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Abstract

Byte-level fallbacks for subword tokenization
have become a common practice in large lan-
guage models. In particular, it has been demon-
strated to be incredibly effective as a pragmatic
solution for preventing OOV, especially in the
context of larger models. However, breaking a
character down to individual bytes significantly
increases the sequence length for long-tail to-
kens in languages such as Chinese, Japanese,
and Korean (CJK) and other character-diverse
contexts such as emoji. The increased sequence
length results in longer computation during
both training and inference. In this work, we
propose a simple compression technique that
reduces the sequence length losslessly.

1 Introduction

Byte-pair Encoding (BPE) (Sennrich et al., 2016) is
a method that allows models to have a robust vocab-
ulary that is capable of representing rare words that
have not been seen during training. Variants of this
method have been used extensively in many mod-
ern natural language processing (NLP) systems, as
they allow the representation of a large vocabulary
through the concatenation of smaller units, known
as subwords, which in turn allows setting an upper
boundary on the logits needed for a given model.
Byte-level BPE is an extension of BPE to miti-
gate out-of-vocabulary (OOV). Instead of falling
back to OOV when a token cannot be represented
through its subwords, it instead encodes the miss-
ing token into a sequence of (usually Unicode, in
particular - UTF-8) bytes. Due to the introduction
of this method, OOV has been largely eliminated
in large, foundational models.

However, there is no such thing as a free lunch.
Firstly, the model must also learn the intricacies
of generating valid Unicode output for any byte-
level token, on top of the main linguistic learn-
ing (e.g., language modeling) task. For robust gen-
eration, training requires enough samples for the
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Figure 1: High-level overview of byte-level text rep-
resentation. In this work, we propose a deduplication
method that reduces sequence length at byte level.

model to learn byte sequencing, increasing training
costs. Secondly, representing a character in bytes
increases the length by up to four times the input.
This limits the utility outside of a large model setup.

In this work, we investigate the limitations of
byte-level fallbacks, particularly the inefficient na-
ture of the byte-level representation. We propose
a tokenizer-agnostic method for reducing redun-
dant information in UTF-8 byte-level fallbacks,
which results in shorter sequence lengths - even-
tually saving compute time. Through experiments
across three character-diverse languages (Chinese,
Japanese, and Korean), we measure the amount of
sequence length reduction and assess the pros and
cons of our method. To better understand the exper-
iment results and trade-offs, a method to compute
the perceived throughput is proposed for compari-
son.

2 Background

2.1 Byte-level BPE

Byte-level BPE is an extension of BPE that ad-
dresses limitations in dealing with unseen sub-
words. By adding the lowest-level building block
for Unicode characters into the vocabulary, it guar-



antees that there will be no OOV. While it is unclear
where byte-level BPE was initially proposed, main-
stream usage began as Radford et al. (2019) and
Wang et al. (2019) proposed it in the context of
language modeling and machine translation. The
method increases robustness against OOV, which
is a common problem in CJK languages.

This problem is due to the sheer diversity of
characters needed to represent CJK languages. The
CJK Unified Ideographs block defines a total of
97,680 code points, and the Hangul syllables block
defines a total of 11,172 code points'. Any form of
character-level bigram merge, therefore, will result
in a combinatorial explosion, which in turn makes
supporting any of these languages computationally
costly. This complexity, combined with the rela-
tively smaller amount of textual data available in
the wild compared to other languages, resulted in
many of the CJK characters being treated as OOV.
By using byte-level fallback instead of naively los-
ing information (e.g., OOV), modern models have
effectively mitigated this problem.

2.2 Related Work

Our work is related to the history of character-level
and byte-level NLP methods (Zhang and LeCun,
2017; El Boukkouri et al., 2020; Shaham and Levy,
2021; Xue et al., 2022). Although these methods
using fine-grained tokenization alleviate the prob-
lem of unknown words, they do so at the cost
of performance on longer inputs (Libovicky and
Fraser, 2020; Gowda and May, 2020; Goldman
et al., 2024). Byte-level NLP incurs even more
severe performance penalties with longer inputs
(Mielke et al., 2021; Sreedhar et al., 2023). Rust
et al. (2021) analyzes the effect of over-segmented
input, particularly its adversarial effects on model
performance.

