
Bit-level BPE: Below the byte boundary

Anonymous ACL submission

Abstract

Byte-level fallbacks for subword tokenization001
have become a common practice in large lan-002
guage models. In particular, it has been demon-003
strated to be incredibly effective as a pragmatic004
solution for preventing OOV, especially in the005
context of larger models. However, breaking a006
character down to individual bytes significantly007
increases the sequence length for long-tail to-008
kens in languages such as Chinese, Japanese,009
and Korean (CJK) and other character-diverse010
contexts such as emoji. The increased sequence011
length results in longer computation during012
both training and inference. In this work, we013
propose a simple compression technique that014
reduces the sequence length losslessly.015

1 Introduction016

Byte-pair Encoding (BPE) (Sennrich et al., 2016) is017

a method that allows models to have a robust vocab-018

ulary that is capable of representing rare words that019

have not been seen during training. Variants of this020

method have been used extensively in many mod-021

ern natural language processing (NLP) systems, as022

they allow the representation of a large vocabulary023

through the concatenation of smaller units, known024

as subwords, which in turn allows setting an upper025

boundary on the logits needed for a given model.026

Byte-level BPE is an extension of BPE to miti-027

gate out-of-vocabulary (OOV). Instead of falling028

back to OOV when a token cannot be represented029

through its subwords, it instead encodes the miss-030

ing token into a sequence of (usually Unicode, in031

particular - UTF-8) bytes. Due to the introduction032

of this method, OOV has been largely eliminated033

in large, foundational models.034

However, there is no such thing as a free lunch.035

Firstly, the model must also learn the intricacies036

of generating valid Unicode output for any byte-037

level token, on top of the main linguistic learn-038

ing (e.g., language modeling) task. For robust gen-039

eration, training requires enough samples for the040

Character Character Character

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit

6-bit 9-bit 9-bit 9-bit 9-bit 9-bit 9-bit

Encode (Fallback)

Shift and Deduplicate Reconstruct

Decode= 3 tokens

= 9 tokens

= 7 tokens

Figure 1: High-level overview of byte-level text rep-
resentation. In this work, we propose a deduplication
method that reduces sequence length at byte level.

model to learn byte sequencing, increasing training 041

costs. Secondly, representing a character in bytes 042

increases the length by up to four times the input. 043

This limits the utility outside of a large model setup. 044

In this work, we investigate the limitations of 045

byte-level fallbacks, particularly the inefficient na- 046

ture of the byte-level representation. We propose 047

a tokenizer-agnostic method for reducing redun- 048

dant information in UTF-8 byte-level fallbacks, 049

which results in shorter sequence lengths - even- 050

tually saving compute time. Through experiments 051

across three character-diverse languages (Chinese, 052

Japanese, and Korean), we measure the amount of 053

sequence length reduction and assess the pros and 054

cons of our method. To better understand the exper- 055

iment results and trade-offs, a method to compute 056

the perceived throughput is proposed for compari- 057

son. 058

2 Background 059

2.1 Byte-level BPE 060

Byte-level BPE is an extension of BPE that ad- 061

dresses limitations in dealing with unseen sub- 062

words. By adding the lowest-level building block 063

for Unicode characters into the vocabulary, it guar- 064

1

antees that there will be no OOV. While it is unclear065

where byte-level BPE was initially proposed, main-066

stream usage began as Radford et al. (2019) and067

Wang et al. (2019) proposed it in the context of068

language modeling and machine translation. The069

method increases robustness against OOV, which070

is a common problem in CJK languages.071

This problem is due to the sheer diversity of072

characters needed to represent CJK languages. The073

CJK Unified Ideographs block defines a total of074

97,680 code points, and the Hangul syllables block075

defines a total of 11,172 code points1. Any form of076

character-level bigram merge, therefore, will result077

in a combinatorial explosion, which in turn makes078

supporting any of these languages computationally079

costly. This complexity, combined with the rela-080

tively smaller amount of textual data available in081

the wild compared to other languages, resulted in082

many of the CJK characters being treated as OOV.083

By using byte-level fallback instead of naively los-084

ing information (e.g., OOV), modern models have085

effectively mitigated this problem.086

2.2 Related Work087

Our work is related to the history of character-level088

and byte-level NLP methods (Zhang and LeCun,089

2017; El Boukkouri et al., 2020; Shaham and Levy,090

2021; Xue et al., 2022). Although these methods091

using fine-grained tokenization alleviate the prob-092

lem of unknown words, they do so at the cost093

of performance on longer inputs (Libovický and094

Fraser, 2020; Gowda and May, 2020; Goldman095

et al., 2024). Byte-level NLP incurs even more096

severe performance penalties with longer inputs097

(Mielke et al., 2021; Sreedhar et al., 2023). Rust098

et al. (2021) analyzes the effect of over-segmented099

input, particularly its adversarial effects on model100

performance.101

In the recent LLM era, the fairness of unequal102

LLM usage costs among different languages is103

discussed (Ahia et al., 2023; Petrov et al., 2024).104

Our proposed method can shorten the input length105

while preserving byte-level fallback, alleviating dis-106

parities in training and inference costs among lan-107

guages.108

2.3 Byte-level Limitations109

The clear benefit of using byte-level is that it guar-110

antees there will be no OOV in the final trained111

model. This benefit, however, comes at the cost of112

1Statistics as of Unicode 15.1.

