Under review as a conference paper at ICLR 2026

METAOCDN: A COGNITION-INSPIRED META
OPTIMIZED COMPLEMENTARY DUAL NETWORKS FOR
ONLINE CONTINUAL CONCEPT DRIFT ADAPTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Complementary Learning Systems (CLS) theory points that humans can con-
tinuously and efficiently adapt to new tasks through the collaboration between
the hippocampus and the neocortex: the former rapidly encodes new knowledge,
while the latter extracts structured knowledge by abstract learning. Their synergy
enables humans not only to quickly learn new tasks in the short term but also to
transfer acquired knowledge across different tasks. Inspired by this theory, we
address the challenge of streaming data mining under open environment with con-
cept drift by proposing a cognition-inspired meta optimized complementary dual
networks architecture (MetaOCDN), which consists of the Adaptive Fine Tuning
Network (AFT-Net) and the Meta Representation Network (MRN-Net). AFT-Net
is similar to the hippocampus, selectively fine-tunes key layers based on gradi-
ent variations to achieve rapid adaptation to novel concepts; MRN-Net is similar
to the neocortex, we design self-supervised duality loss to continuously enhance
its deep representation capability, thereby improving generalization to unknown
distributions; furthermore, we design MAML-based multi-scale knowledge dis-
tillation strategy to facilitate dynamic information flow and knowledge transfer
between the two networks. In summary, MetaOCDN provides a brain-inspired
collaborative architecture that integrates the rapid responsiveness of AFT-Net with
the abstract generalization capacity of MRN-Net, and enhances their interaction
through knowledge distillation, thereby achieving a dynamic balance between fast
adaptation and stable generalization in non-stationary data streams with concept
drift. Extensive experiments demonstrate that MetaOCDN consistently outper-
forms state-of-the-art baselines across various drift scenarios.

1 INTRODUCTION

In open environment streaming data mining tasks, concept drift limits model performance. Models
trained with traditional batch learning paradigms struggle to quickly adapt to new distribution after
concept drift (Lu et al.,2019). At present, researchers expect to train models through online learning
approach (Cano & Krawczyk, 2022) (such as active drift detection online learning and adaptive
online learning) to capture the dynamic changes in streaming data. The former actively monitors
data distribution changes (e.g., via statistical tests or sliding-window error rates) to detect concept
drift and performs the targeted update, such as ROALE-DI (Zhang et al., |2020). However, during
the process of actively detecting concept drift, the setting of the threshold can significantly affect
model performance (Gama et al.| [2004). Although the Delayed Detection Index (Liu et al.| [2022)
alleviates this issue, the false positives, false negatives, and delayed detection remain challenging.
The latter overcomes these challenges by adapting models in real time without relying on drift
detection, e.g., DDG-DA (Li et al., |2022). However, most of these methods rely on supervised or
semi-supervised training strategies, models are difficult to efficiently learn robust features from the
limited samples available after concept drift (Liu et al.l [2021). They also tend to optimize a single
objective, restricting the balance between fast adaptation and generalization.

How to design model that can quickly adapt after concept drift while having a strong gener-
alization ability to cope with the impact of changes in data distribution? The Complementary
Learning Systems (CLS) theory (McClelland et al., [1995; |Kumaran et al., [2016) offers new inspi-
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ration for us. Humans can quickly extract patterns and adapt to new environments from a limited
number of samples, primarily due to the unique structure of the brain: specifically, the neocortex and
hippocampus. The CLS theory suggests that the neocortex and hippocampus collaborate to enable
efficient learning: the neocortex gradually acquires structured knowledge by alternating between
different tasks, and the hippocampus is better at encoding new information quickly. When facing
new and complex tasks, the hippocampus retrieves structured knowledge stored in the neocortex
to promote rapid learning, and the neocortex encodes the new knowledge from the hippocampus
into structured knowledge, it enhances the stability of knowledge and improves the ability to learn
quickly. Recent studies have introduced the CLS theory into continual learning and have shown
its potential to mitigate catastrophic forgetting (Pham et al., 2023). However, how to transfer this
mechanism into open environments for concept drift adaptation remains an open challenge for fur-
ther exploration. Therefore, to alleviate limitations in existing works, we propose a meta optimized
complementary dual network strategy (MetaOCDN). The connection between MetaOCDN and CLS
theory is shown in Fig.
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Figure 1: Meta optimized complementary dual network strategy inspired by the CLS theory.

Specifically, we construct Adaptive Fine Tuning Network (AFT-Net) to simulate the hippocam-
pus and design gradient-aware selective fine-tuning strategy to selectively fine-tune its key layers,
thereby forming a sparse network. AFT-Net learns task-specific knowledge from the current sam-
ples in an online learning manner, to ensure the model rapidly adapts to new distribution. And we
construct Meta Representation Network (MRN-Net) to simulate the neocortex, the self-supervised
duality loss is designed to continuously refine its feature extraction ability, and offline learning
is employed to acquire more robust representations from historical samples. Finally, we design
MAML-based multi-scale knowledge distillation strategy to facilitate knowledge transfer from the
MRN-Net to the AFT-Net. In conclusion, MetaOCDN achieves rapid adaptation to new distribution
while maintaining strong generalization capability. The main contributions of this paper are:

1. Inspired by CLS theory, we propose the MetaOCDN, it includes the AFT-Net and MRN-Net to
emulate the hippocampus for rapid learning new knowledge and the neocortex for extracting struc-
tured knowledge. The MAML-based multi-scale knowledge distillation strategy further enhances
knowledge transfer, balances fast convergence with stable generalization.

2. We analysis why selective fine-tuning the critical layer in the face of different distribution
changes has a better effect than fully fine-tuning the network, and at the same time we prove that the
MetaOCDN has an excellent sublinear regret bound.

3. The actual performance of MetaOCDN was verified in classification and regression tasks involv-
ing concept drift. Compared with the baseline methods, MetaOCDN achieves good results in terms
of model convergence speed and generalization after concept drift.

2 RELATED WORK

Active drift detection online learning. This type of approach mainly relies on dynamic monitoring
of model performance or data distribution to determine whether drift has occurred. Typical methods
include: Type-LDD (Yu et al.,|2023), a pre-trained framework for drift localization and type identifi-
cation using knowledge distillation; and Targeted EL (Guo et al.,|2024)), which identifies drift types
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and selects base classifiers accordingly to improve diversity, among others. Most of these methods
are error-rate—based, relying on window mechanisms and manually set parameters, which often lead
to unstable performance (Bifet & Gavaldal 2007). Compared with error rate—based detectors, these
methods identify drift timing and location more accurately by comparing data distributions or repre-
sentation spaces (Liu et al., 2022). Representative approaches include MCDDD (Wan et al.| 2024)
(contrastive concept embedding), PERCESS (Cai et al.| 2025) (latent representation estimation for
online prediction), and AMSL (Zhang et al., |2022) (self-supervised adaptive memory). They offer
finer-grained detection but rely heavily on representation quality, making them prone to false alarms
or delays in real-time streaming scenarios.

