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Abstract

This paper proposes an online fine-tuning with uncertainty quantification for offline
pre-trained agents in deep reinforcement learning (RL). Offline RL allows agents
to learn from pre-collected datasets without additional environment interactions,
but faces challenges like distributional shifts and uncertainty during online fine-
tuning. Our method incorporates uncertainty quantification into an ensemble of
pessimistic Q-functions. The uncertainty-based penalization mitigates the effects
of distributional shift during online fine-tuning, resulting in more stable and sample-
efficient learning. Through experiments on D4RL locomotion tasks with various
datasets, we demonstrate that the proposed method outperforms existing baseline
methods, achieving superior performance with fewer environment interactions.
The results highlight the effectiveness of uncertainty quantification in managing
distributional shift and improving the robustness of online fine-tuning from offline
pre-trained agents.

1 Introduction

Deep offline reinforcement learning (RL) trains neural networks using previously collected datasets,
enabling agents to learn without additional interactions with the environment, as shown by Levine
et al. [2020]. Recent advances in offline RL, such as the works of Fujimoto et al. [2019], Kumar et al.
[2019], Agarwal et al. [2020], Yu et al. [2020], Kumar et al. [2020], have demonstrated that offline
RL can outperform the behavior policies used to generate the offline datasets. However, offline RL
still faces several key challenges: (1) the datasets may stem from suboptimal behavior policies; (2)
the behavior policies may lack sufficient exploration; or (3) the datasets may be too small to fully
capture the environment’s dynamics. These limitations often necessitate further online fine-tuning
through additional interactions with the environment.

The goal of online fine-tuning is to leverage offline datasets to improve the sample efficiency and
the asymptotic performance of the agent during online learning. This process involves using the
offline dataset to estimate an initial policy, which ideally provides a strong starting point for the agent.
The challenge arises when transitioning to online learning, where the distributional shift between
the offline dataset and the new online interactions leads to large initial temporal difference (TD)
errors. These errors can cause significant performance degradation and result in the agent "forgetting"
valuable information learned during offline training, thus reducing sample efficiency. Fine-tuning an
offline pre-trained agent can be particularly difficult when using traditional off-policy RL methods
due to this distributional shift.

To address these issues, the offline-to-online RL framework (Off2OnRL) proposed by Lee et al.
[2022] introduces a pessimistic Q-ensemble scheme, which trains multiple Q-functions to mitigate
the bootstrapping errors caused by the distributional shift. By constraining the learning policy to
remain close to the distribution of the behavior policy, this method stabilizes the fine-tuning process.
Off2OnRL also utilizes a prioritized buffer with balanced replay, combining offline and online
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samples to ensure that the Q-function is trained with a mixture of data, which helps maintain stable
value estimates.

However, despite the use of balanced replay with near-on-policy samples, the method is not completely
free from uncertainty issues. This is because both samples generated by the learning agent and those
generated by the behavior agent are used together in the training process. As a result, uncertainty
can still arise, potentially destabilizing learning performance. To further enhance learning stability
and performance, it is essential to quantify uncertainty and incorporate it as a penalization factor
during learning. By effectively managing this uncertainty, we can improve the performance of online
fine-tuning from offline pre-trained agents.

In this paper, we introduce an Uncertainty-driven Pessimistic Q-ensemble (UPQ) for online fine-tuning
for offline pre-trained agents to address these challenges. Our approach builds on the Off2OnRL
framework by adopting an ensemble of pessimistic actor-critic agents, which are trained with
uncertainty quantification to guide the learning policy more effectively. By incorporating uncertainty-
based penalization into the replay buffer, we aim to mitigate the impact of distributional shift during
online fine-tuning. This helps to stabilize Q-function estimates and improves sample efficiency.

Through our experiments, we demonstrate that UPQ achieves superior performance with fewer online
interactions compared to state-of-the-art methods. Our method not only improves sample efficiency
but also delivers robust policies that better leverage the initial offline dataset, addressing the key
challenges in online fine-tuning for offline pre-trained agents.

2 Methodology

2.1 Offline Pre-Training

We use Conservative Q-Learning (CQL) proposed in Kumar et al. [2020], which is a method designed
to address the Q-value overestimation for out-of-distribution (OOD) actions in offline RL. An agent
learns a policy from a fixed dataset, and this can lead to the overestimation of Q-values for actions
that are either not represented or poorly represented in the dataset. CQL introduces conservative
regularization to mitigate this problem by penalizing Q-values for OOD actions, effectively biasing
the learned policy toward actions observed in the dataset. This makes CQL well-suited for learning
robust and reliable policies from fixed offline data.

An actor-critic agent {Qθ, πϕ} learns its Q-function and policy from a replay buffer B using CQL
with KL-divergence against a prior distribution over actions for policy evaluation, which minimize
the following:

αEs∼B
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where α is the tradeoff factor, θ̄ is the parameters of the target network, π̂β is the empirical behaviral
policy, and Bπ is the Bellman operator. This variant maintains a soft-maximum of Q-values, ensuring
a conservative estimate while minimizing the risks of overestimation for OOD actions.

