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Abstract

The growing size of neural language models001
has led to increased attention in model com-002
pression. The two predominant approaches003
are pruning, which gradually removes weights004
from a pre-trained model, and distillation,005
which trains a smaller compact model to match006
a larger one. Pruning methods can significantly007
reduce the model size but hardly achieve large008
speedups as distillation. However, distillation009
methods require large amounts of unlabeled010
data and are expensive to train. In this work,011
we aim to close this gap and propose a struc-012
tured pruning method—MixedPruning—which013
matches the distillation counterparts in both la-014
tency and accuracy and only incurs 5% of train-015
ing cost without using unlabeled data. Our key016
insight is to jointly prune coarse (e.g., layers)017
and fine-grained (e.g., heads and hidden units)018
modules, which controls the pruning decision019
of each parameter with masks of different gran-020
ularity. This pruning strategy eases optimiza-021
tion and delivers highly competitive and par-022
allelizable subnetworks that were not demon-023
strated before. We also propose a novel layer-024
wise distillation approach to further guide prun-025
ing. We evaluate MixedPruning extensively on026
SQuAD and GLUE datasets and demonstrate027
its effectiveness and efficiency over state-of-028
the-art pruning and distillation methods.029

1 Introduction030

Fine-tuning pre-trained language models (Devlin031

et al., 2019; Liu et al., 2019a; Raffel et al., 2020,032

inter alia) has become the mainstay in natural lan-033

guage processing. These models have high costs in034

terms of storage, memory, and computation time,035

which has motivated a large body of work to make036

them smaller and faster to use in real-world appli-037

cations (Ganesh et al., 2021). The two predominant038

approaches to model compression are pruning and039

distillation. Pruning methods search for an accurate040

subnetwork in a larger, pre-trained model. Recent041

work has investigated how to structurally prune042

Speedup # Params MNLI

BERTbase 1.0× 85M 84.8

Distillation
DistillBERT6 2.0× 43M 82.2
TinyBERT6 2.0× 43M 84.0
MobileBERT‡ 2.3× 20M 83.9
DynaBERT 6.3× 11M 76.3
AutoTinyBERT‡ 9.1× 3.3M 78.2
TinyBERT4 11.4× 4.7M 78.8

Pruning
Movement Pruning 1.0× 9M 81.2
Block Pruning 2.7× 25M 83.7
MixedPruning (ours) 2.7× 26M 84.9
MixedPruning (ours) 12.1× 4.4M 80.6

Table 1: A comparison of state-of-the-art distillation
and pruning methods. The speed-ups are all reported
against the BERTbase model. Embeddings are excluded
in calculating # of parameters. All the models except for
those labeled as ‡ use BERTbase as the teacher model,
and we evaluate all the models on an NVIDIA V100
GPU (§4.1). Green models have large speed-ups and
are one order of magnitude smaller. We exclude task-
specific data augmentation for a fair comparison.1

Transformer networks (Vaswani et al., 2017), from 043

removing entire layers (Fan et al., 2020; Sajjad 044

et al., 2020), to pruning heads (Michel et al., 2019; 045

Voita et al., 2019), intermediate dimensions (Mc- 046

Carley et al., 2019; Wang et al., 2020c) and blocks 047

in weight matrices (Lagunas et al., 2021). However, 048

current pruning methods still cannot obtain large 049

speedups, and most reported results have 2-3× im- 050

provement at most. 051

On the contrary, distillation methods (Sanh et al., 052

2019; Sun et al., 2019) first specify a shallow model 053

architecture and directly distill knowledge from the 054

teacher model (e.g., TinyBERT4 (Jiao et al., 2020) 055

consists of 4 layers with a 312 hidden size). Due 056

1We run the TinyBERT experiments by ourselves but no-
ticed that there is a discrepancy between our result and their
reported number in the paper (TinyBERT4, 80.5 on MNLI).
The only difference is that we use our own teacher model for
distillation, which is used for all the experiments.
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to the compact structure, these models can easily057

