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Trust Prophet or Not? Taking a Further Verification Step toward
Accurate Scene Text Recognition

Anonymous Authors

ABSTRACT
Inducing linguistic knowledge for scene text recognition (STR) is
a new trend that could provide semantics for performance boost.
However, most autoregressive STR models optimize one-step ahead
prediction (i.e., 1-gram prediction) for character sequence, which
only utilizes the previous semantic context.Most non-autoregressive
models only apply linguistic knowledge individually on the out-
put sequence to refine the results in parallel, which do not fully
utilize the visual clues concurrently. In this paper, we propose a
novel language-based STR model, called ProphetSTR. It adopts an
n-stream attention mechanism in the decoder to simultaneously
predict the next 𝑛 characters based on the previous predictions at
each time step. It behaves like a prophet, encouraging the model
to predict more accurate results by utilizing the previous semantic
information and the near future clues. If the prediction results for
the same character at successive time steps are inconsistent, we
should not trust any of them. Otherwise, they are reliable predic-
tions. Therefore, we propose a multi-modality verification module,
masking the unreliable semantic features and inputting with visual
and trusted semantic ones simultaneously for masked prediction
recovery in parallel. It learns to align different modalities implicitly
and considers both visual context and linguistic knowledge, which
could generate more reliable results. Furthermore, we propose a
multi-scale weight-sharing encoder for multi-granularity image
representation. Extensive experiments demonstrate that Prophet-
STR achieves state-of-the-art performances on many benchmarks.
Further ablative studies prove the effectiveness of our proposed
components.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; • Applied
computing→ Document analysis; Optical character recogni-
tion.

KEYWORDS
Scene text recognition,Multi-modality verification, Languagemodel,
Multi-scale

1 INTRODUCTION
Scene text recognition (STR) task involves visual and semantic
modalities, so it is a critical research topic bridging computer vision
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and language model (LM). It has been widely used for many ap-
plications, e.g., document analysis [36], cross-modal retrieval [35],
autonomous driving [9], and text-based attacks [40].

Recently, many deep learning-based STR methods have been pro-
posed. Most of them follow the paradigm of the encoder-decoder
pipeline, where the encoder is responsible for visual feature em-
bedding and the decoder for character sequence prediction. As
the text owns linguistic characteristics, the linguistic information
is generally used in STR models to improve recognition perfor-
mance, especially for challenging cases such as occlusion, blur, and
distortion.

Typically, there are two streams to use the linguistic information
for STR. One stream is the auto-regressive (AR) STR [4, 23] gen-
erally adopting the generative LM [2]. It estimates the probability
distribution of the next character based on the previous predic-
tions at each time step. It is widely used for sequence modeling
and sequence-to-sequence (Seq2Seq) learning [25, 31]. The second
steam is the non-auto-regressive (NAR) STR [8, 24] that applies
visually independent LM to refine recognition results from the vi-
sion model. It could output the prediction sequences in parallel by
considering the bidirectional context.

However, the AR STRmethods learn limited linguistic knowledge
since they only achieve context from one direction. An intuitive
way to capture the previous and future information is to construct
a bidirectional model [21, 32], which merges the results from a
left-to-right decoder and a right-to-left decoder. However, since
the bidirectional decoders model the semantic features in differ-
ent directions respectively, they could not share the same weights
by using a single decoder. The ensemble models mean the twice
amount of parameters.

To tackle this problem, we propose a Transformer-based model,
called ProphetSTR, to effectively model the linguistic rules of scene
text, leveraging both previous semantic context and future clues
with a single prophet decoder (PD). It predicts future n-gram (n>1)
characters simultaneously at each time step. In addition to the
traditional LM or Seq2Seq model in STR approaches that optimize
one-step-ahead character prediction, the prophet decoder learns
n-step-ahead prediction. This future n-gram prediction serves as
extra guidance that explicitly encourages the model to plan for
future tokens and make decisions based on both previous context
and future clues.

The architecture of the PD is based on the original Transformer-
based decoder [33], which is composed of masked multi-head self-
attention blocks, cross-attention blocks, and feed-forward layers.
Instead, we introduce 𝑛 learnable tokens interacting with previous
prediction information for future n-gram prediction. The weights
are shared for each stream in the decoder. Thus, there is no great
increase in the model size.

Each character in the scene text image will be predicted 𝑛 times
by referring to different context information. The prediction results

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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may be unreliable if they are inconsistent. Otherwise, they can be
trusted. Inspired by the training strategy, i.e., Masked Language-
aware Module (MLM), in Natural Language Processing (NLP) meth-
ods [5, 43], we propose to use an additional multi-modal-based
module to further verify the prediction results based on the trusted
outputs and vision features. The unreliable prediction results are
masked and input to the verification module with trusted character
embeddings and position-aware visual tokens. The objective of
the module is to predict the true character category of the masked
tokens based on the vision clues and LM simultaneously. Since the
trusted characters provide partial order-aware semantics of the
text, the position-aware visual features could be aligned with them
implicitly. It benefits the module to learn visual-related LM. Un-
like most NAR STR methods that implement iterative steps [8, 23],
this verification module is only executed a single time, which is
sufficient to correct the prediction errors.

Furthermore, we explore more rational visual representations
of scene text images and propose a Transformer-based multi-scale
encoder to further boost the STR performance. Most visual fea-
ture encoders follow the pipeline of Vision Transformer (ViT) [6]
by splitting each image into a sequence of pre-defined size fixed
patches and then inputting the patches to Transformer layers after
the patch embedding process. The experimental results demon-
strate the patch size effect on the classification accuracy of different
datasets. Therefore, instead of using a fixed patch resolution, we
use multi-scale patch representations, enabling the Transformer’s
self-attention mechanism to capture scene text information on both
small and large patches.