2.2 Online Fine-Tuning

In our proposed method, we use multiple pre-trained pessimistic Q-functions and stochastic policies
(i.e. N CQL agents {Qθi , πϕi}i∈[N ]) to alleviate distribution shift effectively, we leverage multiple
pessimistically trained Q-functions, where θi and ϕi are defined as the parameters of the i agent’s
critic and actor, respectively. We define the Q-function and the policy of the ensemble as follows:
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Figure 1: Illustration of the overall architecture of the proposed online fine-tuning with uncertainty
quantification. Our method calculates the Q-target T QE and the corresponding uncertainty U by
using the ensemble of the N offline agents pre-trained from the offline dataset to update the gradients.

where the parameters are defined as θ := {θi}i∈[N ] and ϕ := {ϕi}i∈[N ], respectively. The defined
πE
ϕ follows a normal distribution with mean and variance of the Gaussian mixture 1

N

∑N
i=1 πϕi

for
parameterization. The modeled policy is the same as Off2OnRL.

Since the ensemble estimates the posterior distribution of its Q-functions, we use the standard
deviation-based uncertainty quantification technique borrowed from Pessimistic Bootstrapping for
offline RL (PBRL) proposed by Bai et al. [2022]). The uncertainty quantification at (s′, a′) of the
target Q-functions is defined as follows:

Uθ̄(s′, a′) := σ(Qθ̄i(s
′, a′)) =

√√√√ 1

N

N∑
i=1

(
Qθ̄i(s

′, a′)−QE
θ̄
(s′, a′)

)2
, (4)

where θ̄i is the parameters of the i agent’s target Q-network and we denote the mean over the ensemble
of the target Q-functions by QE

θ̄
. In policy evaluation, we use such uncertainty quantification as a

penalization term to the next Q-value for a mixture of online and offline samples from the replay
buffer. The QE of the ensemble agent is updated through pessimistic Q-function updates by fitting
the following target for state-action pairs sampled from B:

T QE
θ (s, a) := r(s, a) + γEa′∼πE

ϕ

[
QE

θ̄ (s
′, a′)− α log πE

ϕ (a
′|s′)− βUθ̄(s′, a′)

]
, (5)

where β is the penalization parameter for the uncertainty quantification. To this end, the parameters
of the Q-network and the policy of the ensemble agent, θ and ϕ, are updated by minimizing the
following objectives, respectively:

LCritic(θ) = E(s,a,s′)∼B

[(
QE

θ (s, a)− T QE
θ (s, a)

)2]
, (6)

LActor(ϕ) = Es∼B,a∼πE
ϕ

[
α log πE

ϕ (a|s)−QE
θ (s, a)

]
, (7)

where α is the parameter for temperature.

Figure 1 illustrates the overall workflow of the online fine-tuning with uncertainty quantification.
The learning Q-function and policy are updated via Eq. (6) and (7) by utilizing multiple offline
pre-trained agents. Pseudocode is represented in Algorithm 1, with differences from conventional
online fine-tuning algorithms in red.
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Algorithm 1 Online fine-tuning with uncertainty quantification

Require: Ensemble agent {πϕ, Qθ}, offline dataset D
1: Initialize replay buffer B ← ∅
2: for j = 1, . . . , |D| do
3: B ← B ∪ {τ off

j }, τ off
j = (s, a, r, s′)j from D

4: end for
5: for each iteration do
6: // COLLECT TRAINING SAMPLES
7: Collect a transition τ on = (s, a, r, s′) via online interaction with πϕ

8: Update B ← B ∪ {τ on}
9: // QUANTIFY UNCERTAINTY

10: Sample a random minibatch {τi}Ni=1 ∼ B
11: Calculate the uncertainty Uθ̄(s′, a′) in Eq.(4) through the target-networks
12: Calculate the Q-target in Eq.(5)
13: // UPDATE AGENT
14: Calculate LCritic(θ) in Eq.(6) and update θ
15: Calculate LActor(ϕ) in Eq.(7) and update ϕ
16: end for

3 Experiments

3.1 Experimental Setup

We evaluate the proposed method using the D4RL benchmark proposed in Fu et al. [2020], which
provides a diverse set of datasets designed for data-driven deep RL. Our experiments focus on
three widely used Mujoco locomotion tasks: HalfCheetah, Walker2d, and Hopper. For comparative
analysis, we use three types of datasets: medium, medium-replay, and medium-expert. The medium
dataset consists of samples from a medium-level policy trained using the Soft Actor-Critic (SAC)
algorithm by Haarnoja et al. [2018]. The medium-replay dataset includes all samples encountered
during the training of the medium-level policy, and the medium-expert dataset combines data from
both the medium-level agent and expert demonstrations. All experiments are conducted using 9 task
setups with the v2 version of these datasets to ensure a standardized evaluation.

We compare the performance of our proposed method against two baseline algorithms, CQL and
Off2OnRL. CQL serves as a strong baseline for offline RL, and its output is also used to initialize both
Off2OnRL and our approach. To ensure a fair comparison, we utilize the official implementations
of CQL1 and Off2OnRL2. In terms of hyperparameters, we keep most settings consistent with the
official Off2OnRL implementation to minimize confounding factors. We use N = 4 CQL agents
as offline pre-trained models for 1, 000 epochs with different random seeds across all tasks. These
pre-trained agents are then used to initialize both Off2OnRL and our method, which are trained for
an additional 200 epochs (equivalent to 200, 000 environment steps).

