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Abstract

The growing size of neural language models
has led to increased attention in model com-
pression. The two predominant approaches
are pruning, which gradually removes weights
from a pre-trained model, and distillation,
which trains a smaller compact model to match
a larger one. Pruning methods can significantly
reduce the model size but hardly achieve large
speedups as distillation. However, distillation
methods require large amounts of unlabeled
data and are expensive to train. In this work,
we aim to close this gap and propose a struc-
tured pruning method—MixedPruning—which
matches the distillation counterparts in both la-
tency and accuracy and only incurs 5% of train-
ing cost without using unlabeled data. Our key
insight is to jointly prune coarse (e.g., layers)
and fine-grained (e.g., heads and hidden units)
modules, which controls the pruning decision
of each parameter with masks of different gran-
ularity. This pruning strategy eases optimiza-
tion and delivers highly competitive and par-
allelizable subnetworks that were not demon-
strated before. We also propose a novel layer-
wise distillation approach to further guide prun-
ing. We evaluate MixedPruning extensively on
SQuAD and GLUE datasets and demonstrate
its effectiveness and efficiency over state-of-
the-art pruning and distillation methods.

1 Introduction

Fine-tuning pre-trained language models (Devlin
et al., 2019; Liu et al., 2019a; Raffel et al., 2020,
inter alia) has become the mainstay in natural lan-
guage processing. These models have high costs in
terms of storage, memory, and computation time,
which has motivated a large body of work to make
them smaller and faster to use in real-world appli-
cations (Ganesh et al., 2021). The two predominant
approaches to model compression are pruning and
distillation. Pruning methods search for an accurate
subnetwork in a larger, pre-trained model. Recent
work has investigated how to structurally prune

Speedup #Params MNLI
BERTpase 1.0x 85M 84.8
Distillation
DistillBERT¢ 2.0x 43M 82.2
TinyBERTg 2.0x 43M 84.0
MobileBERT# 2.3x 20M 839
DynaBERT 6.3% 11M 76.3
AutoTinyBERT? 9.1x 3.3M  78.2
TinyBERT, 11.4x 4.7T™M 78.8
Pruning
Movement Pruning 1.0x IM 81.2
Block Pruning 2.7x 256M 83.7
MixedPruning (ours) 2.7x 26M 84.9
MixedPruning (ours) 12.1x 4.4M 80.6

Table 1: A comparison of state-of-the-art distillation
and pruning methods. The speed-ups are all reported
against the BERT},,sc model. Embeddings are excluded
in calculating # of parameters. All the models except for
those labeled as ¥ use BERT, as the teacher model,
and we evaluate all the models on an NVIDIA V100
GPU (§4.1). Green models have large speed-ups and
are one order of magnitude smaller. We exclude task-
specific data augmentation for a fair comparison.'

Transformer networks (Vaswani et al., 2017), from
removing entire layers (Fan et al., 2020; Sajjad
et al., 2020), to pruning heads (Michel et al., 2019;
Voita et al., 2019), intermediate dimensions (Mc-
Carley et al., 2019; Wang et al., 2020c) and blocks
in weight matrices (Lagunas et al., 2021). However,
current pruning methods still cannot obtain large
speedups, and most reported results have 2-3x im-
provement at most.

On the contrary, distillation methods (Sanh et al.,
2019; Sun et al., 2019) first specify a shallow model
architecture and directly distill knowledge from the
teacher model (e.g., TinyBERT, (Jiao et al., 2020)
consists of 4 layers with a 312 hidden size). Due

"We run the TinyBERT experiments by ourselves but no-
ticed that there is a discrepancy between our result and their
reported number in the paper (TinyBERT4, 80.5 on MNLI).
The only difference is that we use our own teacher model for
distillation, which is used for all the experiments.



to the compact structure, these models can easily
obtain 10x times speedup at inference time. How-
ever, these randomly-initialized student networks”
require large amounts of unlabeled data to learn the
knowledge in pre-trained models (namely “general
distillation””) and hence make the distillation pro-
cess prohibitly slow. For instance, TinyBERT is
first trained on 2,500M tokens for 3 epochs, which
requires training 3.5 days on 4 GPUs.?

In this work, we propose a structured prun-
ing approach MixedPruning, which aims to close
the gap between pruning and distillation. We
show a surprising finding: structured pruning can
achieve highly compact subnetworks and obtain
large speedups and competitive accuracy as dis-
tillation approaches (Table 1). Unlike distillation,
our approach only learns from downstream task
data and incurs less than 5% of training cost (Fig-
ure 1). Our key insight is to jointly prune bigger
units (e.g., entire self-attention or feed-forward lay-
ers) and smaller units (e.g., heads, intermediate
and hidden dimensions) simultaneously. Compared
to existing approaches which prune a single sub-
module at a time, our approach controls the prun-
ing decision of every single parameter by multiple
masks of different granularity and all the mask-
ing variables (along with model parameters) are
jointly optimized. Despite its simplicity, we show
that this mixed-pruning strategy is the key to large
compression—It allows the greatest flexibility of
pruned structures and eases the optimization com-
pared to only pruning smaller units.

Additionally, we find that distillation objectives
can provide useful signals to pruning and further
achieve better performance. Since the structure
of the student model changes during the course
of training, we devise a layerwise distillation ap-
proach, which can dynamically learn the layer map-
ping between the student (pruned) model and the
teacher (unpruned) model during training.

