Under review as submission to TMLR

Unrealized Expectations: Comparing Al Methods vs Classical
Algorithms for Maximum Independent Set

Anonymous authors
Paper under double-blind review

Abstract

AT methods, such as generative models and reinforcement learning, have recently been applied
to combinatorial optimization (CO) problems, especially NP-hard ones. This paper compares
such GPU-based methods with classical CPU-based methods on Mazimum Independent Set
(MIS). Strikingly, even on in-distribution random graphs, leading Al-inspired methods are
consistently outperformed by state-of-art classical solver KaMIS running on a single CPU,
and some Al-inspired methods frequently fail to surpass even the simplest degree-based greedy
heuristic. Even with post-processing techniques like local search, Al-inspired methods still
perform worse than CPU-based solvers. To better understand the source of these failures,
we introduce a novel analysis, serialization, which reveals that non-backtracking Al-inspired
methods, e.g. LTFT (which is based on GFlowNets), end up reasoning similarly to the simplest
degree-based greedy, and thus worse than KaMIS. More generally, our findings suggest a
need for a rethinking of current approaches in Al for CO, advocating for more rigorous
benchmarking and the principled integration of classical heuristics. Additionally, we also
find that CPU-based algorithm KaMIS have strong performance on sparse random graphs,
which appears to show that the shattering threshold conjecture for large independent sets
proposed by |Coja-Oghlan & Efthymiou| (2015) is either false or does not apply for real-life
sizes (such as 10° nodes).

1 Introduction

Combinatorial optimization (CO) lies at the core of numerous scientific and engineering studies, encompassing
applications in network design, resource allocation, healthcare, and supply chain (Du & Pardalos, [1998;
Hoffman), |2000; |Zhong & Tang, 2021)). Combinatorial optimization usually involves selecting an optimal
solution from a discrete but often exponentially large set of candidates. Many are NP-hard (meaning that if
P # NP then there is no polynomial-time algorithm for solving them in the general cases (Papadimitriou &
Steiglitz, [1998])). This makes it challenging to design algorithms with provable guarantees, but in practice
solvers can find reasonable quality solutions (e.g., Gurobi (Gurobi Optimization, LLC| [2024)).

Recent advances in artificial intelligence (AI) and GPU computing have motivated use of Al-inspired
approaches, e.g., Graph Neural Networs (GNNs) and reinforcement learning, to learn problem-specific
strategies for NP-hard optimization problems such as MIS (Li et al., [2018; |/Ahn et al., 2020) and TSP (Kool
et al.l 2018} |Zhang et al., [2021). AI models can also be trained to predict search directions or refine heuristic
rules (Li et al., |2018; |d O Costa et al., |2020]). These algorithms utilize advanced GPUs and often require
shorter inference compared to CPU-based algorithms. Additionally, Al-inspired methods avoid the need to
design heuristics for specific problems, allowing generalization to new instances and problems (Bengio et al.|
2021b; |Cappart et al., 2023).

Despite the claimed benefits of Al-inspired methods, a few years ago |Angelini & Ricci-Tersenghi| (2023)
showed that one specific GNN-based MIS algorithm (Schuetz et al.| [2022) failed to surpass greedy algorithms.
While their work focused specifically on evaluating that particular solver, it raised critical questions about
the baseline performance of Al-based methods. |Bother et al.| (2022)) showed that Al-inspired approaches fail
to provide superior search directions compared to traditional heuristics in tree search algorithms for MIS.

Under review as submission to TMLR

(2023) suggests that GNN has theoretical limits which may become obstacles for GNN-based MIS
algorithms.

However, in recent years many new Al-inspired CO algorithms, utilizing a variety of techniques, such as
diffusion models (Sun & Yang] 2023; Sanokowski et al., 2024), GPU-accelerated sampling 2023),
and direct optimization (Alkhouri et al.l|2024) have been developed and claimed to significant improve over the
previous ones. Furthermore, GFlowNets Bengio et al.|(2021al), which have been proposed as general-purpose
tools for tasks like scientific discovery and reinforcement learning Bengio et al.| (2023)), has also been used to
solve CO problems (Zhang et al., 2023). Since combinatorial optimization is an arena where humans have
hand-designed algorithms for many decades, the following question is of great scientific interest:

Do Al-inspired algorithms perform better than classical heuristics for
combinatorial optimization?

1.1 Our contributions

We explore the question in the context of Maximum Independent Set (MIS) problem: given a graph, aiming
to find the largest subset of nodes with no edges present between any node pair. The simplicity of the
problem attracted design of many heuristics to tackle the problem (Andrade et al., 2012; Lamm et al.l [2015]).
In recent works, MIS is also a main target in efforts that design Al-inspired approaches such as non-convex
optimization (Schuetz et al., 2022} |Alkhouri et al., 2024), reinforcement learning (Ahn et al.l |2020; |Zhang
2023)), and diffusion models (Sun & Yang, [2023; [Sanokowski et al.| [2024).

For classical heuristics, we test degree-based greedy (Deg-Greedy, pick a node with smallest degree at each
step), and the state-of-the-art MIS solver KaMIS (Lamm et al., 2017; [Dahlum et al., 2016]). For Al-inspired
algorithms, we test the newest algorithms from each “category” according to the techniques they use,
including sampling algorithm iSCO 2023), non-convex optimization algorithm PCQ0 (Alkhouri;
et al, [2024), reinforcement-learning related algorithms LwD (Ahn et all [2020) and LTFT (Zhang et al.
2023) (based on GFlowNets (Bengio et al [2021a)) and diffusion models DIFUSCO (Sun & Yang, [2023) and
DiffUCO (Sanokowski et al., [2024)).

Testing on different graph types with different sizes and densities leads to the following empirical finding
(Section [3).

Finding 1: Current Al-inspired algorithms for MIS still don’t outperform the best heuristic KaMIS, which
runs on a single thread in a CPU, while Al-inspired methods often require significant computational resources.

Finding 2: As the graph becomes larger or denser, KaMIS exhibits a notable superiority to Al-inspired
algorithms.

Finding 3: The simplest degree-based greedy algorithm (Deg-Greedy) serves as a very strong baseline. Some
Al-inspired algorithms perform similarly to or worse than Deg-Greedy, especially for larger and denser graphs.

Section [presents ablation studies to understand why some Al-inspired methods fail to improve over the
simplest Deg-Greedy method. We introduce a new mode of analysis, serialization, that transforms the
solution of any algorithm into a sequential list of choices leading to the final independent set. We compare
sequential order with the one produced by Deg-Greedy (Sections and . We find that the reinforcement
learning related algorithm LTFT, based on GFlowNets, behaves similarly to Deg-Greedy. We also found
several qualitative characteristics that appear to distinguish algorithms that perform significantly better than
Deg-Greedy from those that perform similarly or even worse than Deg-Greedy. We also explore whether Al-
inspired method can improve their solution quality via a post-processing step using local search (Section ,
but find that they still fail to outperform KaMIS after some improvements. In Section we discuss an
additional result that may be of interest for MIS experts: on random graphs, KaMIS has a level of performance
on MIS that appears to contradict a well-known conjecture about polynomial-time algorithms
[& Efthymioul (2015)).

Under review as submission to TMLR

2 Benchmarking Classical and Al-inspired Methods for Maximum Independent Set

We focus the experiment setup for benchmarking different algorithms for Maximum Independent Set problems
(MIS).

2.1 Maximum Independent Set (MIS) problem

Given an undirected graph G(V,E) where V is the set of nodes and £ is the set of edges, an independent set
is a subset of vertices Z C V such that no two nodes in Z are adjacent, i.e., (u,v) ¢ £ for all u,v € Z. The
goal in MIS is to find the largest possible independent set, Z*.

2.2 MIS algorithms

We classify the algorithms we test as: (1) classical heuristics, which includes Deg-Greedy and KaMIS
(OnlineMIS (Dahlum et al., 2016) and ReduMIS (Lamm et all |2017)); (2) GPU-accelerated non-learning
algorithms, which includes 1SCO (Sun et al., [2023) and PCQO (Alkhouri et al., |2022); and (3) learning-based
algorithms, which includes LwD (Ahn et al., 2020), LTFT (Zhang et al., [2023]), DIFUSCO (Sun & Yang] [2023])
and DiffUCO (Sanokowski et al., |2024). We provide brief introductions of them below, please refer to

Appendices to for details.

Deg-Greedy (Degree-based greedy) Simplest heuristic: always picks a node with the smallest degree in the
current graph, add to the current independent set, and delete that node and all of its neighbors from the
graph. Most papers on Al-inspired methods do not compare with this baseline.

OnlineMIS and ReduMIS are two variants of the MIS solver KaMIS, mainly consists of three alternating steps:
greedy, local search, and graph reductions. OnlineMIS (Dahlum et al., [2016) only applies a simple reduction
after local search, while ReduMIS [Lamm et al.| (2017) applies many graph reduction techniques.

i8CO (Sun et al., [2023)) is a GPU-accelerated sampling-based method, incorporating gradient-based discrete
MCMC and simulated annealing. The MCMC is designed based on the Metropolis-Hasting algorithm, which
if given enough time (exponential), can get the optimal solution.

PCQO (Alkhouri et al., [2024) directly optimizes the quadratic loss function of the MIS using gradient descent.
It is sensitive to optimization hyperparameters, so hyperparameter search is required for achieving good
results. Extensive hyperparameter search may give better results than in our experiments.

LwD (Ahn et al.l 2020) is a reinforcement learning based algorithm which models the problem as a Markov
Decision Process (MDP) and requires a dataset (without solutions) to train the policy. In each step, several
nodes are added to the independent set and are never deleted. We call it a non-backtracking algorithm.
Bother et al.| (2022)) also benchmarked this algorithm. [Ahn et al.| (2020) reported that it outperforms KaMIS
on very large but very sparse random graphs, which we do not include in our benchmark, while [Bother et al.
(2022)) found that their performance are similar on these graphs.

LTFT (Zhang et all 2023) is also a non-backtracking MDP-based algorithm similar to LwD, but it only selects
one node at a time, which is decided by GFlowNets (Bengio et al., 2021a). Thus, it has a very similar
procedure to Deg-Greedy. The algorithm requires a dataset (without solutions) to train the neural network.

DIFUSCO (Sun & Yang] 2023)) is an end-to-end one-shot MIS solver using diffusion models and requires a
supervised training dataset with solutions.

DiffUCO (Sanokowski et al.l |2024)) also uses diffusion model but with unsupervised learning and annealing
techniques. It requires a training dataset without solutions.

Non-backtracking vs one-shot Among algorithms that build up the set step by step, Deg-Greedy, LTFT
and LwD are non-backtracking, meaning once a node is added to the set it is never dropped from it. OnlineMIS
and ReduMIS are backtracking algorithms, since as part of local search they might decide that a previously
picked should be dropped from the set to allow further additions. Al-inspired methos PCQO, DIFUSCO, and
DiffUCO are one-shot algorithms, since they work like end-to-end MIS solvers and directly return the full set.

Under review as submission to TMLR

2.3 Graph types

Erd6és-Renyi (ER) graphs (Erdos & Rényil [1959) are random graphs where edges are connected uniformly
at random (with a given probability or a fixed number of edges). We vary 2 parameters for ER graphs,
number of nodes n and average degree d, by fixing the number of edges at %d. Previous benchmark (Bother
et al.l [2022)) and algorithms (Ahn et al., [2020; |[Sun & Yang] [2023} |[Zhang et al., |2023; |Alkhouri et al., [2024)
used it as test graphs for MIS, though without varying parameters as we did.

Barabasi—Albert (BA) graphs (Albert & Barabdsil 2002) are random graphs generated by a probabilistic
growth process, mimicking real-world networks such as Internet, citation networks, and social networks (Albert,
& Barabasil 2002; [Radicchi et al.l 2011)). For BA graphs, we vary 2 parameters: number of nodes n and
parameter m (not number of edges). The average degree of BA graphs can be approximated as 2m.

RB graphs RB graphs are derived from Model RB (Xu & Li, [2000), a random constraint satisfaction
problem (CSP) model. RB graphs are considered difficult instances for MIS due to their structured randomness
and high solution hardness. We use two datasets from [Zhang et al.| (2023) (also used in [Sanokowski et al.
(2024))), RB-small (200-300 nodes) and RB-large (800-1200 nodes), to benchmark learning-based solvers.

