
to each task for improved outcomes. In contrast, our method reframes the problem through the
perspective of optimal transport, introducing a soft probabilistic alignment that offers greater flexibility
and adaptability across diverse tasks. This approach not only mitigates performance degradation
(i.e., achieve an overall 8.97% performance mitigation over FUSELLM) but also results in significant
improvements, particularly in benchmarks such as BBH (i.e., 14.00 vs. 11.20) and MMLU (i.e.,
36.96 vs. 35.97). For instance, our method achieves a 25.00% improvement over Llama-2 in the
tracking shuffled objects task. These promising results underscore the stability of probabilistic token
alignment in enhancing model performance across varied contexts.
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Figure 3: Study of Interpretability. (a) The abstract understanding of token alignment in FUSELLM
and PTA-LLM and their respective evaluation metrics. (b) 2D visualization results of target tokens
and fused tokens, where their locations represent semantic information and the sizes indicate their
corresponding logit magnitudes. The ⋆ on the coordinates denotes the logit-weighted center of each
token. Additional visualization results are presented in §B.

4.4 STUDY OF INTERPRETABILITY

Although the emergence of knowledge fusion as a model fusion paradigm has gained huge attention,
the underlying rationale remains unclear. In this section, we tend to provide distribution insights into
token alignment’s mechanisms and offer guidance for its optimal utilization. As shown in Fig. 3, we
delve into a specific context to have an in-depth analysis of token alignment. Given we have previously
aligned tokens like “the private", we need to align the token pair from the source model and target
model to form the next fused token. For tokens from the target model (i.e., Llama-2), we can visualize
their top-10 logits and corresponding indices in a 2D space (see Fig. 3 (a), left coordinate, showing
only 3 logits in a high-level representation). This is done by first using the target model’s tokenizer
to extract token features, followed by dimensionality reduction using Isomap (Balasubramanian &
Schwartz, 2002) and PCA (Abdi & Williams, 2010) (the variance ratio is reported as 95.60% on
average in the table in Fig. 3 (a).). Their relative position can reflect the underlying meaning of this
indice, and the relative size indicates the magnitude of their corresponding logit. For FUSELLM,
traditional hard mapping does not consider their logit and maps each indice to another with a pre-
defined strategy, acting like a “moving" (i.e., change the location without modifying the size) in
high-level understanding. In contrast, our method leverages the complete distribution, “transporting"
(i.e., distribute the size into current location) the optimal logit into existing indices. Quantitatively, we
further compute the average compactness of each token (i.e., the logit-weighted Euclidean distance
from each point to its center) and the similarity of each token center to the target one (i.e., the
Euclidean distance from each center point to the target one) in 100 random samples, as shown in
the table in Fig. 3 (a). It empirically demonstrates that our method generates a more coherent fused
token, as evidenced by a more compact representation (i.e., lower inner distance: 239.44 vs. 257.83)
and a more consistent representation (i.e., lower center distance: 22.25 vs. 136.95).

As shown in the down part of Fig. 3, we can visually compare the distribution of PTA-LLM fused
token with the target token and FUSELLM fused token. Specifically, a more consistent marginal
feature distribution between PTA-LLM and target token can be observed from Fig. 3 (b) and Fig. 3
(d), where FUSELLM exhibits significantly greater distortion in the overall token representation. The
more compact and coherent overall token distribution after employing probabilistic token alignment
is aligned with the quantitative results. More implementation details will be elaborated in §B.
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4.5 DIAGNOSTIC EXPERIMENT

Table 3: A set of ablative studies on three different core capablities evaluation benchmarks (i.e., BBH,
MMLU, ME). (a) The probabilistic token alignment parameters include two key hyperparameters:
convergence threshold and transport window size. (b) The fusion training parameters consist of the
combination weight, which controls the relative emphasis during continued training, while the fusion
function determines the source distribution matrix at each training step. See more results in §E

Choice BBH ME MMLU
Optimal Transport Convergence Threshold

1e-4 40.54 15.88 48.99
1e-5 41.08 (+1.33%) 15.82 (-0.38%) 49.38 (+0.80%)

Token Alignment Window Size
10 41.08 15.88 48.99
5 40.68 (-0.97%) 15.61 (-1.70%) 49.38 (+0.78%)

(a) Probabilistic Token Alignment Parameters.

