Do Joint Language-Audio Embeddings Encode
Perceptual Timbre Semantics?

Qixin Deng Bryan Pardo Thrasyvoulos N. Pappas
Northwestern University, Evanston, IL, USA

Abstract

Understanding and modeling the relationship between language and sound is critical
for applications such as music information retrieval, text-guided music generation,
and audio captioning. Central to these tasks is the use of joint language—audio
embedding spaces, which map textual descriptions and auditory content into a
shared embedding space. While multimodal models such as MS-CLAP, LAION-
CLAP and MuQ-MuLan have shown strong performance in aligning language
and audio, their correspondence to human perception of timbre, a multifaceted at-
tribute encompassing qualities such as brightness, roughness, and warmth, remains
underexplored. In this paper, we evaluate the above three joint language—audio
embedding models on their ability to capture perceptual dimensions of timbre. Our
findings show that LAION-CLAP consistently provides the most reliable alignment
with human-perceived timbre semantics across both instrumental sounds and audio
effects.

1 Introduction

Joint language—audio embedding spaces align textual descriptions and auditory content in a shared
semantic representation. These models learn to project audio and language into a common embedding
space, where semantically related pairs are close together, enabling tasks such as cross-modal retrieval,
audio captioning, and text-guided audio effects[1]] and music generation[5]. Recent models such as
MS-CLAP [2, 3], LAION-CLAP [8] and MuQ-MuLan [10]have demonstrated strong performance in
identifying audio content, for example, recognizing that a clip contains a saxophone solo or footsteps
on gravel. What remains less clear, however, is whether these models also capture how the sound is
perceived, particularly its timbral qualities: a saxophone may be described as warm, bright, or raspy,
while footsteps might sound light, crunchy, or heavy. Such timbral attributes are often more subtle
and may not be well represented in training metadata.

Studies on timbral semantics largely examine how humans perceive and describe timbre, following
two main approaches. The first focuses on single instruments. Jiang et al. [4] distilled 329 descriptors
into 16 core terms (e.g., bright—dark, raspy—mellow) through listening tests on 72 instruments. Simi-
larly, Roche et al. [|6] collected 784 verbal expressions of synthetic sounds from 101 French-speaking
listeners and clustered them into eight perceptual dimensions. The second approach, alternatively,
links timbre descriptors to audio effect parameters. SocialFX [9] crowdsourced descriptions of equal-
ization, reverberation, and compression from over 480 participants, yielding hundreds of unique terms.
Across studies, adjectives such as warm, bright, sharp, and clear consistently emerged, suggesting
that perceptual patterns generalize across sources and effects.

To our knowledge, no prior work thoroughly investigates how well descriptors of timbre are encoded
in joint language—audio embedding spaces. While Text2FX [1]] explores whether MS-CLAP encodes
timbral semantics at all, it does not evaluate the extent of this encoding. In this work, we assess the
perceptual validity of joint language—audio embeddings with respect to timbral semantics. Using
human-annotated datasets from Jiang et al. [4] and SocialFX [9], we evaluate how popular embedding
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spaces preserve timbral characteristics and how this preservation varies across models. These insights
can inform the development of perceptually grounded systems for automatic timbre analysis and
improve downstream applications such as timbre-based music retrieval, sound design, and interactive
audio tools. The contributions of our work are:1. A methodology for assessing language-audio
embedding model alignment with human perception of timbre. 2. An evaluation and comparison
between popular language-audio embeddings using this methodology.

2 Experiments

We performed two experiments to evaluate the alignment between three popular audio-text embedding
models (MS-CLAP, LAION-CLAP, and MuQ-MuLan) and human perception of timbre. In the first
experiment, we assessed whether language-audio embedding models capture human-perceived timbre
semantics of instruments. In the second experiment, we investigated how these three embedding
models capture perceptual timbre descriptors in relation to audio effects control trends, specifically
equalization (EQ) and reverberation.

2.1 The Models

Although all of these models use contrastive learning to align audio clips with their corresponding
textual descriptions, they differ in training data and domain coverage. MS-CLAP and LAION-CLAP
target general audio understanding, meaning that they are trained to represent a broad spectrum of
sounds, including music, speech, environmental sounds(e.g., dogs barking, doors closing, waves
crashing) to abstract auditory events (e.g., alarms, sirens). MS-CLAP is trained on a combination of
FSD50k, Clotho V2, AudioCaps, and MACS, spanning music, speech, natural sounds, and abstract
auditory events paired with human-written captions; LAION-CLAP uses their own curated large-scale
LAION-Audio-630k dataset, which contains environmental and human-related audio clips labeled via
keyword-to-caption augumentation. While the original MuLan model is not open-sourced, we use the
open-source MuQ-MuLan, which focuses specifically on music and is trained on video soundtracks
paired with rich metadata such as tags, titles, descriptions, and user comments.