Real-world graphs We pick REDDIT-MULTI-5K and COLLAB (Yanardag & Vishwanathan| 2015) from
TUDataset website (Morris et al., 2020]), since they have enough graphs for training and graph sizes not too
small. REDDIT-MULTI-5K has 508.52 average nodes and 594.87 average edges. They are mostly very sparse
graphs. COLLAB has 74.49 average nodes and 2457.78 average edges. They are mostly small but dense
graphs.

2.4 More experiment details

For synthetic graphs, we test 8 graphs for each parameter (n,d) or (n,m). We test on 100 graphs for
real-world datasets. For learning-based algorithms, we use 4000 training graphs generated using the same
parameter (in case of random graphs) or drawn from the same real-world dataset. For algorithms requiring
hyperparameters, we use default hyperparameters in most cases (Details in Appendix .

We set 24-hr time limit for KaMIS (OnlineMIS and ReduMIS) since it runs on a single CPU thread with 32GB
memory, and our benchmark focuses on performance on solution quality. Note that Al-based methods run
well only on relatively small graphs, and ReduMIS runs in less than one hour on small graphs (n < 3000).
Given 24 hours ReduMIS can handle much larger graphs (up to n & 1e6). (Details in Appendix

For iSCO and learning-based algorithms, we report results within our computational limit (generally a
single 80GB A100 for 96hrs, details in Appendices and) We test PCQO for n < 10000 because the
performance degrades quickly for large graphs using default hyperparameter search domain.

3 Performance Gap: Classical Methods Outperform Al-inspired Methods

In this section, we present our main experiment results. The performance of different algorithms on Erdds-
Renyi (ER) graphs, Barabdsi-Albert (BA) graphs, RB graphs, and real-world graphs are shown in Tables
to [4] respectively.

Al-inspired algorithms don’t outperform ReduMIS. Our first main finding is that, current Al-inspired
algorithms do not outperform the best classical heuristics ReduMIS in terms of performance. As shown
in Tables [1| to 4] ReduMIS consistently achieves superior results compared to all other methods, with the
exception of iSCO sometimes perform similarly.

Although learning-based algorithms are claimed to be more efficient, they require significant training time and
GPU memory, which is over our resource constraint for graphs with more than 3000 nodes, while ReduMIS
can handle graphs with up to 1 x 10° nodes (See Table . Although iSCO performs close to ReduMIS, it
requires significant GPU memory and we are unable to get results for dense graphs with 10000 nodes. Its
performance also become worse than ReduMIS for larger graphs.

Under review as submission to TMLR

Table 1: Performance of different algorithms on Erdés—Rényi (ER) graphs. We report the average
independent set size among 8 graphs generated by the graph parameters n,d. ‘-~ denotes the algorithm
fails to return a solution within 96 hours, or the graph cannot be fitted into the GPU resources: a single
80GB A100 GPU for iSC0, LTFT and DIFUSCO, and four 80GB A100 GPUs for DiffUCO. Best-of-20 sampling
for Deg-Greedy and all learning-based algorithms. The numbers within £1% of the best in each row are
highlighted. = denotes training terminated without reaching the target steps and test using the latest
checkpoint. 1 denote testing with out-of-distribution trained models. Details in Appendix E

‘ ‘ CPU-based ‘ GPU-acc ‘ Learning-based ‘
| n d | Deg-Greedy OnlineMIS ReduMIS | iSCO PCQD | LwD LTFT DIFUSCO DiffUCO |
100 10 29.25 30.50 30.50 30.62 30.63 | 30.38 2862 30.25 30.02

30 13.63 14.00 14.75 14.50 1450 | 1438 1312 13.88 13.92
10 77.50 93.88 94.38 94.75 94.63 | 94.25 8362 93.50 91.84
300 30 44.50 47.88 47.88 47.62 47.63 | 46.88 4325 43.88 45.04
100 16.13 18.00 18.38 18.00 1800 | 17.00 1625 16.62 16.93
10 303.25 314.75 316.13 | 315.62 310.00 | 311.25 297.00 303.88 311.67
1000 30 151.00 158.88 163.75 | 163.50 158.63 | 158.38 150.00 143.75 152.55%
100 60.63 64.75 66.63 66.50 60.13 | 63.88 ~ 60.88 55.38 63.55%
300 22.25 25.00 25.75 24.62 23.25 | 19.12% 2262 20.88 18.36f
10 907.13 947.25 954.25 | 950.88 92325 | 934.12 888.25 902.00 935.28}
30 451.88 480.88 493.13 | 491.62 464.25 | 47325 449.00 413.38 459.57f
3000 100 183.63 194.38 201.50 | 200.38 185.63 | 190.75% 184.00 171.38 194.07}
300 73.50 77.63 80.75 78.88 69.25 - 73.88 - -
1000 23.38 26.00 26.25 - 23.00 - 23.62 - -
10 2999.88 3161.88 3173.62 | 3149.92 2569.75 - - - -
30 1498.00 1607.50 1639.88 | 1625.47 1331.63 - - - -
10000 100 613.75 650.00 670.88 - 543.13 - - - -
300 249.00 258.38 272.25 - 218.63 - - - -
1000 87.13 91.50 94.25 - 77.50 - - - -
3000 29.63 33.00 33.25 - 26.63 - - - -

We also note that LwD performs the best among learning-based algorithms, despite it being the oldest
learning-based algorithm we tested. In summary, our experiment results show that current Al-inspired
algorithms still don’t outperform the best classical heuristics for the MIS problem.

The performance gap between ReduMIS and Al-based methods widens with larger and denser
graphs. While ReduMIS consistently outperforms Al-based methods in most cases, the performance gap is
small on small or sparse graphs. On ER graphs when n = 100, 300 and average degree d = 10, LwD has results
within 1% gap from ReduMIS. However, as the graph becomes larger or denser, the performance gap between
ReduMIS and Al-based algorithms enlarges. On ER graphs, when n = 1000, there is a clear performance
gap between Al-based algorithms and ReduMIS, with the only exception of the sampling based iSCO0. When
d =10, DiffUCO and LwD still reaches 98% of ReduMIS’s performance. For denser graphs(d = 100), DiffUCO
and LwD only reaches 96% of ReduMIS’s performance. This gap widens further for n = 3000, where Al-based
algorithms perform significantly worse than ReduMIS and sometimes fail to outperform simple heuristic
Deg-Greedy. Classical solvers have no difficulty handling graphs with a million edges, but learning-based
implementations struggle to scale up to that size.

Deg-Greedy serves as a strong baseline. Another key finding is that the simplest degree-based greedy
(Deg-Greedy) serves as a remarkably strong baseline. As shown in Table [1} leveraging neural networks for
node selection, LTFT often perform comparably to Deg-Greedy, particularly on larger or denser graphs. For
example on ER graphs when n = 1000 or 3000, LTFT gives performance within 2% of Deg-Greedy (Table .
Additionally, DIFUSCO and PCQO fail to outperform Deg-Greedy on larger or denser graphs, such as n = 1000
with d > 100 and n = 3000 for DIFUSCO, n = 3000 with d > 300and n = 10000 for PCQO.

Under review as submission to TMLR

Table 2: Performance of different algorithms on Barabasi—Albert (BA) graphs. Table [l while
changing ER graphs to BA graphs with graph parameter n, m. We report the average independent set size
among 8 graphs generated by the graph parameters n, m. The numbers within £0.5% of the best in each row
are highlighted. See caption of Table [1| for other details and definitions of * and 7.

Heuristics GPU-acc Learning-based
n m Deg-Greedy OnlineMIS ReduMIS isSco PCQO LwD LTFT DIFUSCO DiffUCO
100 5 39.50 39.50 39.50 39.50 39.50 39.50 38.12 39.38 39.25
15 21.00 21.63 21.63 21.62 21.63 21.62 20.62 21.25 21.25
5 121.88 123.13 123.13 123.12 123.00 | 123.12 115.62 122.88 123.00
300 15 69.38 71.38 71.38 71.38 71.25 70.75 64.75 69.50 69.25
50 38.00 49.88 50.00 50.00 50.00 50.00 41.75 50.00 50.00
5 412.63 417.13 417.13 417.12 415.75 | 416.00 385.75 417.12 416.00
1000 15 232.75 245.00 246.38 246.25 242.00 243.12 224.25 236.38 240.75
50 107.50 115.75 116.88 116.75 113.50 113.00* 106.38 105.25 56.38t
150 81.50 150.00 150.00 150.00 150.00 | 150.00%* 82.25 - 135.007
5 1236.63 1257.00 1257.13 | 1255.62 1243.00 | 1248.12 1177.25 1254.38 1252.63}
15 709.50 749.63 754.50 752.00 722.25 727.75% 661.88 726.38 737.38%
3000 50 335.38 362.63 369.75 368.25 357.13 336.88* 323.88 - 142.257
150 147.25 160.25 165.75 164.00 152.75 - 144.75 - -
500 141.00 500.00 500.00 - 491.00 - 223.88 - -
5 4128.75 4206.00 4205.38 | 4190.47 3640.75 - - - -
15 2377.88 2525.00 2534.00 | 2517.07 1946.38 - - - -
10000 50 1122.13 1228.88 1251.13 | 1241.98 938.38 - - - -
150 511.25 555.75 580.13 573.37 433.88 - - - -
500 192.50 209.13 217.50 - 150.63 - - - -
1500 67.25 1500.00 1500.00 - - - - - -

Table 3: (Comparison of the performance of different algorithms on RB graphs) Table on RB
graphs (Xu & Li, |2000). Datasets are from |Zhang et al.[(2023]). The numbers within +1% of the best are
highlighted.

Heuristics GPU-acc Learning-based
Deg-Greedy OnlineMIS ReduMIS isSco PCQO LwD LTFT DIFUSCO DiffUCO

‘ Dataset no. of nodes

RB-small 200-300 19.11 20.11 20.14 20.05 20.08 | 16.44 18.63 18.23 19.26
RB-large 800-1200 39.16 42.66 42.95 41.53 39.62 | 32.55 38.32 36.22 38.91

Table 4: (Comparison of the performance of different algorithms on real-world graphs) Table
on real-world datasets. In general, graphs in REDDIT-MULTI-5K are very sparse, while COLLAB are dense
but small. The numbers within £1% of the best are highlighted.

Dataset Heuristics GPU-acc Learning-based
atase Deg-Greedy OnlineMIS ReduMIS | iSCO PCQO LwD LTFT DIFUSCO DiffUcCO
REDDIT-MULTI-5K 350.73 350.73 350.66 | 350.73 344.47 | 350.73 343.35 350.72 350.69
COLLAB 8.68 8.70 8.70 8.70 8.57 8.69 8.70 8.75 8.70

Similar trends on other types of graphs We also tested on Barabdsi-Albert (BA) graphs (Table[2)), RB
graphs (Table [3)), and real-world graphs (Table . For BA graphs and RB graphs, ReduMIS also outperform
all other methods across various setting. For real-world graphs, most methods including ReduMIS perform
close to the best, likely because these datasets are either small or sparse and thus easy for MIS problem. On
BA and RB graphs, we also observe that the performance gap between ReduMIS and Al-inspired methods
increase as the graphs become larger and denser.

Under review as submission to TMLR

Percentage
60.

20.0 40.0 80.0

[|

ER graphs BA graphs

e} 50.77 35.94 32.11

10

- 95.40 89.62 63.32 36.81 38.11

30
15

'c§' 86.89 9521 9562 £Q 87.56 Nel:H:/
8- 96.85 92.21 3- 78.73
m —
= 9375 3 91.38
un
S
100 300 1000 3000 100 300 1000 3000
n n

Figure 1: Percentage of rounds when LTFT selects the node with smallest possible degree, i.e.,
behaves similarly to degree-based greedy. On ER graphs when the graph is dense (closer to the bottom
left corner), the percentage of rounds LTFT selects the node with smallest possible degree is higher, i.e.,
behaves more similarly to degree-based greedy. On BA graphs, the percentage to choose the smallest possible
node is generally lower, but on denser BA graphs LTFT also behaves more like degree-based greedy.