We show that MixedPruning delivers more ac-
curate models at every level of speedup and model
size on the GLUE tasks (Wang et al., 2019) and
SQuAD (Rajpurkar et al., 2016) compared to strong
pruning and distillation baselines. In particular, it
achieves >10x speedups and a 95% sparsity across
all the datasets while preserving >90% of accuracy.

There are exceptions like DistillBERT (Sanh et al., 2020)
which initializes the student from the teacher by taking one
layer out of two. It is unclear how to generalize this initializa-
tion to other compact structures though.

3See training time measurement details in Appendix J.

The results suggest that task-specific pruning can
be a very appealing solution to produce smaller
and faster models without requiring additional un-
labeled data for general distillation. Finally, we
also discover interesting patterns in pruned struc-
tures (Table 5). For example, we find that for highly
compressed models, the pruning process favors pre-
serving upper and lower layers and pruning middle
layers most of the time.

2 Background

2.1 Transformers

A Transformer network (Vaswani et al., 2017) is
composed of L blocks and each block consists
of a multi-head self-attention (MHA) layer, and
a feed-forward (FFN) layer. An MHA layer with
N}, heads takes an input X € R*"*< and outputs:

MHA(X) = >0 Ace(Wy), Wil wi w), x)

where Wg ), WI((Z), W‘(/Z), (()Z ) € R¥%dn denote the
query, key, value and output matrices respectively
and Att(-) is an attention function. Here d denotes
the hidden size (e.g., 768) and dj, = d/ N}, denotes
the output dimension of each head (e.g., 64).

Next comes a feed-forward layer, which consists
of an up-projection and a down-projection layer,

parameterized by Wy € R?*% and Wp € R%*9:

FFN(X) = gelu(XWy) - Wp.

Typically, dy = 4d. There is also a residual con-
nection and a layer normalization operation after
each MHA and FFN layer.

MHAs, FFNs account for 1/3 and 2/3 of the
model parameters in Transformers.* According to
the analysis in Ganesh et al. (2021), both MHAs
and FFNs take roughly similar time on GPUs while
the FFNs become the bottleneck on CPUs.

2.2 Pruning

Pruning approaches remove redundant parameters
from a large model for compression.

Layer pruning Fan et al. (2020) and Sajjad et al.
(2020) explored strategies to drop entire Trans-
former blocks (a pair of MHA and FFN layer) from
a pre-trained model. Empirical evidence suggested
that 50% of the layers can be dropped without a
big accuracy loss, resulting in a 2x speedup.

*Following previous work, we exclude the embedding
matrix in this calculation.
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Figure 1: Comparison of (a) TinyBERT (Jiao et al., 2020) and (b) our pruning approach MixedPruning. TinyBERT
trains a randomly-initialized network through two-step distillation: (1) general distillation on a large-scale corpus,
which takes 3.5 days to finish on 4 GPUs, and (2) task-specific distillation on the task dataset. MixedPruning directly
prunes the fine-tuned BERT model and jointly prunes five different types of units (Section 3.1) and takes at most 20
hours to finish on 1 GPU on all the GLUE datasets (smaller datasets need < 3 hour). Note that for clarity, we do not
show the prunable hidden dimensions in Attention Head and Feed-Forward Layer.

Head pruning Head pruning Voita et al. (2019),
Michel et al. (2019) show that a subset of heads
are important and the majority can be pruned. We
follow these works to mask heads by introducing

variables zge)a q € {0, 1} to multi-head attention:

MHA(X) = S 20 AW, Wi, wi? w), X).

Only removing heads cannot lead to considerable
latency improvement—e.g., Li et al. (2021) demon-
strated 1.4 x speedup with only 1 remaining head
per layer. However, head pruning can be combined
with pruning other components to achieve a smaller
model (McCarley et al., 2019).

FFN pruning As the other major part—feed-
forward layers (FFNs)—are also known to be over-
parameterized. Strategies to prune an FFN layer
for an inference speedup include pruning an entire
FFN layer (Prasanna et al., 2020; Chen et al., 2020)
and at a more fine-grained level, pruning intermedi-
ate dimensions (McCarley et al., 2019; Hou et al.,
2020) by introducing z;,; € {0, 1}97:

FEN(X) = gelu(XWy ) - diag(zint) - Wp.

Block pruning More recently, pruning on a smaller
unit—blocks—from MHAs and FFNs have been
explored (Lagunas et al., 2021). However, it is
hard to optimize models with blocks pruned on the
current hardware. Yao et al. (2021) attempted to op-
timize block-pruned models with the block sparse
MatMul kernel provided by Triton (Tillet et al.,
2019), but the reported results are not competitive.

2.3 Distillation

Knowledge distillation (Hinton et al., 2015; Sanh
etal.,2019) is an approach that transfers knowledge
from a large teacher model to a student model with
a pre-defined compact structure. Previous work has
designed layer mapping strategies to distill layer-
wise signals to a fixed student model (Sun et al.,
2019, 2020; Jiao et al., 2020). More recently, Hou
et al. (2020) attempted to distill to a more dynamic
structure with specified widths and heights. Yin
et al. (2021) adopt a one-shot Neural Architecture
Search solution to automatically search architec-
ture of student networks. However, these resulting
models still have a constrained structure compared
to pruning-based approaches. In this work, apart
from designing a new pruning strategy, we propose
a layerwise distillation objective tailored to struc-
tured pruning and show that combining the two
leads to the best empirical performance.

3 Method

Our pruning method, MixedPruning, involves two
simple yet effective ideas: (1) we prune each single
parameter through multiple masking decisions of
different granularity (§3.1); (2) we propose a lay-
erwise distillation strategy to effectively transfer
knowledge from a full model to a student model
with constantly changing structures (§3.2).