2.2 Experiment 1: Instrumental Timbre Semantics

In the first experiment, we assessed whether language-audio embedding models capture human-
perceived timbral semantics at both the descriptor and instrument level, using Jiang’s CCMusic-
Database-Instrument-Timbre dataset[4]. The dataset contains short audio clips for 37 Chinese and
24 Western instruments, each annotated with ratings for 16 semantic descriptors (e.g., bright, dark,
raspy). Ratings were collected from 34 Chinese-speaking participants with musical training, who
judged on a nine-point scale the degree to which each descriptor applied to each instrument. This
dataset is openly available and was obtained through a controlled listening test, providing a reliable
ground truth for perceptual timbre semantics.

In our experiment, for each pair of instrument audio recording and timbre descriptor, we encode
them using the embedding model to obtain an audio embedding a; and a text embedding t4. Cosine
similarity was then computed between the audio embedding and text embedding, yielding a 16-
dimensional similarity profile s; = [s; 4]qep for instrument ¢. Each entry s, 4 reflects the strength
of association, in the joint embedding space, between the instrument’s sound and descriptor d. The
underlying hypothesis is that if the embedding space encodes timbral semantics, for the instruments
with higher human ratings for descriptor d (e.g., bright), its audio embedding should be positioned
near to the text embeddings of d, resulting in higher cosine similarity value s; 4. Two complementary
correlation analyses were performed:

1. Descriptor-level correlation: For each descriptor d, Pearson correlations were computed between
human ratings {h; 4}; and embedding similarities {s; 4}; across all instruments. A high positive
correlation for a descriptor indicates that instruments judged by listeners as strongly expressing d also
appear closer to t, in the embedding space, reflecting semantic alignment for that perceptual quality.
A low or near-zero correlation suggests weak or no alignment between the embedding space and
human perception for that descriptor. A negative correlation indicates a mismatch, where instruments
rated highly on descriptor d by humans are placed farther away from t, in the embedding space,
suggesting the model encodes an opposite or contradictory association.



2. Instrument-level semantic profile correlation: For each instrument ¢, its 16-dimensional human
rating vector h; was correlated with its 16-dimensional similarity profile s;. A high correlation
indicates that the embedding captures the overall timbre profile of the instrument 7 across descriptors.
A low correlation implies that the embedding fails to reproduce the joint configuration of timbral
attributes as perceived by listeners. A negative correlation indicates a systematic inversion, where
descriptors that listeners strongly associate with an instrument are those that the embedding places
far away, suggesting the model misrepresents the instrument’s perceptual timbre profile.

2.2.1 Results for Experiment 1

At the descriptor level, LAION-CLAP demonstrated the strongest alignment with human ratings,
with 12 out of 16 descriptors showing positive correlations. Its highest correlation was observed
for the descriptor vigorous (r = 0.35), while the lowest was for coarse (r = —0.25). In contrast,
MS-CLAP achieved positive correlations for only 7 descriptors. Its strongest alignment was for turbid
(r = 0.40), but it also exhibited notable negative correlations, particularly for thin (r = —0.28).
Similarly, MuQ-MuLan yielded 7 positive and 9 negative correlations. Although it reached a relatively
high positive value for slim (r = 0.41), it failed dramatically for vigorous (r = —0.48). These results
suggest that LAION-CLAP provides the most consistent descriptor-level alignment with human
perception than MS-CLAP and MuQ-MuLan. The detailed visualization of the descriptor-level
correlations can be found in Figure [I} Figure 2|and Figure [3/in Appendix.

At the instrument level, LAION-CLAP demonstrated the strongest overall alignment with human
semantic profiles, producing 24 positive correlations out of 37 Chinese instruments (mean r = 0.162).
MS-CLAP showed the same number of positives correlations but with a weaker average correlation
(r = 0.058). MuQ-MuLan was less consistent, with only 16 positive and 21 negative correlations
with nearly zero mean Pearson correlations which indicates very little perceptual validity. For Western
instruments, MS-CLAP results in the best alignment(12 positives, 12 negatives, mean r = 0.0528).
LAION-CLAP has weaker alignment (10 positives, 14 negatives, mean r = 0.027). MuQ-MuLan
archived a same result as LAION-CLAP (10 positives, 14 negatives) but slipped into a slightly
negative mean (r = —0.027). The detailed visualization of instrument-level correlation can be
found in Figure [ to Figure [9]in Appendix.