Choice BBH ME MMLU
Combination Weight

0.9 40.39 15.72 48.93
0.8 41.08 (+1.71%) 15.88 (+1.04%) 49.38 (+0.92%)

Fusion Function
AvgCE 40.52 15.69 48.89
MinCE 41.08 (+1.38%) 15.88 (+1.23%) 49.38 (+1.00%)

(b) Fusion Trainning Parameters

Table 4: Results of PTA-LLM by incorporating
varying numbers (from 1 to 2) of models.

Model BBH MMLU ME
OpenLLaMA 33.87 42.11 18.11
MPT 33.38 27.84 17.26
Llama-2 39.70 46.94 14.63
Llama-2 CLM 40.44 (+1.86%) 47.65 (+1.51%) 14.83 (+1.37%)
Llama-2 + OpenLLaMA 40.54 (+2.11%) 49.26 (+4.95%) 15.83 (+8.17%)
Llama-2 + MPT 40.65 (+2.39%) 48.19 (+2.67%) 15.78 (+7.88%)
PTA-LLM 41.08 (+3.48%) 49.38(+5.20%) 15.88 (+8.54%)

Number of source LLMs. In Table 4, we
present the results of fusing varying numbers
of LLMs. In general, the performance of PTA-
LLM improves as the number of integrated mod-
els increases from 1 to 3. However, we also
find that the benefits of incorporating additional
models vary across different benchmarks (i.e., a
prominent improvement is observed in the ME).
It is also important to highlight that the fusion of
lower-performing source models results in diminished performance gains (i.e., MPT, which performs
the worst in the MMLU benchmark, contributes the least improvement when we combine one model).
Optimal Transport Convergence Threshold. As discussed in §3.3, a key hyperparameter in
optimal transport is the threshold, which regulates the convergence of the Sinkhorn algorithm (Cuturi,
2013). A lower value of threshold results in more iterations of transport, enforcing a stricter distribu-
tion constraint. As illustrated in Table 3a (up), the lower optimal temperature preference indicates
that a stricter constraint may form a more coherent fusion and thus bring a greater performance gain.
Token Alignment Window Size. During the probabilistic token alignment, the default transport
window size is the same of the logit length (i.e., Top-10). Here, we explore the impact of window
size on the transport of fused logit in Table 3a (down). In general, larger transport range enable a
more comprehensive understanding of the context and thus lead to a performance improvement.
Combination Weight. As discussed in §3.1, the combination weight determines the relative
emphasis placed on the fused matrix versus the label matrix during continued training. We can
observe a higher performance in Table 3b (up) when the weight is smaller within a reasonable range
(see detailed analysis in §E), since a lower value indicates more emphasis in our fused matrix.
Fusion Functions. In §3.3, we employ a distribution matrix with minimum cross entropy (MinCE)
to define the source distribution matrix during training. Additionally, we implement a weighted
average of distribution matrices based on cross entropy (AvgCE). A comparison of these two
approaches is provided in Table 3b (down). The results show that PTA-LLM using MinCE consistently
outperforms AvgCE across all benchmarks, which is consistent with Wan et al. (2024a).

5 CONCLUSION

We present Probabilistic Token Alignment for Large Language Model Fusion (PTA-LLM), a
distribution-wise token alignment approach that leverages the optimal transport framework through
reformulation. It has merits in: i) demonstrating generality across benchmarks through a coherent
representation fusion; ii) offering a flexible and adaptive solution to various contexts, especially stable
in addressing challenging tasks; and iii) thoroughly investigating the essence of token alignment to
elucidate the coherent token we fused. However, a limitation of our approach is that the Sinkhorn-
Knopp algorithm runs in Õ(n

2

ϵ3 ) time, which reduces the token alignment efficiency. Despite the
observation that in practice only 3 Sinkhorn loops per training iteration are often sufficient for model
representation, which amounts to ∼13.75% aligning delay on MiniPile compared with FUSELLM.
It would be interesting to investigate further lower complexity (i.e., greenkhorn (Luo et al., 2023))
algorithim to compute the optimal transport. As a whole, we conclude that the outcomes elucidated
in this paper impart essential understandings and necessitate further exploration within this realm.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our ICLR 2025 submission:
Probabilistic Token Alignment for Large Language Model Fusion, organized as follows:

• §A presents more details of implementing Probabilistic Token Alignment.
• §B presents more results of Visualization of Probabilistic Token Alignment.
• §C provides Per-task Results on Different Benchmarks, where the overall results have been

provided in the main paper.
• §D conducts several Case Studies on the model prediction output in specific tasks.
• §E provides more hyper parameter settings for Ablative Studies.
• §F adds more discussions of Limitations, and points out potential directions of our Future work.