Deg-Greedy is also a strong baseline for all these graph types. Notably, for large RB graphs, all learning-based
methods perform worse than Deg-Greedy. Since RB graphs are considered difficult cases for MIS
, these results may suggest learning-based methods are even weaker for graph types with higher
"intrinsic hardness" than ER graphs.

Performance on Real-World Graphs On real-world graphs, we observe roughly equivalent performance
across most methods, including the simplest degree-based greedy heuristic Deg-Greedy. This suggests that
available datasets suitable for training are algorithmically "easy," making it difficult to differentiate between
sophisticated solvers and simple heuristics. Consequently, the primary disadvantage of Al-based methods
here is computational efficiency: while Deg-Greedy achieves optimal or near-optimal results on a single CPU
thread, Al methods require significant GPU resources and orders of magnitude longer time for training
and inference. Given the scarcity of harder real-world datasets that are suitable for training (sufficient
quantity/size), we followed the community standard of using random graph (ER and BA) for our main
evaluation.

4 Deconstructing the Performance Gap: Algorithmic Analysis

Our results show that the state-of-the-art Al-inspired algorithms for MIS still do not outperform the best
heuristic ReduMIS. The surprising finding was that they also often do not outperform the simplest classical
heuristic, Deg-Greedy, especially on large and dense graphs. In this section, we delve deeper into this
comparison (Sections and . Furthermore, we explore the impact of augmenting various algorithms
with a local search as a post hoc step to enhance solution quality (Section .

4.1 Comparison between Deg-Greedy and LTFT

Deg-Greedy sequentially picks nodes for the independent set. At each step, it picks the node with the smallest
degree in the residual graph (where the nodes in the independent set and their neighbors are removed). It
does not reverse any decisions (ie once picked, the node stays in the independent set). As in Sectionwe
call it a non-backtracking algorithm. LTFT is also a non-backtracking algorithm and it often perform similarly
to Deg-Greedy in Tables[I|and 2| Tt uses a trained policy network GFlowNets (Bengio et al.,2021al) to pick
a node for the independent set at each step. Thus, we can naturally compare LTFT with Deg-Greedy by
investigating how close this trained policy compares to the naive policy in Deg-Greedy.

Under review as submission to TMLR

ER (n=1000, d=30)
99 98

100/ 979898

80/

60/

40+

Percentage
Percentage

201

Figure 2: The percentage to choose the smallest possible degree node on different part of the
(degree-based) serialization. We find that the best algorithms (OnlineMIS, ReduMIS, iSCO) and the
best performing learning-based algorithm LwD share a similar characteristic pattern, that they have high
consistency with degree-based greedy on second and third part of the serialization, while on the first part
there is a low consistency. On the other hand, PCQ0O and DIFUSCO has low consistency with degree-based
greedy in general.

The results are shown in Figure [l Overall, we observe that LTFT frequently selects nodes with very small
degrees. On ER graphs where the average degree is at least 30, LTFT picks the node with the smallest degree
over 85% of rounds except for sparse graphs (d = 10 and (n,d) = (3000,30)). On BA graphs, while the
percentage is lower, it still exceeds 75% on large and sufficiently dense graphs. Moreover, in cases where LTFT
selects the smallest degree nodes less frequently, its performance is worse than Deg-Greedy.

To conclude, our results suggest that despite using neural net to learn the policy, LTFT is closely aligned
with Deg-Greedy: prioritizing nodes with small degrees at each step. The high consistency between the node
selection strategies of LTFT and Deg-Greedy can explain their similar performance.

4.2 Serialization: allows comparing to Deg-Greedy

In the previous part, we demonstrate that LTFT employs a heuristic similar to Deg-Greedy, selecting the node
with the smallest degree in the remaining graph in each round. However, other algorithms, such as ReduMIS,
PCQO, and DIFUSCO, which does not select one node at a step without backtracking, cannot be analyzed based
on the sequence of nodes picked. Thus, we introduce a method called degree-based solution serialization to
analyze their behavior and compare them with Deg-Greedy.

Given a graph G(V,) and an independent set solution Z (which is an independent set), process proceeds as
follows: (1) Repeatedly remove the node in Z with the smallest degree. (2) After removing a node from Z,
also remove it and its neighbors in G. (3) Continue this process until all nodes in Z are removed. The order
in which nodes are removed forms the serialization of the solution. This procedure is detailed in Algorithm [I]

To evaluate the algorithms, we compute the percentage of rounds in which the smallest degree node is selected
during serialization, similar to our comparison between LTFT and Deg-Greedy. Due to random tie-breaking
in Algorithm [} we repeat the process 100 times and select the serialization with the highest number of
rounds selecting the smallest degree node. Although Deg-Greedy theoretically achieves 100% smallest-degree
selections in its best serialization, random tie-breaking prevents us from perfectly recovering this with 100
repetitions. Instead of reporting the overall percentage, we divide the serialization into three equal parts and
report the percentages for each part.

The results, shown in Figure [2] compare the percentage of smallest-degree node selections across different
algorithms. Due to space constraints, we present results only for ER and BA graphs under selected parameters;
additional results are available in Appendix [C.2]

Algorithms that often perform the best, namely OnlineMIS, ReduMIS, and iSCO, exhibit a consistent pattern
after serialization. In the first one-third of the serialization, these algorithms deviate significantly from
selecting the smallest-degree nodes. However, in the middle and final thirds, the percentage of smallest-degree

Under review as submission to TMLR

node selections increases substantially. This suggests that while degree-based greedy heuristics may appear
shortsighted initially, they are highly effective in the later stages of solution construction. Interestingly, LwD,
which performs the best among learning-based methods tested in our setting, also shares this pattern.

As for PCQO and DIFUSCO, they show consistently low percentages of smallest-degree node selections throughout
the serialization, particularly on ER graphs.

Through serialization, we observe distinct differences in node selection patterns among algorithms. Our
findings suggest that Al-based methods might fail to utilize (PCQ0O and DIFUSCO) or emphasize too much
(LTFT) on simple yet highly effective heuristics, such as greedily selecting the smallest-degree node, which
may partly explain their performance limitations.

In Appendix we perform a pseudo-natural serialization for LwD. LwD is also a non-backtracking algorithm
like LTFT, but it does not have a “natural serialization" like LTFT (Section because it chooses several
nodes in a step. The pseudo-natural serialization performs serialization in each step of LwD. The results in
Figure [6] align with our “counterfactual" serialization results here.

4.3 Incorporating local search to improve solution

In the previous sections, we show that solutions generated by Al-based algorithms generally differ from
those produced by degree-based greedy methods, which may explain their inferior performance on MIS
problems. A natural idea is to enhance these solutions with simple heuristics, such as local search. Local
search post-processing has also been used for Al-algorithms in previous works (Ahn et al.; |2020; Bother et al.)
2022]).

We applied the 2-improvement local search (Andrade et al., [2012)) (details in [B.7]), which is used in KaMIS, as
a post-processing step to all algorithms (except OnlineMIS and ReduMIS since they already has local search),
and the resulting performance improvements are presented in Table [}

Table 5: Incorporating local search as a post-processing procedure on selected ER graphs. We
add 2-improvement local search for the algorithm tested. We report the performance after the local search
and the improvement from local search in (). Full results for ER and BA graphs in Table @

Heuristics GPU-acc Learning-based
(n,d) Deg-Greedy OnlineMIS ReduMIS iSCO PCQO LwD LTFT DIFUSCO
1000,30 | 152.75 (1.75) 158.88 163.75 | 163.50 (0) 159.13 (0.5) | 158.62 (0.24) 151.38 (1.38) 150.62 (6.87)
1000,100 | 60.75 (0.13) 64.75 66.63 66.50 (0) 60.88 (0.75) | 64.12 (0.24) 61.88 (1.00) 57.88 (2.50)
3000,30 | 456.12 (4.24) 480.88 493.13 | 491.62 (0) 469.75 (5.5) | 474.00 (0.75) 454.38 (5.38) 442.75 (29.37)

As shown in Table [5] algorithms like PCQD and DIFUSCO benefit significantly more from the local search
post-processing compared to others, such as Deg-Greedy and LwD. This observation aligns with our earlier
findings: If the solution after serialization exhibits a high percentage of smallest-degree node selections in the
later stages, there is relatively little room for improvement through local search. Conversely, if the solution
after serialization shows a low percentage of smallest-degree node selections, there is greater potential for
improvement via local search.

In addition, although all algorithms except 1SCO have improvements after local search, they still perform
worse than ReduMIS in most cases.

In summary, our analysis highlights a promising direction for designing machine learning-based combinatorial
optimization algorithms. Rather than relying solely on end-to-end methods like PCQO or DIFUSCO, incorporating
classical heuristics, such as greedily selecting the smallest-degree node, into the overall algorithm may yield
better results. One potential approach could involve using machine learning algorithms to identify a small
subset of nodes, followed by a degree-based greedy method to complete the solution.

Under review as submission to TMLR

5 Discussion

5.1 Assessing Potential Biases in Graph Choices

A potential concern is that Erdés-Rényi (ER) and Barabési-Albert (BA) graphs are biased evaluation targets
because simple greedy heuristics are ostensibly already effective on them. However, our results do not
support this claim. As shown in Tables [1|and [2] the simple degree-based greedy baseline (Deg-Greedy) lags
significantly behind state-of-the-art solvers like ReduMIS and OnlineMIS. While AT methods (e.g., LTFT) can
learn to mimic greedy heuristics, they are consistently outperformed by classical solvers.

We also included RB graphs (Model RB) in our evaluation, which are widely considered difficult due to
structured randomness (Zhang et al., |2023)). As detailed in Table |3} ReduMIS and OnlineMIS consistently
outperform the best Al-inspired methods even on these intrinsically “hard” graphs, demonstrating that the
performance gap persists on various types of graphs.

Finally, we prioritized the ER and BA families for this study primarily because they served as the standard
benchmarks in the existing papers proposing the Al-based solvers we evaluate. By adhering to these
established benchmarks, we demonstrate our primary point that previous works overstated the power of
Al-based methods on their own chosen benchmarks.

Furthermore, maintaining this focus allowed us to conduct detailed experiments that systematically vary
graph size (N) and average degree (d/m). This analysis was crucial for revealing why AI methods often
degrade to simple greedy heuristics as density increases, a trend that persists across scales. We also note that
MISBench (Bother et all 2022) tested learning-based methods on a wider variety of graph types without this
systematic variation, but similarly found no decisive advantage for AT methods.

5.2 Perspective for theoreticians: Empirical performance vs asymptotic conjecture

For theoretical analysis for MIS on ER graphs and regular graphs, see |Coja-Oghlan & Efthymioul (2015));
Wormald et al.| (1999)); Barbier et al.| (2013)); Gamarnik & Sudan| (2014). In ER graphs with n nodes and

average degree d, the MIS has size 2"};“1 for asymptotically large n and d, and simplest random greedy

achieves half-optimal at % (Grimmett & McDiarmidl [1975)). Yet, there is no known polynomial-time

algorithm which can achieve MIS size (1+¢) %“l‘d for any constant € and it is conjectured that polynomial-time
algorithms cannot do better than (1 + o(1)) 24 (Coja-Oghlan & Efthymiou, [2015). Thus it is natural to
measure the goodness of an algorithm by the ratio of the MIS size obtained to %. This ratio can faciliate
comparison across different n and d’s.

Figure [3| plots this ratio for several algorithms. (Plots for all algorithms in Appendix) Surprisingly for
ReduMIS and OnlineMIS this ratio is consistently larger than 1.2 and often larger than 1.3 even for fairly
large n,d. One possible reasoning for our finding is that the graphs we are able to evaluate empirically are
very far from the asymptotic regime where the conjecture might be applicable (i.e., if it is true). We note that
the proofs for Theorem 2 in the original paper had to assume d > exp(20) and thus n > exp(40), much larger
than any practical sizes of graphs. Our findings suggest that indeed the conjecture itself may not hold for
graphs one may encounter in real life. Of course this does not disprove the conjecture per se since it concerns
asymptotically large n and d, but our results could encourage further analysis and potential collaboration
between researchers on theoretical and empirical aspects of MIS on random graphs.