However, it is not straightforward to apply the same Transformer-
based encoder on the input patches with different sizes. Changing
the patch resolution requires training a completely new encoder,
thus resulting in parameter increases. To overcome this limitation,
we propose to use a novel patch embedding strategy for normaliz-
ing the input patches of different sizes without losing information.
The normalized patch embeddings are input to the encoder with
corresponding scale embeddings for multi-scale scene text image
representation.

The combination of the multi-scale encoders, PD, and MVM
creates a powerful scene text recognizer. Extensive experiments
illustrate the effectiveness of the proposed ProphetSTR model and
also show its superiority when compared with the state-of-the-art
(SOTA) method.

In summary, the main contributions of this paper are fourfold:

• We propose a strong Transformer-based STR model, i.e.,
ProphetSTR, exploring the improvements on both visual
representations and LMs.
• Multi-prediction streams are adopted in the prophet decoder,
which could provide the credibility of the results by predic-
tion consistency. Additionally, the unreliable predictions are
refined by a novel proposed multi-modal verification mod-
ule to boost the recognition accuracy using both visual and
semantic features with a masking strategy.
• The encoder adopts a scalable patch embedding strategy for
processing input with varying patch resolutions. It allows
multi-scale feature extraction in scene text images without
introducing extra parameters.

• The proposed model achieves SOTA performance on many
STR benchmarks for both synthetic and real training data.
Extensive experiments illustrate the effectiveness of different
modules in ProphetSTR.

2 RELATEDWORKS
2.1 Language-free STR Methods
Language-free methods usually focus on leveraging visual features
without considering the relationship between characters, such
as [7, 8, 29, 38]. CRNN [29] employed CNN and RNN to model
sequential visual features, and then directly fed them into a CTC
decoder for prediction. DAN [38] built a convolutional alignment
module, which performed alignment operations from a visual per-
spective and avoided using historical decoding information, thereby
eliminating misalignments caused by decoding errors. ViTSTR [8]
mainly focused on ViT-alike visual model construction and adopted
a ViT training scheme for STR. SVTR [7] was designed to perceive
inter-character and intra-character patterns using a mixture of
global and local blocks, resulting in multi-grained character com-
ponent perception within a single visual model.

Some methods were implemented through segmentation. The
segmentation-based STR methods utilized Fully Convolutional Net-
works (FCN) to perform pixel-level character segmentation. Liao et
al. [17] employed a pixel grouping approach to recognize charac-
ters by forming text regions from the segmented pixels. Textscan-
ner [34] introduced an additional segmentation map that accurately
transcribes characters in the correct order. Language-free methods
struggle to effectively address recognition challenges in low-quality
images due to their limited access to linguistic information.

2.2 Language-involved STR Methods
To incorporate linguistic information, many language-involved
methods have been proposed. Most of those methods [18, 28] fol-
lowed the one-way semantic transmission manner that guided the
encoded visual features to attend the corresponding region with
the help of semantic information of previous prediction. Some STR
methods [8, 24, 44] used pre-trained LM or visually independent LM
to correct the inaccurate recognition results with the text context in
the image. SRN [44] proposed a global semantic reasoning module
to consider global semantic context information and effectively
combine it with visual context information to enhance prediction
accuracy. ABINet [8] proposed autonomous, bidirectional, and iter-
ative principles to guide the design of LM in STR.

Recently, many methods combined both visual and semantic
modalities [1, 20, 39, 46] for STR. VisionLAN [39] proposed a language-
aware mask to enhance the semantic features of visual informa-
tion and proposed weakly-supervised complementary learning to
generate accurate character-wise mask maps in MLM with only
word-level annotations. JVSR [1] introduced a multi-stage charac-
ter decoding paradigm with incremental refinement, where each
stage utilized visual features for initial predictions, followed by
a refinement step using combined visual-semantic information.
MATRN [20] explored the combination of visual and semantic
features extracted by visual model and LM and proposed an in-
teractive component for multi-modal features enhancement with
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Figure 1: The framework of our proposedmodel. The encoder adopts a scalable patch embedding strategy to normalize the patch
embedding for different cropped sizes and integrates multi-scale patches to obtain powerful and fined visual representations.
PD is responsible for character sequence prediction which could output multiple consecutive future predictions in parallel.
MVM takes a further verification step to predict reliable results based on both visual and trusted semantic clues.

bi-directional fusions. LPV [46] introduced a global linguistic re-
construction method to perceive the linguistic information in the
visual space, which converted visual features into semantically rich
ones gradually during the cascade process. Xiao et al. [41] related
the language model with text length and proposed a dual character
counting-aware visual and semantic modeling network for STR.

3 PROPOSED METHOD
3.1 Overall Architecture
The overall structure of the proposed method is present in Fig 2. It
consists of three modules, multi-scale encoder, PD, and MVM.

Given an input scene text image 𝐼 ∈ R𝑊 ×𝐻×𝐶 (𝑊 , 𝐻 and 𝐶

represent the image width, height, and channels respectively), we
first crop it to patches with different sizes. They are denoted as
𝑃
𝑗
𝑖
∈ R𝑤𝑖×ℎ𝑖×𝐶 , where 𝑖 ∈{1,. . . , 𝑠} and 𝑗 ∈{1,. . . , 𝑛𝑖 }. 𝑠 is the total

patch scale. 𝑛𝑖 ,𝑤𝑖 and ℎ𝑖 is the patch numbers, width and height of
scale 𝑖 , respectively. A Scalable Patch Embedding (SPE) strategy is
applied on those patches 𝑃 𝑗

𝑖
to tokenize them into patch embeddings

𝑥
𝑗
𝑖
∈ R𝑐 based on the size 𝑠 , where 𝑐 is the embedding dimension.

The dimensions of the different patch embeddings are the same.