A DETAILS OF PROBABILISTIC TOKEN ALIGNMENT

Our training procedures are implemented based on the publicly available code from Wan et al. (2024a),
with modifications made specifically to the token alignment module. For better understanding, the
following is a concise pseudo code of §3.2. Specifically, we perform optimal transport on logits after
applying the softmax function to reduce the impact of extreme values (e.g., extreme large, small, or
negative values) that could otherwise distort the transport cost. Importantly, conducting transport
in logit space differs fundamentally from transporting mass in probability space due to the distinct
normalization terms associated with the source and target spaces. We plan to investigate it further in
the future. Our full implementation shall be publicly released upon paper acceptance.

Algorithm 2 Probabilistic Token Alignment

Require: Tokenizer, input IDs, per step logits, per step indices from both source and target Model.
1: Convert input IDs to token sequence.
2: Use Dynamic Programming in 1 to obtain token pairing between two token sequences.
3: for each token pairing do
4: if it is a one-to-one token pairing then
5: use the sinkhorn algorithim in 3.3 under the optimal transport framework, considering per

step logits and indices from source and target token
6: else
7: use the one-hot logits
8: end if
9: end for

10: return Aligned matrix

B VISUALIZATION OF TOKEN ALIGNMENT

In this section, we present more details and results of visualization of token alignment to support our
findings in §4.4. All samples are the token alignment of target model (i.e., Llama) and source model
(i.e., MPT).

In Fig.4, we can first observe a significant center shift in FUSELLM while our method maintain its
overall distribution, showing consistency with our paper.

In Fig.5 and Fig.6, we present more visualization inspection results for FUSELLM and PTA-LLM
using Isomap (Balasubramanian & Schwartz, 2002) and PCA (Abdi & Williams, 2010). Overall,
we present additional visual evidence to support the notion that the probabilistic token alignment
generate a more compact and coherent representation.
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Figure 4: Sample A. 2D visualization results of target tokens and fused tokens.
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Figure 5: Sample B. 2D visualization results of target tokens and fused tokens.
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Figure 6: Sample C. 2D visualization results of target tokens and fused tokens.
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C PER-TASK RESULTS ON DIFFERENT BENCHMARKS

For the training acceleration, we leverage Deepseepd (Rasley et al., 2020) and FlashAttention (Dao
et al., 2022). More specifically, we optimize our model using the AdamW optimizer, with hyperpa-
rameters set to β1 = 0.9 and β2 = 0.95, applying gradient clipping at 1.0 and a weight decay of 0.05.
The learning rate follows a cosine schedule, peaking at 1× 10−5, with a warmup ratio of 0.008.

To provide comprehensive results from the paper, we report the average per-benchmark results on
The Grade School Math, Big-Bench Hard, MultiPL-E, Measuring Massive Multitask Language
Understandin, ToxiGen and TyDi QA respectively (see Table 1). We note that the results of all
methods in Table 1 have been rerun with the same configuration on our own machine (i.e., 8
NVIDIA H100-80GB GPUs) and may therefore exhibit slight variations compared to other reports.
Furthermore, we report per-task results (78 tasks) here in Table 5 for better clarification.

Our results are statistically significant with respect to all baselines on each benchmark (all p-value <
0.005). Furthermore, we rerun the same hyperparameter settings three times and computed standard
deviation error bars for BBH, MMLU and ME benchmark.

Table 5: PTA-LLM per-task results on six various benchmark.