6 Related Works

Classical and heuristic methods for MIS Classical methods for MIS range from simple greedy algorithms
to advanced solvers like KaMIS which involves a number of heuristics. There are various existing heuristics
for MIS, such as reduction techniques (Butenko et al. [2002; Xiao & Nagamochi, [2013} Akiba & Iwatal
2016), local search (Andrade et al., [2012), and evolutionary algorithms (Back & Khuri, {1994} |Borisovsky
& Zavolovskaya), 2003; [Lamm et al., |2015]). KaMIS (Lamm et al., |2017; [Dahlum et al. 2016) was developed
based on these heuristics. In addition, MIS can be formulated into a binary integer programming problem

10

Under review as submission to TMLR

ReduMIS OnlineMIS Deg-Greed
10 10 10 14
30 30 30 o
] =)
1.3%
- 100 K
300 300 o
12%
le3 le3 o
3e3 3e3 1.1

Figure 3: Heatmap for ratios of MIS size to % on ER graphs. We find that the ratio for ReduMIS and
KaMIS is consistently larger than 1.2, suggesting that ReduMIS and KaMIS might surpass the conjectured
upper bound (Coja-Oghlan & Efthymiou, 2015).

(Nemhauser & Trotter Jr}, |1975), which can be solved by the state-of-art integer programming solver Gurobi
|Gurobi Optimization, LLC| (2024).

Machine learning for combinatorial optimization In recent years, various ML-based algorithms have
been developed for the MIS problem and most of them are based on graph neural networks (GNNs). Some of
them using supervised learning (Li et al. |2018} [Sun & Yang, [2023; [Li et al 2024) and requires labelling
training data using classical solvers. Alternatively, those based on reinforcement learning (Khalil et al., 2017}
Ahn et al.| 2020} (Qiu et al; 2022; [Sanokowski et al) 2023) and other unsupervised learning objectives (Karalias
& Loukas| [2020; Sun et al., 2022} |Zhang et al., 2023; |Sanokowski et al., 2024)) do not require labeled training
data. [Zhang et al|(2023)) (LTFT) uses GFlowNets (Bengio et al., 2021a) which is related to reinforcement
learning. Notably, |Ahn et al. (2020); [Sanokowski et al.| (2023)); Zhang et al. (2023) model MIS problem as a
Markov Decision Process (MDP) and generate the solution step-by-step (autoregressively). While
fixes the order of node updates, [Ahn et al.| (2020) (LwD) and [Zhang et al| (2023 (LTFT) choose
which node to update at each step so that they have a “natural" or “pseudo-natural" serialization and most
suitable for our analysis in Section 4.1 and Appendix In addition, Sun & Yang| (2023) (DIFUSCO) and
[Sanokowski et al| (2024) (DiffUCO) both utilizes diffusion model.

Most of the algorithms above also work on other types of graph CO problems, such as Maximum Cut,
Maximum Vetex Cover, and Minimum Dominating Set. Some (Khalil et al., 2017 |Qiu et al., 2022} |Sun &/
2023) also work for the Travelling Salesman Problem (TSP).

Other GPU-based solvers for CO Recently, some non-learning GPU-based solvers for CO problems
have been developed. [Sun et al.| (2023) developed a GPU-accelerated sampling based method which works on
MIS, Max Cut, and TSP. [Schuetz et al.| (2022); Ichikawa| (2023) uses GNNs conduct non-convex optimization
for MIS without machine learning. |Alkhouri et al.| (2024]) uses direct quadratic optimization without GNNs
for MIS.

Benchmarks for MIS [Bother et al.| (2022)) provides a benchmark for several MIS algorithms including
Gurobi (Gurobi Optimization, LLC, 2024), KaMIS (ReduMIS) (Lamm et all [2017)), Intel-Treesearch
2018)), DGL-Treesearch, and LwD |Ahn et al] (2020). It is the only MIS benchmark we know about including
recent Al-inspired method, though it only focuses its comparsion for learning-based tree search algorithms. It
suggests that LwD is better than learning-based tree search algorithms. This aligns with our results where LwD
performs the best among learning-based algorithms. This benchmark covers various types of random graphs
and several real-world datasets, so it is a good reference benchmark for comparison over different types of
graphs. Though unlike our benchmark, it does not provide comparison across various size and density for
random graphs. Our benchmark fills this gap and provides a more detailed comparison. We also include
many newer Al-inspired algorithms, and greedy algorithms which leads to detailed analysis like serialization.

|Angelini & Ricci-Tersenghi| (2023]) showed that one specific GNN-based MIS algorithm (Schuetz et al., [2022)
failed to surpass Deg-Greedy on regular graphs. Although their title ("Modern graph neural networks do

11

Under review as submission to TMLR

worse...") appears to suggest a broad conclusion about GNN-based methods, their empirical evaluation was
limited to that specific algorithm.

The algorithm papers also report experiments comparing with previous algorithms, but those comparisons
usually only focus on a few datasets and a few selected baselines.

7 Conclusion and Takeaways

Given the great interest in designing “general purpose Al reasoners”, it is interesting to check how well
recent Al-based methods have fared in combinatorial optimization, a field with a long history of ingenious
hand-designed algorithms. Our careful empirical comparisons on the MIS problem showed that none of the new
Al-inspired methods outperform ReduMIS, the best CPU-based MIS solver. Strikingly, this underperformance
holds even on in-distribution random graphs, a setting arguably ideal for machine learning-based approaches.
As the graphs get larger or denser, the superiority of ReduMIS becomes more evident, whereas several
Al-inspired algorithms degrade to performing no better than the simple degree-based greedy heuristic
(Deg-Greedy).

A key contribution of this work is the introduction of serialization, a novel analysis technique to deconstruct
and compare the decision-making processes of different algorithms. This analysis revealed that some Al-
inspired methods, such as the GFlowNet-based LTFT, end up reasoning very similarly to the simple Deg-Greedy
heuristic, which helps explain their performance limitations. More importantly, serialization uncovered a
distinct pattern shared by high-performing algorithms like OnlineMIS, ReduMIS, iSCO, and LwD: they deviate
from simple greedy choices in the initial stages but align with them in the later stages of constructing
a solution. This suggests serialization is a powerful tool for discovering the intrinsic characteristics of
high-quality solutions, which can provide overlooked insights for the principled design of future algorithms.

Serialization-based analysis also shows the importance of algorithmic strategies in understanding this
performance gap. One-shot methods like DIFUSCO and PCQO handicap themselves by foregoing the benefits
of local search, whereas non-backtracking methods like Deg-Greedy and LTFT handicap themselves by never
deleting vertices from the independent set being built. In contrast, KaMIS performs a full local search, allowing
it to iteratively add and delete vertices. Interestingly, the best-performing learning-based algorithm, LwD,
operates in a middle ground by selecting several nodes at a time, which may allow a closer approximation to
local search. And while post-processing with local search improves the solutions of most Al-inspired methods,
they still fail to match the performance of ReduMIS.

These findings on MIS underscore broader challenges within Al for combinatorial optimization, calling for
a rethinking of the community’s approach. We propose that future work should prioritize the following
directions:

e Principled Integration of Classical Heuristics: Researchers should move beyond treating
classical solvers as black-box baselines and instead analyze, learn from, and integrate their most
effective components. A promising direction is to design hybrid models that use AI to guide classical
heuristics—for instance, by using a learned model to identify a subset of nodes and select suitable
heuristics (such as reduction, local search, or degree-based greedy) to apply. Previous work by
Garmendia et al|(2023) demonstrates the potential of such neural improvement heuristics, and we
advocate for further exploration in this direction.

e Rigorous and Comprehensive Benchmarking: Future work must establish more realistic
benchmarks that evaluate algorithms on a wider range of instance sizes and densities. They are
necessary for meaningful comparisons and provide important guidance for future developments. The
evaluations should also report crucial computational costs, such as GPU memory usage, to ensure
fair comparisons against efficient CPU-based solvers that are often more scalable in practice.

e Deeper Understanding of Learning Limitations: A concerted effort is needed to understand
theoretical barriers like|Gamarnik| (2023)) for GNN-based methods. Meanwhile, expanding on empirical
tools like serialization to pinpoint specific failure modes is also important for guiding the development
of new algorithms.

12

Under review as submission to TMLR

References

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent sets. In
International conference on machine learning, pp. 134-144. PMLR, 2020.

Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/fpt algorithms in practice: A case study of
vertex cover. Theoretical Computer Science, 609:211-225, 2016.

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex networks. Reviews of modern
physics, 74(1):47, 2002.

Ismail Alkhouri, Cedric Le Denmat, Yingjie Li, Cunxi Yu, Jia Liu, Rongrong Wang, and Alvaro Ve-
lasquez. Dataless quadratic neural networks for the maximum independent set problem. arXiv preprint
arXiv:2406.19532, 2024.

Ismail R Alkhouri, George K Atia, and Alvaro Velasquez. A differentiable approach to combinatorial
optimization using dataless neural networks. arXiv preprint arXiv:2203.08209, 2022.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An unsupervised
differentiable approach. In International Conference on Learning Representations, 2019.

Diogo V Andrade, Mauricio GC Resende, and Renato F Werneck. Fast local search for the maximum
independent set problem. Journal of Heuristics, 18:525-547, 2012.

Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than classical
greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nature
Machine Intelligence, 5(1):29-31, 2023.

Thomas Back and Sami Khuri. An evolutionary heuristic for the maximum independent set problem.
In Proceedings of the first IEEE conference on evolutionary computation. IEEE World Congress on
Computational Intelligence, pp. 531-535. IEEE, 1994.

Schirin Baer, Jupiter Bakakeu, Richard Meyes, and Tobias Meisen. Multi-agent reinforcement learning for job
shop scheduling in flexible manufacturing systems. In 2019 Second International Conference on Artificial
Intelligence for Industries (AI4I), pp. 22-25. IEEE, 2019.

Nikhil Bansal. Approximating independent sets in sparse graphs. In Proceedings of the twenty-sixzth annual
ACM-SIAM symposium on Discrete algorithms, pp. 1-8. SIAM, 2014.

Jean Barbier, Florent Krzakala, Lenka Zdeborovéa, and Pan Zhang. The hard-core model on random graphs
revisited. In Journal of Physics: Conference Series, volume 473, pp. 012021. IOP Publishing, 2013.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow network
based generative models for non-iterative diverse candidate generation. Advances in Neural Information
Processing Systems, 34:27381-27394, 2021a.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization: a
methodological tour d’horizon. European Journal of Operational Research, 290(2):405-421, 2021b.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. The Journal of Machine Learning Research, 24(1):10006-10060, 2023.

Béla Bollobas and Béla Bollobds. Random graphs. Springer, 1998.

Ravi Boppana and Magnts M Halldérsson. Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2):180-196, 1992.

Pavel A Borisovsky and Marina S Zavolovskaya. Experimental comparison of two evolutionary algorithms for
the independent set problem. In Workshops on Applications of Evolutionary Computation, pp. 154—164.
Springer, 2003.

13

Under review as submission to TMLR

Nicolas Bourgeois, Bruno Escoffier, Vangelis T Paschos, and Johan MM van Rooij. Fast algorithms for max
independent set. Algorithmica, 62:382-415, 2012.

Sergiy Butenko, Panos Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk. Finding maximum
independent sets in graphs arising from coding theory. In Proceedings of the 2002 ACM symposium on
Applied computing, pp. 542-546, 2002.

Maximilian Bother, Otto Kiflig, Martin Taraz, Sarel Cohen, Karen Seidel, and Tobias Friedrich. What’s
wrong with deep learning in tree search for combinatorial optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2022.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar Velickovic.
Combinatorial optimization and reasoning with graph neural networks. Journal of Machine Learning
Research, 24(130):1-61, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
Adwvances in neural information processing systems, 32, 2019.

Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random Structures &
Algorithms, 47(3):436-486, 2015.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Asian conference on machine learning, pp.

465-480. PMLR, 2020.

Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck.
Accelerating local search for the maximum independent set problem. In Experimental Algorithms: 15th
International Symposium, SEA 2016, St. Petersburg, Russia, June 5-8, 2016, Proceedings 15, pp. 118-133.
Springer, 2016.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with combinatorial
actions: An application to vehicle routing. Advances in Neural Information Processing Systems, 33:609-620,
2020.