3.1 Mixed Pruning of Different Granularity

Our pruning strategy couples pruning decisions
over different-sized and nested units and delivers



parallelizable models with flexible structures.

We observed from existing work that pruning
only large modules (e.g., FFN layers) constrains
the flexibility of pruned model structure; however,
pruning only small units (e.g., individual heads)
never leads to removing a larger submodule as it
naturally entails. More specifically, existing head
or intermediate dimension pruning strategies rarely
eliminate all the units in one layer, prohibiting
highly compressed models from achieving signifi-
cant speedups.

To remedy the problem, we present a very simple
solution: besides pruning heads and intermediate
dimensions as introduced in §2.2, we introduce two
additional masks zya and zppyn for every MHA
and FFN layer, with each controlling whether the
corresponding MHA layer or FFEN layer should be
pruned or not. Now the multi-head self-attention
and feed-forward layer become:

MHA(X) = 2uma 0 (20 - At (WS, Wi, Wi W), x)

e

FFN(X) — ZFFN * gelu(XWU) . diag(zint) . WD

With these layer masks introduced, we allow the
model to directly prune an entire layer, instead of
pruning all the heads in one MHA layer (or all the
intermediate dimensions in one FFN layer). Differ-
ent from the layer dropping strategies in Fan et al.
(2020); Sajjad et al. (2020), our pruning strategy
allows the model to drop MHA and FFN layers
separately, instead of pruning them as a whole.

Furthermore, we also consider pruning the out-
put dimensions of MHA(X) and FFN(X), re-
ferred to as ‘hidden dimensions’ in this paper, to
allow for more flexibility in the final model struc-
ture. We define a set of masks zp;q, € {0, 1}d
shared across all the layers, as each coordinate in
a hidden representation is connected to the same
coordinate in the next layer through a residual con-
nection. These mask variables are applied to all the
weight matrices in the model, e.g., diag(znian) Wo.
Empirically, we find that only a small number of di-
mensions are pruned (e.g., 768 — 760), but it still
helps improve performance significantly (§4.3).

Although our mixed-pruning strategy is straight-
forward, it greatly differs from the previous pruning
approaches in that multiple mask variables jointly
control the pruning decision of one single parame-
ter. For example, a weight in an FFN layer may be
pruned because the entire FFN layer is pruned, or
its corresponding intermediate dimension is pruned,
or the hidden dimension is pruned. As a compari-
son, the most recent work—Block Pruning (Lagu-

nas et al., 2021) adopts a hybrid approach which
simply prunes a different type of unit from MHAs
and FFNs separately and thus is significantly dif-
ferent from MixedPruning.

To learn these mask variables, we use [y regular-
ization with the hard concrete distribution from
Louizos et al. (2018). We follow Wang et al.
(2020c¢) to replace the vanilla [y objective with
a Lagrangian multiplier to better control the de-
sired sparsity of pruned model’. We adapt the La-
grangian constraint accordingly to accommodate
mixed levels of pruning masks—for example, the
i-th head in an MHA layer is pruned if 2y is O

(%)

or z, .4 18 0 (see Appendix B for more details).

3.2 Distillation to Pruned Models

Previous work has shown that combining distilla-
tion with pruning improves performance, where
the distillation objective only involves a cross-
entropy loss between the pruned student’s out-
put and the teacher’s probability distribution pg
and p; (Sanh et al., 2020; Lagunas et al., 2021):
Lprea = Dxr(ps || p¢). In addition to prediction
layer distillation, recent works show great bene-
fits in distillation of intermediate layers (Sun et al.,
2019; Jiao et al., 2020). In the context of distillation
approaches, the architecture of the student model
is pre-specified, and it is straightforward to define
a layer mapping between the student and teacher
model. For example, the 4-layer TinyBERT 4 model
distills from the 3, 6, 9 and 12-th layer of a 12-layer
teacher model. However, distilling intermediate
layers during the pruning process is challenging as
the model structure changes throughout training.

We propose a layerwise distillation approach for
pruning to best utilize the signals from the teacher
model. Instead of pre-defining a fixed layer map-
ping, we dynamically search a layer mapping be-
tween the full teacher model and the pruned student
model. Specifically, let 7 denote a set of teacher
layers that we use to distill knowledge to the stu-
dent model. We define a layer mapping function
m(-), i.e., m(i) represents the student layer that
distills from the teacher layer ¢. The hidden layer
distillation loss is defined as

ﬁlayer = Z MSE(WlayerH;n(i)a Hzlf)a
€T

SWe also tried a straight-through estimator as proposed
in Sanh et al. (2020) and find the performance comparable.
We decide to stick to [o regularization because it is easier to
control the precise sparsity.



where Wiager € R4 is a linear transforma-
tion matrix and is initialized as an identity matrix.
15 WO H: are hidden representations from m(7)-
th student FFN layer and i-th teacher FEN layer.
The layer mapping function m(-) is dynamically
determined during the training process to match
a teacher layer to its closest layer in the student
model:

m(i) = arg min MSE(W1ayer HZ, HY).
2N >0

Though an upper student layer would possibly
match a lower teacher layer or more than one stu-
dent layer could match a teacher, empirically such
scenarios rarely happen. This shows the superiority
of dynamic matching — layers between student and
teacher models match in a way that benefits the
pruning process the most.

We combine layer distillation with logit distilla-
tion to form our final distillation strategy.

Edistil — )\Epred + (1 - )\)ﬁlayer-
where A controls the contribution of each loss.