Task PTA-LLM
Grade School Math

Grade School Math 1.90
Big-Bench Hard (BBH) std=0.04

Boolean Expressions 68.40
Causal Judgement 50.80
Date Understanding 58.80
Disambiguation QA 48.00
Dyck Languages 3.20
Formal Fallacies 46.00
Geometric Shapes 26.80
Hyperbaton 64.00
Logical Deduction (3 objects) 59.60
Logical Deduction (5 objects) 36.00
Logical Deduction (7 objects) 26.40
Movie Recommendation 69.20
Multistep Arithmetic Two 4.00
Navigate 60.00
Object Counting 56.40
Penguins in a Table 36.30
Reasoning about Colored Objects 52.40
Ruin Names 30.00
Salient Translation Error Detection 26.40
Snarks 47.19
Sports Understanding 91.60
Temporal Sequences 15.20
Tracking Shuffled Objects (3 objects) 30.40
Tracking Shuffled Objects (5 objects) 17.20
Tracking Shuffled Objects (7 objects) 14.00
Web of Lies 64.80
Word Sorting 6.00
Avg. 27 Tasks 41.08

MultiPL-E (ME) std=0.05
C++ 9.75
Go 64.51
Java 9.88
JavaScript 13.85
PHP 9.10
Python 13.87
R 5.75
Ruby 11.58
Rust 7.24
TypeScript 13.26
Avg. 10 Tasks 15.88

Task PTA-LLM
MMLU std=0.05

Math 31.3
Health 50.91
Physics 37.66
Business 62.93
Biology 53.96
Chemistry 36.96
Computer Science 45.39
Economics 42.59
Engineering 51.72
Philosophy 41.40
Other 57.94
History 59.57
Geography 53.03
Politics 58.33
Psychology 55.49
Culture 61.45
Law 38.8
Avg. 17 Tasks 49.38

ToxiGen
Black 12.60
Mexican 8.00
LGBTQ 24.00
Jewish 25.20
Women 37.20
Middle East 11.00
Muslim 12.60
Trans 22.40
Asian 36.40
Physical Disability 17.80
Latino 16.60
Native American 6.20
Chinese 23.20
Mental Disability 11.20
Avg. 14 Tasks 18.89

TyDi QA
Arabic 9.55
Bengali 21.24
English 55.23
Finnish 43.22
Indonesian 46.02
Korean 55.80
Russian 33.74
Swahili 41.68
Telugu 0.15
Avg. 9 Tasks 34.07
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D CASE STUDIES

In Table 6, Table 7, and Table 8, we present case studies in difficult tasks (see the overall peformance
results in Table 2) to demonstrate the stability of PTA-LLM.

Table 6: Case studies on the Causal Judgement task.

BBH; Causal Judgement;
Question: How would a typical person answer each of the following questions about causation?:
A machine is set up in such a way that it will short circuit if both the black wire and the red wire touch the
battery at the same time. The machine will not short circuit if just one of these wires touches the battery. The
black wire is designated as the one that is supposed to touch the battery, while the red wire is supposed to
remain in some other part of the machine. One day, the black wire and the red wire both end up touching the
battery at the same time. There is a short circuit. Did the black wire cause the short circuit?
Options: Yes / No
Target: No
FUSELLM: Let’s think step by step.Here in this question, we are told that "The black wire is designated as
the one that is supposed to touch the battery, while the red wire is supposed to remain in some other part of
the machine." A typical person would therefore assume that the black wire was supposed to touch the battery
and that the red wire was supposed to remain in some other part of the machine. Because the black wire and
the red wire both ended up touching the battery at the same time, a typical person would therefore conclude
that the black wire caused the short circuit. So the answer is Yes.
PTA-LLM: Let’s think step by step.Here in this question, we are told that "The black wire is designated as
the one that is supposed to touch the battery, while the red wire is supposed to remain in some other part of
the machine." A typical person would assume that the black wire is supposed to touch the battery, while the
red wire is supposed to remain in some other part of the machine. A typical person would therefore conclude
that the black wire did not cause the short circuit. So the answer is No.

Table 7: Case studies on the Tracking Shuffled Objects (7 objects) task.