In the recent LLM era, the fairness of unequal
LLM usage costs among different languages is
discussed (Ahia et al., 2023; Petrov et al., 2024).
Our proposed method can shorten the input length
while preserving byte-level fallback, alleviating dis-
parities in training and inference costs among lan-
guages.

2.3 Byte-level Limitations

The clear benefit of using byte-level is that it guar-
antees there will be no OOV in the final trained
model. This benefit, however, comes at the cost of
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three major caveats.

The first caveat is that one needs to have enough
training to ensure that the model does not generate
invalid Unicode sequences for a sequence contain-
ing rare tokens, as without having seen enough
samples, the model will inherently generate invalid
Unicode sequences. This results in an implicit re-
quirement to have a larger training dataset to ensure
better generalization. This tends to indirectly affect
the model size, as the size of the dataset and model
should ideally be proportional (Hoffmann et al.,
2022) - increasing the training cost of the model.

The second is the increased sequence length,
which is also inversely proportional to the size of
the model’s vocabulary?. On average, for a CJK
character to be represented with UTF-8 bytes, the
sequence length grows by three times compared
to a character-level representation. The smaller the
vocabulary is, the higher the probability of OOV vo-
cabulary is, therefore the sequence length increases.
There are tradeoffs to be made here, as a larger vo-
cabulary increases the cost of logit computation
and, as a result, requires more computation power
for training and inference - but also can introduce
undertrained tokens (Land and Bartolo, 2024).

The last one is a bit more subtle and relates to
the tokenizer quality against the byte-level token-
only distribution. Tokenizers are often trained with
a small sample of the final training corpus, which
results in a suboptimal distribution when observed
from a whole-corpus perspective. As an unintended
side effect, it also creates a local distribution spe-
cific to the byte portion, which has distributional
characteristics of the underlying character reflect’.
Zouhar et al. (2023) proposes Rényi efficiency as a
measure of tokenization quality. This is computed
through Rényi entropy H,, (W, ) of the random vari-
able W, distributed according to p, for a given
vocabulary V, defined as:

(1)
and the associated Rényi effiency E, (W) is a
scaled with respect to the vocabulary size |V|:
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21t is somewhat proportional to the number of languages
one needs to support. The more languages supported in a
single vocabulary, the more likely there will be a strong de-
pendency on byte-level fallbacks.

*In the case of most models, this is UTF-8.
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Figure 2: Byte-level frequency distribution on the
Japanese-Korean subtitle translation task training set,
ranked by most frequent byte.

In this context, a sharp probability mass distri-
bution of token frequency results in lower Rényi
entropy, and intuitively, the more uniform the dis-
tribution is, the more entropy increases. Efficiency
is a normalized form of entropy, accounting for
the vocabulary size |V|. In our experiment and tok-
enizer setup, we can assume that the byte-specific
distribution has low entropy, as the frequency dis-
parity between the most frequently-observed bytes
and the rest of the vocabulary* is high, resulting
in suboptimal tokenizer efficiency when observed
at the byte-level portion of the token distribution.
To minimize misunderstandings, we will refer to
Rényi efficiency as entropy throughout this paper.

3 Proposed Method

We propose an efficient tokenization method to
shorten the input sequence, focusing on the repeti-
tion (§3.1) and duplication (§3.2) in UTF-8. This
section first provides the observation nature of the
general representation of texts in UTF-8 and then
explains the proposed method, which provides the
efficient representation (§3.3). Figure 1 overviews
the proposed method.

3.1 Duplication in UTF-8

The high-frequency token phenomena observed in
Figure 2 is a bias inherited from the underlying
character encoding, in this case, UTF-8. For the
examples shown in Table 1, the UTF-8 encoded
byte sequence from Chinese, Korean, and Japanese
exhibits a duplication problem, indicated in bold.
By simply observing this small sample, it is clear
that byte-level tokens in the range of E4-ED have a
much higher frequency than others.

“In this case, all 255 possible bytes.

[] AN
zh-CN = % M
E4 BC 97 | E5 94 A4 | E4 BC 97
L B | @ | &
J E6 A4 9C | E8 AA 8D | E8 A3 81
E A g
=
ko-KR 5520 [ EC A0 80 | ED 9E 88

Table 1: Example text from Chinese, Japanese, and Ko-
rean, accompanied with their byte representations. Each
character needs three tokens to represent, and we also
observe that there are common prefixes.