2.3 Experiment 2: Audio Effect Timbre Semantics

While Experiment 1 evaluated embeddings using naturally occurring timbral variation across in-
struments, real-world recordings also differ in pitch, dynamics, and recording conditions, making it
difficult to isolate timbre. To address this, Experiment 2 systematically manipulated timbre through
digital signal processing (DSP), allowing precise control over the type and magnitude of change.
This design builds on SocialFX[9]], which is a large crowdsourced collection linking 4,297 unique
vocabulary terms to precise and quantified audio effect parameter settings. These mappings provide
a perceptually grounded reference for how layperson descriptors (e.g., warm, harsh) correspond to
measurable timbral changes. Two effect types were considered:

1. Equalization (EQ): Implemented using a 40-band parametric equalizer, where each band is
defined by a center frequency, bandwidth, and gain. For each descriptor, the SocialFX parameters
specify the gain adjustments across bands. An amount scaling factor was applied to linearly scale all
band gains, producing three discrete effect intensities (0.3 = low, 0.6 = medium, 1.0 = high).

2. Reverberation: Implemented with a digital reverberator combining parallel comb filters, all-pass
filters, and low-pass filters. Parameters included decay time, feedback gain, modulation, low-pass
cutoff frequency, and overall effect gain. The wet/dry ratio controlled effect intensity at three discrete
levels((0.3 = low, 0.6 = medium, 1.0 = high).

From the full SocialFX vocabulary list, the 20 most frequently used descriptors were selected
separately for EQ and reverb. For each descriptor, timbre-manipulated audio was generated from a
common reference file at each intensity level. This reference file corresponds to the original audio
track used during the SocialFX listening tests, ensuring consistency with the dataset’s perceptual
annotations, since all descriptor judgments were made relative to this track. The EQ and reverb
implementations were reproduced from Audealize online demo [7].

For each embedding model, the following steps were performed:



1. Text embeddings. A text embedding was computed for each descriptor from SocialFX d.

2. Audio embeddings. Audio embeddings were computed for both the original reference file and
files resulting from applying a single effect (EQ or reverb) at one of 3 levels: (low, medium, high),
resulting in 7 files per descriptor.

3. Similarity computation. The cosine similarity was calculated between the audio embeddings of
the manipulated audio files and the text embeddings of the corresponding timbre descriptors.

SiMyyanip(d, @) = sim (audiomanip (d,a), text(d)) .

Here, a denotes the intensity level of the manipulation (e.g., a = 0.3 for low, a = 0.6 for medium,
a = 1.0 for high). The similarity between the unprocessed reference audio file and the timbral
manipulation descriptors descriptor was:

SiMorig(d) = sim (audioorig, text(d)).
The change in similarity due to manipulation was then defined as:
Ag(a) = simmanip(d, @) — simeyig(d).

A positive Aj(a) indicates that the manipulation moved the audio embedding closer to the descriptor
d in the joint embedding space.

For each descriptor-effect pair, Ay(a) values were examined across intensity levels to classify the
trend as monotonic increase, monotonic decrease, or peaking at a specific intensity. A monotonic
increase suggests that the model’s similarity space consistently aligns with the intended timbral
change, indicating strong semantic encoding for that descriptor. A flat or inconsistent pattern implies
weak or no alignment between the DSP-induced timbral changes and the descriptor’s semantic
representation in the model. A monotonic decrease indicates that increasing the manipulation
intensity moves the audio embedding away from the descriptor’s text embedding. This implies that
the model associates the descriptor with the opposite perceptual timbral quality.

2.3.1 Results for Experiment 2

For EQ, LAION-CLAP demonstrates the strongest alignment, with 14 out of 20 descriptors exhibiting
monotonic up trends, indicating a consistent mapping between timbral qualities and spectral changes.
By contrast, MuQ-MuLan shows a mixed performance: while 9 descriptors follow monotonic up
trends, several others display monotonic down or localized peak patterns, suggesting less reliable
encoding. MS-CLAP performs the weakest, with most descriptors producing monotonic down trends
or narrow localized peaks, indicating poor and inconsistent alignment with spectral manipulations.
Overall, these results, shown in Table E] in Appendix, suggest that LAION-CLAP provides the most
robust text-timbre alignment, while MuQ-MulLan is partially effective, and MS-CLAP fails to encode
descriptor-relevant EQ trends in a consistent manner. The reverb analysis reveals weaker and less
consistent alignment across all three models, as shown in Table 2]in Appendix. LAION-CLAP still
shows the strongest alignment, with 12 descriptors following monotonic up mappings as the intensity
increases. MS-CLAP and MuQ-MuLan show much weaker performances, with most descriptors
showing monotonic down trends or local peaks.