For patches with the same resolution, their visual embeddings
are added with position embeddings, denoting as 𝑥 𝑗

𝑖
′ ∈ R𝑐 . Then,

patches with different resolutions are input into the multi-scale
encoder. To assist the visual encoder in distinguishing patches from
different resolutions, a scale embedding is introduced. Combined
with the patch features 𝑥 𝑗

𝑖
′, the multi-scale encoder can obtain the

coarse-grained image features. An attention operation is followed
with a position query to remove redundant information and achieve
the final position-aware visual features 𝑣𝑙 .

Afterward, PD is used to predict the next 𝑛 character in parallel
with the n-stream self-attention mechanism, which takes the em-
bedding of the previously predicted character 𝑦𝑡−1 as query and
the visual features 𝑣𝑙 as keys and values. 𝑛 special tokens are added
with the input character embedding to indicate the steps of the next
prediction.

The prediction manner of the PD may generate inconsistent
results. They should not be trusted and required to be verified again.
So, we mask those untrusted character embeddings to simulate the
case of missing character-wise linguistic semantics. Finally, MVM
takes both the masked prediction character embeddings and the
position-aware visual features as input to predict the final character
sequence in parallel.
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3.2 Multi-scale Encoder
To better capture the character informationwith various text lengths
in the image, we propose to model the input image with a multi-
scale representation. Changing the patch resolution requires train-
ing new encoders, thus resulting in parameters increasing. To over-
come this limitation, we use the SPE strategy for normalizing the
input patches of different sizes without losing information.

The SPE process is displayed in Alg. 1. The patch embedding for
the patch 𝑃𝑖 at scale 𝑖 is denoted as 𝑥𝑖∈ R𝑐 . The superscript label
𝑗 of 𝑥𝑖 is ignored for a general patch embedding representation.
We expect to find a “resized” patch embedding weights �̂� , so the
patch representations before and after resizing remain the same,
i.e., ⟨𝑥𝑖 ,𝑤⟩ = ⟨𝑥𝑖∗ , �̂�⟩. After optimization, we find that the matrix
to transform the patch embedding weights𝑤 for a certain scale 𝑖
corresponds to the inverse of the bilinear resize operation 𝐵. The
normalized patch embedding at any scale 𝑖∗ could be acquired by
step 5 of Alg. 1. The detailed inference steps are present in the
Appendix file.

The 𝑗𝑡ℎ patch embeddings 𝑥 𝑗
𝑖
of patches 𝑃 𝑗

𝑖
at scale 𝑖 summing

with its position embedding [6] 𝑝 𝑗
𝑖
and scale embeddings 𝑆𝑖 are

input to the encoder 𝐸𝑚𝑠 , which stacks 𝑙1 identical Transformer
layers. It outputs the image tokens 𝑥𝑖 capturing pixel, spatial and
scale-level information:

𝑥𝑖 = 𝐸𝑚𝑠 (𝑥1 + 𝑝1 + 𝑆1, . . . , 𝑥𝑠 + 𝑝𝑠 + 𝑆𝑠 ). (1)

Different scene text images might have their corresponding best
resolutions for patch representation. Utilizing all the aggregated in-
formation of 𝑥𝑖 is redundant, which hinders model learning and gen-
eralization. Therefore, we use length-fixed position queries [45] to
extract positional-aware visual features through 𝑙2 cross-attention
layers:

𝑝𝑚+11:𝐿 = MHA(𝑝𝑚1:𝐿, 𝑥
𝑚
1:𝑠 , 𝑥

𝑚
1:𝑠 ), (2)

𝑝0
𝑙
∈R𝑑 (𝑙 ∈{1,. . . ,𝐿}) denote positional vectors, projecting from

one-hot vectors at each location ranging from 0 to 𝐿. They are
passed into the cross-attention module as the position query Q. The
features of 𝑥1:𝑠 are projected to the key K and value V. MHA(Q,
K, V) denotes the multi-head attention operation [6]. 𝑝𝑚+11:𝐿 is the
output query after 𝑚𝑡ℎ cross-attention layer. Finally, we get the
positional aware visual tokens 𝑣1:𝐿 (namely 𝑝𝑙2

𝑙
).

Algorithm 1 Scalable Patch Embedding
Input: Patch embedding weights𝑤𝑖 of patches 𝑃𝑖 at any

pre-defined scale 𝑖 . Patches 𝑃𝑖∗ at arbitrary scale 𝑖∗ ∈{𝑖1,. . . , 𝑖𝑠 }.
/*Define: patch embedding 𝑥 , flatten operation 𝐹 , linear mapping 𝐵*/
1: 𝑥𝑖 = F(𝑃𝑖 )𝑇 F(𝑤𝑖 )
2: for 𝑖∗ ← 𝑖1 to 𝑖𝑠 do
3: if 𝑖∗ ≠ 𝑖 then
4: F(𝑃𝑖∗ ) = 𝐵𝑖

∗
𝑖
F(𝑃𝑖 ) /*𝐵𝑖

∗
𝑖

is the mapping from
scale 𝑖 to 𝑖∗*/

5: 𝑥𝑖∗ = F(𝑃𝑖∗ ) (𝐵𝑖
∗𝑇
𝑖
)+F(𝑤𝑖 ) /*(𝐵)+ is the pseudo-

inverse of matrix 𝐵*/
6: end if
7: end for

Output:Multi-scale patch embedding 𝑥𝑖∗ , 𝑖∗ ∈{𝑖1,. . . , 𝑖𝑠 }

3.3 Prophet Decoder
For many Transformer-based decoders used in STR approaches [18,
32], their target is to estimate the probability of the next char-
acter given previous predictions and visual context 𝑣1:𝐿 , namely
𝑃 (𝑦𝑡 |𝑦<𝑡 , 𝑣1:𝐿). However, we expect the decoder to learn to pre-
dict future n-grams simultaneously, i.e., 𝑃 (𝑦𝑡 :𝑡+𝑛−1 |𝑦<𝑡 , 𝑣1:𝐿). In
this way, the decoder can utilize previous contexts and also con-
sider future clues for predicting the current results. Inspired by the
ProphetNet [43] for word prediction, we propose a character PD
adopting n-stream weight sharing self-attention block to achieve
this goal.