E4 E5 E6 E7
11100100 | 11100101 | 11100110 | 11100111
E8 E9 EA EB
11101000 | 11101001 | 11101010 | 11101011
EC ED EE EF
11101100 | 11101101 | 11101110 | 11101111

Table 2: UTF-8 CJK block common prefixes as seen
in bits. E4-E9 are CJK ideographs, while EA-ED is
Korean.

As UTF-8 must guarantee robustness to encode
every possible character in a deterministic form,
duplication is encoded into the scheme so it can be
decoded without dependency on the context. This
is an important property for reliable transmission
and storage, but it has several undesirable proper-
ties in the context of text generation from raw bytes.
Out of the three undesirable properties discussed
in 2.3, the two we intend to address directly in our
work are the duplication of information and learn-
ing complexity. The length problem is as demon-
strated in Table 1, and the learning complexity can
be attributed to the duplication.

3.2 Duplication at Bit-level

Looking at the bit level, the duplication of byte rep-
resentation can be generalized as the duplication
of bit sequences. We observe that the underlying
frequency distribution of the byte-level token range
shows overly frequent tokens, supporting our du-
plication claim. Not only are a third of the bytes
redundant information, as shown in Table 1, but we
hypothesize that the redundancy also increases the
complexity of learning, as it requires learning the
linguistic structure while also learning to generate
valid UTF-8 sequences, including emitting the re-
dundant tokens®. We also observe a commonality

A somewhat simple analogy of this is learning how to
count while also learning how to play Fizz buzz.



between the most frequent tokens at the bit-level
observed in Table 2.

Out of the three text samples in Table 2, we
can observe that aside from the Japanese (ja) sam-
ple, the first six bits of the prefix - @xEC-0xEF for
Korean (ko), and @xE4-0xE7 for Chinese (zh) are
shared. This suggests that there is a possibility that
this could be considered redundant information that
can be de-duplicated.

However, to make this de-duplication possible,
we must break a common assumption - that a byte
representation, as expressed by the model’s tok-
enizer, is constrained to be eight bits. Having byte-
level tokens represented as an exact byte counter-
part has an advantage - as long as the model can
generate valid byte sequences, it can be decoded
without any extra effort. However, this only holds
if the model is trained with enough data to learn the
linguistic constructs of the corpus and how to gen-
erate valid UTF-8. Unless training a large model,
this is very challenging, and even in a large model
context, it increases the cost of training.

3.3 Breaking the 8-bit Byte Boundary
Overview

Our method breaks this common assumption, eight
bits for a byte, by treating a sequence of bytes as
a sequence of bits. Instead, ignoring the eight-bit
boundary and having a flexible boundary of bits
allows us to optimize the sequence - in particu-
lar, by removing duplicate information. With our
method applied, a "byte" in a tokenizer can hold
any amount of bits instead of being uniformly eight
(see Figure 1). This is possible as the model sees the
individual bytes as logits, which does not require
them to be aligned to eight bits. This optimization
would not be possible outside of this context with-
out wasting space.

With bit boundary constraints lifted and the com-
mon bits identified, we can now treat the common
bits as a shared bit prefix of the upcoming tokens.
For example, we can treat @b111001 (0x39) to indi-
cate that all following tokens have the same prefix
unless the prefix changes or a subword is emitted.
The two residual bits (e.g., 01 in the case of E5)
will need to be carried over by the following bytes.
As the vocabulary allocated for bytes is 28, carry-
ing the two bits over on the next byte will increase
the vocabulary budget significantly - as this would
mean adding 768 more "byte" representation to-
kens (2'° — 28). For this reason, we redistribute

the bits to have two 9-bit integers for our new ex-
tended "byte" representation. This requires adding
256 more tokens.

We demonstrate this proposed method with the
Chinese input shown in Table 1 (& MEAX):

E4 BC 97 E5 94 A4 E4 BC 97

The process is divided into two parts: encoding and
decoding of the text.