3 Conclusion and Future Work

We conducted a systematic evaluation of three prominent joint language—audio embedding spaces:
MS-CLAP, LAION-CLAP, and MuQ-MuLan. Our results show that LAION-CLAP consistently
provides the most reliable alignment with human-perceived timbre semantics across both instrumental
sounds and audio effects, outperforming MS-CLAP and MuQ-MuLan.Future research may proceed
along two directions. First, examining whether LAION-CLAP encodes interpretable timbral axes,
such as a perceptual continuum from “bright” to “dark™, could yield deeper insights into the structure
of the embedding space and its correspondence with perceptual dimensions of timbre. Second,
fine-tuning LAION-CLAP with timbre-specific objectives may improve its capacity to capture subtle
qualities, thereby enhancing timbre-based retrieval, manipulation, and generative applications.
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Figure 1: MS-CLAP Similarity vs Human Ratings per Descriptor
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Figure 2: LAION-CLAP Similarity vs Human Ratings per Descriptor

MuQ-MuLan Similarity vs Human Ratings per Descriptor (All Instruments)
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Figure 3: MuQ-MuLan Similarity vs Human Ratings per Descriptor



MS_CLAP vs Human Semantic Profile per Instrument (Chinese Instruments)
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Figure 4: MS-CLAP vs Human-rated Timbre Semantic Profile for Chinese Instruments
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Figure 5: LAION-CLAP vs Human-rated Timbre Semantic Profile for Chinese Instruments

MuQ-MuLan vs Human Semantic Profile per Instrument (Chinese Instruments)
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Figure 6: MuQ-MuLan vs Human-rated Timbre Semantic Profile for Chinese Instruments



MS_CLAP vs Human Semantic Profile per Instrument (Western Instruments)

-=-- Average = 0.05
B Pearson Correlation
0.4 4

< 024
]
=1
"
£
e b RN [N B RN BN e 000 R R
o
5 0.0
) .
g .
]
a
—0.2 4
—0.4

vo\»\agcy\e.\_e é’@@e}l?’@’bQ\"J\"}W@bQ‘ S

§& N . & & s ESTP N & 'S S 2

& & & e,‘eﬁ d\ép o a;“z &‘\e ‘?41& Q“a oé& & & F & (?m 6(9 é"‘u & F ;\\&o a‘b\ F

8¢ Ko & 2 & & <€
RS 3 &
& e B & &€ &

Figure 7: MS-CLAP vs Human-rated Timbre Semantic Profile for Western Instruments

LAION_CLAP vs Human Semantic Profile per Instrument (Western Instruments)

0.4
—=-- Average = 0.03
B Pearson Correlation

0.3

0.2 9
<
=3
B 0l
£
S
[}
< . )
=
O
&

—0.1 4

—0.2 1

—0.3 4

S O P 8 & & e I S I -
§ & & & 5 bb& & Q‘\a*‘ &;\Q & & FE (-@ & Q(,n“ Q‘vu“ & Q"’o _\5&“ 0@9 &
o 3 S 7 & & S F
& £ T s & S R & F

Figure 8: LAION-CLAP vs Human-rated Timbre Semantic Profile for Western Instruments
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Figure 9: MuQ-MuLan vs Human-rated Timbre Semantic Profile for Western Instruments



Table 1: EQ trend types across MS-CLAP, LAION-CLAP, and MuQ-MuLan for the 20 most timbre
descriptors from SocialFX.

Descriptor MS-CLAP LAION-CLAP MuQ-MuLan

bright
calm
clear
cold
cool
crisp
dark
gentle
hard
harsh
heavy
loud
mellow
peaceful
sharp
smooth
soft
soothing
tinny
warm 1
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Legend: T = Monotonic up, | = Monotonic down, - = flat or inconsistent

Table 2: Reverb trend types across MS-CLAP, LAION-CLAP, and MuQ-MuLan for the 20 most
timbre descriptors from SocialFX.

Descriptor MS-CLAP LAION-CLAP MuQ-MuLan

bass

big
church
clear
deep
distant
distorted
echo
hall
haunting
hollow
loud

low
muffled
sad

soft
spacious
strong -
tinny J
warm 1
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Legend: 1 = Monotonic up, | = Monotonic down, - = flat or inconsistent



	Introduction
	Experiments
	The Models
	Experiment 1: Instrumental Timbre Semantics
	Results for Experiment 1

	Experiment 2: Audio Effect Timbre Semantics
	Results for Experiment 2


	Conclusion and Future Work
	Figures and Tables