As shown in Fig. 2, PD changes the normal masked multi-head
self-attention block to a masked multi-head N-stream attention
block. This block is based on the generally masked self-attention
but is divided into 𝑛 parallel masked self-attention modules to
predict the next 𝑛 consecutive future tokens respectively at each
time step. Specifically, the 𝑖𝑡ℎ prediction stream is responsible for
modeling the probability 𝑝 (𝑦𝑡+𝑖−1 |𝑦<𝑡 , 𝑣1:𝐿). The input to PD is the
embeddings of previously predicted character 𝑦𝑡−1 and 𝑛 learnable
tokens 𝑅𝑖 (𝑖 ∈{1,. . . ,𝑛})to indicate the order of prediction streams.
Note that the N-stream attention block of ProphetNet is different
from our PD. We find the mainstream attention of ProphetNet,
which is the same as the masked multi-head self-attention in the
traditional Transformer decoder for calculating the hidden states, is
redundant and increases additional computational cost. Therefore,
we remove it and use𝑛weight-sharingmaskedmulti-head attention
blocks as follows:

𝑔(𝑖)𝑜 = MHA(ℎ(𝑖)𝑜 , ℎ(𝑖)𝑜 , ℎ(𝑖)𝑜 ), (3)

where ℎ(𝑖)𝑜 = (ℎ(𝑖)𝑜0 , · · · , ℎ(𝑖)
𝑜
𝑇
), denoting the input sequence of

the 𝑖𝑡ℎ predicting stream in 𝑜-th layer of PD. 𝑇 is set as the maxi-
mum character sequence length. As the input of the first layer in
Multi-Head N-stream Self-Attention, ℎ(𝑖)0𝑡 is the concatenation of
learnable stream indication token 𝑅𝑖 and the corresponding previ-
ous input character embeddings𝑦𝑡−1 at time step 𝑡 . During training,
a lower triangular matrix is set to control each position to only
focus on its previous tokens [8] for each prediction stream.

𝑔(𝑖)𝑜 is the output of the layer 𝑜 in 𝑖𝑡ℎ masked self-attention-
based block. It interacts with the visual tokens 𝑣1:𝐿 by cross-attention
operation and the Feed Forward Network (FFN) to get the input
ℎ(𝑖)𝑜+1 of next (𝑜 + 1)𝑡ℎ layer of PD as:

𝑔(𝑖)𝑜 ′ = MHA(𝑔(𝑖)𝑜 , 𝑣1:𝐿, 𝑣1:𝐿),
ℎ(𝑖)𝑜+1 = LN(𝑔(𝑖)𝑜 ′ + FFN(𝑔(𝑖)𝑜 ′)) .

(4)

The output of the last layer 𝑂𝑡ℎ , i.e., ℎ(𝑖)𝑂 , is linear projected
to predict the next (𝑖 -1)𝑡ℎ output character 𝑦𝑡+𝑖−1. Although the
calculations of each stream are very similar, they are distinguished
by different prediction steam tokens. Since each stream has the
same structure, the weights can be shared among them.

Character in the same position will be predicted 𝑛 times by
different streams. In each prediction stream, its referring context is
different because the 𝑖𝑡ℎ stream prediction sees previous context
and future𝑛−𝑖 character clues. Therefore, the decoder may generate
inconsistent results for predicting the same character in different
streams. If so, they are considered unreliable predictions. Otherwise,
they can be trusted.
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3.4 Multi-modality Verification Module
Some STR methods [8, 47] refine the predicted character sequences
using a combination of context-free vision and context-aware LMs.
However, they are prone to erroneous rectification of correct initial
predictions since the LM works conditional independently on the
image features.

Our proposed PD provides a great criterion to determine the
confidence of prediction results through the n-stream prediction
way, which could avoid rectifying the initial correct predictions.
Only the predicted unreliable results are required to be verified.
Therefore, a further verification module, i.e., MVM, is proposed to
re-predict the unreliable characters in parallel by referring to multi-
modality vision and semantic information. It considers both the
trusted characters with corresponding orders and position-aware
visual features 𝑣1:𝐿 simultaneously, resulting in a more efficient and
robust STR refinement process.

MVM has 𝑙3 stacked Transformer layers, each of which consists
of a self-attention layer and a feed-forward layer. Inspired by MLM
in NLP models, the untrusted character predictions are replaced
with special [mask] tokens, while the trusted ones are represented
by their corresponding character embeddings. To better align with
the position-aware visual features output from the encoders, the
masked semantic embeddings 𝑦𝑀1:𝑇 are also added with the posi-
tional embeddings 𝑝1:𝑇 to indict the sequence order:

𝑦𝑀𝑖
′ = 𝑦𝑀𝑖 + 𝑝𝑖 . (5)

The position-aware visual tokens 𝑣1:𝐿 as well as the masked
position-aware semantic features 𝑦𝑀1:𝑇

′ are input to the MVM. Be-
tween them, a special separator token [SEP] is inserted to distin-
guish the two modalities. The two kinds of features are interacted
through the self-attention mechanism as follows:

[𝑣𝑢+11:𝐿 , 𝑦𝑢+11:𝑇 ] = MHA( [𝑣𝑢1:𝐿, 𝑦
𝑢
1:𝑇 ], [𝑣

𝑢
1:𝐿, 𝑦

𝑢
1:𝑇 ], [𝑣

𝑢
1:𝐿, 𝑦

𝑢
1:𝑇 ]), (6)

The superscript 𝑢∈{1,. . . ,𝑙3}) denotes the 𝑢𝑡ℎ self-attention layer. In
the first layer, 𝑦01:𝑇 = 𝑦𝑀1:𝑇 and 𝑣01:𝐿 = 𝑣1:𝐿 . In the last Transformer
layer, we only use the interacted semantic features𝑦𝑙31:𝑇 for character
prediction.