three major caveats. 113

The first caveat is that one needs to have enough 114

training to ensure that the model does not generate 115

invalid Unicode sequences for a sequence contain- 116

ing rare tokens, as without having seen enough 117

samples, the model will inherently generate invalid 118

Unicode sequences. This results in an implicit re- 119

quirement to have a larger training dataset to ensure 120

better generalization. This tends to indirectly affect 121

the model size, as the size of the dataset and model 122

should ideally be proportional (Hoffmann et al., 123

2022) - increasing the training cost of the model. 124

The second is the increased sequence length, 125

which is also inversely proportional to the size of 126

the model’s vocabulary2. On average, for a CJK 127

character to be represented with UTF-8 bytes, the 128

sequence length grows by three times compared 129

to a character-level representation. The smaller the 130

vocabulary is, the higher the probability of OOV vo- 131

cabulary is, therefore the sequence length increases. 132

There are tradeoffs to be made here, as a larger vo- 133

cabulary increases the cost of logit computation 134

and, as a result, requires more computation power 135

for training and inference - but also can introduce 136

undertrained tokens (Land and Bartolo, 2024). 137

The last one is a bit more subtle and relates to 138

the tokenizer quality against the byte-level token- 139

only distribution. Tokenizers are often trained with 140

a small sample of the final training corpus, which 141

results in a suboptimal distribution when observed 142

from a whole-corpus perspective. As an unintended 143

side effect, it also creates a local distribution spe- 144

cific to the byte portion, which has distributional 145

characteristics of the underlying character reflect3. 146

Zouhar et al. (2023) proposes Rényi efficiency as a 147

measure of tokenization quality. This is computed 148

through Rényi entropy Hα(Wv) of the random vari- 149

able Wv distributed according to pv for a given 150

vocabulary V , defined as: 151

Hα(Wv) = lim
α′→α

1

1− α′ log

(∑
w∈V

pv(w)
α′

)
(1) 152

and the associated Rényi effiency Eα(Wv) is a 153

scaled with respect to the vocabulary size |V |: 154

Eα(Wv) ≊
Hα(Wv)

log |V |
(2) 155

2It is somewhat proportional to the number of languages
one needs to support. The more languages supported in a
single vocabulary, the more likely there will be a strong de-
pendency on byte-level fallbacks.

3In the case of most models, this is UTF-8.

2

Figure 2: Byte-level frequency distribution on the
Japanese-Korean subtitle translation task training set,
ranked by most frequent byte.

In this context, a sharp probability mass distri-156

bution of token frequency results in lower Rényi157

entropy, and intuitively, the more uniform the dis-158

tribution is, the more entropy increases. Efficiency159

is a normalized form of entropy, accounting for160

the vocabulary size |V |. In our experiment and tok-161

enizer setup, we can assume that the byte-specific162

distribution has low entropy, as the frequency dis-163

parity between the most frequently-observed bytes164

and the rest of the vocabulary4 is high, resulting165

in suboptimal tokenizer efficiency when observed166

at the byte-level portion of the token distribution.167

To minimize misunderstandings, we will refer to168

Rényi efficiency as entropy throughout this paper.169

3 Proposed Method170

We propose an efficient tokenization method to171

shorten the input sequence, focusing on the repeti-172

tion (§3.1) and duplication (§3.2) in UTF-8. This173

section first provides the observation nature of the174

general representation of texts in UTF-8 and then175

explains the proposed method, which provides the176

efficient representation (§3.3). Figure 1 overviews177

the proposed method.178

3.1 Duplication in UTF-8179

The high-frequency token phenomena observed in180

Figure 2 is a bias inherited from the underlying181

character encoding, in this case, UTF-8. For the182

examples shown in Table 1, the UTF-8 encoded183

byte sequence from Chinese, Korean, and Japanese184

exhibits a duplication problem, indicated in bold.185

By simply observing this small sample, it is clear186

that byte-level tokens in the range of E4-ED have a187

much higher frequency than others.188

4In this case, all 255 possible bytes.

zh-CN 召 唤 众
E4 BC 97 E5 94 A4 E4 BC 97

ja-JP 検 認 裁
E6 A4 9C E8 AA 8D E8 A3 81

ko-KR 철 저 히

EC B2 A0 EC A0 80 ED 9E 88

Table 1: Example text from Chinese, Japanese, and Ko-
rean, accompanied with their byte representations. Each
character needs three tokens to represent, and we also
observe that there are common prefixes.

E4 E5 E6 E7
11100100 11100101 11100110 11100111

E8 E9 EA EB
11101000 11101001 11101010 11101011

EC ED EE EF
11101100 11101101 11101110 11101111

Table 2: UTF-8 CJK block common prefixes as seen
in bits. E4-E9 are CJK ideographs, while EA-ED is
Korean.

As UTF-8 must guarantee robustness to encode 189

every possible character in a deterministic form, 190

duplication is encoded into the scheme so it can be 191

decoded without dependency on the context. This 192

is an important property for reliable transmission 193

and storage, but it has several undesirable proper- 194

ties in the context of text generation from raw bytes. 195

Out of the three undesirable properties discussed 196

in 2.3, the two we intend to address directly in our 197

work are the duplication of information and learn- 198

ing complexity. The length problem is as demon- 199

strated in Table 1, and the learning complexity can 200

be attributed to the duplication. 201

3.2 Duplication at Bit-level 202

Looking at the bit level, the duplication of byte rep- 203

resentation can be generalized as the duplication 204

of bit sequences. We observe that the underlying 205

frequency distribution of the byte-level token range 206

shows overly frequent tokens, supporting our du- 207

plication claim. Not only are a third of the bytes 208

redundant information, as shown in Table 1, but we 209

hypothesize that the redundancy also increases the 210

complexity of learning, as it requires learning the 211

linguistic structure while also learning to generate 212

valid UTF-8 sequences, including emitting the re- 213

dundant tokens5. We also observe a commonality 214

5A somewhat simple analogy of this is learning how to
count while also learning how to play Fizz buzz.