obtain 10× times speedup at inference time. How-058

ever, these randomly-initialized student networks2059

require large amounts of unlabeled data to learn the060

knowledge in pre-trained models (namely “general061

distillation”) and hence make the distillation pro-062

cess prohibitly slow. For instance, TinyBERT4 is063

first trained on 2,500M tokens for 3 epochs, which064

requires training 3.5 days on 4 GPUs.3065

In this work, we propose a structured prun-066

ing approach MixedPruning, which aims to close067

the gap between pruning and distillation. We068

show a surprising finding: structured pruning can069

achieve highly compact subnetworks and obtain070

large speedups and competitive accuracy as dis-071

tillation approaches (Table 1). Unlike distillation,072

our approach only learns from downstream task073

data and incurs less than 5% of training cost (Fig-074

ure 1). Our key insight is to jointly prune bigger075

units (e.g., entire self-attention or feed-forward lay-076

ers) and smaller units (e.g., heads, intermediate077

and hidden dimensions) simultaneously. Compared078

to existing approaches which prune a single sub-079

module at a time, our approach controls the prun-080

ing decision of every single parameter by multiple081

masks of different granularity and all the mask-082

ing variables (along with model parameters) are083

jointly optimized. Despite its simplicity, we show084

that this mixed-pruning strategy is the key to large085

compression—It allows the greatest flexibility of086

pruned structures and eases the optimization com-087

pared to only pruning smaller units.088

Additionally, we find that distillation objectives089

can provide useful signals to pruning and further090

achieve better performance. Since the structure091

of the student model changes during the course092

of training, we devise a layerwise distillation ap-093

proach, which can dynamically learn the layer map-094

ping between the student (pruned) model and the095

teacher (unpruned) model during training.096

We show that MixedPruning delivers more ac-097

curate models at every level of speedup and model098

size on the GLUE tasks (Wang et al., 2019) and099

SQuAD (Rajpurkar et al., 2016) compared to strong100

pruning and distillation baselines. In particular, it101

achieves >10× speedups and a 95% sparsity across102

all the datasets while preserving >90% of accuracy.103

2There are exceptions like DistillBERT (Sanh et al., 2020)
which initializes the student from the teacher by taking one
layer out of two. It is unclear how to generalize this initializa-
tion to other compact structures though.

3See training time measurement details in Appendix J.

The results suggest that task-specific pruning can 104

be a very appealing solution to produce smaller 105

and faster models without requiring additional un- 106

labeled data for general distillation. Finally, we 107

also discover interesting patterns in pruned struc- 108

tures (Table 5). For example, we find that for highly 109

compressed models, the pruning process favors pre- 110

serving upper and lower layers and pruning middle 111

layers most of the time. 112

2 Background 113

2.1 Transformers 114

A Transformer network (Vaswani et al., 2017) is 115

composed of L blocks and each block consists 116

of a multi-head self-attention (MHA) layer, and 117

a feed-forward (FFN) layer. An MHA layer with 118

Nh heads takes an input X ∈ Rlen×d and outputs: 119

MHA(X) =
∑Nh

i=1Att(W
(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
O , X) 120

where W (i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
O ∈ Rd×dh denote the 121