Jian Ding, Allan Sly, and Nike Sun. Maximum independent sets on random regular graphs. Acta Mathematica,
217(2):263-340, 2016.

Dingzhu Du and Panos M Pardalos. Handbook of combinatorial optimization, volume 4. Springer Science &
Business Media, 1998.

P. Erdos and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290, 1959.

David Gamarnik. The overlap gap property: A topological barrier to optimizing over random structures.
Proceedings of the National Academy of Sciences, 118(41):62108492118, 2021.

David Gamarnik. Barriers for the performance of graph neural networks (gnn) in discrete random structures.
Proceedings of the National Academy of Sciences, 120(46):¢2314092120, 2023.

David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. In Proceedings of
the 5th conference on Innovations in theoretical computer science, pp. 369-376, 2014.

Andoni I Garmendia, Josu Ceberio, and Alexander Mendiburu. Neural improvement heuristics for graph
combinatorial optimization problems. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115-1145,
1995.

Katayoon Goshvadi, Haoran Sun, Xingchao Liu, Azade Nova, Ruqi Zhang, Will Grathwohl, Dale Schuurmans,
and Hanjun Dai. Discs: a benchmark for discrete sampling. Advances in Neural Information Processing
Systems, 36, 2024.

14

Under review as submission to TMLR

Geoffrey R Grimmett and Colin JH McDiarmid. On colouring random graphs. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 77, pp. 313-324. Cambridge University Press, 1975.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi. com.

Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs.
SIAM Journal on Computing, 31(5):1608-1623, 2002.

Karla L Hoffman. Combinatorial optimization: Current successes and directions for the future. Journal of
computational and applied mathematics, 124(1-2):341-360, 2000.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. arXiv preprint
arXiw:2309.16965, 2023.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for com-
binatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:6659-6672,
2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv preprint
arXiv:1808.08475, 2018.

Vitaly Kurin, Saad Godil, Shimon Whiteson, and Bryan Catanzaro. Can g-learning with graph networks
learn a generalizable branching heuristic for a sat solver? Advances in Neural Information Processing
Systems, 33:9608-9621, 2020.

Sebastian Lamm, Peter Sanders, and Christian Schulz. Graph partitioning for independent sets. In
International Symposium on Ezrperimental Algorithms, pp. 68-81. Springer, 2015.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato Werneck. Finding near-optimal
independent sets at scale. Journal of Heuristics, 23(4), 2017.

Gilbert Laporte. The traveling salesman problem: An overview of exact and approximate algorithms. European
Journal of Operational Research, 59(2):231-247, 1992.

Ted G Lewis. Network science: Theory and applications. John Wiley & Sons, 2011.

Kaiwen Li, Tao Zhang, Rui Wang, Yuheng Wang, Yi Han, and Ling Wang. Deep reinforcement learning
for combinatorial optimization: Covering salesman problems. IEEE transactions on cybernetics, 52(12):
1314213155, 2021.

Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wangian Luo, Junhua Huang, Hui-Ling Zhen, Mingxuan
Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula generation and
a strong structure-hardness-aware baseline. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4414-4425, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to gradient
search in testing for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024.

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems. Advances
in Neural Information Processing Systems, 35:25573-25585, 2022.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional networks
and guided tree search. Advances in neural information processing systems, 31, 2018.

Chun-Cheng Lin, Der-Jiunn Deng, Yen-Ling Chih, and Hsin-Ting Chiu. Smart manufacturing scheduling
with edge computing using multiclass deep q network. IEEE Transactions on Industrial Informatics, 15(7):
4276-4284, 2019.

15

https://www.gurobi.com

Under review as submission to TMLR

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann.
Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.graphlearning.iol

George L Nemhauser and Leslie E Trotter Jr. Vertex packings: structural properties and algorithms.
Mathematical Programming, 8(1):232-248, 1975.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and complexity.
Courier Corporation, 1998.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
optimization problems. Advances in Neural Information Processing Systems, 35:25531-25546, 2022.

Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani. Citation networks. Models of science dynamics:
Encounters between complezity theory and information sciences, pp. 233-257, 2011.

Mustazee Rahman and Balint Virdg. Local algorithms for independent sets are half-optimal. Annals of
Probability, 45(3), 2017.

Pedro Sanchez, Xiao Liu, Alison Q O’Neil, and Sotirios A Tsaftaris. Diffusion models for causal discovery via
topological ordering. arXiv preprint arXiv:2210.06201, 2022.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational annealing on
graphs for combinatorial optimization. Advances in Neural Information Processing Systems, 36:63907-63930,
2023.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for unsupervised
neural combinatorial optimization. In Forty-first International Conference on Machine Learning, 2024.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intelligence, 4(4):367-377, 2022.

Haoran Sun, Etash Kumar Guha, and Hanjun Dai. Annealed training for combinatorial optimization on
graphs. In OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop), 2022.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting sampling for
combinatorial optimization. In International Conference on Machine Learning, pp. 32859-32874. PMLR,
2023.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
Advances in Neural Information Processing Systems, 36:3706-3731, 2023.

Nicholas C Wormald. Analysis of greedy algorithms on graphs with bounded degrees. Discrete Mathematics,
273(1-3):235-260, 2003.

Nicholas C Wormald et al. The differential equation method for random graph processes and greedy algorithms.
Lectures on approzimation and randomized algorithms, 73(155):0943-05073, 1999.

Mingyu Xiao and Hiroshi Nagamochi. Confining sets and avoiding bottleneck cases: A simple maximum
independent set algorithm in degree-3 graphs. Theoretical Computer Science, 469:92-104, 2013.

Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. Journal of Artificial
Intelligence Research, 12:93-103, 2000.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 1365-1374, 2015.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant systems
for combinatorial optimization. Advances in Neural Information Processing Systems, 36, 2024.

16

www.graphlearning.io

Under review as submission to TMLR

Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, and Jure Leskovec. G2sat: Learning to
generate sat formulas. Advances in neural information processing systems, 32, 2019.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch for job
shop scheduling via deep reinforcement learning. Advances in neural information processing systems, 33:
1621-1632, 2020.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan. Let the
flows tell: Solving graph combinatorial problems with gflownets. Advances in neural information processing
systems, 36:11952-11969, 2023.

Zizhen Zhang, Hong Liu, MengChu Zhou, and Jiahai Wang. Solving dynamic traveling salesman problems
with deep reinforcement learning. IFEE Transactions on Neural Networks and Learning Systems, 34(4):
2119-2132, 2021.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforcement learning
with lin-kernighan-helsgaun algorithm for the traveling salesman problem. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pp. 12445-12452, 2021.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
optimization for structure learning. Advances in neural information processing systems, 31, 2018.

Liwei Zhong and Guochun Tang. Preface: Combinatorial optimization drives the future of health care.
Journal of Combinatorial Optimization, 42:675—-676, 2021.

Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learning. In International
Conference on Learning Representations, 2020.

Appendices

[A__More Related Works| 18

(B Detailed Experiment Setup| 19
IB.1 Algorithm Pseudo-code for degree-based serialization| 19
B2 Dafaseld oo 19
IB.3 Hardware configurations| Lo 20
IB.4 Classical CPU-based algorithms|. 20
IB.5 GPU-accelerated non-learning algorithms| o oL 21
IB.6 Learning-based algorithms|. o 22
IB.T Localsearchl. o . e e 23

|[C More Experiment Results| 24
IC.1 Larger graphs| e 24
IC.2 Serializationl« . e 24
|IC.3 Comparison between Deg-Greedy and LwD| 28
IC4 Localsearchl. o . o L e e 29
IC.5 More results on the ratiol. L L 29

Under review as submission to TMLR

A More Related Works

More on theoretical results for MIS For random ER graphs with number of nodes n and average
degree d, the upper bound of MIS size is 2”gllnd for asymptotically large n and d. dCoja—Oghlan & EfthymiouL
|2015D. |Grimmett & McDiarmid| 41975|) proves that the simplest Ran-Greedy can achieve half-optimal at %‘?d
on random ER graphs. Despite that, there is no known existing polynomial algorithm which can reach MIS
size of (1 + e)% for any constant e for asymptotically large n and d. QCOja—Oghlan & Efthymiou|, |2015D.
[Coja-Oghlan & Efthymioul (2015) also suggests that the reason is likely independent sets of size larger than
(1+ e)% forms an intricately ragged landscape, where local algorithms will stuck. |Gamarnik & Sudan|
(2014); Rahman & Virag) (2017)) proves that for local algorithms (which is defined to only use information
from a constant neighborhood of a node to decide whether the node is in the independent set) are at most
half optimal for independent set on random d-regular graphs. |Gamarnik & Sudan| (2014]) suggests this is
due to a property of the MIS problem, which they denote as the Overlap Gap Property (OGP) (Gamarnik
[2021)). |Gamarnik| (2023) suggests that graph neural networks (GNNs) are also a type of local algorithms
and thus being limited by OGP. While most Al-inspired MIS algorithms use GNN, the proof only applies to
algorithms use GNNs as the only component to find solutions like (Schuetz et all,[2022)), so it may not apply
directly to more complicated algorithms like those tested in our paper. Yet, it may still suggests a reason
why GNN-based algorithms (including most Al-inspired algorithms) cannot outperform classical heuristics
like KaMIS.

In addition, |Barbier et a1.| 42013[) provides a conjectured tighter upper bound than W for d-regular graphs
using the hard-core model in physics. [Ding et al| (2016) proves a similar tighter upper bound for d-regular

graphs. (2003) gives average-case performance for Deg-Greedy on d-regular graphs.

More on classical heuristics Over the past few decades, significant progress has been made in tackling
NP-hard combinatorial optimization (CO) problems by developing approximation algorithms and heuristic
methods. Approximation algorithms provide provable guarantees on solution quality and have led to
groundbreaking results for classical problems, such as the Maximum Independent Set (MIS), Traveling
Salesperson Problem (TSP), and Maximum Cut (Boppana & Hallddrsson, 1992} |Laporte, 1992; Goemans &
[Williamson, [1995)).

As we mentioned in Section [6] there are various existing heuristics for MIS. For exmaple, reduction techniques
reduce the graph into smaller instances. |[Akiba & Iwatal (2016) and Xiao & Nagamochi| (2013 have shown
a variety of reduction techniques which work well for MIS problem. Butenko et al.| (2002); Bourgeois et al.|
uses reduction techniques to develop efficient exact algorithms for MIS. Local search improves an
existing independent set by removing a small number of nodes and insert other eligible nodes.
gives an efficient local search algorithm for MIS and has been used as a subprocess for several MIS
solvers. Evolutionary algorithms combine several existing solutions into a new solution. Examples include
Back & Khuri (1994)); Borisovsky & Zavolovskayal (2003); Lamm et al.| (2015). KaMIS (Lamm et al., 2017}
Dahlum et al., [2016) was developed based on many of these techniques above.

In addition, the MIS problem can also be relaxed into semi-definite programming (SDP), which leads to
several approximation algorithms (Halperin| |2002; Bansal, [2014)).

More on AI methods for combinatorial optimization In addition to Section [6] we note that
et al.| (2022); Sanokowski et al.| (2023} |2024) use annealing techniques. |Sun & Yang| (2023) was developed
based on [Qiu et al.| (2022)), and [Sanokowski et al.| (2024]) was based on [Sanokowski et al.| (2023)). [Sanokowskil
et al. can also be considered as an extension of [Karalias & Loukas| (2020)).

Besides MIS, Maximum Cut, and TSP, people also considered to use Al-Inspired methods for other com-
binatorial optimization problems, including Vehicle Routing Problems (including TSP) (Kool et al., 2018}
|Chen & Tian, [2019; Delarue et al., [2020; [Li et all |2021} [Zheng et al.| 2021; [Ye et al., 2024), Job Scheduling
Problems (Lin et al., 2019; Baer et al., 2019; |Zhang et al., |2020; Ye et al., |2024), Boolean Satisfiability
(SAT) (Amizadeh et al., [2019; |You et al., [2019; [Kurin et al., [2020; |Li & Si, [2022; [Li et all, [2023), and Casual
Discovery (Zheng et al., 2018} |Zhu et al., [2020} Sanchez et al., 2022).