Encoding

To isolate the common bits, we choose the first
"byte" to be six bits, which results in two residual
bits - for example with the character E4 BC 97, the
bit boundaries move as follows:

11100100 10111100 10010111
111001 00 10111100 10010111
111001 001011110 010010111

After the bit re-distribution, the first six bits are
now p1=0b111001, a special token representing a
6-bit prefix®. This can be implemented through a
simple set of bitwise operations; given three bytes
b1, bo, and b3 representing a single character, the
prefix bAl, and 9-bit tokens bAQ, and bAg, are computed
by’:

by = (by A127) > 2 (3)
bo = ((by A3) < T)V (((by A254) > 1) (4)
bs = ((by A1) < 8)V bs S

By shifting the existing byte boundaries to be
six, nine, and nine bits, respectively, we can now
represent the same sequence as:

p1 5E 97 p1 CA A4 p1 5E 97

With naive incremental encoding and a determin-
istic trailing sequence length for each character®,
instances of p1 can now be de-duplicated, as the
entire sequence is behind the first shared 6-bit pre-
fix. Note that a special token is used instead of
the byte representation (0x39) to disambiguate be-
tween naturally occurring bytes and incremental
decoder triggers. The de-duplicated sequence is:

p1 5E 97 CA A4 5E 97

This is a 22.22% reduction from the original
input. Whenever there is a transition in the 6-bit

p1=0x39, which is duplicated across the sequence. In
practice, all prefix tokens can usurp existing byte tokens, as
they are unreachable. For example, 0x39 is the character "9".
"« and >> are bitwise left and right shift, respectively.
8A prefix is followed by two trailing bytes.



Length | Entropy 1

Byte | Ours Diff Byte | Ours

en-zh T | 131IM | 127M | 3.13% | 0.764 | 0.634
B 64M 60M | 6.41% | 0.586 | 0.435

en-ja T | 176M | 174M | 0.83% | 0.818 | 0.763
B 41M 40M | 3.56% | 0.580 | 0.417

ja-ko T | 113M | 111IM | 2.21% | 0.498 | 0.485
B SOM S6M | 4.25% | 0.485 | 0.446

Table 3: Sequence length reductions across the training
sets, rounded to the nearest million tokens. T indicates
the entire corpus, and B indicates the byte-level portion.

prefix, the new 6-bit prefix p,, is emitted. For ex-
ample, if we append a prefix transitioning Japanese
character (32) E8 AA 8D, the resulting sequence
(B MeARER) with our method is encoded as:

p1 5E 97 CA A4 5E 97 p2 55 8D

With one prefix switch, the gains decrease -
16.66% shorter than the original input.

Decoding

As the specific Unicode blocks our method targets
have a deterministic length of three bytes per char-
acter, we can invert the incremental encoding by
emitting the current prefix token after every 9-bit
bi-gram, which results in the following generated
sequence:

p1 5E 97 p1 CA A4 p1 5E 97 p2 55 8D

This sequence can be re-aligned to a boundary of
eight bits each, which results in a decodable UTF-8
byte sequence, through the following computation:

b= (b < 2)V (by > 7) (6)
by = ((by A127) << 1)V (b >>8)  (7)
bs = b3 A 255 (8)

This results in the reconstructed sequence:
E4 BB BD E5 81 87 E7 AE 80 E8 94 B5

In our work, the bit boundaries were set to be
optimal for CJK scripts - the boundaries can be set
differently for different Unicode blocks.

4 Experiments

To observe the effects of our method, we exper-
imented across three target languages (Chinese,
Japanese, and Korean) on a translation task.

4.1 Datasets

We used three datasets for this experiment, ref-
erenced by their target language for simplicity
throughout the paper: English-Chinese (Chinese),

English-Japanese (Japanese), and Japanese-Korean
(Korean). The Chinese and Japanese datasets used
are from WMT20 (Barrault et al., 2020), while the
Korean dataset is from AT Hub”. For the WMT20
shared task, we used a custom split of the Wiki-
Matrix dataset from the news translation task for
Chinese (2.3M) and Japanese (3.5M). For Korean,
we used a subtitle translation dataset (3M)'? Each
dataset had a 5K test set held out for evaluation and
performance benchmarking and 40K for validation.
The remainder was used for training.

4.2 Model Settings

Each experiment trains byte-level fallback on a ma-
chine translation (MT) model trained from scratch.
We use a pre-trained Llama?2 tokenizer, which trig-
gers a significant amount of byte-level fallbacks
in CJK languages, as can be seen in Table 3 (see
§4.3). We compare a Llama?2 tokenizer for baseline
byte-level BPE (Byte) to an augmented Llama2
tokenizer with our method (Ours). We consider
this popular tokenizer to be a valid baseline to ex-
amine our method, which alleviates the problem in
the byte-level representation. All experiments use
identical vocabulary expansion when applying our
method - our method requires 256 more byte-level
tokens (0x100-0x1FF), along with three prefix to-
kens (p1, p2, p3).