Adaptive online learning. Adaptive online learning under concept drift bypasses explicit drift de-
tection by assuming that data distribution may change at any time and adapting models through
real-time updates. Representative methods include: HBP (Sahoo et al.l [2017), which dynamically
re-weights network layers to adjust depth during training; OneNet (Wen et al.| [2023)), which inte-
grates reinforcement learning into online convex optimization to enhance robustness but with limited
fast adaptation; ReCDA (Yang et al.,2024)), which introduces drift-aware perturbation and represen-
tation alignment to learn more stable features; and memory-aware approaches that update parameter
importance for continual adaptation (Aljundi et al., |2018)). Overall, these methods improve adapt-
ability and robustness under drift through dynamic adjustment, yet most rely on supervised or semi-
supervised training and struggle to efficiently learn from limited post-drift samples, with objectives
often biased toward either fast adaptation or generalization, but not both.

3 METAOCDN: COGNITION-INSPIRED ONLINE LEARNING ALGORITHM

Concept drift is a phenomenon in which the statistical properties of a target domain change over
time in an arbitrary way (Lu et al., 2019). Given a time period [0, t], there is a set of streaming data
DS = (X4, y:), X denote the feature vector at the timestamp ¢, y; denote the corresponding label.
The streaming data follow a certain distribution Fy (X, y), concept drift occurs at timestamp ¢ + 1,
if Fo.o(X,y) # Fii1,400(X,y), denoted as 3t : P;(X,y) # Piy1(X,y). In addition, we denote the
current samples as D' = (z¢, y!), the historical samples as D™ = (z7*,y™),and {i = 1,2,...,n}.

3.1 ADAPTIVE FINE TUNING NETWORK

According to the CLS theory, the hippocampus’s rapid learning ability primarily stems from two
aspects: (1) its synapses exhibit strong plasticity, can quick adjust after one or a few learning trials;
and (2) it encodes new information through sparse neuronal activation patterns. To simulate this
mechanism, we enhance the plasticity of AFT-Net via online learning and design a gradient-aware
selective fine-tuning strategy to construct a sparse network.

Similar to the hippocampus, online learning incrementally learns from streaming data, updates pa-
rameters in real time and adapts to current samples distribution within a few iterations. Accordingly,
the AFT-Net is trained under the online learning paradigm (Bartlett et al.,2007), with its parameters
are updated via online gradient descent: 0;11 = 0; — nVo LA (6,; D), n denotes the learning
rate, and £A77T represents the total loss of AFT-Net. Relying solely on online learning to enhance
rapid adaptation to new distribution is insufficient. As indicated by online gradient descent, process-
ing each current sample requires updating all parameters, resulting in a computational complexity
of O(d). This not only increases the computational burden but also leads to overfitting to new
distribution and forgetting of previously learned knowledge.

To better simulate the hippocampus and accelerate model convergence, we conduct lots of exper-
iments on three standard concept drift datasets. As a tool for loss minimization, gradients can
more intuitively and precisely reveal the model’s sensitivity to changes in data distribution. The re-
sults show that gradients provide a more accurate characterization of the model’s state after concept
drift—different types and degrees of drift exert significantly different impacts on various layers of
the model (see Fig. [2). So we design a gradient-aware selective fine-tuning strategy that freezes
parameters insensitive to the new distribution, thereby constructing a sparse AFT-Net.

Firstly, when the AFT-Net is trained at timestamp ¢, the gradient of the I-th layer is denoted as g,
in this paper, we use the gradient norm H gl H , to represent the changes of the /-th layer. To capture
the long-term gradient variation patterns of the model, we design a historical gradient variation rate
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Figure 2: Gradient changes of network layers. We analyze gradient changes of ResNet on datasets
with different drift types: abrupt (RBFBlips), gradual (Sea), and incremental (Hyperplane), with
drifts occurring at timesteps 250, 500, and 750.

matrix G € R™*L to store the model’s historical gradient variation rates of all L layers over the
last m timestamps, its element r> = | gk ||2 — || gk, ||2 is the rate of change of the gradient. On

this basis, we design layer gradient sensitivity index R} to reveal the influence intensity of different

layers:
ot et o)
i llgill- £ (ris o)

Among them, ¢! is the standard deviation of historical gradient variation rate and it is used to auto-
matically “balance” the contribution of each layer to the overall measurement. Adaptively adjust the
weights f(r!, o!) = exp(rl/a!), alarger value of 7! /o' indicates that the I-th layer is more sensitive
to changes in the new distribution, conversely, the more stable it is.

D

Finally, a drift-aware threshold is dynamically generated for each layer to determine whether the
layer should be frozen: 7/ = RE + o2, and RE = 1/L - Y1, RL. When R} < 7/, the I-th
layer is well-adapted to current samples, thus is frozen to avoid unnecessary resource consumption;
otherwise, the layer is regarded as more sensitive to the new distribution and is activated for local
updates. By retaining only the layers sensitive to distribution changes, the model forms a sparse
network. When concept drift occurs, only these key layers need to be fine-tuned, thereby improving
response efficiency while effectively mitigating overfitting.

3.2 META REPRESENTATION NETWORK

Similarly, MetaOCDN constructs a Meta Representation Network (MRN-Net) that learns structured
knowledge from historical samples, analogous to the neocortex. Neocortex relies on slow and cu-
mulative synaptic adjustments, allowing it to extract stable patterns through long-term, cross-task
learning and form task-agnostic structured knowledge. Inspired by this, we design a self-supervised
duality loss (Silva et al.,[2024) to optimize the model’s representation ability, thereby building MRN-
Net capable of “learn to learn extract features”.

Firstly, we use the Wasserstein distance to measure the similarity between current and historical
samples in order to select appropriate training instances (Chizat et al.l 2020). Based on this we
divide them into positive samples D™ and negative samples D™~. We design self-supervised
duality loss to optimize the representation capability of the MRN-Net. The self-supervised duality
loss does not rely on samples’ labels, which is crucial for label-scarce streaming data. It helps the
model learn more discriminative and robust feature representations, enables the MRN-Net to better
capture the underlying structure of the data.

Specifically, the self-supervised duality loss consists of similarity loss and difference loss. We lever-

age MRN-Net to jointly represent the positive samples z+ and the current samples z?, and approx-

imate the similarity loss by maximizing the mutual information max I (27; z*) between them. We
@

approximate the maximization of mutual information by maximizing its lower bound (Oord et al.,

(z+|zt) (z+\zt)

2018), denoted as: Irow (27;2%) = Ep+ .1y log pp(T > Epo+ 21y log qp(T~ Since com-
puting the lower bound of mutual information is challenging, we adopt InfoNCE as a surrogate
objective for mutual information maximization. We have:

. : 1 n ed)(z;,z;)
O = Iy (F12") = == ) log — @)
" J=1 Zz 1

) g
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1 () denotes the similarity function, n is the number of samples, and £ is a stability term that
smooths the loss function. The proof is in Appendix

To further enhance MRN-Net’s ability to discriminate irrelevant features, we construct the differ-

ence loss by minimizing the mutual information between negative samples and the current samples

representations min /(27 ; 2%). Similarly, we use an upper bound on mutual information as an ap-
@

proximation for this minimization (Zhang et al,2023)). By introducing a random variable A/ (\ is
sampled from the original input of negative samples), we can derive the upper bound of mutual in-
formation, which is expressed as: [ (z7;2") = I (27525 N) + I (27; 2" | N). From the derivation
in Appendix [A.T] the difference loss is given by:

(M7 % Dier, (p (27 | N) Nl (7)) + Dicr (p (2" | V) lla (21)) ©)

In conclusion, the total loss of the MRN-Net is: LMRN = ggsim 4 (1—B)¢4/f 3 is a hyperparameter
that balances the two losses.