BBH; Tracking Shuffled Objects (7 objects);
Question: Alice, Bob, Claire, Dave, Eve, Fred, and Gertrude are dancers at a square dance. At the start of a
song, they each have a partner: Alice is dancing with Lola, Bob is dancing with Rodrigo, Claire is dancing
with Jamie, Dave is dancing with Izzi, Eve is dancing with Sam, Fred is dancing with Karl, and Gertrude is
dancing with Helga. Throughout the song, the dancers often trade partners. First, Alice and Claire switch
partners. Then, Bob and Fred switch partners. Then, Claire and Dave switch partners. Then, Alice and Fred
switch partners. Then, Claire and Alice switch partners. Then, Bob and Eve switch partners. Finally, Eve
and Gertrude switch partners. At the end of the dance, Eve is dancing with
Options: (A) Lola (B) Rodrigo (C) Jamie (D) Izzi (E) Sam (F) Karl (G) Helga
Target: (G)
FUSELLM: Let’s think step by step. (0) At the start: Alice: Lola, Bob: Rodrigo, Claire: Jamie, Dave: Izzi,
Eve: Sam, Fred: Karl, Gertrude: Helga. (1) Alice and Claire switch partners: Alice: Rodrigo, Claire: Lola,
Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (2) Bob and Fred switch partners: Alice: Rodrigo,
Claire: Lola, Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (3) Claire and Dave switch partners: Alice:
Rodrigo, Claire: Lola, Bob: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (4) Alice and Fred switch partners:
Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (5) Claire and Alice switch
partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (6) Bob and Eve
switch partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (7) Eve
and Gertrude switch partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude:
Helga. At the end of the dance, Eve is dancing with Karl. So the answer is (F).
PTA-LLM: Let’s think step by step. (0) At the start: Alice: Lola, Bob: Rodrigo, Claire: Jamie, Dave: Izzi,
Eve: Sam, Fred: Karl, Gertrude: Helga. (1) Alice and Claire switch partners: Alice: Jamie, Claire: Lola,
Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (2) Bob and Fred switch partners: Alice: Izzi, Claire:
Lola, Bob: Rodrigo, Dave: Jamie, Eve: Sam, Fred: Karl, Gertrude: Helga. (3) Claire and Dave switch
partners: Alice: Izzi, Claire: Rodrigo, Bob: Jamie, Dave: Lola, Eve: Sam, Fred: Karl, Gertrude: Helga. (4)
Alice and Fred switch partners: Alice: Sam, Claire: Rodrigo, Bob: Izzi, Dave: Lola, Eve: Jamie, Fred: Karl,
Gertrude: Helga. (5) Claire and Alice switch partners: Alice: Sam, Claire: Izzi, Bob: Rodrigo, Dave: Lola,
Eve: Jamie, Fred: Karl, Gertrude: Helga. (6) Bob and Eve switch partners: Alice: Sam, Claire: Izzi, Bob:
Rodrigo, Dave: Lola, Eve: Jamie, Fred: Karl, Gertrude: Helga. (7) Eve and Gertrude switch partners: Alice:
Sam, Claire: Izzi, Bob: Rodrigo, Dave: Lola, Eve: Jamie, Fred: Karl, Gertrude: Helga. At the end of the
dance, Eve is dancing with Helga. So the answer is (G).
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Table 8: Case studies on the Geometric Shape task.