The comparison intends to approximate the ef-
fects of our method in a from-scratch pre-training
setup under a limited compute budget. Specifically,
this experiment aims to demonstrate the challenges
of learning byte-level generation on a small model
and observe the effects of our method when gener-
ating byte sequences compared to a baseline byte-
level BPE tokenizer. Here, we train a 65M parame-
ter vanilla Transformer (Vaswani et al., 2017). With
the different tokenizations, we trained the model
for a fixed number of comparable epochs!'.

Only translation into the CJK languages is eval-
uated, as the generation of CJK text has a critical
dependency on first being able to generate a valid
UTF-8 sequence. We expect the trained model to
underperform, as we hypothesize that byte-level
learning in a small model context is challenging.

The model quality was evaluated after recon-
structing the byte sequence and performing another

*https://aihub.or.kr

19An English-Korean dataset of comparable size was not
available for free use as of the time of writing.

"'With an exception where we stop the model training if it
stalled for 10 epochs in a row.
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Figure 3: Byte-level distribution shift, with and without our method on the Japanese-Korean subtitle translation task.
We can observe that while the probability mass is distributed in our proposed method, there is a sharp increase in
the frequency of the most frequent tokens (0x39-0x3C). This results in lower entropy.

Decode error | Empty |

Byte | Ours | Byte | Ours
en-zh | 33 14 3156 | 2545
en-ja | 136 0 218 87
ja-ko | 1522 121 7 3

Table 4: Number of invalid output from the 5000 test
samples.

detokenization step. With the resulting output, we
used sacreBLEU (Post, 2018) under different con-
figurations to compute the translation scores. Dif-
ferent configurations were used for each language,
and a unified configuration was used to compute
byte-level BLEU and chrF. The sacreBLEU signa-
tures are disclosed in our Appendix. For throughput
benchmarks in Table 6, we measured the wall time
for inference against 5000 samples, with a batch
size of 1000'2.

We use a combination of Marian (Junczys-
Dowmunt et al., 2018), and Huggingface Trans-
formers (Wolf et al., 2020) for these experiments.

4.3 Results

Sequence length and Entropy

Table 3 reports the sequence length of the texts to-
kenized with the original Llama?2 tokenizer (Byte)
and the one with the proposed method (Ours). This
table demonstrates that the Llama2 tokenizer yields
a lot of byte-level tokens for each dataset (e.g., 64M

2This is not an entirely realistic setup, as inference time
batches will likely not be computed in batches of 1000.

out of 131M tokens are byte-level in the “en-zh”
dataset tokenized with the baseline). This result
also shows that the proposed method shortens the
length of sequence across all CJK datasets with
the de-duplication technique, which results in in-
creased computation efficiency. The magnitude of
sequence reduction was higher in Chinese and Ko-
rean. The reason for this can be explained through
the proportion of byte fallback, Japanese only has
23.4% byte fallback, while Chinese has 48.8% and
Korean as 52%. This sequence length comes at a
cost - the immediate side effect being an increase
in parameter count.

Table 3 shows changes in entropy as computed
by Renyi efficiency, defined in equation (2). As
our method’s application decreases tokenization’s
entropy, we can assume that there is a model quality
degradation - as Zouhar et al. (2023) found entropy
correlates to quality. In particular, as observed in
Table 3 and Figure 3, a trade-off between entropy
and sequence length needs to be made. In our work,
we prioritize sequence length over entropy.

Reduction of Decoding Error

The number of sequences that were unable to be
decoded see a significant decrease, as can be ob-
served in Table 4. We also see a significant de-
crease in empty sequences, although, for Chinese,
more than half of the generated output was empty'>.
This required us to train the Chinese model for 100

3The initial model (200 epochs) was much worse, with
95% of the output of the 5K test samples given translated to
blank text on both byte and ours.