4 [Experiments

4.1 Setup

Datasets We evaluate our approach on 8 GLUE
tasks (Wang et al., 2019) and SQuAD 1.1 (Ra-
jpurkar et al., 2016). GLUE tasks include SST-
2 (Socher et al., 2013), MNLI (Williams et al.,
2018), QQP, QNLI, MRPC (Dolan and Brockett,
2005), CoLA (Warstadt et al., 2019), STS-B (Cer
et al., 2017) and RTE. Please refer to Appendix D
for dataset size and metrics.

Training setup In our experiments, sparsity is
computed as the percentage of the number of
pruned parameters out of the full model size
(excluding embeddings). Following Wang et al.
(2020c) and Lagunas et al. (2021), we first fine-
tune the model with the distillation objective for
a number of steps, then we continue training the
model with the pruning objective with a sched-
uler to linearly increase the sparsity to the target
value. We finetune the pruned model until conver-
gence®. We train models with target sparsities of
{60%, 70%, 75%, 80%, 85%, 90%, 95%} on each
dataset. For all the experiments, we start from the

SPlease refer to Appendix A for more training details.

BERT}, model’ and freeze embedding weights
following Sanh et al. (2020). Excluding word em-
beddings, the full model size is 85M and we use it
to calculate sparsity rates throughout this paper. We
report results on development sets of all datasets.

Baselines We compare MixedPruning against sev-
eral baselines: DistillBERT( (Sanh et al., 2019),
TinyBERT{ and TinyBERT, (Jiao et al., 2020),
DynaBERT (Hou et al., 2020), and Block Prun-
ing (Lagunas et al., 2021) (see Appendix C for
details). We also compare to other pruning meth-
ods such as FLOP (Wang et al., 2020c), Layer-
Drop (Fan et al., 2020), Movement Pruning (Sanh
et al., 2020), and distillation methods such as
MobileBERT (Sun et al., 2020) and AutoTiny-
BERT (Yin et al., 2021) in Appendix E3.

For TinyBERT and DynaBERT, the released
models are trained with augmented dataset. For
a fair comparison, we train these two models with
the released code without data augmentation (addi-
tional results with data augmentation can be found
in Appendix H).? For Block Pruning, we train mod-
els with their released checkpoints on GLUE tasks
and use SQuAD results from the paper.

Speedup evaluation Speedup rate is a primary
measurement we use throughout the paper as com-
pression rate does not necessarily reflect the actual
improvement in inference latency. We use an un-
pruned BERT},. as the baseline and evaluate all
the models with the same hardware setup on a sin-
gle GPU to measure inference speedup. The input
size is 128 for GLUE tasks and 384 for SQuAD,
and we use a batch size of 128. Note that the results
might be different from the original papers as the
environment for each platform is different.

4.2 Main Results

Overall performance In Figure 2, we compare the
accuracy of MixedPruning models to other methods
in terms of both inference speedup and model size.
MixedPruning delivers more accurate models than
distillation and pruning baselines at every speedup
level and model size. Block Pruning (Lagunas et al.,
2021), arecent work that shows strong performance
against TinyBERTj, is unable to achieve compara-

"We also apply MixedPruning to ROBERTa. Please refer
to Appendix I for details.

8We show these results in Appendix E as they are not
directly comparable to MixedPruning.

°For TinyBERT, the augmented data is 20 x larger than the
original data, making the training process significantly slower.
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Figure 2: Accuracy v.s speedup (top) or model size (bottom). We compare MixedPruning against state-of-the-art
distillation and pruning baselines. Note that we exclude embedding size when calculating model size following
Lagunas et al. (2021) as forwarding through the embedding layer has little effect on inference time.

Task SST-2 QNLI MNLI QQP CoLA RTE STS-B MRPC SQuAD Train Time
(67k)  (105k) (393k) (364k) (8.5k) (2.5k)  (7k) (3.7k) (88k)

TinyBERT, w/o GD  87.7 81.8 78.7 89.5 16.6 47.3 17.8 68.9 - <10

TinyBERT, 89.7 86.7 78.8 90.0 32.5 63.2 85.0 81.4 82.1 ~ 350

Speedup 114x  114x  114x  114x 114x 114x 11.4x 11.4x 8.7x% -

MixedPruning 90.6 86.1 80.6 90.1 35.6 64.7 83.1 82.6 82.6 <20

Speedup 12.0x  121x  121x 11.0x 11.5x 11.9x 12.9x 11.9x% 8.7x -

Table 2: MixedPruning v.s. TinyBERT, (Jiao et al., 2020) models with a ~10x speedup. GD: general distillation,
which distills the student model on a large unlabeled corpus. Train time is measured in GPU hours (see Appendix J
for details). The number of parameters for both models are around 5M (around 95% sparsity). MixedPruning
closes the gap between distillation and pruning with significantly less computation. Note that we remove data
augmentation from TinyBERT for a fair comparison, see Table 9 for experiments with augmented data.

ble speedups as TinyBERT,. Instead, MixedPrun-
ing has the option to prune both layers and heads
& intermediate units and can achieve a model with
a comparable or higher performance compared to
TinyBERT, and all the other models. Additionally,
DynaBERT performs much worse speed-wise be-
cause it is restricted to remove at most half of the
MHA and FEN layers.