This step is implemented by a parallel linear transformation.
Concretely, a fully connected layer and softmax operation are em-
ployed to generate a transcript sequence of size 𝑇 , where ideally,
the prediction results of trusted characters remain the same, while
each of the masked characters is classified into a certain character
category. The output character sequence is determined by incor-
porating both trusted multi-modality features, thus being more
reliable than that of PD. It is noted that the masked semantics are
reasoned in a parallel way for a single time in the MVM, making it
run efficiently to generate more accurate results.

3.5 Loss Function
The loss function is composed of two items. Since the prediction
step by PD has 𝑛 different streams to predict the future 𝑛 characters,
each prediction stream adopts an independent cross-entropy loss

for training. This objective function is formalized as:

L𝑃𝐷 = −
𝑛−1∑︁
𝑗=0

𝜆 𝑗

(
𝑇− 𝑗∑︁
𝑡=1

log𝑝𝜃 (𝑦𝑡+𝑗 |𝑦<𝑡 , 𝑣)
)

= − 𝜆0

(
𝑇∑︁
𝑡=1

log𝑝𝜃 (𝑦𝑡 |𝑦<𝑡 , 𝑣)
)

−
𝑛−1∑︁
𝑗=1

𝜆 𝑗

(
𝑇− 𝑗∑︁
𝑡=1

log𝑝𝜃 (𝑦𝑡+𝑗 |𝑦<𝑡 , 𝑣)
)
,

(7)

where 𝜃 is the trainable parameters of the model. The first item
of the second equation in Eq.(7) is a traditional LM to learn the
next prediction, and the second item is the objective for future
predictions. 𝜆 𝑗 is the weight of 𝑗𝑡ℎ stream to balance the importance
of different prediction streams.

The cross-entropy loss is also used to supervise the learning of
MVM, which is formulated by:

L𝑀𝑉𝑀 = − 1
𝑇

𝑇∑︁
𝑡=1

log𝑝𝜃 (𝑦𝑡 |𝑦𝑀1:𝑇 , 𝑣). (8)

4 EXPERIMENTS
4.1 Datasets
MJSynth (MJ) [13] and SynthText (ST) [10] are synthetic text im-
age datasets, which contain 9 million and 8 million text images
respectively. We use their union as our training data. Six common
benchmarks contain three regular text datasets and three irregular
text datasets are used for the test. The regular text datasets are
IIIT5K-Words (IIIT5K) [19], Street View Text (SVT) [37] and IC-
DAR 2013 (IC13) [16]. The irregular text datasets are ICDAR 2015
(IC15) [15], Street View Text Perspective (SVTP) [22], and CUTE 80
(CUTE) [27]. Images in these datasets are most curved and distorted.
WordArt dataset (artistic text) [42] is used for testing to evaluate
the generalization of scene text recognizer.

In addition, we also train and test the model with the real dataset
Union14M-L [26], which contains 3.2 million samples collected from
publicly available datasets. The test set of Union-14M-Benchmark
contains 0.4M samples in a variety of situations, such as Curve,
Multi-Oriented, Artistic, Contextless, Salient, Multi-Words, and
General.

4.2 Implementation Details
We first resize the text images to 36 × 144 and use typical image
processing ways, e.g., adding Gaussian noise, rotation, perspective
distortion, and motion blur, for data augmentation, To train our
model, the initial learning rate is set to 4 × 10−4. The first 10k
iterations are used for warm-up. The whole training iterations
are determined as: 𝑙𝑟 = 𝑑−0.5

𝑚𝑜𝑑𝑒𝑙
·𝑚𝑖𝑛(𝑛−0.5, 𝑛 ·𝑤𝑎𝑟𝑚−1.5𝑛 ), where 𝑛

and𝑤𝑎𝑟𝑚𝑛 represent the number of normal iterations and warm
iterations. 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 384. The maximum length of the model
output sequence 𝑇 is set to 26. Experimentally, we set 𝑙1=𝑙2=𝑙3=4
and 𝑂=4, respectively. The hyper-parameters 𝜆 𝑗 are set equally.
To train MVM, we mask 50% predicted characters of PD randomly.
During inference, we use a lowercase alphanumeric charset, and the
number of character classes is set to 36. The models were trained
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Table 1: Accuracy(%) and speed (ms/image) of models with
different combinations of patch resolutions.

Patch size III5K SVT IC13 Avg. IC15 SVTP CUTE Avg. Speed
E6 95.5 94.9 96.2 95.53 85.6 90.8 90.3 88.90 21.52
E9 94.8 94.4 96.2 95.13 85.3 89.1 88.1 87.50 14.21
E12 94.0 94.6 96.4 95.00 84.4 90.4 86.1 86.97 8.00
E18 91.8 92.1 95.8 93.23 83.7 87.1 85.3 85.37 7.84
E9,12 95.6 94.9 96.9 95.80 86.0 90.8 90.5 89.10 20.16
E9,12,18 96.6 95.1 97.2 96.30 86.2 91.2 92.7 90.03 23.40
E6,9,12,18 97.4 95.1 97.4 96.63 87.0 92.4 94.1 91.17 29.57

on 2 NVIDIA A40, with a batch size of 1280. The training epochs
are 8 for synthetic data and 20 for real data.