3.3 MAML-BASED MULTI-SCALE KNOWLEDGE DISTILLATION

Finally, the CLS theory suggests that the human brain integrates rapid learning and resistance to for-
getting through the synergy between the hippocampus and the neocortex: the hippocampus rapidly
encodes information and replays it during sleep, while the neocortex repeatedly extracts structured
knowledge and feeds it back to the hippocampus to accelerate learning. Inspired by this, we de-
sign MAML-based multi-scale knowledge distillation strategy (Finn et al. [2017): AFT-Net adapts
via inner-loop updates with replayed historical samples and transfers knowledge to the MRN-Net,
which extracts cross-task stable patterns and feeds them back, completing the outer loop. This “re-
play—extract—transfer—feedback” synergy enables MetaOCDN to achieve both fast adaptation and
long-term generalization in dynamic environment.

Specifically, we divide the feature maps extracted by the AFT-Net and the MRN-Net (denoted as
FAFT PMRN. ¢ REXWXCY into multi-scale units, and aggregate the knowledge within each unit
through average pooling:

1 1
P hawe(H,W) U hwe(H,W)
pi € {p1,p2,-..,pK} represents a set of different scales, HfRN € RpixpixC represents the

aggregated features at different scales. Then, we concatenate the aggregated features from different
scales along the channel dimension to form the final multi-scale knowledge representation:

AFT AFT AFT MRN MRN MRN
ITf,..; = Concat (le yey Y ), Mfyeq = Concat (Hp1 g I ) )

Distillation loss is expressed as follows: (%P = KL (softmax (IT4LY") , softmax (IIA.ZN)). The
interaction between the neocortex and hippocampus relies not only on knowledge transfer but also
on memory replay and structured knowledge extraction. Inspired by this, we introduce MAML to
optimize the knowledge distillation process and better simulate their synergistic mechanism.

Specifically, we map the AFT-Net and the MRN-Net into the bi-level optimization framework of
MAML. The AFT-Net serves as the inner-loop optimizer, trains on replayed information provided
by the MRN-Net; meanwhile, the MRN-Net acts as the outer-loop optimizer, extracts structured
knowledge based on the update dynamics of the AFT-Net and feeding it back. Through this dual-
loop process, the MRN-Net can perceive and adapt to the learning state of the AFT-Net, distilling
more tailored knowledge to enhance its adaptability.

The initialization parameters of AFT-Net are . For the i-th inner-loop optimization, the parameter
update of AFT-Net is denoted as #°. Specifically, support sets D* are randomly sampled from
historical samples, and AFT-Net is iteratively updated via stochastic gradient descent. For example,
with a single gradient update: 0 = 6 — o, %, o, denotes the learning rate of the AFT-
Net. After multiple rounds of information replay, the MRN-Net serves as the outer-loop optimizer
to extract structured knowledge. We employ a regularization term as an approximate gradient to

transfer the knowledge encoded in the AFT-Net parameters to the MRN-Net, as follows: ¢ =
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O — TIE D icTout Hgo - F)in, where o, denotes the learning rate of the MRN-Net, and 7°%
represents the training epoch. Finally, the knowledge of the MRN-Net is fedback to the AFT-Net:

9t+1 =0, — )\Gve(z gcross(Dt, f(at)) + eKD(Dt§ 0y, SOt) + R(SDt, 9t)) (6)

Here, £<7°%5(-) denotes the loss of the model on the current samples after multiple rounds of informa-
tion replay, and R(y, 0;) represents the regularization term. Since the parameters of the MRN-Net
contain a large amount of meta knowledge and exhibit strong adaptability to changes in data distri-
bution, we align the parameter spaces of the two networks and introduce a regularization penalty to
constrain the boundaries of the AFT-Net’s parameters. By incorporating this parameter alignment
mechanism, the model complexity is reduced while effectively mitigating instability during online
training, thereby enhancing the model’s ability to rapidly adapt to distribution changes.

4 MODEL PERFORMANCE ANALYSIS

To better understand how the gradient-aware selective fine-tuning strategy can accelerate the adap-
tation speed of MetaOCDN, we conduct a theoretical analysis of it. At the same time, we prove the
efficiency of MetaOCDN through its regret bound.

4.1 ANALYSIS OF GRADIENT-AWARE SELECTIVE FINE TUNING

For MetaOCDN, there are two main update strategies: (1) selectively adjusting the key layers with
significant gradient fluctuations, and (2) full fine-tuning all model parameters. However, full fine-
tuning not only tends to cause overfitting on the limited number of target samples and catastrophic
forgetting, but also hinders knowledge transfer, while reducing the model’s ability to rapidly adapt
to current samples (Lee et al.), so we analyze it.

The parameters of AFT-Net are denoted as #. On stationary streaming data (historical samples),
the model loss approaches zero, i.e., LAFT (6;, D™) — 0. We set the selective fine-tuning’s loss
is L7t (0, D), for gradient-aware selective fine-tuning, adaptation to current samples is achieved
primarily by updating the layers with large fluctuations, and update process is expressed as follows:

0! = —Vgu LI (05, D) , 0,67 = 0 (7)

Let 6% denote the network parameters selected, and §°*" denote the parameters that remain un-
changed. For full fine-tuning, all layer parameters are updated in:

010" = —Vgue LI (0°¢, DY), 0,0°" = =V gorn LT (6°", D") (8)

Theorem 1. When facing concept drift of varying degrees and types, for any 6 > 0, there exists at
least a probability such 1 — ¢ that the convergence loss of selective fine-tuning the chosen layers is O,
while the loss caused by full fine-tuning is greater than that of selective fine-tuning. In Appendix[A.2]
we will prove this conclusion.

4.2 ANALYSIS OF THE REGRET BOUNDARY

We primarily focus on the performance of the AFT-Net. Let 6, and 65 denote the parameters of the
AFT-Net at two arbitrary timestamps. For notational convenience, we use f(6) to represent the loss
function £ATT and impose the following assumptions on it.

Assumption 1 (Lipschitz Continuity): The loss function f(#) is Lipschitz continuous with respect
to the parameter 6. According to the bounded gradient criterion, || V £(6) ||< I.

Assumption 2 (Bounded Parameter Domain): The parameter domain )V has a diameter of T', i.e.,
for arbitrary AFT-Net and MRN-Net parameters o and 6: || ¢ — 0 ||< T',Vp, 0 € W.

These assumptions are largely standard in online learning |Cesa-Bianchi & Lugosi| (2006)), and they
are particularly applicable to model adaptation problems in dynamic environment. Specifically, As-
sumption 1 avoids the optimization instability caused by changes in data distribution, ensuring that
the gradient does not explode due to sudden distribution changes when the model is updated, while
Assumption 2 provides a feasible framework for theoretical analysis (such as the upper bound of
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Regret). In the context of strong convex functions, these assumptions lead to sublinear convergence
rates, so in the Appendixwe prove that the loss function f(0) is strong convex.