Comparison with TinyBERT, In Table 2, we
show that MixedPruning produces models with
over 10x inference speedup and achieves compa-
rable or even better performance than TinyBERT},.
General distillation (GD), which distills informa-
tion from a large corpus, is essential for train-
ing distillation models, especially for small-sized
datasets (e.g., TinyBERT4 w/o GD performs poorly
on CoLLA, RTE and STS-B). While general distil-
lation could take up to hundreds of GPU hours for
training, MixedPruning trains for a maximum of
20 hours on a task-specific dataset with a single

GPU. We argue that pruning approaches—trained
with distillation objectives like MixedPruning—are
more economical and efficient in achieving com-
pressed models with a large speedup.

4.3 Ablation Study

Pruning units We first conduct an ablation study
to investigate how additional pruning units such
as MHA layers, FFN layers and hidden units in
MixedPruning affect model performance and in-
ference speedup beyond the standard practice of
pruning heads and FFN dimensions. We show re-
sults in Table 3 for models of similar sizes. Remov-
ing the option to prune hidden dimensions (zy;qy,)
leads to a slightly faster model with a performance
drop across the board and we find that it removes
more layers than MixedPruning and does not lead
to optimal performance under a specific sparsity
constraint. In addition, removing the layer masks
(zMmHA, ZFFN) brings a significant drop in terms



QNLI (60%) QNLI (95%) MNLI (60%) MNLI(95%) SQuAD (60%) SQuAD (95%)

N acc N acc a acc a acc N F1 a F1
MixedPruning 2.1x  91.8 121x 86.1 2.1x 851 12.1x 80.6 2.0x 89.1 8.7x 82.6
—layer 2.1x 915 83x 86.7 21x 854 84x 806 2.0x 89.1 7.9% 80.5
MixedPruning 2.1x  91.8 12.1x 861 2.1x 851 12.1x 80.6 2.0x 89.1 8.7 82.6
—hidden 2.2x  91.3 13.3x 85.6 2.1x 852 13.7x 79.8 2.0x 88.7 9.7x 80.8
—layer & hidden 2.2x 91.3 7.2x 84.6 2.1x 84.8 7.0x 784 2.1x 88.5 6.4x 74.1

Table 3: Ablation studies on pruning units on QNLI, MNLI and SQuAD. *: speedup. The pruned models of a
sparsity 60% and 95% have a model size of 34M and 5M respectively. —layer: When we do not prune entire layers
(no zMua or zrrN), the speed-ups are greatly reduced for a high sparsity e.g., 95%; —hidden: when we remove the
mask variables corresponding to hidden units (zp;qn), We observe a significant drop in accuracy.

SST-2 QNLI MNLI QQP SQuAD
MixedPruning 90.6 86.1 80.6 90.1 82.6
—L1ayer 91.1 8.1 79.7 89.8 82.5
—Lpred, L1ayer 86.6 842 782 881 75.8
Fixed Hidn Distil.  90.0  85.8  80.5 90.0 80.9

Table 4: Ablation study of different distillation objec-
tives on pruned models with sparsity = 95%. Fixed
hidden distillation: simply matching each layer of the
student and the teacher model, see §4.3 for more details.
In subsection F.2, we show that the dynamic layer dis-
tillation objective improves model performance more
significantly on lower sparsity rates.

of both model performance and speedup on highly
compressed models (95%, SM). This result shows
that even with the same amount of parameters, dif-
ferent configurations for a model could lead to
drastically different speedups. However, it does
not affect the lower sparsity regime (60%, 34M).
In short, by placing masking variables at different
levels, the optimization procedure is incentivized
to prune units accordingly under the sparsity con-
straint while maximizing the model performance.

Distillation objectives We also ablate on distilla-
tion objectives to see how each part contributes
to the high performance of MixedPruning in Ta-
ble 4. We first observe that removing distillation en-
tirely leads to a performance drop up to 2-7 points
across various datasets, showing the necessity to
combine pruning and distillation for maintaining
performance. The proposed hidden layer distilla-
tion objective dynamically matches the layers from
the teacher model to the student model. A simple
and intuitive alternative (named "Fixed Hidden Dis-
tillation") would be to match the layers from the
teacher model to the existing layers in the student
model— if the layer is pruned, the distillation to
that layer stops. We find that fixed hidden distil-
lation underperforms the dynamic layer matching

o
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Figure 3: The average intermediate dimensions at each

FFN layer and the average number of heads at each
MHA layer in the pruned models across five datasets
(SST-2, MNLIL QQP, QNLIL and SQuAD 1.1). We study
different sparsities {60%, 70%, 80%, 90%, 95%}.

u 70% 80% u 90% 95%

Avg intermediate dim
o

Avg #heads
S

N

objective used for MixedPruning. Interestingly, the
proposed dynamic layer matching objective consis-
tently converges to a specific alignment between
the layers of the teacher model and student model.
For example, we find that on QNLI the training
process dynamically matches the 3, 6, 9, 12 lay-
ers in the teacher model to 1, 2, 4, 9 layers in the
student model'?. Moreover, as shown in the table,
removing it hurts the performance for the majority
of the datasets except SST-2.