3

between the most frequent tokens at the bit-level215

observed in Table 2.216

Out of the three text samples in Table 2, we217

can observe that aside from the Japanese (ja) sam-218

ple, the first six bits of the prefix - 0xEC-0xEF for219

Korean (ko), and 0xE4-0xE7 for Chinese (zh) are220

shared. This suggests that there is a possibility that221

this could be considered redundant information that222

can be de-duplicated.223

However, to make this de-duplication possible,224

we must break a common assumption - that a byte225

representation, as expressed by the model’s tok-226

enizer, is constrained to be eight bits. Having byte-227

level tokens represented as an exact byte counter-228

part has an advantage - as long as the model can229

generate valid byte sequences, it can be decoded230

without any extra effort. However, this only holds231

if the model is trained with enough data to learn the232

linguistic constructs of the corpus and how to gen-233

erate valid UTF-8. Unless training a large model,234

this is very challenging, and even in a large model235

context, it increases the cost of training.236

3.3 Breaking the 8-bit Byte Boundary237

Overview238

Our method breaks this common assumption, eight239

bits for a byte, by treating a sequence of bytes as240

a sequence of bits. Instead, ignoring the eight-bit241

boundary and having a flexible boundary of bits242

allows us to optimize the sequence - in particu-243

lar, by removing duplicate information. With our244

method applied, a "byte" in a tokenizer can hold245

any amount of bits instead of being uniformly eight246

(see Figure 1). This is possible as the model sees the247

individual bytes as logits, which does not require248

them to be aligned to eight bits. This optimization249

would not be possible outside of this context with-250

out wasting space.251

With bit boundary constraints lifted and the com-252

mon bits identified, we can now treat the common253

bits as a shared bit prefix of the upcoming tokens.254

For example, we can treat 0b111001 (0x39) to indi-255

cate that all following tokens have the same prefix256

unless the prefix changes or a subword is emitted.257

The two residual bits (e.g., 01 in the case of E5)258

will need to be carried over by the following bytes.259

As the vocabulary allocated for bytes is 28, carry-260

ing the two bits over on the next byte will increase261

the vocabulary budget significantly - as this would262

mean adding 768 more "byte" representation to-263

kens (210 − 28). For this reason, we redistribute264

the bits to have two 9-bit integers for our new ex- 265

tended "byte" representation. This requires adding 266

256 more tokens. 267

We demonstrate this proposed method with the 268

Chinese input shown in Table 1 (召唤众): 269

E4 BC 97 E5 94 A4 E4 BC 97 270

The process is divided into two parts: encoding and 271

decoding of the text. 272

Encoding 273

To isolate the common bits, we choose the first 274

"byte" to be six bits, which results in two residual 275

bits - for example with the character E4 BC 97, the 276

bit boundaries move as follows: 277

11100100 10111100 10010111_ 278

111001 00 10111100 10010111 279

111001 001011110 010010111_ 280

After the bit re-distribution, the first six bits are 281

now p1=0b111001, a special token representing a 282

6-bit prefix6. This can be implemented through a 283

simple set of bitwise operations; given three bytes 284

b1, b2, and b3 representing a single character, the 285

prefix b̂1, and 9-bit tokens b̂2, and b̂3, are computed 286

by7: 287

b̂1 = (b1 ∧ 127) ≫ 2 (3) 288

b̂2 = (((b1 ∧ 3) ≪ 7) ∨ (((b2 ∧ 254) ≫ 1) (4) 289

b̂3 = ((b2 ∧ 1) ≪ 8) ∨ b3 (5) 290

By shifting the existing byte boundaries to be 291

six, nine, and nine bits, respectively, we can now 292

represent the same sequence as: 293

p1 5E 97 p1 CA A4 p1 5E 97 294

With naive incremental encoding and a determin- 295

istic trailing sequence length for each character8, 296

instances of p1 can now be de-duplicated, as the 297

entire sequence is behind the first shared 6-bit pre- 298

fix. Note that a special token is used instead of 299

the byte representation (0x39) to disambiguate be- 300

tween naturally occurring bytes and incremental 301

decoder triggers. The de-duplicated sequence is: 302

p1 5E 97 CA A4 5E 97 303

This is a 22.22% reduction from the original 304

input. Whenever there is a transition in the 6-bit 305

6p1=0x39, which is duplicated across the sequence. In
practice, all prefix tokens can usurp existing byte tokens, as
they are unreachable. For example, 0x39 is the character "9".

7≪ and ≫ are bitwise left and right shift, respectively.
8A prefix is followed by two trailing bytes.

4

Length ↓ Entropy ↑
Byte Ours Diff Byte Ours

en-zh T 131M 127M 3.13% 0.764 0.634
B 64M 60M 6.41% 0.586 0.435

en-ja T 176M 174M 0.83% 0.818 0.763
B 41M 40M 3.56% 0.580 0.417

ja-ko T 113M 111M 2.21% 0.498 0.485
B 59M 56M 4.25% 0.485 0.446

Table 3: Sequence length reductions across the training
sets, rounded to the nearest million tokens. T indicates
the entire corpus, and B indicates the byte-level portion.