query, key, value and output matrices respectively 122

and Att(·) is an attention function. Here d denotes 123

the hidden size (e.g., 768) and dh = d/Nh denotes 124

the output dimension of each head (e.g., 64). 125

Next comes a feed-forward layer, which consists 126

of an up-projection and a down-projection layer, 127

parameterized by WU ∈ Rd×df and WD ∈ Rdf×d: 128

129

FFN(X) = gelu(XWU ) ·WD. 130

Typically, df = 4d. There is also a residual con- 131

nection and a layer normalization operation after 132

each MHA and FFN layer. 133

MHAs, FFNs account for 1/3 and 2/3 of the 134

model parameters in Transformers.4 According to 135

the analysis in Ganesh et al. (2021), both MHAs 136

and FFNs take roughly similar time on GPUs while 137

the FFNs become the bottleneck on CPUs. 138

2.2 Pruning 139

Pruning approaches remove redundant parameters 140

from a large model for compression. 141

Layer pruning Fan et al. (2020) and Sajjad et al. 142

(2020) explored strategies to drop entire Trans- 143

former blocks (a pair of MHA and FFN layer) from 144

a pre-trained model. Empirical evidence suggested 145

that 50% of the layers can be dropped without a 146

big accuracy loss, resulting in a 2× speedup. 147

4Following previous work, we exclude the embedding
matrix in this calculation.
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Figure 1: Comparison of (a) TinyBERT (Jiao et al., 2020) and (b) our pruning approach MixedPruning. TinyBERT
trains a randomly-initialized network through two-step distillation: (1) general distillation on a large-scale corpus,
which takes 3.5 days to finish on 4 GPUs, and (2) task-specific distillation on the task dataset. MixedPruning directly
prunes the fine-tuned BERT model and jointly prunes five different types of units (Section 3.1) and takes at most 20
hours to finish on 1 GPU on all the GLUE datasets (smaller datasets need < 3 hour). Note that for clarity, we do not
show the prunable hidden dimensions in Attention Head and Feed-Forward Layer.

Head pruning Head pruning Voita et al. (2019),148

Michel et al. (2019) show that a subset of heads149

are important and the majority can be pruned. We150

follow these works to mask heads by introducing151

variables z(i)head ∈ {0, 1} to multi-head attention:152

MHA(X) =
∑Nh

i=1 z
(i)
headAtt(W

(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
O , X).153

Only removing heads cannot lead to considerable154

latency improvement—e.g., Li et al. (2021) demon-155

strated 1.4× speedup with only 1 remaining head156

per layer. However, head pruning can be combined157

with pruning other components to achieve a smaller158

model (McCarley et al., 2019).159

FFN pruning As the other major part—feed-160

forward layers (FFNs)—are also known to be over-161

parameterized. Strategies to prune an FFN layer162

for an inference speedup include pruning an entire163

FFN layer (Prasanna et al., 2020; Chen et al., 2020)164

and at a more fine-grained level, pruning intermedi-165

ate dimensions (McCarley et al., 2019; Hou et al.,166

2020) by introducing zint ∈ {0, 1}df :167

FFN(X) = gelu(XWU ) · diag(zint) ·WD.168

Block pruning More recently, pruning on a smaller169

unit—blocks—from MHAs and FFNs have been170

explored (Lagunas et al., 2021). However, it is171

hard to optimize models with blocks pruned on the172

current hardware. Yao et al. (2021) attempted to op-173

timize block-pruned models with the block sparse174

MatMul kernel provided by Triton (Tillet et al.,175

2019), but the reported results are not competitive.176

2.3 Distillation 177

Knowledge distillation (Hinton et al., 2015; Sanh 178

et al., 2019) is an approach that transfers knowledge 179

from a large teacher model to a student model with 180

a pre-defined compact structure. Previous work has 181

designed layer mapping strategies to distill layer- 182

wise signals to a fixed student model (Sun et al., 183

2019, 2020; Jiao et al., 2020). More recently, Hou 184

et al. (2020) attempted to distill to a more dynamic 185

structure with specified widths and heights. Yin 186

et al. (2021) adopt a one-shot Neural Architecture 187

Search solution to automatically search architec- 188

ture of student networks. However, these resulting 189

models still have a constrained structure compared 190

to pruning-based approaches. In this work, apart 191

from designing a new pruning strategy, we propose 192

a layerwise distillation objective tailored to struc- 193

tured pruning and show that combining the two 194

leads to the best empirical performance. 195

3 Method 196

Our pruning method, MixedPruning, involves two 197

simple yet effective ideas: (1) we prune each single 198

parameter through multiple masking decisions of 199

different granularity (§3.1); (2) we propose a lay- 200

erwise distillation strategy to effectively transfer 201

knowledge from a full model to a student model 202

with constantly changing structures (§3.2). 203

3.1 Mixed Pruning of Different Granularity 204

Our pruning strategy couples pruning decisions 205

over different-sized and nested units and delivers 206
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parallelizable models with flexible structures.207