The regret bound is often used to measure the performance of online learning and is defined as the
difference between the cumulative loss of the algorithm in round decision-making and the cumu-
lative loss of the optimal model in the assumption space. Since the AFT-Net uses online gradient
descent to update parameters 0;11 = 6; — nVy f(0;), we analyzed it’s regret bound. The regret
boundary of the AFT-Net can be expressed as (Demsar, [2006):

T T 2
regret = Z f1(64) — 521)/1\1}21 fi(0) = O((ll—~_2+r) InT) )
t=

t=1

l; is the boundary of the gradient, 6, is the AFT-Net parameter at the current moment, 6 represents
the optimal model parameters within the hypothesis space, mingeyy Zthl f+(0) is the cumulative
loss in the decision-making of the optimal model round. The proof of Equation [9]is given in the
Appendix we prove that the AFT-Net has a regret bound approximately equal to O(In7"/20).
It indicates that it can converge to a very good effect within step 7.

5 EXPERIMENTS

Experiment Setting. To comprehensively evaluate the MetaOCDN model, we validated its perfor-
mance on both classification and regression tasks. For the classification task, we used six datasets,
comprising standard concept drift benchmarks (RBFblips, Sea, Hyperplane) and real-world datasets
(Kddcup99,MIRS, Yoga). For the regression task, we utilized three real-world datasets: ETTH2,
Ettml, and WTH. Detailed information on all datasets and comparison methods are provided in Ap-
pendix Notably, the AFT-Net and MRN-Net models, used for comparison in this paper, are
both built upon a ResNet12 backbone. Further experimental settings, such as model parameters, are
detailed in Appendix

5.1 COMPARISONS WITH PRIOR WORK

We compared the performance of MetaOCDN and other methods on the classification task and the
regression task. For the classification task, the average real-time accuracy (Avgracc) and cumulative
accuracy (Fincacc) were used as evaluation indicators (see Appendix . For the regression task,
we used MSE and MAE as evaluation indicators. The results are as shown in Table [T}

Table 1: Comparison of different methods on classification and regression tasks.

Classification (Avgracc) Regression (MSE) AvgRank
RBFblips Sea Hyperplane Kddcup99 MIRS Yoga ETTH2 ETtml1 WTH

DWM 55.40(16) 69.07(11) 87.20(3) 83.60(5) 44.71(15) 52.54(4) 9.596(9) 7.949(9) 0.904(4) 8.44
OBC 88.05(7) 60.68(15) 74.59(13) 96.41(2) 48.94(14) 47.04(15) 8.478(8) 5.073(10) — 10.5
RUS 90.58(6) 61.00(14) 73.37(14) 15.98(17) 61.51(2) 48.92(12) 43.69(10) 67.403(12) 10.664(11) 11.11
LEV 93.27(5) 60.51(16) 71.25(16) 96.03(3) 58.00(8) 43.45(17) 54.548(11) 25.013(11) 10.00(10) 11.22
ARF 83.27(12) 67.06(12) 77.33(11) 99.38(1) 59.92(6) 51.14(7) 50.9(12) 22.54(10) 4.11(8) 8.78
DNN 87.16(8) 71.55(10) 85.78(6) 71.86(9) 50.13(13) 49.84(11) 178.8(13) 91.59(14) 90.69(15) 11.33
ResNet 83.00(13) 74.48(8) 86.37(5) 65.35(10) 37.75(17) 46.32(16) 801.9(14) 225.1(15) 47.58(13) 12.44
Highway 84.82(9) 76.84(5) 88.41(2) 75.37(8) 53.48(11) 51.54(5) 775.6(16) 81.94(13) 2875.1(16) 9.33
HBP 93.50(4) 71.71(3) 86.92(4) 76.70(7) 54.13(10) 53.60(3) 685.4(15) 232.63(17) 40.56(12) 8.22
DenseNet 94.42(2) 75.44(6) 89.05(1) 87.56(4) 60.87(4) 54.13(2) 801.92(17) 225.11(16) 47.58(14) 7.22
Informer 57.67(15) 72.43(9) 76.11(12) 2331(11) 52.64(12) 48.85(13) 1.69(7) 1.18(7) 1.10(6) 10.56
ER 84.15(10) 76.89(4) 81.47(10) 23.01(15) 60.87(5) 50.84(8) 0.264(6) 0.149(5) 1.074(5) 7.44
DER++ 83.45(11) 74.48(8) 71.79(15) 23.27(12) 58.72(7) 50.47(9) 0.1742(4) 0.092(3) 4.156(9) 8.89
FsNet 93.99(3) 78.21(2) 84.23(7) 22.56(16) 61.07(3) 50.35(10) 0.069(2) 0.163(6) 1.732(7) 6.44
Time-TCN 58.63(14) 61.11(13) 84.23(7) 23.24(13) 57.93(9) 51.27(6) 0.234(5) 0.101(4) 0.553(3) 8.44
PatchTST 26.75(17) 39.8(17) 49.8(17) 23.2(14) 44.38(16) 48.52(14) 0.138(3) 0.077(2) 0.224(1) 11.22
MetaOCDN 97.62(1) 79.28(1) 82.64(9) 82.11(6) 61.92(1) 54.24(1) 0.039(1) 0.031(1) 0.27(2) 2.55

As shown in Table[T} our proposed method performs well on synthetic datasets exhibiting abrupt and
gradual concept drift, but performs relatively poorly on the incremental drift dataset Hyperplane.
This is because incremental drift spans a long duration and changes only slightly over time without
clear drift points. As a result, during the model update process, the AFT-Net tends to freeze more
layers, preventing timely updates that would allow it to capture subtle distribution shifts, thereby
degrading performance. Meanwhile, on real-world datasets, our method achieves good results on
MIRS and Yoga, but performs less effectively on Kddcup99. This is primarily because Kddcup99
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consists of discrete features, while neural networks are black-box models and often struggle to inter-
pret such discrete attributes. In contrast, ARF, based on the recursive splitting mechanism of random
forests, can naturally adapt to the partitioning of discrete feature spaces. Its information gain crite-
rion is inherently compatible with categorical variables, enabling it to achieve superior performance
on such datasets. In the regression task, MetaOCDN demonstrates strong performance. ResNet
enhances the training of deep models through its residual structure, enabling it to capture complex
patterns in time series data. Additionally, the MRN-Net extracts rich structural representations from
historical samples, providing a significant advantage when modeling time series data.
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Figure 3: Comparison of Fincacc of different methods

Fig. [ shows the Fincacc of each algorithm over different time steps. Similarly, MetaOCDN per-
forms poorly on the Hyperplane but achieves good results on the remaining datasets. The remaining
experimental results are in Appendix [B.3]

Statistical Analysis. This paper also employs the Bonferroni-

Dunn test to evaluate the statistical significance of differences
(Critical Difference) among all methods. According to the

&rftical Disance = 6.7792

17161514131211109 8 7 6 5 4 3 2 1

I =
calculation, under the significance level o = 0.05, the crit- "3\ “—‘3 ‘ ‘ \—’ﬁm MeeOCoN
ical difference (CD) is 6.72. The statistical analysis results v i g
are shown in Fig. El In the figure, methods that do not show ‘H'gg::g o 2 Tncron

a significant difference are connected with red lines. The re-
sults indicate that, from a statistical perspective, the method

proposed in this chapter demonstrates a clear advantage. Figure 4: Bonferroni-Dunn test of

all methods

To evaluate the convergence speed of MetaOCDN after con-

cept drift occurs, this section compares and analyzes the re-

covery performance at different drift points. During the determination of convergence points, the
convergence threshold is set to e = 0.8. Table [2] presents the convergence performance of various
algorithms on five datasets with known drift points. In the table, each row lists three values repre-
senting the recovery scores of each algorithm at the early, middle, and late drift points, respectively.
“-” indicates that the model fails to learn features to fit the data at that drift point.