prefix, the new 6-bit prefix pn is emitted. For ex-306

ample, if we append a prefix transitioning Japanese307

character (認) E8 AA 8D, the resulting sequence308

(召唤众認) with our method is encoded as:309

p1 5E 97 CA A4 5E 97 p2 55 8D310

With one prefix switch, the gains decrease -311

16.66% shorter than the original input.312

Decoding313

As the specific Unicode blocks our method targets314

have a deterministic length of three bytes per char-315

acter, we can invert the incremental encoding by316

emitting the current prefix token after every 9-bit317

bi-gram, which results in the following generated318

sequence:319

p1 5E 97 p1 CA A4 p1 5E 97 p2 55 8D320

This sequence can be re-aligned to a boundary of321

eight bits each, which results in a decodable UTF-8322

byte sequence, through the following computation:323

b1 = (b̂1 ≪ 2) ∨ (b̂2 ≫ 7) (6)324

b2 = ((b̂2 ∧ 127) << 1) ∨ (b̂3 >> 8) (7)325

b3 = b̂3 ∧ 255 (8)326

This results in the reconstructed sequence:327

E4 BB BD E5 81 87 E7 AE 80 E8 94 B5328

In our work, the bit boundaries were set to be329

optimal for CJK scripts - the boundaries can be set330

differently for different Unicode blocks.331

4 Experiments332

To observe the effects of our method, we exper-333

imented across three target languages (Chinese,334

Japanese, and Korean) on a translation task.335

4.1 Datasets336

We used three datasets for this experiment, ref-337

erenced by their target language for simplicity338

throughout the paper: English-Chinese (Chinese),339

English-Japanese (Japanese), and Japanese-Korean 340

(Korean). The Chinese and Japanese datasets used 341

are from WMT20 (Barrault et al., 2020), while the 342

Korean dataset is from AI Hub9. For the WMT20 343

shared task, we used a custom split of the Wiki- 344

Matrix dataset from the news translation task for 345

Chinese (2.3M) and Japanese (3.5M). For Korean, 346

we used a subtitle translation dataset (3M)10 Each 347

dataset had a 5K test set held out for evaluation and 348

performance benchmarking and 40K for validation. 349

The remainder was used for training. 350

4.2 Model Settings 351

Each experiment trains byte-level fallback on a ma- 352

chine translation (MT) model trained from scratch. 353

We use a pre-trained Llama2 tokenizer, which trig- 354

gers a significant amount of byte-level fallbacks 355

in CJK languages, as can be seen in Table 3 (see 356

§4.3). We compare a Llama2 tokenizer for baseline 357

byte-level BPE (Byte) to an augmented Llama2 358

tokenizer with our method (Ours). We consider 359

this popular tokenizer to be a valid baseline to ex- 360

amine our method, which alleviates the problem in 361

the byte-level representation. All experiments use 362

identical vocabulary expansion when applying our 363

method - our method requires 256 more byte-level 364

tokens (0x100-0x1FF), along with three prefix to- 365

kens (p1, p2, p3). 366

The comparison intends to approximate the ef- 367

fects of our method in a from-scratch pre-training 368

setup under a limited compute budget. Specifically, 369

this experiment aims to demonstrate the challenges 370

of learning byte-level generation on a small model 371

and observe the effects of our method when gener- 372

ating byte sequences compared to a baseline byte- 373

level BPE tokenizer. Here, we train a 65M parame- 374

ter vanilla Transformer (Vaswani et al., 2017). With 375

the different tokenizations, we trained the model 376

for a fixed number of comparable epochs11. 377

Only translation into the CJK languages is eval- 378

uated, as the generation of CJK text has a critical 379

dependency on first being able to generate a valid 380

UTF-8 sequence. We expect the trained model to 381

underperform, as we hypothesize that byte-level 382

learning in a small model context is challenging. 383

The model quality was evaluated after recon- 384

structing the byte sequence and performing another 385

9https://aihub.or.kr
10An English-Korean dataset of comparable size was not

available for free use as of the time of writing.
11With an exception where we stop the model training if it

stalled for 10 epochs in a row.

5

https://aihub.or.kr

Figure 3: Byte-level distribution shift, with and without our method on the Japanese-Korean subtitle translation task.
We can observe that while the probability mass is distributed in our proposed method, there is a sharp increase in
the frequency of the most frequent tokens (0x39-0x3C). This results in lower entropy.

Decode error ↓ Empty ↓
Byte Ours Byte Ours

en-zh 33 14 3156 2545
en-ja 136 0 218 87
ja-ko 1522 121 7 3

Table 4: Number of invalid output from the 5000 test
samples.

detokenization step. With the resulting output, we386

used sacreBLEU (Post, 2018) under different con-387

figurations to compute the translation scores. Dif-388

ferent configurations were used for each language,389

and a unified configuration was used to compute390

byte-level BLEU and chrF. The sacreBLEU signa-391

tures are disclosed in our Appendix. For throughput392

benchmarks in Table 6, we measured the wall time393

for inference against 5000 samples, with a batch394

size of 100012.395

We use a combination of Marian (Junczys-396

Dowmunt et al., 2018), and Huggingface Trans-397

formers (Wolf et al., 2020) for these experiments.398

4.3 Results399

Sequence length and Entropy400

Table 3 reports the sequence length of the texts to-401

kenized with the original Llama2 tokenizer (Byte)402

and the one with the proposed method (Ours). This403

table demonstrates that the Llama2 tokenizer yields404

a lot of byte-level tokens for each dataset (e.g., 64M405

12This is not an entirely realistic setup, as inference time
batches will likely not be computed in batches of 1000.

out of 131M tokens are byte-level in the “en-zh” 406

dataset tokenized with the baseline). This result 407

also shows that the proposed method shortens the 408

length of sequence across all CJK datasets with 409

the de-duplication technique, which results in in- 410

creased computation efficiency. The magnitude of 411

sequence reduction was higher in Chinese and Ko- 412

rean. The reason for this can be explained through 413

the proportion of byte fallback, Japanese only has 414

23.4% byte fallback, while Chinese has 48.8% and 415

Korean as 52%. This sequence length comes at a 416

cost - the immediate side effect being an increase 417

in parameter count. 418

Table 3 shows changes in entropy as computed 419

by Renyi efficiency, defined in equation (2). As 420

our method’s application decreases tokenization’s 421

entropy, we can assume that there is a model quality 422

degradation - as Zouhar et al. (2023) found entropy 423

correlates to quality. In particular, as observed in 424

Table 3 and Figure 3, a trade-off between entropy 425

and sequence length needs to be made. In our work, 426

we prioritize sequence length over entropy. 427

Reduction of Decoding Error 428

The number of sequences that were unable to be 429

decoded see a significant decrease, as can be ob- 430

served in Table 4. We also see a significant de- 431

crease in empty sequences, although, for Chinese, 432

more than half of the generated output was empty13. 433

This required us to train the Chinese model for 100 434

13The initial model (200 epochs) was much worse, with
95% of the output of the 5K test samples given translated to
blank text on both byte and ours.

6

Size BLEU ↑ chrF ↑ TER ↓ Byte BLEU ↑ Byte chrF ↑
Byte Ours Byte Ours Byte Ours Byte Ours Byte Ours

en-zh 2.23M 0.5 1.7 1.9 3.2 127.3 100.4 3 7.3 3 5.5
en-ja 3.47M 1.6 3.2 6.5 8.5 467.2 100.3 15.2 20 19.4 23.5
ja-ko 2.99M 19 24.6 35.8 35.5 114.4 100.2 49 53.3 54.7 53.5

Table 5: Translation performance results across the three language pairs from 5000 test samples. Byte BLEU and
Byte chrF operates were computed at the byte level after reconstructing the output sequence. The table heading ↑
indicates metrics where higher is better, while ↓ it indicates metrics where lower is better.

en-zh en-ja ja-ko
Byte Ours Byte Ours Byte Ours

Tokens Out 188,361 194,891 578,446 465,401 168,233 302,867
AvgTok Out 33.64 60.57 115.69 93.08 37.67 38.98