We observed from existing work that pruning208

only large modules (e.g., FFN layers) constrains209

the flexibility of pruned model structure; however,210

pruning only small units (e.g., individual heads)211

never leads to removing a larger submodule as it212

naturally entails. More specifically, existing head213

or intermediate dimension pruning strategies rarely214

eliminate all the units in one layer, prohibiting215

highly compressed models from achieving signifi-216

cant speedups.217

To remedy the problem, we present a very simple218

solution: besides pruning heads and intermediate219

dimensions as introduced in §2.2, we introduce two220

additional masks zMHA and zFFN for every MHA221

and FFN layer, with each controlling whether the222

corresponding MHA layer or FFN layer should be223

pruned or not. Now the multi-head self-attention224

and feed-forward layer become:225

MHA(X) = zMHA
∑Nh

i=1(z
(i)
head ·Att(W

(i)
Q ,W

(i)
K ,W

(i)
V ,W

(i)
O , X)226

FFN(X) = zFFN · gelu(XWU ) · diag(zint) ·WD227

With these layer masks introduced, we allow the228

model to directly prune an entire layer, instead of229

pruning all the heads in one MHA layer (or all the230

intermediate dimensions in one FFN layer). Differ-231

ent from the layer dropping strategies in Fan et al.232

(2020); Sajjad et al. (2020), our pruning strategy233

allows the model to drop MHA and FFN layers234

separately, instead of pruning them as a whole.235

Furthermore, we also consider pruning the out-236

put dimensions of MHA(X) and FFN(X), re-237

ferred to as ‘hidden dimensions’ in this paper, to238

allow for more flexibility in the final model struc-239

ture. We define a set of masks zhidn ∈ {0, 1}d240

shared across all the layers, as each coordinate in241

a hidden representation is connected to the same242

coordinate in the next layer through a residual con-243

nection. These mask variables are applied to all the244

weight matrices in the model, e.g., diag(zhidn)WQ.245

Empirically, we find that only a small number of di-246

mensions are pruned (e.g., 768 → 760), but it still247

helps improve performance significantly (§4.3).248

Although our mixed-pruning strategy is straight-249

forward, it greatly differs from the previous pruning250

approaches in that multiple mask variables jointly251

control the pruning decision of one single parame-252

ter. For example, a weight in an FFN layer may be253

pruned because the entire FFN layer is pruned, or254

its corresponding intermediate dimension is pruned,255

or the hidden dimension is pruned. As a compari-256

son, the most recent work—Block Pruning (Lagu-257

nas et al., 2021) adopts a hybrid approach which 258

simply prunes a different type of unit from MHAs 259

and FFNs separately and thus is significantly dif- 260

ferent from MixedPruning. 261

To learn these mask variables, we use l0 regular- 262

ization with the hard concrete distribution from 263

Louizos et al. (2018). We follow Wang et al. 264

(2020c) to replace the vanilla l0 objective with 265

a Lagrangian multiplier to better control the de- 266

sired sparsity of pruned model5. We adapt the La- 267

grangian constraint accordingly to accommodate 268

mixed levels of pruning masks—for example, the 269

i-th head in an MHA layer is pruned if zMHA is 0 270

or z(i)head is 0 (see Appendix B for more details). 271

3.2 Distillation to Pruned Models 272

Previous work has shown that combining distilla- 273

tion with pruning improves performance, where 274

the distillation objective only involves a cross- 275

entropy loss between the pruned student’s out- 276

put and the teacher’s probability distribution ps 277

and pt (Sanh et al., 2020; Lagunas et al., 2021): 278

Lpred = DKL(ps ∥ pt). In addition to prediction 279

layer distillation, recent works show great bene- 280

fits in distillation of intermediate layers (Sun et al., 281

2019; Jiao et al., 2020). In the context of distillation 282

approaches, the architecture of the student model 283

is pre-specified, and it is straightforward to define 284

a layer mapping between the student and teacher 285

model. For example, the 4-layer TinyBERT4 model 286

distills from the 3, 6, 9 and 12-th layer of a 12-layer 287

teacher model. However, distilling intermediate 288

layers during the pruning process is challenging as 289

the model structure changes throughout training. 290

We propose a layerwise distillation approach for 291

pruning to best utilize the signals from the teacher 292

model. Instead of pre-defining a fixed layer map- 293

ping, we dynamically search a layer mapping be- 294

tween the full teacher model and the pruned student 295

model. Specifically, let T denote a set of teacher 296

layers that we use to distill knowledge to the stu- 297

dent model. We define a layer mapping function 298

m(·), i.e., m(i) represents the student layer that 299

distills from the teacher layer i. The hidden layer 300

distillation loss is defined as 301

Llayer =
∑
i∈T

MSE(WlayerH
m(i)
s ,Hi

t), 302

5We also tried a straight-through estimator as proposed
in Sanh et al. (2020) and find the performance comparable.
We decide to stick to l0 regularization because it is easier to
control the precise sparsity.
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where Wlayer ∈ Rd×d is a linear transforma-303