4.3 Ablation Study
4.3.1 Patch Size. This section presents a controlled patch size study
of our proposed model by evaluating the STR performance on the
aspects of effectiveness and efficiency. We input single-size patches
and a multi-scale combination of them for training and testing. For
a fair comparison, we set the prediction stream number to 2 in all
those experiments and only observed the results of the first stream
in PD. Four patch sizes, i.e., 6×6, 9×9, 12×12, 18×18 pixels are used
for this ablation study. We denote the model as E𝑖 according to the
input patch size, where 𝑖 ∈ {6, 9, 12, 18}.

Results are shown in Table. 1. The first four rows show the
results using different single-scale patch embedding in the encoders.
We can see that the smaller the patch resolution, the higher the
accuracy rate. The model E6 achieves the highest average accuracy
rate on both regular datasets and irregular datasets than other
single-scale models, but its inference time is the slowest. Model
E9 gets comparable performance with model E6. But, it takes half
as much time for inference. The averaged recognition accuracy
of E12 and E9 are approximately equal. With the patch resolution
becoming larger, the recognition accuracy model drops gradually.

The last three rows in Table. 1 presents the results that take
multi-scale patch sizes as input. We can see that the model E9,12
surpasses E6 on almost all the datasets with less computational time.
With more patch resolutions used in the encoders, the recognition
accuracy is increasing continually. This demonstrates that inte-
grating multi-resolution patch tokens is important for effectively
capturing scene text image information.

4.3.2 Number of Prediction Streams. To explore the effectiveness
of predicting n-gram, we compare our model with setting n=1, 2,
and 3 in the PD. Two encoders, E12 and E9,12,18, are used to remove
the influence brought by the proposed image encoding module.

Table 2: Accuracy(%) of models with different decoders.

Model III5K SVT IC13 IC15 SVTP CUTE Avg.
E12+PD1 94.0 92.0 96.4 83.0 88.1 85.3 89.80
E12+PD2 94.0 94.6 96.4 84.4 90.4 86.1 90.99
E12+PD3 94.4 94.9 96.1 84.6 88.9 87.2 91.02
E9,12,18+PD1 94.2 94.6 96.3 84.8 88.4 89.1 91.23
E9,12,18+PD2 96.6 95.1 97.2 86.2 91.2 92.7 93.16
E9,12,18+PD3 96.7 95.1 97.8 85.8 90.9 92.2 93.08

Figure 2: The recognition results of models with different
PD. The incorrectly recognized character is marked red.

Figure 3: The character attention in the decoders of E12+PD1
and E12+PD2 at each time step.

They are connected with different prophet decoders PD𝑖 , where 𝑖
indicates the number of prediction streams in the proposed decoder.
Results are shown in Table. 2.

We can see that the performance of PD2 and PD3 is better than
PD1 on all of the six datasets whatever the encoder is. It demon-
strates that using a n-gram (n>1) character prediction strategy is
better than a single-gram one. However, the performance of using
higher grams for character prediction in scene text recognition
tasks might be decreased. The gap between the 2-gram model and
the 3-gram model is not large. We check the incorrectly recognized
text and find that the 3-gram model has the problem of recognizing
short text. We list some examples in Fig. 2. In addition, the computa-
tional and time cost becomes higher with the increasing prediction
streams in PD. The inference time of E9,12,18 plus three different
prediction streams (i.e, PD1, PD2 and PD3 ) are 20.95ms, 23.40ms
and 26.22ms, respectively. Comprehensively, we select PD2 as our
decoder in other experiments.

Some visualization of the character’s attention in different predic-
tion streams of the decoder is present in Fig. 3. The 𝑖𝑡ℎ row displays
the attention at time step 𝑖-1. We can see that the model of E12+PD2
could pay attention to the areas of corresponding characters more
correctly. The second stream of PD2 could also pay high attention
correctly to the next character during prediction. It could promote
the concentration of character attention for the first stream.

4.3.3 Effect of Different Modules. To evaluate the effect of different
modules of our proposed method, we conduct experiments on eight
separate models and display the results in Table. 5. If a multi-scale
encoder (i.e., E𝑚𝑠 ) is not selected, it represents we only use a single-
scale encoder E12 as input. Otherwise, we adopt E9,12,18. If PD is not
selected, it means we only use PD1 as a decoder which degrades to
a normal Transformer-based decoder. If it is selected, that means
the model uses the two-stream PD2. If MVM is not selected, the
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Table 3: Accuracy comparison with SOTA STR methods on six common benchmarks and WordArt datasets. Models are trained
on synthetic datasets (MJ and ST)

Methods Training Data Regular Irregular Artistic
IIIT5k SVT IC13 Avg IC15 SVTP CUTE Avg WordArt

ASTER(2019) [30] ST+MJ 93.4 89.5 91.8 91.6 76.1 78.5 79.5 78.0 57.9
NRTR(2019) [28] ST+MJ 90.1 91.5 95.8 92.5 79.4 86.6 80.9 82.3 58.5

RobustScanner(2020) [45] ST+MJ 95.3 88.1 94.8 92.7 77.1 79.5 90.3 82.3 61.3
SEED(2020) [24] ST+MJ 93.8 89.6 92.8 92.1 80.0 81.4 83.6 81.7 60.1
SRN(2020) [44] ST+MJ 94.8 91.5 95.5 93.9 82.7 85.1 87.8 85.2 -

VisionLAN(2021) [39] ST+MJ 95.8 91.7 95.7 94.4 83.7 86.0 88.5 86.1 -
ABINet-LV(2021) [8] ST+MJ+WiKi 96.2 93.5 97.4 95.7 86.0 89.3 89.2 88.2 67.4
S-GTR(2021) [11] ST+MJ 95.8 94.1 96.8 95.6 84.6 87.9 92.3 88.3 -
PTIE(2022) [32] ST+MJ 96.3 94.9 97.2 96.1 84.3 90.1 91.7 88.7 -