BBH; Geometric Shape;
Question: This SVG path element <path d="M 60.00,77.00 L 75.00,55.00 L 6.00,60.00 L 22.00,78.00 L
3.00,96.00 L 93.00,90.00 L 60.00,77.00"/> draws a
Options: (A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon (H) rectangle (I)
sector (J) triangle"
Target: (C)
FUSELLM: Let’s think step by step. This SVG path element contains "M" and "L" commands. M takes
two parameters (x,y) and moves the current point to the coordinates (x,y). L takes two parameters (x,y) and
draws a line from the previous coordinate to the new coordinate (x,y). This path can be decomposed into 6
separate commands. (1) M 60.00,77.00: Move the current point to 60.00,77.00. (2) L 75.00,55.00: Create a
line from 60.00,77.00 to 75.00,55.00. (3) L 6.00,60.00: Create a line from 75.00,55.00 to 6.00,60.00. (4) L
22.00,78.00: Create a line from 6.00,60.00 to 22.00,78.00. (5) L 3.00,96.00: Create a line from 22.00,78.00
to 3.00,96.00. (6) L 93.00,90.00: Create a line from 3.00,96.00 to 93.00,90.00. This SVG path starts at point
60.00,77.00, creates five consecutive and touching lines, and then returns back its starting point, thereby
creating a five-sided shape. It does not have any curves or arches. "pentagon" is the only five-sided polygon
on the list. So the answer is (G).
PTA-LLM: Let’s think step by step. This SVG path element contains "M" and "L" commands. M takes
two parameters (x,y) and moves the current point to the coordinates (x,y). L takes two parameters (x,y) and
draws a line from the previous coordinate to the new coordinate (x,y). This path can be decomposed into 7
separate commands. (1) M 60.00,77.00: Move the current point to 60.00,77.00. (2) L 75.00,55.00: Create a
line from 60.00,77.00 to 75.00,55.00. (3) L 6.00,60.00: Create a line from 75.00,55.00 to 6.00,60.00. (4) L
22.00,78.00: Create a line from 6.00,60.00 to 22.00,78.00. (5) L 3.00,96.00: Create a line from 22.00,78.00
to 3.00,96.00. (6) L 93.00,90.00: Create a line from 3.00,96.00 to 93.00,90.00. (7) L 60.00,77.00: Create a
line from 93.00,90.00 to 60.00,77.00. This SVG path starts at point 60.00,77.00, creates six consecutive and
touching lines, and then returns back its starting point, thereby creating a six-sided shape. It does not have
any curves or arches. "hexagon" is the only six-sided object on the list. So the answer is (C).

As shown in Table 6, PTA-LLM’s response is correct because it accurately identifies the key element
of causation in the scenario. The question specifies that the black wire is expected to touch the
battery as part of the machine’s normal setup, while the red wire is not supposed to do so. When
the short circuit occurs, the black wire’s action is consistent with its intended role and does not
deviate from normal functioning. On the other hand, the red wire’s unexpected contact with the
battery introduces the condition necessary for the short circuit. PTA-LLM correctly reasons that
the red wire’s abnormal behavior is the true cause of the short circuit, aligning with how a typical
person would perceive causation. In contrast, FuseLLM overlooks the normalcy of the black wire’s
role and incorrectly attributes causation to it, simply because both wires were involved. This makes
PTA-LLM’s reasoning more logical and consistent with the principles of causation.

As shown in Table 7, tracking shuffled objects task with seven objects is a particularly challenging
scenario requiring accurate tracking of the corresponding dancers among seven individuals as they
switch partners many times.In this context, FuseLLM fails to track the objective during the fourth
partner switch, whereas PTA-LLM successfully tracks the corresponding dancers throughout. This
superior performance is likely attributable to PTA-LLM’s probabilistic token alignment mechanism,
which effectively transforms logits into the correct objective rather than merely replicating the original
logits in the FuseLLM approach.

As shown in Table 8, PTA-LLM correctly identifies the SVG path as forming a hexagon, recognizing
7 commands: one "M" to start and six "L" commands creating a closed six-sided polygon. FuseLLM
miscounts the commands, identifying only 5, and incorrectly concludes the shape is a pentagon.
PTA-LLM’s accurate command count and shape identification make its reasoning correct.
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E ABLATIVE STUDIES

Table 9: Ablative studies of optimal transport convergence threshold

Choice BBH ME MMLU
Optimal Transport Convergence Threshold

1e-3 39.44 15.10 48.23
1e-4 40.54 15.88 48.99
5e-5 40.91 15.85 49.32
1e-5 41.08 15.82 49.38
1e-6 41.04 15.78 49.35
1e-7 41.05 15.80 49.33

As shown in Table 9, the findings on the optimal transport convergence threshold align with our
motivation. Specifically, a lower threshold preference suggests that stricter constraints may generate
a more coherent fusion, leading to greater performance gains. We also observe that performance
stabilizes when the threshold drops below 1e-5, suggesting that the transported cost is fully optimized
and remains unchanged.

Table 10: Ablative studies of token alignment window size

Choice BBH ME MMLU
Token Alignment Window Size

10 41.08 15.88 48.99
7 40.99 15.73 49.00
5 40.68 15.61 49.38
3 39.64 15.08 47.11

Table 11: Ablative studies of combination weight

Choice BBH ME MMLU
Combination Weight

0.90 40.39 15.72 48.93
0.85 41.00 15.91 49.09
0.80 41.08 15.88 49.38
0.75 39.78 15.65 47.29
0.70 38.11 14.27 46.08
0.60 37.20 14.09 45.96

As shown in Table 11, it further reveals that the observed "higher performance when the weight
is smaller" pertains specifically to the comparison between 0.8 and 0.9. However, if the weight is
reduced further, the model overemphasizes the fused matrix and pays less attention to the original
CLM modeling. Consequently, we selected 0.8 for all experiments, as it consistently achieves the
best performance.