Total time (s) 72.41 201.65 529.05 271.60 41.10 41.59
Tokens per Second (TPS) 464.69 300.39 183.91 342.71 916.43 937.21

Tokens in test reference 291,857 282,423 253,540 251,261 189,800 185,628
Relative Gain 1 1.0334 1 1.00091 1 1.0225

Perceived TPS 464.70 310.43 183.91 345.81 916.43 958.28

Table 6: Perceived TPS of a model. Tokens out are the total tokens output during the test, and AvgTok is the total
divided by the test set size (5K). Tokens per Second were computed with the total tokens divided by the mean
runtime across 5 runs. Relative gain is the perceived TPS improvement by reduced sequence length.

more epochs, significantly reducing the amount of435

blank output. Other languages tended to have many436

invalid sequences; Korean had a higher tendency437

to produce invalid byte sequences over blank se-438

quences, while Japanese suffered the least. This is439

likely because Japanese has the best in-vocabulary440

coverage out of the three languages, requiring less441

dependency on byte-level fallbacks, as seen in Ta-442

ble 3. These results suggest that byte-level genera-443

tion is challenging for smaller model setups.444

Task Performance445

Table 5 shows the translation performance results.446

The first thing that is very clear is that the BLEU447

scores are quite distant from public baselines based448

on the trained models. In particular, Chinese and449

Japanese are unlikely to be meaningful candidates450

for quantitative comparison. For this reason, we451

will focus on the Korean model, where we can452

perform a better analysis. For the Korean task, we453

see modest gains between our proposed method454

and the byte baseline in every aspect. However,455

this comes at the cost of longer computing times.456

We see gains for Chinese and Japanese, but both457

models are likely to be severely undertrained.458

We hypothesize that using the Transformer ar-459

chitecture with the default sequence length, long460

inputs, and byte-level tokenization may have con-461

tributed to the disappointing BLEU scores. The 462

primary difference between the cases where we ob- 463

serve positive signals compared to the undertrained 464

model cases is the average length per sample - as 465

subtitles tend to have much shorter sentences. 466

5 Factoring Tokenization into TPS 467

Table 6 reports the statistics about the inference 468

time in each dataset. Initially, we naively assumed 469

that sequence length is linearly correlated to the 470

wall clock time needed by the accelerator to com- 471

pute the sequence. This did not turn out to be true, 472

and the extra token cost especially needs to be fac- 473

tored in, as it introduces extra computation with 474

an increase in parameters. There are also extra 475

costs when computing the logits and attention. This 476

means one needs to consider the gains that come 477

from reducing the sequence length with our method 478

and whether the extra compute cost compared to 479

the gains results in a net loss. This was one area 480

where there was not much existing literature, which 481

required us to invent an approximation method of 482

the perceived TPS. 483

Perceived TPS, simply put, is the time it takes 484

to convey the same amount of text to a recipient 485

with different tokenization and model configura- 486

tions. The coefficients needed to approximate the 487

perceived TPS are in Table 6. The most common 488

7

measure of throughput used is tokens per second489

(TPS), which is a reliable measure of the model’s490

output speed. However, it does not consider the491

inefficiencies stemming from poor tokenization. A492

byte-heavy output can require around twice the493

amount of tokens generated to transmit the same494

amount of textual information compared to that of495

a model that does not use bytes. Our method re-496

duces the sequence length, reducing the amount of497

tokens needed to convey the same information.498

To compute perceived TPS, we introduce the499

concept of relative gain, a simple TPS multiplier500

that factors in the expected differences between the501

two tokenizers of models with identical TPS. This502

is computed as the relative sequence length of the503

same text between two tokenizers. The assumption504

made here is that given the same text, a tokenizer505

that is capable of encoding it with less tokens has506

higher expressive power, therefore when used in507

conjunction with TPS results in a better throughput508

score of the model. It is computed by |Tc|
|Te| , where Tc509

and Te are tokenized sequences using the control510

and experimental tokenizers, respectively.511

For our results, we used the test set for each lan-512

guage to compute the gain for our case, assuming513

optimal output. This was a conscious decision, as514

the relative gain computed by a poorly performing515

model output tended to overamplify the gains14.516

For example, the gain of our method on the Ko-517

rean translation task is 1.0334, which suggests that518

there is a 3.34% advantage in expressive power519

with the same token count compared to the base-520

line. This can be multiplied by TPS better to ap-521

proximate the model and tokenizer combination’s522

perceived TPS. In the last row of Table 6, perceived523

TPS can be compared to conventional TPS.524

6 Conclusion525

Byte-level representation is a simple yet effective526

method for ensuring full vocabulary coverage for527

arbitrary Unicode input. However, it comes at the528

cost of longer sequences, which increase computa-529

tion time in training and inference. Additionally, it530

has a high risk of generating invalid sequences, es-531

pecially with smaller models and training datasets.532

Our work shows that the effects of these undesir-533

able properties can be partially mitigated through534

a minor re-encoding of input and output data. Our535

proposed method is validated by demonstrating its536

14This was mostly caused by repeated output in under-
trained model output.