18

Under review as submission to TMLR

B Detailed Experiment Setup

B.1 Algorithm Pseudo-code for degree-based serialization

Please refer to Algorithm [1| for the pseudo-code for degree-based serialization, mentioned in Section

Algorithm 1 Degree-based solution serialization

Require: The graph G(V, &), the independent set 7
: // Maintain the copy
G+ 6T «+1T
// Initialize empty ordered list
L=
while 7' # ¢ do
pick v € 7’ with smallest degree in G’, break ties randomly
L+ LU{v}
Delete {v} UNeighbors(v) from G’, delete v from 7'
end while
return Ordered list £

H
@

B.2 Datasets

For synthetic graphs, we test 8 graphs for each parameter (n,d) or (n,m). We test on 100 graphs for
real-world datasets. For learning-based algorithms, we use 4000 training graphs generated using the same
parameter (in case of random graphs) or drawn 4000 graphs from the same real-world dataset.

Erdés-Renyi (ER) graph ER graphs (Erdos & Rényi, [1959)) are random graphs where edges are connected
uniformly at random (with a fixed probability or number of edges). We vary 2 parameters for ER graphs,
number of nodes n and average degree d, by fixing number of edges at %d. ER graphs are fundamental objects
in network sciences (Lewis, [2011)) and random graph theory (Bollobas & Bollobas, |1998|). There are also
theoretical analysis and conjecture upper bound for MIS on ER graphs (Coja-Oghlan & Efthymioul 2015).
Previous works (Bother et al., 2022; |Ahn et all 2020; Sun & Yang), 2023} |Zhang et al., |2023; |Alkhouri et al.,

2024) used it as test graphs for MIS, though without varying parameters as we did.

ER graphs have 2 parameters: the number of nodes n and the average degree d. For graphs with given
(n,d) We generate them by choosing M = %d edges uniformly at random between n nodes. This is the
Erdds-Renyi’s G(n, M) model.

There is also G(n,p) model for ER graphs, which is also used widely. They behave similarly for many graph
properties to G(n, M) models when M = (g)p and we expect the emipirical results for MIS problems will
also be very similar.

For the main experiments, we use ER graphs with n = {100,300,1000,3000,10000},d =
{10, 30, 100, 300, 1000, 3000} with d < n as shown in Table We also test on larger graphs with
n = {30000,1 x 10°,3 x 10°,1 x 10%,3 x 10°} as shown in Table Due to computational and time
limits, we could only obtain results from classical CPU-based algorithms for these large graph, and only
sparse graphs for very large n > 1 x 106.

Barabasi—Albert (BA) graph Barabdsi-Albert (BA) graphs (Albert & Barabasi, 2002) are random
graphs generated by a probabilistic growth process, whereby new nodes preferentially attach to existing
nodes with higher degrees, mimicking real-world networks such as Internet, citation networks, and social
networks (Albert & Barabasi, 2002; Radicchi et al., [2011)). For BA graphs, we vary 2 parameters: number of
nodes n and parameter m (not number of edges). The average degree of BA graphs can be approximated as
2m.

BA graphs also have 2 parameters: the number of nodes n and the generation parameter m, with n > m.
For a given (n,m), the generation process initializes with m nodes, and then add 1 node at each step. When

19

Under review as submission to TMLR

adding a new node, m neighbors of the new node are sampled from the existing nodes, with the probability
of the current degree of the nodes. The average degree of BA graph with given (n,m) can be computed as

For the main experiments, similar to ER graphs, we also use n = {100, 300, 1000, 3000, 10000}. Since the
average degree d =~ 2m, we use m = {5, 15,50, 150, 500, 1500} with 2m < n.

RB graphs RB graphs are derived from Model RB (Xu & Li, [2000), a random constraint satisfaction
problem (CSP) model. RB graphs are considered difficult instances for MIS due to their structured randomness
and high solution hardness.

We use two datasets from |Zhang et al.| (2023) (also used in [Sanokowski et al.| (2024)), RB-small (200-300
nodes) and RB-large (800-1200 nodes), to benchmark learning-based solvers.

Real-world graphs We pick REDDIT-MULTI-5K and COLLAB (Yanardag & Vishwanathan| 2015) from
TUDataset website (Morris et al., 2020]), since they have enough graphs for training and graph sizes not too
small. REDDIT-MULTI-5K has 508.52 average nodes and 594.87 average edges. They are mostly very sparse
graphs. COLLAB has 74.49 average nodes and 2457.78 average edges. They are mostly small but dense
graphs.

Since we need at least 4100 graphs to train and test our algorithms and the graphs should not be too small, it
is difficult to find such datasets. Fortunately, Morris et al.| (2020) provides a website www.graphlearning.io
which includes many graph datasets prepared by them or collected from other works. Although most of the
datasets are still too small or having too small graphs, we are able to find 2 datasets: REDDIT-MULTI-5K
and COLLA, both from |Yanardag & Vishwanathan| (2015). REDDIT-MULTI-5K has 4999 graphs with
average nodes 508.52 and average edges 594.87, so the graphs are generally very sparse. COLLA has 5000
graphs with average nodes 74.49 and 2457.78, so they are denser but smaller graphs.

We were not able to find real-world datasets with enough size of more larger and denser graphs, which are
generally more difficult for MIS algorithms. The dataset DIMACS used in [Bother et al.| (2022)) contains such
graphs but they only have 37 graphs which is not enough for training.

B.3 Hardware configurations

The CPU we use is either Intel Xeon Processor E5-2680 v4 @ 2.40GHz or Intel Xeon Silver 4214 Processor @
2.20GHz. The GPU we use is Nvidia Tesla A100 80GB when we refer to time limit or time cost. For small
graphs when the GPU memory limit and time limit is not reached, we also use Nvidia RTX A6000 48GB and
Nvidia RTX 2080Ti 11GB.

B.4 Classical CPU-based algorithms

Ran-Greedy and Deg-Greedy Deg-Greedy (Degree-based Greedy) is as follows: Starting from an empty set.
Select a node with the lowest degree of the graph (if there exists several nodes of the lowest degree, we pick
one uniformly at random) and add it to the set. Then remove the node and all its neighbors from the graph.

Ran-Greedy (Random Greedy) is as follows: Starting from an empty set. Select a node from the graph
uniformly at random and add it into the set. Then remove the node and all its neighbors from the graph.
The only difference between it and Deg-Greedy is that the choice of node is completely random.

They are both non-backtracking algorithms.

We did not include results of Ran-Greedy in the main paper because its performance is significantly lower
than all other algorithms. It can be considered as a baseline and has theoretical significance, since it has
provable guarantee for random graphs (Grimmett & McDiarmidl [1975]).

In order to match the best-of-20 sampling we used for the learning-based-algorithms, we also ran Deg-Greedy
for 20 times and report the best results in the main experiments (n < 10000).

20

www.graphlearning.io

Under review as submission to TMLR

We wrote the script in Python and ran it on a single CPU thread for each graph with a time limit of 24hrs,
but it actually run less than 1hr on smaller graphs like n < 3000. We gave 32GB memory for graphs with
n < 10000 and 64GB memory for larger graphs. Since there are much more efficient implementations like
C++, the efficiency of the greedy algorithms is not very relevant.

KaMIS (OnlineMIS and ReduMIS) KaMIS (Karlsruhe Maximum Independent Sets) (Lamm et al. 2017
(https://karlsruhemis.github.io/) is the state-of-art heuristic solver for MIS and has been used as a
baseline in many previous works. It provides 2 algorithms for the MIS problem: ReduMIS (Lamm et al.; 2017)
and OnlineMIS (Dahlum et al. 2016)).

We can provide a time-limit for both algorithm. OnlineMIS will use up the time given while ReduMIS will
end on its own when it finds appropriate. In general, ReduMIS provides better results when given enough
time, where OnlineMIS is faster to reach a solution of reasonable quality for large and dense graphs.

We ran both algorithm on a single CPU thread for each graph with a time limit of 24hrs, because our
benchmark focus on performance instead of efficiency. For relatively small graphs (n < 3000), ReduMIS often
require less than 1hr and at most 1.25hrs, and OnlineMIS can also provide answer with the same quality
when giving 1hr time limit. We gave 32GB memory for graphs with n < 10000 and 64GB memory for larger
graphs.

B.5 GPU-accelerated non-learning algorithms

i8C0 iSCO (improved Sampling for Combinatorial Optimization) (Sun et al., [2023) is a GPU-accelerated
sampling-based method. It does not require learning. According to (Sun et al., 2023)), the main benefit is that
it can process a large batch of graphs in parallel thus improve efficiency. While processing a small number of
graphs like in our case (8 test graphs), it still requires significant time, often longer than ReduMIS.

We use the code from the codebase of DISCS (Goshvadi et al., 2024)), which is a follow-up paper for 1SCO, as
iSCO did not provide the codebase. We use 1 80GB A100 GPU to run iSCO with all test graphs together.
The time limit is 96hrs, and the actual time it requires is shorter. It fail to run graphs of size (n = 3000, 1000),
(n = 10000, d = 100), and larger because they require larger than 80GB memory. The code does not support
multi-GPU.

PCQ0 PCQO (Parallelized Clique-Informed Quadratic Optimization) (Alkhouri et al. [2024) is a GPU-
accelerated gradient-based optimization algorithm, which directly optimize on the quadratic loss function of
the MIS problem. The loss function for a graph G = (V, E) and solution vector x is

f(iL’) = Z Ty + 7y Z Lydqy — '7/ Z Ly, (]-)

veV (u,v)EE (u,v)EE’

where F’ is the edge set of the complement graph G’. +v and ' are hyperparameters and there are many
other hyperparameters including learning rate, momentum, etc.

This algorithm is sensitive to hyperparameters and the default hyperparameters lead to bad solution quality
for most of our dataset. Therefore, unlike in other algorithms where we use the default setting, we perform a
hyperparameter tunining. We also did not find a good set of hyperparameters for all ER graphs or all BA
graphs, so we do a grid search of hyperparameters for each dataset (i.e. for each (n,d) pair in ER graphs and
each (n,m) pair in BA graphs).

We use the hyperparamter search range suggested by the authors (Alkhouri et al.| 2024)). We use learning rate
{0.0001, 0.00001, 0.000001}, momentum 0.9, v € {200, 500, 1000, 2000, 5000}, v’ = 1, batch size 256, number
of steps 27000, steps per batch 450. We then report the results obtained from the best set of hyperparameter.
However, for n > 30000, the grid search within this domain does not provide solution with reasonable size
(worse than Ran-Greedy), so we do not report results for larger graphs. Despite that, there may exist a
better set of hyperparamters which could make this algorithm perform well on larger graphs. Automatic
hyperparameter search could significantly improve the usability of this algorithm.

21

https://karlsruhemis.github.io/

Under review as submission to TMLR

We use 1 80GB A100 GPU for all test graphs together with a time limit of 96hrs. It is able to run all
experiments from n < 10000, and often requires shorter time compared to 1SCO and KaMIS.

B.6 Learning-based algorithms

We use 4000 training graphs for each datasets to train our models. Without otherwise noted, all the training
are in-distribution, with respect to a single set of parameters (i.e. (n,d) for ER graphs, (n,m) for BA graphs)
for synthetic graphs.

LwD LwD (Learning what to Defer) (Ahn et al., |2020)) is a reinforcement learning based algorithm which
requires training data to learn the policy. It models the MIS problem as a Markov Decision Process (MDP),
where in each step it selects some (possibly 0, 1, or multiple) nodes to add into the independent set. It is a
non-backtracking algorithm as the added nodes are never taken out. Bother et al.| (2022) also included this
algorithm in their benchmark.

We use the code from Bother et al.| (2022)) since it provides better functionality than the original codebase.
We use the default setting provided by [Bother et al| (2022) in their MIS Benchmark codebase (https:
//github.com/MaxiBoether/mis-benchmark-framework), but change the number of samples to 20 (default
is 10) for test sampling, in order to match the best-of-20 sampling in our benchmark.