4.4 Structures of Pruned Models

In this section, we study the model struc-
tures that are pruned from MixedPruning. We
characterize the pruned models with sparsi-
ties {60%, 70%, 80%, 90%, 95%} on all the five
datasets that we consider. For each setting, we
run MixedPruning three times. Figure 3 demon-
strates the number of remaining heads and interme-
diate dimensions of the pruned models for different
sparsities.!! Interestingly, we discover common

1%please refer to subsection F.1 for more details.
"'We show more layer analysis in Appendix G.
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Table 5: Remaining layers in the models pruned by
MixedPruning on different datasets. All models are
pruned at a sparsity of 95%. For each setting, we run
the experiments three times to obtain three different
pruned models. m represents a remaining MHA layer

and E represents a remaining FFN layer.

structural patterns in the pruned models: (1) Feed-
forward layers are significantly pruned across all
sparsities. For example, for the sparsity 60%,
the average number of intermediate dimensions
in FEN layers after pruning is reduced by 71%
(3,072 — 884), and the average number of heads
in MHA is reduced by 39% (12 — 7.3). This sug-
gests FFN layers are more redundant than MHA
layers. (2) MixedPruning tends to prune submod-
ules more from upper layers than lower layers. For
example, upper MHA layers have fewer remaining
heads than lower layers on average.

Furthermore, we study the number of remain-
ing FFN and MHA layers and visualize the results
in Table 5 for highly compressed models (sparsity
= 95%). Although all the models are roughly of
the same size, the remaining layers present differ-
ent patterns for different datasets. We find that
on SST-2 and QNLI, the first MHA layer is pre-
served but can be removed on QQP and SQuAD.
We also observe that some layers are particularly
important across all datasets. For example, the first
MHA layer and the second MHA layer are pre-
served most of the time, while the middle layers
are often removed. Generally, the pruned models
contain more MHA layers than FFN layers (see
Appendix G), which suggests that MHA layers are
more important for solving the downstream tasks.
The model structures discovered by different runs
on one particularly dataset do not vary much, in-

dicating that there exists task-specific model struc-
tures with a specific sparsity. Similar to Press et al.
(2020), we find that although standard Transformer
networks have interleaving FFN layers and MHA
layers, in our pruned models, adjacent FFN/MHA
layers could possibly lead to a better performance.

5 Related Work

Structured pruning is more widely explored in com-
puter vision, where channel pruning (He et al.,
2017; Luo et al., 2017; Liu et al., 2017, 2019c¢,b;
Molchanov et al., 2019) is a standard approach for
convolution models. The techniques can be adapted
to Transformer based models as introduced in sub-
section 2.2. Unstructured pruning is another major
research direction, especially gaining popularity
in the theory of Lottery Ticket Hypothesis (Fran-
kle and Carbin, 2019; Zhou et al., 2019; Renda
et al., 2020; Frankle et al., 2020). Several works
explore pruning at initialization with or without
using training data (Lee et al., 2019; Wang et al.,
2020a; Tanaka et al., 2020; Su et al., 2020).

Besides pruning, many other techniques have
been explored to gain inference speed-up of Trans-
former models, including distillation (Turc et al.,
2019; Wang et al., 2020b; Sanh et al., 2019; Jiao
et al., 2020), quantization (Shen et al., 2020; Fan
et al., 2021), dynamic inference acceleration (Xin
et al., 2020). We refer the readers to Ganesh et al.
(2021) for a comprehensive survey.

6 Conclusion

We proposed MixedPruning, a pruning strategy that
incorporates all levels of pruning, including layers,
heads, intermediate dimensions, and hidden dimen-
sions for Transformer-based models. Coupled with
a distillation objective tailored to structured prun-
ing, we show that MixedPruning compresses mod-
els into a rather different structure from standard
distillation models but still achieves competitive
results with more than 10x speedup. We conclude
that task-specific structured pruning from large-
sized models could be an appealing replacement
for distillation to achieve extreme model compres-
sion without resorting to expensive pre-training or
data augmentation. We hope that future research
continues this line of work by investigating struc-
tured pruning for task-agnostic models, given that
pruning from a large pre-trained model could save
computation from general distillation and results in
compressed models with a more flexible structure.
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A Reproducibility & Hyperparameters

We report the hyperparameters that we use in our
experiments in Table 6. We will be releasing codes
and running scripts in the final version.

Hyperparameter

A 0.1,0.3,0.5
distillation temperature ¢ 2
finetuning epochs 20

finetuning learning rate
training learning rate
batch size

le —5,2¢e —5,3e — 5
2e — 5 (GLUE), 3e — 5 (SQuAD)
32 (GLUE), 16 (SQuAD)

Table 6: Hyperparemeters in the experiments.

For 4 relatively larger GLUE datasets, MNLI,
QNLI, SST-2 and QQP, and SQuAD, we train the
model for 20 epochs in total and finetune the fi-
nalized sub-network for another 20 epochs. In the
first 20 epochs, following (Lagunas et al., 2021)
and (Wang et al., 2020c), we first finetune the
model with the distillation objective for 1 epoch,
and then start pruning with a linear schedule to
achieve the target sparsity within 2 epochs. For
the 4 small GLUE datasets, we train the model for
100 epochs in total and finetune for 20 epochs. We
finetune the model with the distillation objective
for 4 epoch and prune till the target sparsity within
next 20 epochs. Note that even if the final sparsity
is achieved, the pruning process keeps searching
better performing structures in the rest of the train-
ining epochs. In addition, we find that finetuning
the final subnetwork is essential for high sparsity
models. Hyperparameters like A, batch size and
learning rate do not affect performance much.

B Optimization Details

Louizos et al. (2018) proposes [y optimization for
model compression where the masks are modelled
with hard concrete distributions as follows:

u~ U(0,1)
1
s = sigmoid <Blog 1 E a + log a>
S=sx(r—10)+1
z = min(1, max(0,§)).

U(0,1) is a uniform distribution in the interval
[0,1]; [ < 0 and r > 0 are two constants that
stretch the sigmoid output into the interval (I, 7). 3
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is a hyperparameter that controls the steepness of
the sigmoid function and log « is the main learn-
able parameter. We learn the masks through up-
dating the learnable parameters of the distributions
from which the masks are sampled in the forward
pass.