efficacy in reducing sequence length and the num- 537

ber of failed decode operations. The positive results 538

demonstrate that raw UTF-8 bytes are a subopti- 539

mal representation and suggest further investigation 540

into an alternative method for text representation, 541

especially at the sub-byte scale. 542

While evaluating this work, we discovered that 543

TPS, as a measurement of model throughput, is 544

not representative of throughput when seen from 545

a completed text output perspective. We hope that 546

in future model throughput discussions, factoring 547

in tokenization through relative sequence length 548

between models will be used in conjunction with 549

TPS. As it is presented today, the findings in this 550

work have a theoretical trade-off concerning tok- 551

enizer entropy and sequence length. Additionally, 552

the work is still constrained to the underlying UTF- 553

8 framework. This is still far from optimally han- 554

dling long-tail tokens. We expect our findings to be 555

useful as an incremental step toward further chal- 556

lenging the status quo of naively using UTF-8 for 557

long-tail token coverage. 558

7 Future Work 559

Byte-level and particularly alternative encoding 560

methods are underexplored as of today, and many 561

promising avenues of investigation remain. 562

In this work, the bit spans are fixed for imple- 563

mentation simplicity reasons. This is an acceptable 564

first step to validate this method for the context of 565

our experimental setup, scoped to CJK languages. 566

However, this can be further expanded as an opti- 567

mization problem - minimizing sequence length, 568

minimizing the amount of extra tokens needed, and 569

maximizing entropy. Our work does not address 570

the problem of finding optimal bit boundaries. 571

Our method decreases tokenization entropy, 572

likely degrading performance. This might be fix- 573

able by decreasing the frequency of the most fre- 574

quent tokens. For example, one could omit the pre- 575

fix if the previous subword shares the same prefix. 576

Additionally, the increase in model size caused 577

by the extra vocabulary can be further optimized 578

by utilizing unreachable and, therefore, untrained 579

byte-level tokens. We considered this a premature 580

optimization and did not explore this direction. 581

Finally, the utility of perceived TPS was only 582

investigated for the scope of our work. We expect 583

this to be more useful when applied to configura- 584

tions with a larger delta, such as when comparing 585

Llama2 (32K) and Llama3 (128K), for example. 586

8

Limitations587

Our work is an early investigation in a previously588

underexplored area of tokenization. As this is the589

first step in a new direction for byte-level tokeniza-590

tion methods, we focused mostly on the paradigm591

shift of disregarding byte boundaries. As noted in592

Section 7, the investigation was simplified by re-593

stricting the scope to CJK languages, allowing us594

to have a fixed boundary. This particular split may595

not be optimal for other scripts.596

Dataset limitations and compute costs were huge597

factors that limited the scope of our investigation.598

CJK languages are comparatively higher-resource,599

compared to scripts in some other larger blocks600

- such as Tangut (6,904 characters) or Yi (1,220601

characters) where resources are scarce in terms602

of both datasets and raw web corpora. Emojis are603

another area we excluded from the investigation, as604

they are likely not as frequent as text and, therefore,605

unlikely to benefit as much from deduplication.606

Ethical Statement607

Our method itself does not introduce any new eth-608

ical risks when used in conjunction with existing609

methods. The method is data and task-agnostic610

and is a method of lossless sequence compression.611

There are likely minor environmental benefits that612

come from the reduced computing costs.613

The models from our experiments carry the same614

ethical risks and bias as the underlying dataset used615

to train them. To minimize the risk, we resorted to616

well-known or openly available datasets whenever617

possible and, therefore, can state that we are intro-618

ducing no novel vectors of societal harm through619

this work.620

References621

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo622
Kasai, David Mortensen, Noah Smith, and Yulia623
Tsvetkov. 2023. Do all languages cost the same?624
tokenization in the era of commercial language mod-625
els. In Proceedings of the 2023 Conference on Em-626
pirical Methods in Natural Language Processing,627
pages 9904–9923, Singapore. Association for Com-628
putational Linguistics.629

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-630
jar, Marta R. Costa-jussà, Christian Federmann,631
Yvette Graham, Roman Grundkiewicz, Barry Had-632
dow, Matthias Huck, Eric Joanis, Tom Kocmi,633
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof634
Monz, Makoto Morishita, Masaaki Nagata, Toshi-635
aki Nakazawa, Santanu Pal, Matt Post, and Marcos636

Zampieri. 2020. Findings of the 2020 conference on 637
machine translation (WMT20). In Proceedings of 638
the Fifth Conference on Machine Translation, pages 639
1–55, Online. Association for Computational Linguis- 640
tics. 641

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne, 642
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu- 643
jii. 2020. CharacterBERT: Reconciling ELMo and 644
BERT for word-level open-vocabulary representa- 645
tions from characters. In Proceedings of the 28th 646
International Conference on Computational Linguis- 647
tics, pages 6903–6915, Barcelona, Spain (Online). 648
International Committee on Computational Linguis- 649
tics. 650

Omer Goldman, Avi Caciularu, Matan Eyal, Kris Cao, 651
Idan Szpektor, and Reut Tsarfaty. 2024. Unpacking 652
tokenization: Evaluating text compression and its 653
correlation with model performance. arXiv preprint 654
arXiv:2403.06265. 655

Thamme Gowda and Jonathan May. 2020. Finding the 656
optimal vocabulary size for neural machine transla- 657
tion. In Findings of the Association for Computa- 658
tional Linguistics: EMNLP 2020, pages 3955–3964, 659
Online. Association for Computational Linguistics. 660

Masanori Hirano, Masahiro Suzuki, and Hiroki Sakaji. 661
2023. llm-japanese-dataset v0: Construction of 662
Japanese Chat Dataset for Large Language Models 663
and its Methodology. 664

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 665
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 666
Diego de Las Casas, Lisa Anne Hendricks, Johannes 667
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 668
Katie Millican, George van den Driessche, Bogdan 669
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 670
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 671
and Laurent Sifre. 2022. Training compute-optimal 672
large language models. Preprint, arXiv:2203.15556. 673

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 674
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 675
Chen. 2022. LoRA: Low-rank adaptation of large 676
language models. In International Conference on 677
Learning Representations. 678

Marcin Junczys-Dowmunt, Roman Grundkiewicz, 679
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield, 680
Tom Neckermann, Frank Seide, Ulrich Germann, 681
Alham Fikri Aji, Nikolay Bogoychev, André F. T. 682
Martins, and Alexandra Birch. 2018. Marian: Fast 683
neural machine translation in C++. In Proceedings of 684
ACL 2018, System Demonstrations, pages 116–121, 685
Melbourne, Australia. Association for Computational 686
Linguistics. 687

Sander Land and Max Bartolo. 2024. Fishing for 688
magikarp: Automatically detecting under-trained 689
tokens in large language models. Preprint, 690
arXiv:2405.05417. 691

Jindřich Libovický and Alexander Fraser. 2020. To- 692
wards reasonably-sized character-level transformer 693