F LIMITATION AND FUTURE WORK

Limitation. A limitation of our approach is that the Sinkhorn-Knopp algorithm runs in Õ(n
2

ϵ3 ) time,
which reduces the token alignment efficiency. Despite the observation that in practice only 3 Sinkhorn
loops per training iteration are often sufficient for model representation, which amounts to ∼13.75%
aligning delay on MiniPile compared with FUSELLM. It would be interesting to investigate further
lower complexity (i.e., greenkhorn (Luo et al., 2023)) algorithim to compute the optimal transport.

Future Work. Despite PTA-LLM systemic generality (see §4.2) and robustness (see §4.3), it also
comes with new challenges and unveils some intriguing questions. For instance, the overall pipeline
is divided into two stages: alignment and fusion training. This naturally raises an important question
from a paradigm perspective: Can we design an end-to-end fusion pipeline that dynamically controls
token alignment, thereby enabling more comprehensive capability learning? Introducing a new
loss design (i.e., universal logit distillation loss (Colombo et al., 2024)) within the fusion training
to deal with the misalignment problem in different tokenizers might enhance pipeline efficiency
and facilitate additional performance improvements. Another essential future direction deserving
of further investigation is its further effectiveness exploration in other NLP fields since aligning
sequences generated by different tokenizers is a generic problem of contemporary NLP. In §4.4, we
demonstrate through visualization studies that probabilistic token alignment yield a more conherent
fused representation. Consequently, the applicability of this integration to other alignment methods
requires further investigation.

In this paper, we do not fully explore the potential of knowledge fusion, as comprehensive experiments
on heterogeneous models remain outside the scope of our study. However, related work (Wan et al.,
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2024b) has investigated the fusion of models such as Mixtral (Jiang et al., 2024), InternLM2 (Cai
et al., 2024), and OpenChat (Wang et al., 2024), demonstrating consistent performance improvements
within the knowledge fusion paradigm. We plan to explore it further in the future.

Besides the directions mentioned earlier, we identify several additional promising avenues for
exploration. First, an end-to-end fusion pipeline could streamline the process and reduce the reliance
on CPU resources by eliminating the need for a two-stage approach (alignment followed by training).
This could be facilitated by leveraging innovative loss functions to enable dynamic adjustments.
Second, the exploration of N-1 and 1-N mapping strategies offers enhanced flexibility. While
this paper focuses on 1-1 mapping due to constraints imposed by traditional optimal transport
frameworks, future work could explore beyond these limitations. Lastly, multilingual alignment,
such as aligning Chinese and English tokens, holds the potential to broaden applicability, as current
research predominantly focuses on English token alignment.

Discussion. Two potential factors may explain why the knowledge fusion objective outperforms the
traditional CLM approach: First, the CLM objective employs one-hot vectors as the golden labels,
which fails to capture the nuanced information each token might convey. This approach provides the
same penalty for completely incorrect predictions as for predictions that select an incorrect token but
retain semantically relevant context. In other words, the CLM objective does not reward predictions
that are "almost correct," which limits its capacity to encourage fine-grained improvements. Second,
the fusion objective incorporates representations from diverse source models through distillation,
enabling it to capitalize on the complementary strengths of each model. It provides more fine-grained
context information for alignment.

Regarding the performance, our performance improvements are constrained by the suboptimal
performance of certain source LLMs relative to the target LLM on specific tasks, which inevitably
impacts the quality of the fusion results. We also observe that the performance improvement could be
significantly enhanced by increasing the size of the continued training datasets. Notably, the original
MiniPile (Kaddour, 2023) comprises only 8% coding-related data. By incorporating the GitHub
datasets from the Pile (Gao et al., 2020) in our priliminary experiments, it is possible to achieve
greater performance gains, particularly in coding-related downstream tasks.
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