Table 2: RSA comparison of different methods

Datasets | DWM OBC RUS LEV ARF DNN ResNet Highway HBP
RBFblips | 2.16/0.15/0.12  0.54/0.49/0.26  0.87/0.56/0.82  0.68/0.27/0.31 -/0.28/0.71 0.14/0.11/0.10 0.63/0.11/- 0.10/0.12/- 0.13/0.10/0.06
Sea 1.10/1.16/0.30  1.37/1.15/0.38  1.37/1.13/0.35 1.4/0.38/1.17 0.5/1.0/0.33 1.93/1.50/0.31  1.78/0.63/0.22  1.70/1.00/0.21 -/2.17/0.30

Datasets |  DenseNet Informer ER DER++ FsNet Time-TCN PatchTST Ours
RBFblips | 0.46/0.11/0.25  0.51/0.40/1.01 ~ 0.11/0.17/0.83  0.45/0.15/0.03  0.05/0.07/0.31 -/0.77/1.45 -/0.76/1.45 0.13/0.03/0.02
Sea 0.23/0.56/0.30  0.54/0.23/0.23  0.21/0.64/0.21 0.23/0.21/0.19  0.22/0.48/0.20  0.63/0.61/0.60  0.63/0.60/0.59  0.21/0.43/0.17

Table [2] shows that MetaOCDN converges well on datasets with two known drift points, quickly
regaining high accuracy after drift. This benefit stems from the gradient-aware selective fine-tuning
strategy, which focuses updates on distribution-sensitive layers and thus achieves faster convergence.

5.2 ABLATION EXPERIMENT

Gradient-aware selective fine-tuning analysis. Fig. [5 illustrates the gradient variations of
the four residual blocks in AFT-Net on benchmark datasets with concept drift. Based on
this, we evaluate the convergence speed of AFT-Net under different residual block freez-
ing settings to validate the effectiveness of gradient-aware selective fine-tuning analysis.
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We present the results of the model on the RBFBlips, with
the remaining datasets provided in Appendix [B.6] The line
plots depict the gradient variations of the four residual blocks
around three different drift points; the green bars illustrate the
convergence speed when different residual blocks are frozen;
and the blue bars compare model performance and parame-
ter updates between selective fine-tuning and full fine-tuning.
Experimental results show that freezing residual blocks with ... |
large gradient fluctuations diminishes the model’s rapid adap- 2l ™ o B
tation ability, whereas gradient-aware selective fine-tuning

not only achieves higher accuracy than full fine-tuning but Figure 5: Gradient variation and re-
also significantly reduces parameter overhead. sult analysis

I Avgrace ¢

L
Fincaccs 3
27

We also compared the convergence speed and parameter scale
of MetaOCDN’’s gradient-aware selective fine-tuning strategy
with full fine-tuning on real-world datasets.

Figure 6: A partial ablation study results figure.

Fig. [f[(a) presents a comparison of the model under two update strategies in terms of convergence
speed and parameter overhead. The gradient-aware selective fine-tuning strategy enables the model
to converge to superior performance within a shorter time while significantly reducing the number
of parameters required for updates, thereby improving training efficiency and resource utilization
without sacrificing accuracy.

Robustness Analysis of MRN-Net. We compared the adaptability of MetaOCDN under MRN-Net
and AFT-Net collaboration versus AFT-Net alone on three datasets with explicit drift points. The
evaluation metrics include RSA (Recovery Speed after Adaptation), which measures the model’s
real-time convergence ability during drift, and DCE (Drift Cumulative Error), which captures the
accumulated error during the drift adaptation phase. Partial results are shown in Fig. [6(b), with
the remaining results provided in Appendix Experimental results indicate that MetaOCDN
with both networks collaborating exhibits significantly smaller overall accuracy fluctuations. During
changes in data distribution, MRN-Net provides more robust initialization or adjustment signals for
the online adaptation process, enabling the model to converge more quickly to the new distribution
while substantially reducing accumulated error during the drift adaptation phase.

6 CONCLUSION

Inspired by the theory of Complementary Learning Systems, we propose MetaOCDN. This approach
constructs a meta optimized complementary dual network architecture consisting of an Adaptive
Fine-Tuning Network (AFT-Net) and a Meta-Representation Network (MRN-Net), analogous to the
cooperative mechanism between the hippocampus and neocortex in the human brain. To address the
challenge of concept drift in open environments, we focus on enhancing the model’s rapid adaptation
capability and improving its robustness, which effectively mitigates instability during online training
and boosts overall performance under dynamic data distributions.
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REPRODUCIBILITY STATEMENT

For reproducibility, we elaborate on the overall pipeline of our work in Section [3] And in Ap-
pendix we provide a description of the model architecture and key parameter settings. In the
future, we will upload the source code to a public GitHub repository.

ETHICS STATEMENT

MetaOCDN aims to improve the robustness and adaptability of models in streaming data mining
tasks with concept drift, which could be beneficial in the real world, such as financial analysis and
anomaly detection as described. All experiments were based on publicly available standard datasets
and did not involve any personal privacy or sensitive information. They also did not involve human
or animal experiments and did not require additional ethical approval.
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A APPENDIX

A.1 PROOF OF SECTION 3.2

In Section 3.2, we construct a Meta Representation Network (MRN-Net) to learn structured knowl-
edge from historical samples. To enhance the model’s representation capability, we design a self-
supervised duality loss, which consists of similarity loss and difference loss. The similarity loss
reinforces representation consistency among similar samples, while the difference loss pushes apart
representations of unrelated samples. This dual mechanism ensures semantic clustering while im-
proving feature discriminability, leading to more robust and generalizable representations.

Self-supervised similarity loss. We estimate a lower bound of mutual information to enable the
model to capture shared features. The mutual information lower bound is expressed as follows:

p(zt | 2%) q(zt | 2)
Itow(2T:2) =Byt oy log ="l > B (4 o) log "2 (10)
( ) p(2t,2t) p(zt) p(2t,2t) p(zT)

where p(zT | 2%) is the conditional distribution of z* given 2%, Ep(.+ .t is the expectation under
the joint distribution p(27T, 2%), and g(2" | 2*) denotes the variational distribution that p(2T, 2%).