In our preliminary experiments, we find that op-
timizing \||z||o with different learning rates and
pruning schedules may converge to models of dras-
tically different sizes. Hence, we follow Wang et al.
(2020c) to add a Lagrangian term, which imposes
an equality constraint s(«r) = ¢ by introducing a
violation penalty:

Lo=M"(s(a) —t)+ A2 (s(ar) — t)2,

where s(«) is the expected model sparsity calcu-
lated from z.

Different from (Wang et al., 2020c), where each
parameter is controlled by one single mask, in
MixedPruning, each parameter is controlled by
three masks with the sparsity calculated as follows:

L Np dimodel

ZZZ

L 4 dmodel dmodel
(4,9)

"‘* 2- Z Z ZZFFN th

where M denotes the full model size.

1 (i.4) (k)

ZMHA Zpead * Zhidden

(k)
" Zhidden

C Details of Baseline Methods

We compare against several strong pruning and dis-
tillation models, including 1) DistillBERT¢ (Sanh
etal.,2019); 2) TinyBERT¢ and TinyBERT 4 (Jiao
et al., 2020) both include general distillation for
pretraining and task-specific distillation; 3) Dyn-
aBERT (Hou et al., 2020): a method that provides
dynamic-sized models by specifying width and
depth; 4) Block Pruning (Lagunas et al., 2021):
a pruning method coupled with prediction-layer
distillation. We choose their strongest approach
“Hybrid Filled” as our baseline.

D Data Statistics

We show train sizes and metrics for each dataset
we use in Table 7.

E Additional Comparisons

E.1 Comparison to Movement Pruning

We compare MixedPruning with a state-of-the-art
unstructured pruning method, Movement Prun-



Task Train Size Metric
SST-2 67k accuracy
QNLI 105k accuracy
MNLI 393k accuracy
QQP 364k accuracy
CoLA 8.5k  Matthews corr.
RTE 2.5k accuracy
STS-B 7k  Spearman corr.
MRPC 3.7k accuracy
SQuAD 88k F1

Table 7: Data statistics of GLUE and SQuAD datasets.

ing (Sanh et al., 2020) in Figure 4. As Movement
Pruning is trained with logit distillation only, we
also show results of MixedPruning trained with the
same distillation objective. We observe that Mixed-
Pruning largely outperforms Movement Pruning
even without layerwise distillation on MNLI and is
comparable to SQuAD on models with a size over
10M parameters. MixedPruning, as a structured
pruning method, is less performant on models of a
sparsity higher than 95%, as pruning flexibility is
largely restricted by the smallest pruning submod-
ule. However, pruned models from MixedPrun-
ing achieve 2 — 11 x inference speedups while no
speedup gains are achieved from Movement Prun-
ing.

=== BERT
=== 95% BERT

—e— Movement Pruning
—e— MixedPruning Logit Distill

—e— MixedPruning

® ®
———————————— » —70;»354—- o8 ______________;7,3,,/4!_
84 ad o o
) taum 4
@ o 8 e 86 7
5 82 // z Y
o @ »
< ___,7/1 ___________________ 84 oo S
80 .,‘. .'./‘
s 82 §
0 10 20 30 10 20 30
Model Size (M) Model Size (M)

Figure 4: MixedPruning v.s. Movement Pruning (un-
structured pruning). MixedPruning Logit Distill denotes
that we run MixedPruning with logit distillation only as
Movement Pruning.

E.2 Comparison to Block Pruning

In Figure 6, we compare MixedPruning with Block
Pruning while unifying the distillation objective.
Without the layer distillation objective, MixedPrun-
ing still outperforms or is on par with Block Prun-
ing. Block Pruning never achieves a speedup of
10 even the pruned model is of a similar size as
MixedPruning (SST-2), backing up our argument
that pruning layers for high sparsity models is the
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key to high speedups.

E.3 More Baselines

We show additional pruning and distillation meth-
ods that are not directly comparable to our method
in Table 8. MixedPruning still largely outperforms
these baselines even though these methods hold
an inherent advantage due to a stronger teacher or
base model.

/0 SST-2 QNLI MNLI SQuAD

Wang et al. (20200)F  1.5x  92.1 89.1 85.4
Sajjad et al. (2020) 2.0x  90.3 - 81.1 -

Fan et al. (2020)* 20x 932 89.5 84.1 -

Sun et al. (2020)° 23x 921 91.0 83.9 90.3
Yin et al. (2021)* 43x 914 89.7 82.3 87.6
MixedPruning (ours) 2.0x  93.0 91.8 85.3 89.1
MixedPruning (ours) 4.6x  92.6 89.7 83.4 86.4

Table 8: More pruning and distillation baselines. ™
speedup. 1 denotes that the model prunes from a
RoOBERTay,e model. #: AutoTinyBERT is distilled
from an ELECTRA, model. °: MobileBERT (Sun
et al., 2020) has specialized architecture designs and
trains their own teacher model from the scratch. Mixed-
Pruning models have a model size of 34M and 13M
respectively, corresponding to a 60% and 85% sparsity.