MATRN(2022) [20] ST+MJ 96.6 95.0 95.8 95.8 82.8 90.6 93.5 89.0 -
CornerTransformer(2022) [42] ST+MJ 95.9 94.6 96.4 95.6 86.3 91.5 92.0 89.9 70.8

CDistNet(2023) [48] ST+MJ 96.4 93.5 97.4 95.8 86.0 88.7 93.4 89.4 -
LISTER(2023) [3] ST+MJ 96.9 93.8 97.9 96.2 87.5 89.6 90.6 89.2 -
LPV(2023) [46] ST+MJ 97.3 94.6 97.3 96.4 87.5 90.9 94.8 91.0 -

Count-aware STR(2024) [41] ST+MJ 96.6 93.6 97.2 95.8 84.8 89.0 92.4 88.7 68.2
ProphetSTR9,12,18 (E9,12,18+PD2+MVM) ST+MJ 96.6 95.1 97.2 96.3 86.2 91.2 92.7 90.0 72.5

ProphetSTR6,9,12,18 (E6,9,12,18+PD2+MVM) ST+MJ 97.4 95.1 97.4 96.6 87.0 92.4 94.1 91.2 72.8

Table 4: Accuracy comparison with SOTA STR methods on six common benchmarks and Union14M-benchmark. The models
are trained on the training set of Union14M-L.

Methods Common Benchmarks Union14M-benchmark
IIIT5k SVT IC13 IC15 SVTP CUTE Avg Curve Multi-Oriented Artistic Contextless Salient Multi-Words General Avg

CRNN [29] 90.8 83.8 91.8 71.8 70.4 80.9 81.6 19.4 4.5 34.2 44.0 16.7 35.7 60.4 30.7
ASTER [30] 94.3 88.9 92.6 77.7 80.5 86.5 86.7 38.4 13.0 41.8 52.9 31.9 49.8 66.7 42.1
NRTR [28] 96.2 94.0 96.9 80.9 84.8 92.0 90.8 49.3 40.6 54.3 69.6 42.9 75.5 75.2 58.2
SAR [12] 96.6 92.4 96.0 82.0 85.7 92.7 90.9 68.9 56.9 60.6 73.3 60.1 74.6 76.0 67.2

SATRN [14] 97.0 95.2 97.9 87.1 91.0 96.2 93.9 74.8 64.7 67.1 76.1 72.2 74.1 75.8 72.1
RobustScanner [45] 96.8 92.4 95.7 86.4 83.9 93.8 91.2 66.2 54.2 61.4 72.7 60.1 74.2 75.7 66.4

SRN [44] 95.5 89.5 94.7 79.1 83.9 91.3 89.0 49.7 20.0 50.7 61.0 43.9 51.5 62.7 48.5
VisionLAN [39] 96.3 91.3 95.1 83.6 85.4 92.4 91.3 70.7 57.2 56.7 63.8 67.6 47.3 74.2 62.5
ABINet [8] 97.2 95.7 97.2 87.6 92.1 94.4 94.0 75.0 61.5 65.3 71.1 72.9 59.1 79.4 69.2
SVTR [7] 95.9 92.4 95.5 83.9 85.7 93.1 91.1 72.4 68.2 54.1 68.0 71.4 67.7 77.0 68.4

MATRN [20] 98.2 96.9 97.9 88.2 94.1 97.9 95.5 80.5 64.7 71.1 74.8 79.4 67.6 77.9 74.6
MAERec-S [26] 97.4 95.7 97.3 86.7 91.0 96.2 94.1 75.4 66.5 66.0 76.1 72.6 77.0 80.8 73.5
ProphetSTR9,12,18 97.6 97.2 97.8 89.4 94.1 96.8 95.5 80.5 64.2 72.4 74.3 77.5 64.8 80.2 73.4
ProphetSTR6,9,12,18 98.4 98.0 97.8 90.2 94.1 97.9 96.1 82.4 66.5 72.4 75.5 77.5 67.9 82.5 75.0

Table 5: Effect of different modules for STR.

MS PD MVM III5K SVT IC13 IC15 SVTP CUTE Avg.
93.2 90.4 91.8 79.6 83.4 85.4 87.30

✓ 94.0 93.5 95.7 84.3 87.6 87.2 90.38
✓ 93.9 93.0 95.3 82.7 86.1 88.2 89.86

✓ 94.0 92.0 96.4 83.0 88.1 85.3 89.80
✓ ✓ 94.9 94.4 95.9 85.0 90.1 89.2 91.58
✓ ✓ 94.2 94.6 96.3 84.8 88.4 89.1 91.23

✓ ✓ 94.0 94.6 96.4 84.4 90.4 86.1 90.99
✓ ✓ ✓ 96.6 95.1 97.2 86.2 91.2 92.7 93.16

model is composed of encoder E9,12,18 and decoder PD2. We get the
results of the first stream in PD2 for comparison.

The results in the first row are the baseline which is a sim-
ple encoder-decoder-based STR model. The following three rows
present the performance of individual effects of multi-scale visual
encoder, PD, and MVM. We can see that they improve the averaged
accuracy by 2.92%, 2.56%, and 2.5% respectively compared with the

baseline model, demonstrating their positive effect for boosting the
recognition performance separately.

The results from 5𝑡ℎ to 7𝑡ℎ rows display the pair-wise combi-
nation effect of different modules respectively. The recognition
rates are increment. Among them, the model adopting a multi-scale
strategy and PD gets the highest accuracy. It illustrates our pro-
posed encoder and decoder model could generate relatively reliable
results. After combining the three modules, the ensemble model
brings about a further performance boost. The results of the ensem-
ble model are better than that of any pair-wise module combined
models, which also proves the importance of each module for STR.
Additionally, the average inference time of the ensemble model
is 32.82ms. Among them, the modules E6,9,12,18+PD2 take about
29.57ms and MVM takes about 3ms.