Sie | BLEUT chrF 1 TER| | Byte BLEU | | Byte chrF 1
Byte | Ours | Byte | Ours | Byte | Ours | Byte | Ours | Byte | Ours
en-zh | 223M | 05 | 1.7 |19 |32 | 1273|1004 |3 |73 |3 |55
en-ja | 3.47M | 1.6 3.2 6.5 8.5 467.2 | 100.3 | 15.2 | 20 19.4 | 23.5
ja-ko | 2.99M | 19 24.6 | 35.8 | 355 114.4 | 100.2 | 49 53.3 54.7 | 53.5

Table 5: Translation performance results across the three language pairs from 5000 test samples. Byte BLEU and
Byte chrF operates were computed at the byte level after reconstructing the output sequence. The table heading 1
indicates metrics where higher is better, while | it indicates metrics where lower is better.

en-zh en-ja ja-ko

Byte | Ours Byte | Ours Byte | Ours
Tokens Out | 188,361 | 194,891 | 578,446 | 465,401 | 168,233 | 302,867

AvgTok Out | 33.64 60.57 115.69 93.08 37.67 38.98

Total time (s) | 72.41 201.65 | 529.05 | 271.60 41.10 41.59

Tokens per Second (TPS) | 464.69 | 300.39 | 18391 | 342.71 | 91643 | 937.21
Tokens in test reference | 291,857 | 282,423 | 253,540 | 251,261 | 189,800 | 185,628
Relative Gain 1 1.0334 1 1.00091 1 1.0225

Perceived TPS | 464.70 | 31043 | 183.91 | 345.81 | 916.43 | 958.28

Table 6: Perceived TPS of a model. Tokens out are the total tokens output during the test, and AvgTok is the total
divided by the test set size (5K). Tokens per Second were computed with the total tokens divided by the mean
runtime across 5 runs. Relative gain is the perceived TPS improvement by reduced sequence length.

more epochs, significantly reducing the amount of
blank output. Other languages tended to have many
invalid sequences; Korean had a higher tendency
to produce invalid byte sequences over blank se-
quences, while Japanese suffered the least. This is
likely because Japanese has the best in-vocabulary
coverage out of the three languages, requiring less
dependency on byte-level fallbacks, as seen in Ta-
ble 3. These results suggest that byte-level genera-
tion is challenging for smaller model setups.

Task Performance

Table 5 shows the translation performance results.
The first thing that is very clear is that the BLEU
scores are quite distant from public baselines based
on the trained models. In particular, Chinese and
Japanese are unlikely to be meaningful candidates
for quantitative comparison. For this reason, we
will focus on the Korean model, where we can
perform a better analysis. For the Korean task, we
see modest gains between our proposed method
and the byte baseline in every aspect. However,
this comes at the cost of longer computing times.
We see gains for Chinese and Japanese, but both
models are likely to be severely undertrained.

We hypothesize that using the Transformer ar-
chitecture with the default sequence length, long
inputs, and byte-level tokenization may have con-

tributed to the disappointing BLEU scores. The
primary difference between the cases where we ob-
serve positive signals compared to the undertrained
model cases is the average length per sample - as
subtitles tend to have much shorter sentences.

5 Factoring Tokenization into TPS

Table 6 reports the statistics about the inference
time in each dataset. Initially, we naively assumed
that sequence length is linearly correlated to the
wall clock time needed by the accelerator to com-
pute the sequence. This did not turn out to be true,
and the extra token cost especially needs to be fac-
tored in, as it introduces extra computation with
an increase in parameters. There are also extra
costs when computing the logits and attention. This
means one needs to consider the gains that come
from reducing the sequence length with our method
and whether the extra compute cost compared to
the gains results in a net loss. This was one area
where there was not much existing literature, which
required us to invent an approximation method of
the perceived TPS.

Perceived TPS, simply put, is the time it takes
to convey the same amount of text to a recipient
with different tokenization and model configura-
tions. The coefficients needed to approximate the
perceived TPS are in Table 6. The most common



measure of throughput used is tokens per second
(TPS), which is a reliable measure of the model’s
output speed. However, it does not consider the
inefficiencies stemming from poor tokenization. A
byte-heavy output can require around twice the
amount of tokens generated to transmit the same
amount of textual information compared to that of
a model that does not use bytes. Our method re-
duces the sequence length, reducing the amount of
tokens needed to convey the same information.

To compute perceived TPS, we introduce the
concept of relative gain, a simple TPS multiplier
that factors in the expected differences between the
two tokenizers of models with identical TPS. This
is computed as the relative sequence length of the
same text between two tokenizers. The assumption
made here is that given the same text, a tokenizer
that is capable of encoding it with less tokens has
higher expressive power, therefore when used in
conjunction with TPS results in a better throughput
score of the model. It is computed by ;;:I , where T,
and T are tokenized sequences using the control
and experimental tokenizers, respectively.