F More Analyses on Layer Distillation

F.1 Layer Alignment

We find that the alignment between the layers of
the student model and the teacher model shifts dur-
ing the course of training. To take SST-2 for an
example, at the beginning of training, the last layer
of the pretrained model matches to all four layers
of the teacher model. As the training goes on, the
model learns the alignment to match the 7,9, 10, 11
layers of the student model to the 3, 6,9, 12 layers
of the teacher model. For QQP, the model even-
tually learns to map 2,5, 8,11 layers to the four
layers of the teacher model. The final alignment
shows that our dynamic layer matching distillation
objective is able to find task-specific alignment and
improves performance.

F.2 Ablation on Distillation Objectives

In Table 10, we show ablation studies on adding the
dynamic layer distillation onto prediction distilla-
tion across all sparsities. Using the layer distillation
loss clearly helps improve the performance on all
sparisity rates and on different tasks.



MixedPruning TinyBERT},
Task w/ DA w/o DA w/ DA w/o DA
speedup acc speedup acc speedup acc’ acct acc
SST-2 124x 924 12.0x 90.6 114x 91.6 92.7  89.7
QNLI.  13.6x 86.8 12.1x 86.1 11.4x 87.6 88.0 86.7
RTE 11.5x 675 119x 647 114x 62,5 65.7 63.2
MRPC 12.1x 84.6 119x 826 114x 83.6 858 814

Table 9: MixedPruning v.s. TinyBERT, (Jiao et al., 2020) trained with augmented data and without augmented
data. The MixedPruning models have a sparsity of 95%. DA: data augmentation, introduced in Jiao et al. (2020). }
denotes that we train TinyBERT, with the same copy of data and same teacher model as MixedPruning. I denotes
the numbers from released checkpoints of TinyBERT. The difference between these two sets of scores may stem

from augmented data or teacher models.

G FFN/MHA Layers in Pruned Models

Figure 5 shows the average number of FFN lay-
ers and MHA layers in the pruned models by
MixedPruning. We study different sparsities
{60%, 70%, 80%, 90%, 95%}. It is clear that when
the sparsity increases, the pruned models become
shallower (i.e., the number of layers becomes
fewer). Furthermore, we find that the pruned mod-
els usually have more MHA layers than FFN lay-
ers. This may indicates that MHA layers are more
important for solving these downstream tasks com-

pared to FFN layers.
60% 70% 80% 90%

60% 70% 80% 90%
Sparsity Sparsity

12
10

o

Avg #FFNs
o N A O
Avg #MHAs
o N A O

95% 95%

Figure 5: The average number of FFN layers and MHA
layers in the pruned models at different sparsities.

H Results with Data Augmentation

We compare MixedPruning with TinyBERT, under
the data augmentation setting in Table 9. As the
augmented dataset is not released by TinyBERT au-
thors, we follow its GitHub repository to create our
own augmented data. We train MixedPruning with
the same set of augmented dataset and find that it
outperforms or is comparable to TinyBERT,. Note
that we only conduct experiments with data aug-
mentation on four datasets due to the high training
costs. For example, augmenting the MNLI dataset
and training on the augmented dataset will take
> 200 GPU hours in total.
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I RoBERTa Pruning

We show MixedPruning results with RoBERTa in
Figure 7 across sparsities from 60% to 95%. Sim-
ilar to BERT, models with 60% weights pruned
are able to maintain of a full model. Pruning
from RoBERTa outperforms BERT on sparsities
lower than 90% but as the sparsity further increases,
BERT surpasses RoOBERTa. Similar patterns are
observed from DynaBERT (Hou et al., 2020).

J Training Time Measurement

We use NVIDIA RTX 2080Ti GPUs to measure the
training time of TinyBERT. For the general distil-
lation step of TinyBERT, we measure the training
time on a small corpus (containing 10.6M tokens)
on 4 GPUs and estimate the training time on the
original corpus (containing 2500M tokens) by scal-
ing the time with the corpus size difference. Specif-
ically, it takes 430s to finish one epochs on 10.6M
tokens with 4 GPUs, and we estimate that it will
take 338 GPU hours (or 3.5 days with 4 GPUs) to
finish three epochs on 2500M tokens.
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Figure 6: MixedPruning v.s. Block Pruning with the same distillation objective — logit distillation. MixedPruning
still outperforms or is on par with Block Pruning.

SST-2 QNLI MNLI SQuAD
SparSity Epred +['layer Epred +£layer ['pred +£layer Epred +£layer

60% 92.66 93.00 (+0.34) 90.66 91.84 (+1.18) 85.16 85.31(+0.15) 88.84 89.13 (4+0.29)
70% 91.74 93.00 (+1.26) 89.93 91.29 (+1.36) 84.57 84.89(+0.32) 88.11 88.56 (+0.45)
75% 91.40 92.89(+1.49) 88.96 91.31 (+2.35) 84.19 84.75(+0.56) 87.54 87.99 (4+0.45)
80% 91.06 92.89 (+1.83) 88.76 90.43 (+0.67) 83.36 84.26 (+0.90) 86.52 87.26 (+0.74)
85% 90.48 92.55 (4+2.07) 86.84 89.69 (+2.85) 82.69 83.44 (+0.75) 85.76 86.40 (4+0.64)

( ) ( ) ( ) ( )

(=0.69) (+1.06) (+0.89) (+0.07)

90% 90.25 91.51 (+1.26) 85.80 88.89(+3.19) 81.09 82.61 (+1.52) 83.28 84.08 (+0.80

95% 91.06 90.37 (—0.69) 85.08 86.14 (+1.06) 79.66 80.55 (+0.89) 82.52 82.59 (+0.07

Table 10: Ablation study on the proposed layer distillation objective across all sparsities.
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Figure 7: MixedPruning with BERT and RoBERTa on SST-2 and MNLI.
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