Specifically, we independently sample a set of samples {2, - - - , 2} from the proposal distribution
. . . (=t =T . . T
7(2*), and assign the importance weight w,+ = o (2T, 2;) is the cosine similarity.
Son VG

Given the sample set and the target sample, q(z" | ztl) can be replaced by:

n- e¢(2t72+)

g(z* | 220 ) =) — n n
e¥(zt,z 1) + Zi:2 elﬁ(Z‘yz;r)

1:n

(11)
In summary, the mutual information lower bound is given by (Sordoni et al., [2021)):

qz" ] 2% 2t)
p(z7)
np(z") - wz+J
p(zT)
n - e¥(@2h) (12)
e¥(zt,2) 4 S, ew(z‘,zi)J

bt 2)
Ly e (zt2)
w Die

1 (Z+;Zt) ZEP(Z+7zt)10g

Low

2 By 2n) {Emm log

= Epzt,z0) L]Eﬂ(zﬁn) log

=Byt otym(et) {log

the second step is derived from the Jensen’s inequality, where p(zT) approximates 7(2"). We con-
struct the similarity loss by maximizing mutual information, which is implemented by minimizing
a negative lower bound of mutual information. The similarity loss can be expressed as:

} 1 v(%5.2))
O =l (5321) = =Y log
"= X (0 4 3

13)

Self-supervised difference loss. Similarly, we construct the difference loss by minimizing mutual
information. In practice, researchers often use an upper bound of mutual information as an approxi-
mation for this minimization. By introducing a random variable A (negative samples representations
in this paper) and applying the definition of mutual information, we obtain:

I(z732") = 1(z75 25 N) + 1(2752Y|N) (14
and I(z~; z'|\) is the conditional mutual information. Since 2~ is sampled from the set N and is
conditionally independent of the current samples feature set 2¢, we can deduce that:

I(z7;2'N)=H(2~ |N) - H(z | N, 2"

15
=H(E |N)—H(E |N)=0 ()

13
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H(-) denotes the information entropy. By combining Eq.|14]{and Eq. we can derive:
I(z7;2") =1(z7 ;25 N)
=I(N;z7) = I(N;27|2Y) (16)
=IN;27)+ I(N;2Y) — I(N; 27, 2Y)
The third step is derived using the chain rule of mutual information. Based on the variational infor-

mation bottleneck theory, the variational upper bounds of (N z7) and I(N; 2%) can be obtained,
yielding an upper bound of the mutual information I(z~; z*) as follows:

Iyp(z7;2") = TN 27) + I(N; 2 — T(N; 27, 2Y)
<Dy (p(z7 [N) ([ a(27)) + Dy (p(2" | N) ] a(2")) (17)
- Eq(z*\./\/)q(zﬂ./\f) [IOgP(N | Zivzt)]

The difference loss is approximated as:

(455 % Dy (p(= | M) [ a(27)) + Dy (07 | N [ a(2)) (18)

A.2 PROOF OF THEOREM 1

Lemma 1: For any § > 0, assuming the model has previously converged on a stationary distribution
n > 10d°" log %, there exists at least a probability 1 — § such that the loss under selective fine-
tuning becomes zero (Lee et al.):

£t ozl 09" D) = 0 (19)

Proof: When only the selected layers are updated, the remaining frozen layers remain unchanged,
so we have 9:;”1 = 03th. These layers stay frozen during the fine-tuning process. The loss function
of the model on the current samples D? is defined as:

1 n
LINO5, 05" D) = = 5 A(F(als 055, 65™), i) (20)
i=1

f(+;0) denotes the forward propagation function, and £(-) is the squared loss. We set the model’s
output layer as a linear layer and freeze the model parameters 65", so the loss function becomes a
convex function with respect to G:ie. The model output is expressed as:

a3 055, 05™) = 055 - (i 05™) 1)
xl 02" is the nonlinear transformation from the frozen layers, then:
770 y

n

LI035) =D (055 - () — ) (22)
i=1
The Eq. [22|is a convex function with respect to #3!°. This means the final parameters will con-
verge to a global minimum, i.e., £/ (63l 9°th; D) = 0. Moreover, since O = 651, we have
LI (B3l 65T DY) = 0.

Lemma 2: With at least probability 1, full fine-tuning yields a non-zero loss at all times.

ez, 03" >0 (23)

Proof: Suppose the model function space is F = {fp : 6 € O}, and the current samples D? satisfy
the mapping y! = fI(z!), with a probability distribution of P;(x,y). The mapping between features
and labels in historical samples is given by y/* = fI"(z}"), after concept drift occurs, we have
yl = fl(zt) # y™ = f(x™), due to the limited representation capacity of the model, which
cannot adapt to the new data distribution in time. Therefore, f(z!) & F. The expected squared loss

of the model under the new distribution is:

L6, 0™ DY = B, py ) [(fol2) — fL(2))?] (24)
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Full fine-tuning means adjusting all parameters %! = #5'¢ + #°t" to minimize the loss:
ﬁiul(eall;pt) — éné CIUl(QSIE,QOth;Dt) (25)
€

since fI(z!) & F , the model incurs an approximation error:
Cappros 1= 10E Eorop, (o) = F(2))?] > 0 26)

Therefore L5 (6%, 0°"; D*) > 0, so Lemma 2 holds. Based on Lemma 1 and Lemma 2, we have:
Llul(gellt pty > £ft(gsle, D) = 0, Vt. Therefore, Theorem 1 holds.

A.3 ANALYSIS OF THE REGRET BOUNDARY

Proposition 1: The loss function f(6) of ATF-Net is strongly convex and satisfies the following
inequality for any parameters 61, 6o: f(01) > f(02) + V£(01)T (02 — 01).

Proof: As can be seen from the last paragraph of Section the loss function f(€) can be expressed
as: f(0) = LED + R(yp,0). The loss function consists of KL divergence and regularization terms,
the regularization term is the L2 norm, and it is well known that the L2 norm is a strong convex
function. When L£XP is a convex function, it can be proved that f(6) is strongly convex. We use
the P and (Q to represent the probability distributions, from KL divergence:

P(z")
Q(«")
T represents current samples. Assuming D L(P7 Q) is a convex function, since KL divergence

does not satisfy triangular symmetry, and we use MRN-Net to help fit the AFT-Net, so let ) be a
fixed term. From the properties of convex functions, we know:

‘DKL((Apl + (1 7)‘)P2) || Q) < ADKL(Pl || Q)+(1 7)\)DKL(P2 H Q) (28)

LEP = Dy (P||Q) = ZP ) @7)

where A € [0, 1] is the weight factor and Py, P; are arbitrary distributions. If Eq. .holds it can be
proved that LXP is a convex function. Let Py = AP; + (1 — \)P», expand the left side of Eq. .
to:

Py(zT)
Q(zT)

For ease of calculation, we use F'(Py) = P, - log %, Q@ is a fixed term, so F'(Py) is a function about
Py, its second derivative is:

Dkr(Py ]| Q) = ZPA ) - log (29)

F'(P)) =logP\+1—1logQ,F"(P\) = — (30)

7 is the probability distribution for ¥, 50 1/Py > 0, therefore F(Py) > 0 and F(Py) is a
convex function. From Jensen’s inequality we know:

ﬂmﬂbHWH%ag
T T 31
< AP (z7) log ]:21((;,)) + (1 = N Py(z") log ]:22((;7,))
The sum of all samples is known:
Pi(ah)
Z Py(x log <A Z Py(z 0uT
(32)

— JZT O, PQ(J:T)
=AD (P Q)+ (1 =MDy (P2 || Q)
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Eq. 28] holds, i.e. £XP = Dy (P||Q) is a convex function of P. And because R(y,0) is a
strong convex function, so the loss f(6) of the AFT-Net is a strong convex function. It satisfies
all properties of strong convex functions and provides a guarantee for the proof of sublinear regret
bounds.