For our results, we used the test set for each lan-
guage to compute the gain for our case, assuming
optimal output. This was a conscious decision, as
the relative gain computed by a poorly performing
model output tended to overamplify the gains'?.

For example, the gain of our method on the Ko-
rean translation task is 1.0334, which suggests that
there is a 3.34% advantage in expressive power
with the same token count compared to the base-
line. This can be multiplied by TPS better to ap-
proximate the model and tokenizer combination’s
perceived TPS. In the last row of Table 6, perceived
TPS can be compared to conventional TPS.

6 Conclusion

Byte-level representation is a simple yet effective
method for ensuring full vocabulary coverage for
arbitrary Unicode input. However, it comes at the
cost of longer sequences, which increase computa-
tion time in training and inference. Additionally, it
has a high risk of generating invalid sequences, es-
pecially with smaller models and training datasets.
Our work shows that the effects of these undesir-
able properties can be partially mitigated through
a minor re-encoding of input and output data. Our
proposed method is validated by demonstrating its

“This was mostly caused by repeated output in under-
trained model output.

efficacy in reducing sequence length and the num-
ber of failed decode operations. The positive results
demonstrate that raw UTF-8 bytes are a subopti-
mal representation and suggest further investigation
into an alternative method for text representation,
especially at the sub-byte scale.

While evaluating this work, we discovered that
TPS, as a measurement of model throughput, is
not representative of throughput when seen from
a completed text output perspective. We hope that
in future model throughput discussions, factoring
in tokenization through relative sequence length
between models will be used in conjunction with
TPS. As it is presented today, the findings in this
work have a theoretical trade-off concerning tok-
enizer entropy and sequence length. Additionally,
the work is still constrained to the underlying UTF-
8 framework. This is still far from optimally han-
dling long-tail tokens. We expect our findings to be
useful as an incremental step toward further chal-
lenging the status quo of naively using UTF-8 for
long-tail token coverage.

7 Future Work

Byte-level and particularly alternative encoding
methods are underexplored as of today, and many
promising avenues of investigation remain.

In this work, the bit spans are fixed for imple-
mentation simplicity reasons. This is an acceptable
first step to validate this method for the context of
our experimental setup, scoped to CJK languages.
However, this can be further expanded as an opti-
mization problem - minimizing sequence length,
minimizing the amount of extra tokens needed, and
maximizing entropy. Our work does not address
the problem of finding optimal bit boundaries.

Our method decreases tokenization entropy,
likely degrading performance. This might be fix-
able by decreasing the frequency of the most fre-
quent tokens. For example, one could omit the pre-
fix if the previous subword shares the same prefix.

Additionally, the increase in model size caused
by the extra vocabulary can be further optimized
by utilizing unreachable and, therefore, untrained
byte-level tokens. We considered this a premature
optimization and did not explore this direction.

Finally, the utility of perceived TPS was only
investigated for the scope of our work. We expect
this to be more useful when applied to configura-
tions with a larger delta, such as when comparing
Llama?2 (32K) and Llama3 (128K), for example.



Limitations

Our work is an early investigation in a previously
underexplored area of tokenization. As this is the
first step in a new direction for byte-level tokeniza-
tion methods, we focused mostly on the paradigm
shift of disregarding byte boundaries. As noted in
Section 7, the investigation was simplified by re-
stricting the scope to CJK languages, allowing us
to have a fixed boundary. This particular split may
not be optimal for other scripts.

Dataset limitations and compute costs were huge
factors that limited the scope of our investigation.
CJK languages are comparatively higher-resource,
compared to scripts in some other larger blocks
- such as Tangut (6,904 characters) or Yi (1,220
characters) where resources are scarce in terms
of both datasets and raw web corpora. Emojis are
another area we excluded from the investigation, as
they are likely not as frequent as text and, therefore,
unlikely to benefit as much from deduplication.

Ethical Statement

Our method itself does not introduce any new eth-
ical risks when used in conjunction with existing
methods. The method is data and task-agnostic
and is a method of lossless sequence compression.
There are likely minor environmental benefits that
come from the reduced computing costs.