4.4 Comparison with State-of-the-Art Methods
We first compare our proposed full models with the state-of-the-art
(SOTA) methods on seven STR benchmark datasets, including the
artistic text dataset WordArt. ProphetSTR9,12,18 represents the full
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Table 6: Accuracy(%) of output from different streams in PD and MVM. The Model is trained on the training set of Union14M-L.

Common Benchmarks Union14M-benchmark
Output IIIT5k SVT IC13 IC15 SVTP CUTE Avg WordArt Curve Multi-Oriented Artistic Contextless Salient Multi-Words General Avg

PD2-Stream1 97.2 96.9 96.9 86.9 93.4 94.4 94.3 73.5 75.0 63.2 71.1 73.3 74.6 63.5 77.8 71.2
PD2-Stream2 87.9 83.4 88.4 73.2 76.6 78.6 81.3 59.6 49.5 40.6 54.3 62.3 63.3 51.5 72.5 56.3

MVM 98.4 98.0 97.8 90.2 94.1 97.9 96.1 75.3 82.4 66.5 72.4 75.5 77.5 67.9 82.5 75.0

Figure 4: The prediction results of the first and second stream
of PD, and MVM.

model of E9,12,18+PD2+MVM, and ProphetSTR6,9,12,18 represents
that of E6,9,12,18+PD2+MVM. All the comparingmethods are trained
on MJSynth and SynthText. Results can be found in Table 3. Our
method achieves superior performance compared with the other
methods. Notably, our proposed ProphetSTR6,9,12,18 obtains the
highest average scores on all the datasets.

When we compare the model ProphetSTR6,9,12,18 with others
trained on Union14M (without pre-training), our method could
also achieve SOTA performance. It almost obtains the best perfor-
mance on all the datasets of common benchmarks, and performs
the best, especially for curve, artistic, and general scene text for the
Union14M dataset.

Compared with language-free STR methods, e.g., CRNN [29],
ASTER [30], and some language-aware STR methods, e.g., SRN [44],
ABINet [8], VisonLAN [39] and LPV [46], our model has shown
significant improvements on almost all the datasets. It implies the
strong recognition capabilities of our proposed model. MATRN [20]
combines visual and semantic features for AR STR. But, instead
of masking semantics, it masks regions on the image. Compared
with it, our method outperforms it on most datasets when trained
with synthesis data and achieves comparable results when trained
with real data. It further illustrates the effectiveness of using multi-
modality information for STR.

4.5 Recognition Accuracy of Different Modules
In this section, we show the recognition accuracy of different
streams in PD and MVM on different test datasets by training with
the Union14M-L dataset. Note that the second stream of PD starts
the prediction from the second character of the text images. Thus,
we count the accuracy of this stream by ignoring the first character
of ground truth. The results are shown in Table. 6. We can see
that the recognition accuracy of the first stream is much higher
than that of the second stream in PD. It may rise from the reason
that the output from the second stream refers to the previous se-
mantic information for predicting character at 𝑡+1 time step. In
contrast, the first stream refers to both previous predictions and
future 𝑡+1 information for predicting the output of time step 𝑡 . The
first stream could collect more clues than the second stream in PD.
After adding the verification module, we can see that MVM can
improve the recognition performance on all the datasets, especially

Table 7: Character Recognition InconsistencyRate of Prophet
Decoder

Training Data III5K SVT IC13 IC15 SVTP CUTE
MJ+ST 16.5 16.2 11.7 26.9 16.2 21.8
Union14M-L 12.2 14.0 8.8 24.5 15.0 18.7

for the Curve data of the Union14M benchmark, which boosts the
recognition rate by 7.4%. It demonstrates the essential effectiveness
of the MVM for recognition verification.

Some prediction results of the PD and MVM are positioned in
Fig. 4. We can see the inconsistent predictions of the two streams
in the PD are corrected by MVM.

4.6 Character Recognition Inconsistency Rate
of Prophet Decoder

Since the input of MVM is based on the inconsistency of the outputs
from different streams in PD, we further count the character-level
inconsistency recognition rate f. The inconsistency rate is computed
by:

𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑒 =

∑
1(𝑃𝑟𝑒𝑑𝑠𝑡𝑟𝑒𝑎𝑚2 ≠ 𝑃𝑟𝑒𝑑𝑠𝑡𝑟𝑒𝑎𝑚1)
Number of all characters

, (9)

where the numerator is the accumulated numbers of inconsistent
character recognition, results in the two streams of PD. Table. 7
shows the results of the models trained on different datasets. We
find that this rate is larger on irregular datasets. Compared with
models trained on synthetic data, training on the real dataset, i.e.,
Union14M, can reduce the recognition inconsistency and obtain
more accurate results. However, this great inconsistency rate moti-
vates us to propose MVM for boosting the performance and elimi-
nating the unreliable character recognition results. More inconsis-
tent recognition results of PD2 and the MVM rectified results are
displayed in the Appendix file.

5 CONCLUSION
In this paper, we proposed a novel scene text recognizer, Prophet-
STR, which consisted of a multi-scale encoder, a prophet decoder
(PD), and a multi-modality verification module (MVM). The en-
coders employed a scalable patch embedding strategy to handle
inputs with different patch resolutions, allowing multi-scale patch
information aggregated image representation. PD predicted the
next consecutive steps of characters by utilizing future information.
MVM could generate more accurate results based on both visual fea-
tures and reliable semantic clues. By assembling the three modules,
ProphetSTR shows powerful performance on different datasets.
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