A.4 PROOF OF REGRET BOUNDARY

From Assumption 1, we know that the gradient of the AFT-Net is bounded, i.e. g; = || Vf(0) ||<
l. And according to Assumption 2, the diameter of the parameter domain is I', so the gradient
boundary of R(yp,0) is:

IVR(,0) || = 2 SVIe—0I* <pT (33)
Then g, =1 =1y + 41T, I; is the boundary of H VLED||. Eq. E]can be transformed into:

T T T T
regret = th(é‘t) — gel%zft(e) = th(et) - th(H )
T
=37 () - £i62)

According to (Cesa-Bianchi & Lugosi, 2006), we set the learning rate to n; = 1/ (dt), from the
previous section, we can see that f(6) is a strong convex function, according to its nature, it can be
obtained:

(34)

Fi8) — £16.) < (V£(80).0, — 0) — 2116, — 6.
1
T
2 O 2
+5(l1 + /il)" — 3 | 0; — 0. []7)
When we sum them over the T-round iteration, we get:

(116 = 0u]|” = [|6s51 — 04| (35)

1 )
Z F1(80) = f(6.)) < 5— 161 = 6. = 5 {162 — 6.1
—1 2171 2
1 2
~ g 101 =0
T (36)
1 1 1
+ = ——5) 0, — 0.
2 tz:; (m Nt—1 16 I
T
(I 4 BiT)?
+ 9 ;m
Substituting 7; into Eq [36] yields:
I+ BiT)? - 1
Z f:(8:,, DT) = fi(6.,DT)) < wz,
20 t
t=1 t=1 (37)
(I1 + Bi1)
< 55 (InT+1)
Thus, the regret boundary can be expressed as:
T T
regret = th(et) - grellvf\I;Z fi(9)
t=1 t=1 38)
2 2
< %(mw 1) ~ 0(%1@)

(1 is the weight factor of the regularization penalty term in the loss function, and § is the initial
learning rate adjustment factor, which decreases with time. regret/T is 0 as T approaches infinity,
meaning that our model converges within 7" steps.
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B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EXPERIMENTAL SETTINGS

MetaOCDN is implemented using the deep learning framework PyTorch. The experimental en-
vironment is as follows: Intel(R) Xeon(R) Platinum 8468V, 1.0TB memory and NVIDIA H100
graphics card. Furthermore, all of our experiments follow the standard setting of stream data pre-
quential (Brzezinski & Stefanowski, 2014), that is, the data of each batch is first used to test the
model and then to train the model, and each dataset passes through the model only once.

In this paper, ResNet with 12 layers is adopted as baseline, dense blocks are constructed by using
two-layer one-dimensional convolution Conv1d and ReLU, and channel attention and spatial atten-
tion modules are added after each dense block to improve the perception ability of the model for
key information. In addition, considering the limitation of memory resources, we set the size of
historical samples to m = 20, which means that the samples of the last 20 batches are stored in the
memory module, the constant offset term of similarity loss ¢ is set to 0.001, and the initial value of
the weight factor of regularization penalty term /3, is le-4.

B.2 DATASETS

In order to verify the performance of MetaOCDN under different tasks, we investigated the classical
datasets of concept drift in classification task and regression task, respectively.

Classification Datasets: We used the data flow generator in the Massive Online Analysis (MOA)
platform (Bifet & Gavaldal 2007) to generate three abrupt, gradual, and incremental concept drift
datasets: RBFBlips, Sea and Hyperplane. For convenience of testing, we set the drift sites as 25K,
50K and 75K. Furthermore, we also selected three real datasets: Kddcup99, MIRS (Kriiger et al.,
2016) and Yoga (Kriiger et al., 2016).

Regression Datasets: For the regression task, we tested MetaOCDN and other metheds on a series
of time series prediction datasets: ETTH2, ETTmlI and WTH (Zhou et al.|[2023). These datasets are
real datasets, and the details of the datasets are shown in Table

Table 3: Characteristics of Datasets

Datasets Instances Features Target variable Types Number Of drift
RBFblips 100K 20 4 Abrupt 3
Sea 100K 3 2 Gradual 3
Hyperplane 100K 10 2 Incremental -
Class. Kddcup99 4.94M 23 23 Unknown -
MIRS 4260 3600 2 Abrupt -
Yoga 3300 426 2 Unknown -
ETTH2 17420 6 1 Unknown -
Reg ETTmlI 69680 6 1 Unknown -
: WTH 35065 11 1 Unknown -

B.3 COMPARISON METHODS

Furthermore, we compare OCF with various methods, including traditional concept drift adaptive
method: DWM (Kolter & Maloof, 2007): Dynamic Weighted Majority (DWM) is an ensemble
method for handling concept drift. It continuously trains online learners, dynamically adjusts their
weights based on performance. OBC (Oza & Russell, 2001): Bagging and boosting are ensem-
ble methods that combine multiple base learners to improve performance. RUS (Wang & Pineaul
2016): RUS combines online ensemble techniques with cost-sensitive strategies from batch learning,
resulting in theoretically sound algorithms with guaranteed convergence under certain conditions.
LEV (Bifet et al.,2010): LEV adapts classical ensemble methods like bagging, boosting, and Ran-
dom Forests to evolving data streams by introducing additional randomization to inputs and outputs
while preserving bagging’s simplicity. ARF (Gomes et al.,|2017): Adaptive Random Forest (ARF)
extends Random Forests to data streams by introducing adaptive mechanisms and resampling strate-
gies to handle concept drift effectively.
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And some deep neural networks: DNN (Guo et al., [2016): The DNN is the most common network.
ResNet (He et al.,|2016): ResNet alleviates the vanishing gradient problem in deep networks by in-
troducing skip connections and allowing cross-layer information transmission. Highway (Srivastava
et al.| 2015): Highway networks introduce adaptive gating units to regulate information flow across
many layers, enabling the direct training of extremely deep networks using simple gradient descent.
HBP (Sahoo et al.,[2017): Hedge Backpropagation (HBP) for effectively updating DNN parameters
in online learning settings. DenseNet (Huang et all |2019): DenseNet promotes feature reuse and
alleviates the vanishing gradient problem by connecting the outputs of each layer with those of all
the previous layers.

We have also introduced the latest time series prediction methods: Informer (Zhou et al., 2021): In-
former is an efficient Transformer model. By introducing the ProbSparse self-attention mechanism,
self-attention distillation and generative decoder, it solves the computational and structural bottle-
neck problems of Transformer in long sequence time series prediction. ER (Chaudhry et al.,[2019):
ER stores the previous data in the buffer and interweaves it with newer samples during the learning
period. DER++ (Buzzega et al.|[2020): DER-++ adds the knowledge distillation strategy on the basis
of ER. FsNet (Pham et al., 2022)): FSNet is an online time series prediction framework inspired by
the complementary learning system theory. By introducing layer-by-layer adaptors and associative
memory mechanisms. Time-TCN (Bai et al., 2018)): Time-TCN is a convolutional neural network
structure in the time dimension. PatchTST (NIEY et al., [2023)): PatchTST is an efficient model-
ing method for Transformer time series. It is independently designed by using time series slices as
input tokens and channels to improve the prediction of long sequences and the learning effect of
self-supervised representations, while reducing the computational cost of attention.