Our method uses an uncertainty quantification parameter β to account for the uncertainty in action-
value estimation. It helps guide the policy to be more conservative in uncertain regions of the state-
action space. For experiments, we vary β over the values [0.1, 0.01, 0.001, 0.0001], systematically
exploring the effects of different uncertainty penalization levels on the policy performance.

3.2 Empirical Results

Table 1 compares the normalized average scores of four methods across three environments. UPQ
consistently performs the best with an average score of 103.8. It shows its ability to handle uncertainty
during online fine-tuning. This method achieves top scores across different environments and dataset
types. We find that UPQ especially has advantages in the tasks with non-optimal datasets marked as
medium, medium-replay, and medium-expert. Uncertainty quantification of UPQ provides a reliable
mechanism for fine-tuning policies in an online manner. It highlights the benefits of combining
Uncertainty quantification with online fine-tuning from offline pre-trained models.

1available at https://github.com/aviral-kumar2907/CQL
2available at https://github.com/shlee94/Off2OnRL
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Table 1: Normalized average returns on Mujoco locomotion tasks. Results of CQL and Off2OnRL are
obtained by reproduction with the ‘v2’ dataset of D4RL. The top score for each task is highlighted.

CQL Off2onRL UPQ

M
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m HalfCheetah 43.9 83.2 89.6

Hopper 61.3 101.4 106.0
Walker2d 71.6 101.0 108.3

M
ed
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m

R
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la
y HalfCheetah 44.3 86.1 90.0

Hopper 52.8 108.8 106.3
Walker2d 68.4 103.7 111.1

M
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iu
m

E
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t HalfCheetah 11.6 92.1 93.7

Hopper 39.7 78.4 105.8
Walker2d 80.0 112.8 123.8
Average 52.6 96.4 103.8
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Figure 2: Normalized average score on Mujoco locomotion tasks with CQL, Off2OnRL, and UPQ.

The training curves in Figure 2 show the performance of CQL, Off2onRL, and UPQ across different
tasks and datasets. It is clear from the results that UPQ consistently achieves the highest performance
across almost all tasks, while Off2onRL also performs well but generally falls slightly behind
UPQ. The results reveal that UPQ shows more stability across most tasks during the early stage of
fine-tuning, while Off2onRL shows some performance drop within the first 100, 000 environment
steps.

Overall, UPQ not only achieves superior final performance but also demonstrates more stable and
consistent training across various datasets. The stability and sample efficiency, especially in the
critical early phase of fine-tuning, highlight the effectiveness of UPQ’s uncertainty quantification
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Table 2: Normalized average returns on Mujoco locomotion tasks with UPQ variants with different
values of β = [0.1, 0.01, 0.001, 0.0001]

UPQ
β = 0.1

UPQ
β = 0.01

UPQ
β = 0.001

UPQ
β = 0.0001

M
ed

iu
m HalfCheetah 85.7 89.6 88.2 77.5

Hopper 105.6 103.9 105.8 106.0
Walker2d 94.9 103.1 108.3 95.1

M
ed

iu
m

R
ep

la
y HalfCheetah 83.8 87.6 85.3 90.0

Hopper 98.8 99.2 106.3 105.3
Walker2d 98.1 103.5 111.1 96.1

M
ed

iu
m

E
xp

er
t HalfCheetah 93.0 93.1 93.7 92.5

Hopper 68.3 80.4 105.8 99.9
Walker2d 120.3 123.8 118.6 122.3

approach in ensuring more reliable learning during online fine-tuning for offline pre-trained policies.
The early convergence observed in UPQ suggests that it is better suited for environments where rapid
online fine-tuning is crucial for optimal policy performance.

Table 2 shows the performance of the UPQ algorithm across different environments under various
datasets as the uncertainty penalization parameter β is varied. As we observe, changing β has a
noticeable impact on performance. The results indicate that the UPQ algorithm generally achieves
its best performance when the uncertainty penalization parameter β is around 0.001. This suggests
that a β value near 0.001 strikes a good balance between conservatism and exploration, allowing the
algorithm to manage uncertainty effectively while maintaining high performance across different
environments.

4 Conclusion

In this work, we introduced a method for improving the stability and performance of online fine-
tuning for offline pre-trained agents through uncertainty quantification. Our approach leverages
an ensemble of pessimistic Q-functions, incorporating uncertainty estimates to guide the learning
process more effectively during online fine-tuning. Our experiments on several Mujoco locomotion
tasks demonstrate that our method consistently outperforms existing methods in terms of sample
efficiency and final performance. By addressing the limitations of existing fine-tuning methods, UPQ
enhances both the robustness and efficiency of online learning, making it a promising solution for
real-world applications where safe and efficient policy fine-tuning is critical. Future work could
explore adaptive uncertainty penalization for further improvements in generalization over different
tasks and applying UPQ to more complex, real-world tasks beyond simulation environments.
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