We use 1 80GB A100 GPU to train for each datasets and test with the same GPU. The training time limit is
set to 96hrs. The default number of training steps (number of updates to the policy) is 20000. Since LwD
stores checkpoints throughout the process, we still report the test results based on the newest checkpoints for
unfinished experiments if we have the checkpoints which reports meaningful results (better than half of the
results reported by Deg-Greedy). Those results are indicated by * in the tables. The number of steps taken
by those datasets with unfinished experiments is in Table [6]

Table 6: Number of Steps at termination for unfinished LwD experiments

Type of Graphs | Parameters | Number of Steps at termination
(1000, 300) 1500
ER (n,d) (3000, 100) 7200
(1000, 50) 18600
(1000, 150) 9600
BA (n,m) (3000, 15) 9300
(3000, 50) 600

LTFT LTFT (Let the Flows Tell) (Zhang et all |2023) similar to LwD, also model the MIS problem as a MDP
and non-backtracking. The difference is that it only choose 1 node at each step, making it more similar to
Deg-Greedy. The node chosen at each step is chosen by a GFlowNet (Bengio et all |2021a)), which is trained
by in-distribution training data.

We use the default setting provide by |Zhang et al.| (2023)) for training with 20 epochs. By default setting, it
has best-o0f-20 sampling and report the best solution found.

We use 1 80GB A100 GPU to train for each datasets and test with the same GPU. The training time limit
is set to 96hrs. It completes training for all graphs with n < 3000, but larger graphs require larger GPU
memory. The code does not support multi-GPU.

DIFUSCO DIFUSCO (Diffusion Solvers for Combinatorial Optimization) (Sun & Yang) 2023) trains a diffusion
model using supervised learning to produce a solution for the MIS. The diffusion model provides an entire
solution so it is a one-shot algorithm.

22

https://github.com/MaxiBoether/mis-benchmark-framework
https://github.com/MaxiBoether/mis-benchmark-framework

Under review as submission to TMLR

The training data is 4000 graphs for each dataset (1 set of parameter for synthetic graphs). All training is
in-distribution. The training data is labelled by ReduMIS with time limit of 1hr. For graphs we used for
training (n < 3000), ReduMIS gives the same performance compared to a time limit of 24hrs.

We use the default setting in (Sun & Yang] [2023)) except that we use 50 diffusion steps throughout training
and testing, and 20 samples for testing to be aligned with best-of-20 sampling in other methods. We train
the model for 50 epochs (default) for each dataset.

We use 1 80GB A100 GPU to train for each datasets and test with the same GPU. The training time limit is
set to 96hrs. The code does not support multi-GPU. We report results where the training can be completed.

Although [Sun & Yang (2023) suggested that DIFUSCO has some generalization ability. We found the
performance degrade significantly for out-of-distribution trained models (specifically trained on smaller graphs
with the same average degree but test on larger graphs), we did not report the results of larger graphs where
the in-distribution training cannot finish.

DiffUCO DiffUCO (Diffusion for Unsupervised Combinatorial Optimization) (Sanokowski et al., [2024) is
also a diffusion model based algorithm but unlike DIFUSCO it uses unsupervised learning. The diffusion model
is trained to sample the solution of low energy state. It also provides an entire solution and is also a one-shot
algorithm.

We use the default setting in [Sanokowski et al| (2024) for RB-large MIS task (in their Appendix C.5). During
testing, we use conditional expectation with 20 samples to align with best-of-20 sampling in other algorithms.
The code supports multi-GPU. We use 4 80GB A100 GPU to train for each datasets with time limit 96hrs.

The training time is significantly longer than other learning-based algorithms for the same dataset and it can
only complete training up to ER graphs with (n = 1000,d = 100) and BA graph with (n = 1000,d = 50).
According to [Sanokowski et al.| (2024)) it has reasonable generalization ability, and we also found that the
performance drop is relatively small if we test larger graphs using models trained with smaller graphs with
similar average degree. Therefore, we also report test results using out-of-distribution trained model. The
parameters of those datasets and the datasets used to train corresponding models are reported in Table [7]
Those results are labelled using } in tables.

Table 7: Parameters of Test and Training Graphs for out-of-distribution testing in DiffUCO

Type of Graphs | Parameters of Test Graphs | Parameters of Training Graphs
(1000, 300) (1000, 100)
(3000, 10) (1000, 10)
ER (n,d) (3000, 30) (3000, 30)
(3000, 100) (1000, 100)
(1000, 150) (1000, 50)
(3000, 5) (1000, 5)
BA (n,m) (3000, 15) (1000, 15)
(3000, 50) (1000, 50)

B.7 Local search

Local search is a method to improve a given independent set. It can be used as a post-processing technique,
or be used as sub-procedures in more complicated algorithms like KaMIS. |Andrade et al.| (2012]) provides an
efficient local search algorithm. Part of it is to find 2-improvement, which is the part used as sub-procedure
in KaMIS (Lamm et all|2017; [Dahlum et al., 2016).

The local search algorithm for 2-improvement for a given independent set I is as follows. This algorithm
process every vertex x € I in turn. First, it temporarily removes x from I, creating a new set .S. We call
a vertex a free vertex of S if there is no edge between it and any vertex in S. If S has less than two free
vertices, stop: there is no 2-improvement involving x. Otherwise, for each neighbor v of x that is a free vertex

23

Under review as submission to TMLR

for S, insert v into S and check if the new set (S’) has a free vertex w. If it does, inserting w leads to a
2-improvement; if it does not, remove v from S’ (thus restoring S) and process the next neighbor of x. If
no improvement is found, reinsert x into S to turn it back to I. Every vertex is scanned O(1) times in this
algorithm so it can find a 2-improvement (if there exists) in O(m) time according to |Andrade et al.| (2012).

We implemented this algorithm in Python and use it as a post-processing for the solutions produced by the
algorithm we test.

C More Experiment Results

In this section, we show more experiment results. Appendix shows more experiment results on much
larger graphs, where the Al-inspired methods cannot handle. Appendix show the serialization results
on more graphs. Appendix show a more detailed results between LwD and Deg-Greedy, which applies
degree-based serialization as a subprocedure. Appendix [C.4] shows the full results when adding local search
as a post-processing procedure.

C.1 Larger graphs

Table [§ reports our results for large ER graphs not reported in Table [l Within our computation limits
as described in Appendix we can only obtain results for classical heuristic algorithms (Ran-Greedy,
Deg-Greedy, OnlineMIS, ReduMIS).

C.2 Serialization

Figures [4] and [5] shows the percentage to choose the smallest possible degree node on different part of the
serialization across various algorithms for all ER graphs and all BA graphs with nodes n < 3000, respectively.
The serialization process is discussed in Section [£.2] Missing bars are algorithms which we do not get results
due to computational limit, same as in Tables [T and

These results reinforced our observations in Section First, the percentage for Deg-Greedy and LTFT are
generally high. Deg-Greedy reaches 100% for all parts in some graphs, which is the theoretically achievable
percentage since Deg-Greedy actually picks the lowest degree node in the remaining graph and this sequence
will give a serialization with percentage 100% for all parts. In those cases, LTFT also have percentage close to
100% for all 3 parts.

Second, for those algorithms with good performance, namely OnlineMIS, ReduMIS, iSCO, and LwD, the bar
plot shows similar characteristics. The percentage for the 1st third is generally low, while the 2nd third is
high, and the 3rd third is higher and close to 100%. This characteristics are observed in most settings accross
various parameters (n,d)/(n,m) for both ER and BA graphs. The exception is only very sparse BA graphs.

Moreover, newly from these plots across various parameters, we also observe that given same n, Deg-Greedy
and LTFT tend to have lower percentage for sparse graphs (smaller d or m) and higher percentage for denser
graphs (larger d or m) across all 3 parts. On the other hand, OnlineMIS, ReduMIS, iSCO, and LwD tend
to have the percentage of 1st 1/3 decreases, while the percentage of the 2nd and 3rd 1/3 increases, when
the density of graph increases (d or m increases for same n). This shows another qualitative difference
between the algorithms similar to Deg-Greedy (Deg-Greedy and LTFT) and the good-performing algorithms
(OnlineMIS, ReduMIS, iSCO, and LwD).

We also note that BA graphs (n = 300, m = 50), (n = 1000, m = 150), and (n = 3000, m = 500) are outliers.
Most algorithms have percentage close to 100% for all parts. This is because these graphs are rather different
from other BA graphs. They have an easily found large MIS, which is the m nodes initially in the graph at
the start of the BA generation process. (Albert & Barabasil [2002)). From Table 2| we can see many algorithms
can find these MIS and report a MIS size of m for these graphs. This suggests that for this special type of
BA graphs, our serialization analysis can observe different characteristics from other BA graphs.

24

Under review as submission to TMLR

Table 8: (Comparison of the performance of different algorithms on larger Erdés—Rényi (ER)
graphs) Continuation of Table [1] on ER graphs with number of nodes larger than 100,000 for classical
heuristic algorithms. Other algorithms are out of our computational limits for these large graphs.

Heuristics
n d Ran-Greedy Deg-Greedy 0OnlineMIS ReduMIS
10 7170.50 8951.75 9486.00 9505.38
30 3429.38 4464.12 4832.88 4914.88
100 1386.00 1817.25 1963.12 2012.62
30000 300 570.50 738.00 794.75 815.50
1000 205.63 260.75 279.88 287.50
3000 - - 106.00 106.12
10 23990.00 29856.38 31613.38 31650.62
30 11444.38 14870.12 16128.88 16287.50
100 4615.25 6064.50 6564.00 6702.38
100000 300 1886.62 2470.75 2661.50 2714.75
1000 - 83.50 941.38 959.75
10 71954.38 89487.12 94622.88 94799.75
30 34318.88 44653.38 48234.38 48713.00
300000 100 13850.12 18190.38 19676.50 20061.38
300 5688.00 - 7987.50 8141.25
1000 - 2831.38 - -
3000 802.00 - - -
10 239749.12 - 312462.62 315630.88
30 114397.00 - 158625.29 161622.75
1000000 100 46161.12 - 64915.00 66539.75
300 - - 26458.75 -
1000 6890.00 - 9473.00 -
3000000 10 719348.75 - 904613.12 942475.57
30 343479.38 - 459671.29 479938.75

25

Under review as submission to TMLR

ER (n="%‘00, d=30)

100

P % 96 96 95 9753 93 97
s &
8 £ 0 56 55
8 2 43 46 Category
% % . 1st1/3
o a s 2nd 1/3
mm 3rd 1/3
i
o o O o o O
NG N\
& S & & S &
N & <
o(‘ < %)

Percentage
Percentage

Percentage
Percentage

Percentage
Percentage

ER (n=3000, d=10)
89 87

Percentage

@
S

S

Percentage
)
Percentage

N
S

Percentage
[E
e v
Percentage

]
o

© & S & <& &
S & & 5 <& &

o o
S~ « &
<€ S N

>

Figure 4: The percentage to choose the smallest possible degree node on different part of the
serialization for all ER graphs It reinforces our observations in Section In addition, we also observe
that algorithms similar to Deg-Greedy (Deg-Greedy and LTFT) and good-performing algorithms (OnlineMIS,
ReduMIS, iSCO, and LwD) have clearly different characteristics across various (n, d), described in Appendix

26

Under review as submission to TMLR

Percentage

3 ¢ © & Y & & &
& 3 b@ © &L N < ‘(\g—:
o [e
QQ/

BA (n=300, m=5)

Percentage
I
3

BA (n=300, m=15)

Category

. 1st1/3
Bmm 2nd 1/3
m 3rd 1/3

100. 10099 99 9999 98 98 97 98 10010097 10010098 9910099 9999 9898 95100100 . 95 99
© 75 °
))
g g
g 50 £
4 4
5
& 5 &
’ 5 © o o o o & o S o o o o o & o
S N NS S N NS
& & S & & S~ N R & & N & & S N R
o o\\ <« X ° § < >
] < & S Q
B S
BA (n=300, m=50) BA (n=1000, m=5)
100100100 100100 100100 100100 100100 ,100100
1007 9 91 o1 91 o1 94 o7 95 97 95 98 95 98 o5
84 82 83
© 75 °
))
g g
g 50 £
4 4
& 5 &
0 S o & o) & o & o o o
S N N NG
& & S & & S S & S ¢ & <
< & & N
& N
B
BA (n=1000, m=15) BA (n=1000, m=50)
100 9 9 92 100 99 96
84 87 88 89 90 90