In all of these methods, the batch size is uniformly set to 100 and the hidden node is 100, using the
ReLU activation function and a fixed learning rate of 0.01.

B.4 EVALUATION INDICATORS

To measure OCF performance on different datasets, we use Average Real Accuracy (Avgracc) and
Final Cumulative Accuracy (Fincacc) on the categorical datasets, and Mean Square Error (MSE) and
Mean Absolute Error (MAE) on the regression datasets, respectively. And on all types of datasets,
we adopted the Bonferroni-Dunn test to compare the differences among different methods. On the
dataset with known drift sites, we used Recovery speed under accuracy (RSA) to test the conver-
gence performance of different methods. Since MSE and MAE adopt common settings, we will not
introduce them here. The specific details of the evaluation indicators are as follows:

(1) Average real accuracy (Avgracc): The average of the real-time accuracy of the model at each
time step, which reflects the real-time performance of the model:

T
1
Avgracc = T ; accy (39)

where acc; is the real-time accuracy of the ¢-step time. The real-time accuracy of the model in this
paper is adopted Class Balance Accuracy (CBA).
Sh ) i
acc:CBA:%(C”’C“) (40)
where £ is the total number of categories, c;; is the ith element on the main diagonal of the prediction
result confusion matrix, ¢;, and c,; represent one element in row ¢ and column ¢. The performance
metric bias caused by class imbalance is mitigated by calculating class balance accuracy.

(2) Final cumulative accuracy (Fincacc): The ratio of the number of samples cumulatively predicted
correctly to the number of samples cumulatively acquired up to the current time, which reflects the
population of the model performance:

T
1
Fi = E 41
incacc T*nt:1nt 41

where n represents the size of samples obtained at each timestamp, n; represents the number of
samples for which the classifier predicts the correct label at the ¢th timestamp.
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(3) Recovery speed under accuracy (RSA): An online learning model with good convergence can
not only converge to the stable state of the new distribution in a short time after concept drift but
also maintain the minimum real-time error during the convergence process. Therefore, the RSA is
defined in the following way to measure the convergence performance of the model:

RS A = step * €quyg (42)

where the step denotes the number of time steps required from the concept drift site to the conver-
gence site, and €4,,, denotes the average real-time error rate of the convergence process. For the
definition of a convergence site, on the one hand, the amplitude of data fluctuation should not be too
large, and at the same time, the randomness of data fluctuation should be considered. Therefore, this
paper adopts the testing results of 20 subsequent reference sites of a certain site to define whether
the site is a convergence site. If the accuracy difference between this site and subsequent reference
sites is less than the given threshold, and the average accuracy of the first and last 10 reference sites
of the reference sites is also less than the threshold, then the site is considered the convergence site.
Vi, i€ {1,---,20},

10 20
1 1
|ace; — aceyyi| < € and 0 jg_l accetj — 10 ,;_1 accerp| <€ (43)

here, ¢ is the convergence threshold parameter.

(4) In addition, the critical difference (CD) of all methods was calculated by the Bonferroni-Dunn
test [31] to show the relative performance between the proposed and the comparison method. The
performance of two classifiers is significantly different if the corresponding average rank sum differs
by at least the critical difference:

k(k+1)

6N (44)

CD = qq

where q,, is the critical value at significance level a.

B.5 ANALYSIS OF EXPERIMENTAL RESULTS

Results on classification datasets. Fig. [7] presents the Fincacc results of all methods on real-world
datasets, showing that MetaOCDN achieves superior predictive accuracy.

(b) MIRS (c) Yoga
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Figure 7: Comparison of Fincacc of different methods on real-world datasets

Results on regression datasets. Since traditional classification methods perform poorly on time se-
ries regression datasets, we only compare the methods with relatively better performance. The MAE
results are shown in Fig.[8] As illustrated in the figure, MetaOCDN achieves strong performance
across all three datasets. This is because MetaOCDN is capable of learning structured knowledge
from historical samples. Time series data often contain global patterns within historical observa-
tions, and MetaOCDN leverages the MRN-Net to effectively capture long-term dependencies in the
data, leading to superior results.

B.6 SUPPLEMENTARY RESULTS OF THE ABLATION STUDY

Gradient-aware Selective Fine-tuning analysis. From Fig.[0] we observe that on the Sea dataset,
when concept drift occurs, the gradient norms of Residual Block 1 and Residual Block 2 fluctu-
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Figure 8: Comparison of MAE of different methods on real-world datasets
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Figure 9: Gradient dynamics and result analysis

ate most significantly, while those of Residual Block 3 and Residual Block 4 remain nearly zero,
showing almost no impact. This indicates that the first two residual blocks are more sensitive to dis-
tributional shifts and primarily contribute to adapting and representing drift patterns. Furthermore,
combining this with the convergence speed results (bottom-left subfigure), we find that freezing
Residual Blocks 1 and 2 leads to a significant decline in convergence speed, with the effect being
particularly pronounced when Residual Block 2 is frozen; in contrast, freezing Residual Block 3
has almost no negative impact on convergence. This phenomenon further validates the critical role
of Residual Blocks 1 and 2 in adapting to concept drift. On the other hand, the top-right subfigure
shows that under the selective fine-tuning strategy, the model achieves accuracy performance (in
terms of both average real-time accuracy and cumulative accuracy) comparable to full fine-tuning,
while significantly reducing parameter overhead. This demonstrates that the strategy achieves a
better trade-off between accuracy and efficiency, thereby enhancing resource utilization and deploy-
ment flexibility.
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Figure 10: Convergence Speed and Parameter Scale Comparison
Fig.[10]illustrates the convergence speed and parameter scale of MetaOCDN on the MIRS and Yoga
datasets. The experimental results show that the selective fine-tuning strategy helps MetaOCDN

achieve faster convergence while requiring fewer parameters, thereby reducing computational over-
head to some extent.
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Robustness Analysis of MRN-Net. Specifically, we selected three datasets with clearly defined
drift points and compared the performance of MetaOCDN with and without MRN-Net assistance
after concept drift occurred. The evaluation metrics include RSA (Recovery Speed after Adaptation),
which measures the model’s real-time convergence ability during drift, and DCE (Drift Cumulative
Error), which quantifies the accumulated error during the drift adaptation phase. The experimental
results are shown in Fig. [IT]

AFT + MRN
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Figure 11: Comparison of MAE of different methods on real-world datasets

As shown in the figures, on the RBFBIlips, Sea, and Hyperplane datasets with known drift points,
MetaOCDN with the collaboration of AFT-Net and MRN-Net exhibits significantly smaller overall
accuracy fluctuations compared to MetaOCDN relying solely on AFT-Net. When concept drift oc-
curs, MRN-Net provides more stable initialization or adjustment signals for the online adaptation
process, enabling the model to converge more rapidly to the new data distribution while substan-
tially reducing error accumulation during the drift adaptation phase. Furthermore, this mechanism
not only enhances the model’s dynamic responsiveness and error suppression ability but also demon-
strates consistent and notable advantages in stability and adaptability across multiple non-stationary
environments, thereby validating the critical role of the MRN-Net in strengthening model robust-
ness.

B.7 THE USE OF LLMS

No large language models were used in the experiments or in writing this paper.
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