9

https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://doi.org/10.18653/v1/2023.emnlp-main.614
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.18653/v1/2020.findings-emnlp.352
https://doi.org/10.48550/arXiv.2305.12720
https://doi.org/10.48550/arXiv.2305.12720
https://doi.org/10.48550/arXiv.2305.12720
https://doi.org/10.48550/arXiv.2305.12720
https://doi.org/10.48550/arXiv.2305.12720
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://arxiv.org/abs/2405.05417
https://doi.org/10.18653/v1/2020.emnlp-main.203
https://doi.org/10.18653/v1/2020.emnlp-main.203
https://doi.org/10.18653/v1/2020.emnlp-main.203
https://doi.org/10.18653/v1/2020.emnlp-main.203

NMT by finetuning subword systems. In Proceed-694
ings of the 2020 Conference on Empirical Methods695
in Natural Language Processing (EMNLP), pages696
2572–2579, Online. Association for Computational697
Linguistics.698

Sabrina J Mielke, Zaid Alyafeai, Elizabeth Salesky,699
Colin Raffel, Manan Dey, Matthias Gallé, Arun Raja,700
Chenglei Si, Wilson Y Lee, Benoît Sagot, et al. 2021.701
Between words and characters: A brief history of702
open-vocabulary modeling and tokenization in nlp.703
arXiv preprint arXiv:2112.10508.704

Aleksandar Petrov, Emanuele La Malfa, Philip Torr,705
and Adel Bibi. 2024. Language model tokenizers706
introduce unfairness between languages. Advances707
in Neural Information Processing Systems, 36.708

Matt Post. 2018. A call for clarity in reporting BLEU709
scores. In Proceedings of the Third Conference on710
Machine Translation: Research Papers, pages 186–711
191, Brussels, Belgium. Association for Computa-712
tional Linguistics.713

Alec Radford, Jeff Wu, Rewon Child, David Luan,714
Dario Amodei, and Ilya Sutskever. 2019. Language715
models are unsupervised multitask learners.716

Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder,717
and Iryna Gurevych. 2021. How good is your tok-718
enizer? on the monolingual performance of multilin-719
gual language models. In Proceedings of the 59th720
Annual Meeting of the Association for Computational721
Linguistics and the 11th International Joint Confer-722
ence on Natural Language Processing (Volume 1:723
Long Papers), pages 3118–3135, Online. Association724
for Computational Linguistics.725

Rico Sennrich, Barry Haddow, and Alexandra Birch.726
2016. Neural machine translation of rare words with727
subword units. In Proceedings of the 54th Annual728
Meeting of the Association for Computational Lin-729
guistics (Volume 1: Long Papers), pages 1715–1725,730
Berlin, Germany. Association for Computational Lin-731
guistics.732

Uri Shaham and Omer Levy. 2021. Neural machine733
translation without embeddings. In Proceedings of734
the 2021 Conference of the North American Chapter735
of the Association for Computational Linguistics: Hu-736
man Language Technologies, pages 181–186, Online.737
Association for Computational Linguistics.738

Makesh Narsimhan Sreedhar, Xiangpeng Wan,739
Yu Cheng, and Junjie Hu. 2023. Local byte fusion740
for neural machine translation. In Proceedings741
of the 61st Annual Meeting of the Association for742
Computational Linguistics (Volume 1: Long Papers),743
pages 7199–7214, Toronto, Canada. Association for744
Computational Linguistics.745

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob746
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz747
Kaiser, and Illia Polosukhin. 2017. Attention is all748
you need. In Advances in Neural Information Pro-749
cessing Systems, volume 30. Curran Associates, Inc.750

Changhan Wang, Kyunghyun Cho, and Jiatao Gu. 2019. 751
Neural machine translation with byte-level subwords. 752
Preprint, arXiv:1909.03341. 753

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 754
Chaumond, Clement Delangue, Anthony Moi, Pier- 755
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 756
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 757
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 758
Teven Le Scao, Sylvain Gugger, Mariama Drame, 759
Quentin Lhoest, and Alexander Rush. 2020. Trans- 760
formers: State-of-the-art natural language processing. 761
In Proceedings of the 2020 Conference on Empirical 762
Methods in Natural Language Processing: System 763
Demonstrations, pages 38–45, Online. Association 764
for Computational Linguistics. 765

Linting Xue, Aditya Barua, Noah Constant, Rami Al- 766
Rfou, Sharan Narang, Mihir Kale, Adam Roberts, 767
and Colin Raffel. 2022. ByT5: Towards a token-free 768
future with pre-trained byte-to-byte models. Transac- 769
tions of the Association for Computational Linguis- 770
tics, 10:291–306. 771

Xiang Zhang and Yann LeCun. 2017. Which en- 772
coding is the best for text classification in chi- 773
nese, english, japanese and korean? arXiv preprint 774
arXiv:1708.02657. 775

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du, 776
Mrinmaya Sachan, and Ryan Cotterell. 2023. To- 777
kenization and the noiseless channel. In Proceedings 778
of the 61st Annual Meeting of the Association for 779
Computational Linguistics (Volume 1: Long Papers), 780
pages 5184–5207, Toronto, Canada. Association for 781
Computational Linguistics. 782

A Appendix 783

A.1 Fine-tuning and Undertrained Tokens 784

As a negative result, we also ran experiments to 785

observe the effects of our method when applied 786

to fine-tuning or continual pre-training of a model. 787

In this experiment, we fine-tuned a Llama2 7B 788

model to observe the effects of our method15. This 789

experiment intends to approximate the effects in a 790

foundational model setting by fine-tuning a model 791

through low-rank adaptation (Hu et al., 2022). We 792

expected this to have characteristics similar to those 793

of pre-training a model from scratch. 794

Here, we apply our method to the tokeniza- 795

tion stage of a pre-trained Llama2 7B model. For 796

newly added tokens, we apply an embedding copy 797

method. This is for better initialization compared 798

to a randomly initialized embedding. A Japanese 799

instruction-tuning dataset with 9.07M training in- 800

stances (Hirano et al., 2023) was used to fine-tune 801

the pre-trained model. 802

15This experiment had to be abandoned due to compute
budget constraints.