The models from our experiments carry the same
ethical risks and bias as the underlying dataset used
to train them. To minimize the risk, we resorted to
well-known or openly available datasets whenever
possible and, therefore, can state that we are intro-
ducing no novel vectors of societal harm through
this work.
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A Appendix

A.1 Fine-tuning and Undertrained Tokens

As a negative result, we also ran experiments to
observe the effects of our method when applied
to fine-tuning or continual pre-training of a model.
In this experiment, we fine-tuned a Llama2 7B
model to observe the effects of our method!>. This
experiment intends to approximate the effects in a
foundational model setting by fine-tuning a model
through low-rank adaptation (Hu et al., 2022). We
expected this to have characteristics similar to those
of pre-training a model from scratch.

Here, we apply our method to the tokeniza-
tion stage of a pre-trained Llama2 7B model. For
newly added tokens, we apply an embedding copy
method. This is for better initialization compared
to a randomly initialized embedding. A Japanese
instruction-tuning dataset with 9.07M training in-
stances (Hirano et al., 2023) was used to fine-tune
the pre-trained model.

5This experiment had to be abandoned due to compute
budget constraints.
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The embeddings are copied from the existing
byte-level tokens with the smallest hamming dis-
tance to the newly added token. For example,
Ox1AF will be initialized with the same embed-
ding as @xAF. The prefix tokens p1, p2, p3 get
a slightly different treatment, where the embed-
ding is an average across the four prefixes the new
prefix token represents. For example, p1 will be
initialized by the mean between the embeddings
for OxE4-0xE7.

This model did not produce any meaningful re-
sults after training for 20K steps, which can poten-
tially be attributed to severely undertrained tokens
being copied over, causing large losses and, there-
fore, catastrophic forgetting in the initial steps. We
later confirmed this through inspection, and the
undertrained tokens can be observed in Figure 4.

However, this suggests that these unreachable
tokens can be recycled for the newer 9-bit "bytes"
(0x100-0x1FF) if the parameter budget needs to be
optimized.

A.2 Environment and Training Setup

All of the translation experiments were performed
on a shared environment, using two Nvidia H100
HBM?2 (94GB). The LoRA experiment was done
in the same environment, using four of the same
compute accelerators. At inference time, all exper-
iments involving wall-clock measurements were
done using a dedicated compute node with a single
Nvidia A6000 (48GB).

Korean translation training was run for 24 hours,
Japanese for 72 hours, and Chinese for 96 hours
(H100x2). The LoRA experiment (H100x4) was
run for 120 hours. Performance benchmark infer-
ence runs (A6000x1) were run over the course of
60 hours.

Each model was trained initially for 200
epochs'. However, the Chinese model output was
mostly (95%+) empty at 200 epochs and was
trained for another 100 epochs.

* en-zh byte: 296 epochs
* en-zh ours: 296 epochs
* en-ja byte: 200 epochs
* en-ja ours: 201 epochs
* ja-ko byte: 93 epochs
* ja-ko ours: 93 epochs

1%The early stop criteria until training stalled for 10 epochs
in a row.
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A.3 Artifacts and Licensing

In the scope of this work, we created a reference
implementation and a pre-trained model as scien-
tific artifacts. The reference implementation and
pre-trained models will be distributed under the
MIT license at [To be populated after CR]. The ref-
erence implementation will not contain the Llama2
tokenizer with our method, but an implementation
to create one from a downloaded Llama?2 will be.

The Japanese-Korean task was a dataset created
by merging multiple datasets and could be consid-
ered a novel artifact. However, as we do not have
redistribution rights, we will publish only the sen-
tence IDs for reproducibility purposes.
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Figure 4: Byte embeddings in Llama2, dimensionality reduced with PCA (d = 2). We observe there are a couple
clusters formed here, along with a dense cluster of undertrained tokens. The undertrained tokens in the projected
space converge around the unit vector, and the number of underused tokens can be observed by the number of labels
pointing to the unit vector in the lower diagram.

# Chinese (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.2
nrefs:1|case:1lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

# Japanese (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:ja-mecab-0.996-IPA|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0@|space:no|version:2.4.2
nrefs:1|case:1lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

# Korean (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:ko-mecab-0.996/ko-0.9.2-KO|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0@|space:no|version:2.4.2
nrefs:1|case:1lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

# Bytes (bleu, chrf)
nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:@|space:no|version:2.4.2

Table 7: sacreBLEU signatures used for score computation.
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