80

Percentage
E
S &

N
G

Percentage

Q

Q(Jo

/.
&
@

Percentage

Percentage

BA (n=3000, m=15)
89 %0

Percentage
A o0 ®
s & 3

N
S

79 83

Percentage
w

O
&
N

Percentage

Percentage

& o
S S 5V
N & &
& & ¢

o o S o
& & $ & &

&

Figure 5: The percentage to choose the smallest possible degree node on different part of
the serialization for all BA graphs It reinforces our observations in Section In addition, we also
observe that algorithms similar to Deg-Greedy (Deg-Greedy and LTFT) and good-performing algorithms
(OnlineMIS, ReduMIS, iSCO, and LwD) have clearly different characteristics across various (n, m), described in

Appendix @

27

Under review as submission to TMLR

ER Graphs 1st 1/3 ER Graphs 2nd 1/3 ER Graphs 3rd 1/3 ER Graphs Overall

21.70 18.98 18.73 4.33

10

34.53 40.72 42.72

10
10

40.51 44.90 45.32 11.34

43.10 22.49 837 3.95 [S 41.82 30.88 = =% 69.46 45.60 32.22 27.10
80
522 IR 32.86 S- 97.23 [¥%¥i S 35.09 25.61
- - —
S- 84.93 S- 88.41 S- 96.48 S- 89.93
™M ™ ™ ™ 60@
100 300 1000 3000 100 300 1000 3000 100 300 1000 3000 100 300 1000 3000 g
n n n n %
BA Graphs 1st 1/3 BA Graphs 2nd 1/3 BA Graphs 3rd 1/3 BA Graphs Overall E
a
38.04 34.36 33.77 33.20 44.95 56.92 68.95 65.92 84.95 89.54 79.71 52.15 58.74 64.08 59.61 40
28.65 20.68 15.93 3.28 45.82 47.27 42.29 24.69 51.78 46.57 44.03 34.99
47.06 10.54 4.87 - N 31.71 9.47 - YHEN 60.62 53.63 - 34.28 22.65 20
Q- 98.22 Q- 98.22 a- 98.47 a- 98.31
— — — —
100 300 1000 3000 100 300 1000 3000 100 300 1000 3000 100 300 1000 3000
n n n n

Figure 6: Percentage of the smallest possible degree node in the pseudo-natural serialization of
LwD, i.e., behaves similarly to degree-based greedy, for the 3 equal parts of the serialization, and
the overal average From the overall heatmaps, we can see LwD is not very similar to Deg-Greedy like LTFT.
From the heatmaps for different 1/3 parts, we can see the percentage increases from the 1st 1/3 to the 3rd
1/3 for all the datasets (different parameters of the synthetic graphs). This aligns with our “counterfactual”
serialization results for LwD in Section where we also observe the percentage increases clearly from 1st
1/3 to 3rd 1/3.

C.3 Comparison between Deg-Greedy and LwD

LwD, similar to LTFT, is also a non-backtracking MDP based algorithm which picks nodes sequentially. The
main difference is that instead of picking 1 node at a step like Deg-Greedy and LTFT, it picks some nodes at
a step, which can be 0 or 1 or multiple nodes. In that case, it does not have a natural serialization like LTFT
(discussed in Section [4.1)). However, since it still have steps and we still know some nodes are chosen before
others, we can perform a serialization within each step. We call this pseudo-natural serialization.

The procedure of our pseudo-natural serialization is as follows. Consider a step ¢ of LwD, let the independent
set before the step be Z;_;. Similar to Algorithm [I} we build a residual graph G’ which removes the nodes in
T:—1 and their neighbors from G. Then, LwD chose a set of nodes S; to add to the independent set. We then
perform the serialization for the set S; (replace Z’ by S in Algorithm and get a ordered list £;. L; is the
ordered list for a step. We then concatenate all the ordered lists £;’s for all the steps in order to get a full
ordered list £. For this serialization, we do not repeat it as in Algorithm [T}

Similar to Section [£.I} we plot a heatmap Figure [6] across various parameters for ER and BA graphs on the
average percentage of the nodes being the smallest degree node in the residual graph. In addition to that,
similar to Section we divide the ordered list £ into 3 equal parts to compute the average percentage of
the nodes being the smallest degree node seperately.

The heatmaps for overall percentages suggest that LwD is not very similar to Deg-Greedy like LTFT. From the
heatmaps for different 1/3 parts, we can see the percentage increases from the 1st 1/3 to the 3rd 1/3 for all
the datasets (different parameters of the synthetic graphs). This aligns with our “counterfactual” serialization
results for LwD in Section where we also observe the percentage increases clearly from 1st 1/3 to 3rd 1/3.
This shows that our serialization method in Section [£:2] can reflect the pattern correctly.

28

Under review as submission to TMLR

The percentages here in the heatmap is smaller than the percentages for “counterfactual" serialization in
the bar graphs in Section This is likely due to the fact that in the “counterfactual" serialization we
repeat the serialization process for 100 times and report the highest percentages we get, while here we only
do serialization once for each step.

C.4 Local search

Table 9: Adding local search as a post-processing procedure. This is the full graph for local search

described in Section @

Heuristics GPU-acc Learning-based
param Deg-Greedy OnlineMIS ReduMIS isco PCQO LwD LTFT DIFUSCO
ER Graphs
100,10 29.50 (0.25) 30.50 30.50 30.62 (0) 30.63 (0) 30.38 (0) 29.00 (0.38) 30.25 (0)
100,30 13.62 (0) 14.00 14.75 14.50 (0) 14.50 (0) 14.38 (0) 13.25 (0.13) 13.88 (0)
300,10 92.12 (0.50) 93.88 94.38 94.75 (0) 94.63 (0) 94.25 (0) 90.12 (1.50) 93.50 (0)
300,30 44.75 (0.25) 47.88 47.88 47.62 (0) 47.63 (0) 46.88 (0) 44.00 (0.75) 44.62 (0.74)
300,100 16.12 (0) 18.00 18.38 18.00 (0) 18.00 (0) 17.12 (0.12) 16.25 (0) 16.88 (0.26)
1000,10 305.38 (2.13) 314.75 316.13 315.62 (0) 310.75 (0.75) 311.25 (0) 300.00 (3.00) 306.38 (2.50)
1000,30 152.75 (1.75) 158.88 163.75 163.50 (0) 159.13 (0.50) 158.62 (0.24) 151.38 (1.38) 150.62 (6.87)
1000,100 60.75 (0.13) 64.75 66.63 66.50 (0) 60.88 (0.75) 64.12 (0.24) 61.88 (1.00) 57.88 (2.50)
1000,300 22.25 (0) 25.00 25.75 24.62 (0) 23.25 (0) 20.75 (1.63) 22.62 (0) 21.62 (0.74)
3000,10 913.62 (6.50) 947.25 954.25 950.88 (0) 927.38 (4.13) 935.38 (1.26) 900.62 (12.37) 918.00 (16)
3000,30 456.12 (4.24) 480.88 493.13 491.62 (0) 469.75 (5.50) 474.00 (0.75) 454.38 (5.38) 442.75 (29.37)
3000,100 185.62 (2) 194.38 201.50 200.38 (0) 189.75 (4.12) 191.50 (0.75) 185.62 (1.62) 182.25 (10.87)
3000,300 74.00 (0.50) 77.63 80.75 78.88 (0) 70.88 (1.63) - 74.38 (0.50) -
3000,1000 23.38 (0) 26.00 26.25 - 23.00 (0) - 23.62 (0) -
BA Graphs
100,5 39.25 (0) 39.50 39.50 39.50 (0) 39.50 (0) 39.50 (0) 38.50 (0.38) 39.38 (0)
100,15 21.00 (0) 21.63 21.63 21.62 (0) 21.63 (0) 21.62 (0) 20.62 (0) 21.25 (0)
300,5 122.38 (0.26) 123.13 123.13 123.12 (0) 123.00 (0) 123.12 (0) 118.62 (3.00) 123.00 (0.12)
300,15 70.00 (0.75) 71.38 71.38 71.38 (0) 71.25 (0) 70.75 (0) 66.62 (1.87) 70.00 (0.50)
300,50 39.25 (1.75) 49.88 50.00 50.00 (0) 50.00 (0) 50.00 (0) 43.62 (1.87) 50.00 (0)
1000,5 413.38 (2) 417.13 417.13 417.12 (0) 415.88 (0.13) 416.00 (0) 400.25 (14.50) 417.12 (0)
1000,15 234.88 (1.63) 245.00 246.38 246.25 (0) 242.12 (0.12) 243.12 (0) 230.50 (6.25) 237.88 (1.50)
1000,50 108.38 (1.00) 115.75 116.88 116.75 (0) 114.00 (0.50) 113.12 (0.12) 106.75 (0.37) 108.75 (3.50)
1000,150 90.88 (7.63) 150.00 150.00 150.00 (0) 150.00 (0) 150.00 (0) 87.62 (5.37) -
3000,5 1241.50 (4.75) 1257.00 1257.13 | 1255.62 (0) 1245.38 (2.38) | 1248.50 (0.38) 1213.12 (35.87) 1254.75 (0.37)
3000,15 714.62 (7.50) 749.63 754.50 752.00 (0) 729.38 (7.13) 730.50 (2.75) 693.00 (31.12) 731.75 (5.37)
3000,50 339.00 (3.62) 362.63 369.75 368.25 (0) 359.25 (2.13) 341.00 (4.12) 334.00 (10.12) -
3000,150 142.88 (2.38) 160.25 165.75 164.00 (0) 155.38 (2.63) - 146.50 (1.75) -
3000,500 172.12 (9.12) 500.00 500.00 491.00 (0) 229.62 (5.74)

Table [9 shows the full results after incorporating 2-improvement local search from the ARW local search
algorithm (Andrade et al., [2012) as a post-processing step, which is discussed in Section

C.5 More results on the ratio

In addition to what we show in Section Figure |[7| shows the ratio of MIS size to

nlnd
d

for ER graphs with

number of nodes n and average degree d across more algorithms. We can see that RequMIS, OnlineMIS, and
iSCO has consitently high ratios more than 1.2. Ran-Greedy stays around 1.0 for all (n,d). Other algorithms,
including Deg-Greedy, all have higher ratios for sparser graphs, but lower ratios (close to 1) for denser graphs.

29

Under review as submission to TMLR

ReduMIS OnlineMIS
10 10 10
30 30 30
100 100 100
© © ©
300 300 300
le3 le3 le3
3e3 3e3 3e3

X

“QHD‘D‘ ‘bb 0 ‘b‘ ‘
SR 7"\,&)’)&)\?”’)@ Y »"7)'5&«,""5"*«,0'5"3)
n n
Ran-Greed DIFUSCO 14
129
=}
S
o)
1.0%2
[a' s
0.8

&

Figure 7: Heatmap for ratios of MIS size to nin(d)/d on ER graphs with number of nodes n and
average degree d. We can see that ReduMIS, OnlineMIS, and iSCO has consitently high ratios more than
1.2. Ran-Greedy stays around 1.0 for all (n,d). Other algorithms, including Deg-Greedy, all have higher
ratios for sparser graphs, but lower ratios (close to 1) for denser graphs.

30

	Introduction
	Our contributions

	Benchmarking Classical and AI-inspired Methods for Maximum Independent Set
	Maximum Independent Set (MIS) problem
	MIS algorithms
	Graph types
	More experiment details

	Performance Gap: Classical Methods Outperform AI-inspired Methods
	Deconstructing the Performance Gap: Algorithmic Analysis
	Comparison between Deg-Greedy and LTFT
	Serialization: allows comparing to Deg-Greedy
	Incorporating local search to improve solution

	Discussion
	Assessing Potential Biases in Graph Choices
	Perspective for theoreticians: Empirical performance vs asymptotic conjecture

	Related Works
	Conclusion and Takeaways
	More Related Works
	Detailed Experiment Setup
	Algorithm Pseudo-code for degree-based serialization
	Datasets
	Hardware configurations
	Classical CPU-based algorithms
	GPU-accelerated non-learning algorithms
	Learning-based algorithms
	Local search

	More Experiment Results
	Larger graphs
	Serialization
	Comparison between Deg-Greedy and LwD
	Local search
	More results on the ratio