10

https://doi.org/10.18653/v1/2020.emnlp-main.203
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/2021.acl-long.243
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2021.naacl-main.17
https://doi.org/10.18653/v1/2021.naacl-main.17
https://doi.org/10.18653/v1/2021.naacl-main.17
https://doi.org/10.18653/v1/2023.acl-long.397
https://doi.org/10.18653/v1/2023.acl-long.397
https://doi.org/10.18653/v1/2023.acl-long.397
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/1909.03341
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.acl-long.284

The embeddings are copied from the existing803

byte-level tokens with the smallest hamming dis-804

tance to the newly added token. For example,805

0x1AF will be initialized with the same embed-806

ding as 0xAF. The prefix tokens p1, p2, p3 get807

a slightly different treatment, where the embed-808

ding is an average across the four prefixes the new809

prefix token represents. For example, p1 will be810

initialized by the mean between the embeddings811

for 0xE4-0xE7.812

This model did not produce any meaningful re-813

sults after training for 20K steps, which can poten-814

tially be attributed to severely undertrained tokens815

being copied over, causing large losses and, there-816

fore, catastrophic forgetting in the initial steps. We817

later confirmed this through inspection, and the818

undertrained tokens can be observed in Figure 4.819

However, this suggests that these unreachable820

tokens can be recycled for the newer 9-bit "bytes"821

(0x100-0x1FF) if the parameter budget needs to be822

optimized.823

A.2 Environment and Training Setup824

All of the translation experiments were performed825

on a shared environment, using two Nvidia H100826

HBM2 (94GB). The LoRA experiment was done827

in the same environment, using four of the same828

compute accelerators. At inference time, all exper-829

iments involving wall-clock measurements were830

done using a dedicated compute node with a single831

Nvidia A6000 (48GB).832

Korean translation training was run for 24 hours,833

Japanese for 72 hours, and Chinese for 96 hours834

(H100x2). The LoRA experiment (H100x4) was835

run for 120 hours. Performance benchmark infer-836

ence runs (A6000x1) were run over the course of837

60 hours.838

Each model was trained initially for 200839

epochs16. However, the Chinese model output was840

mostly (95%+) empty at 200 epochs and was841

trained for another 100 epochs.842

• en-zh byte: 296 epochs843

• en-zh ours: 296 epochs844

• en-ja byte: 200 epochs845

• en-ja ours: 201 epochs846

• ja-ko byte: 93 epochs847

• ja-ko ours: 93 epochs848

16The early stop criteria until training stalled for 10 epochs
in a row.

A.3 Artifacts and Licensing 849

In the scope of this work, we created a reference 850

implementation and a pre-trained model as scien- 851

tific artifacts. The reference implementation and 852

pre-trained models will be distributed under the 853

MIT license at [To be populated after CR]. The ref- 854

erence implementation will not contain the Llama2 855

tokenizer with our method, but an implementation 856

to create one from a downloaded Llama2 will be. 857

The Japanese-Korean task was a dataset created 858

by merging multiple datasets and could be consid- 859

ered a novel artifact. However, as we do not have 860

redistribution rights, we will publish only the sen- 861

tence IDs for reproducibility purposes. 862

11

0.2 0.1 0.0 0.1 0.2 0.3

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

2a30

a1

7b 4d
20

3a8f f1

3d

2b

ce

e

75

2

59

92

86
87 7e

29

19

1c

91
4f

f7

1b

b1 b8

e8
fe

f

2668

e0

93

9
a8

58

5

24

5c

c4

b0

c9

49

f5
6c d7

e9
9c

40

ba

22

fb

50

15

f6

46

ac

9e
4b

98

4

ed

90 5e

52

bb

fc

16

33

dd83
d5

cc

6

b6
e5

d4
db

55

9b

95

b2

1e

394c

21

8d

df

63

5d

cf

d2

79

2d

ca

f9

b

61
71

cb

38
eb c2

8a

43

f8

82

12

32

a0b4

c0

ae

64

0

8e

56

94

c5

72

8

ab
4a

a6

96

ef

c7

18

b5

69

a9

62

bf 7a
c8

6a

27

37
ee

5f

73

45

11

57
d6

de

44

c6

41

d988
4e

81

6f

e1

a4

e4

7d

66

10

aa

d8

2f

a7

2c

e2

84

a2

bd

b7

d0

6b

8b

ea
e7

1

ad

31

34

f03c

be

5b99

5478

a

e6

d1a5

80

3b
35

67

f4

3

da

85

60

3f

9f

d

c1

70

1f
7

42

28

af

51

17

77
23

9a fd

fa

b9

9d

13

c3
53

5a

f3

e3

48

65

25

7c

6d

7f

f2

89

14

8c
3e

74

1a

36

dc

97

47

1d

d3

bc

2e

76

6e

b3

a3

cd

c

ec

Figure 4: Byte embeddings in Llama2, dimensionality reduced with PCA (d = 2). We observe there are a couple
clusters formed here, along with a dense cluster of undertrained tokens. The undertrained tokens in the projected
space converge around the unit vector, and the number of underused tokens can be observed by the number of labels
pointing to the unit vector in the lower diagram.

Chinese (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:zh|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.2
nrefs:1|case:lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

Japanese (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:ja-mecab-0.996-IPA|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.2
nrefs:1|case:lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

Korean (bleu, chrf, ter)
nrefs:1|case:mixed|eff:no|tok:ko-mecab-0.996/ko-0.9.2-KO|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.2
nrefs:1|case:lc|tok:tercom|norm:no|punct:no|asian:yes|version:2.4.2

Bytes (bleu, chrf)
nrefs:1|case:mixed|eff:no|tok:none|smooth:exp|version:2.4.2
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.4.2

Table 7: sacreBLEU signatures used for score computation.

12

	Introduction
	Background
	Byte-level BPE
	Related Work
	Byte-level Limitations

	Proposed Method
	Duplication in UTF-8
	Duplication at Bit-level
	Breaking the 8-bit Byte Boundary

	Experiments
	Datasets
	Model Settings
	Results

	Factoring Tokenization into TPS
	Conclusion
	Future Work
	Appendix
	Fine-tuning and Undertrained Tokens
	Environment and Training Setup
	Artifacts and Licensing