tion matrix and is initialized as an identity matrix.304

H
m(i)
s ,Hi

t are hidden representations from m(i)-305

th student FFN layer and i-th teacher FFN layer.306

The layer mapping function m(·) is dynamically307

determined during the training process to match308

a teacher layer to its closest layer in the student309

model:310

m(i) = argmin
j:z

(j)
FFN>0

MSE(WlayerH
j
s,H

i
t).311

Though an upper student layer would possibly312

match a lower teacher layer or more than one stu-313

dent layer could match a teacher, empirically such314

scenarios rarely happen. This shows the superiority315

of dynamic matching – layers between student and316

teacher models match in a way that benefits the317

pruning process the most.318

We combine layer distillation with logit distilla-319

tion to form our final distillation strategy.320

Ldistil = λLpred + (1− λ)Llayer.321

where λ controls the contribution of each loss.322

4 Experiments323

4.1 Setup324

Datasets We evaluate our approach on 8 GLUE325

tasks (Wang et al., 2019) and SQuAD 1.1 (Ra-326

jpurkar et al., 2016). GLUE tasks include SST-327

2 (Socher et al., 2013), MNLI (Williams et al.,328

2018), QQP, QNLI, MRPC (Dolan and Brockett,329

2005), CoLA (Warstadt et al., 2019), STS-B (Cer330

et al., 2017) and RTE. Please refer to Appendix D331

for dataset size and metrics.332

Training setup In our experiments, sparsity is333

computed as the percentage of the number of334

pruned parameters out of the full model size335

(excluding embeddings). Following Wang et al.336

(2020c) and Lagunas et al. (2021), we first fine-337

tune the model with the distillation objective for338

a number of steps, then we continue training the339

model with the pruning objective with a sched-340

uler to linearly increase the sparsity to the target341

value. We finetune the pruned model until conver-342

gence6. We train models with target sparsities of343

{60%, 70%, 75%, 80%, 85%, 90%, 95%} on each344

dataset. For all the experiments, we start from the345

6Please refer to Appendix A for more training details.

BERTbase model7 and freeze embedding weights 346

following Sanh et al. (2020). Excluding word em- 347

beddings, the full model size is 85M and we use it 348

to calculate sparsity rates throughout this paper. We 349

report results on development sets of all datasets. 350

Baselines We compare MixedPruning against sev- 351

eral baselines: DistillBERT6 (Sanh et al., 2019), 352

TinyBERT6 and TinyBERT4 (Jiao et al., 2020), 353

DynaBERT (Hou et al., 2020), and Block Prun- 354

ing (Lagunas et al., 2021) (see Appendix C for 355

details). We also compare to other pruning meth- 356

ods such as FLOP (Wang et al., 2020c), Layer- 357

Drop (Fan et al., 2020), Movement Pruning (Sanh 358

et al., 2020), and distillation methods such as 359

MobileBERT (Sun et al., 2020) and AutoTiny- 360

BERT (Yin et al., 2021) in Appendix E8. 361

For TinyBERT and DynaBERT, the released 362

models are trained with augmented dataset. For 363

a fair comparison, we train these two models with 364

the released code without data augmentation (addi- 365

tional results with data augmentation can be found 366

in Appendix H).9 For Block Pruning, we train mod- 367

els with their released checkpoints on GLUE tasks 368

and use SQuAD results from the paper. 369

Speedup evaluation Speedup rate is a primary 370

measurement we use throughout the paper as com- 371

pression rate does not necessarily reflect the actual 372

improvement in inference latency. We use an un- 373

pruned BERTbase as the baseline and evaluate all 374

the models with the same hardware setup on a sin- 375

gle GPU to measure inference speedup. The input 376

size is 128 for GLUE tasks and 384 for SQuAD, 377

and we use a batch size of 128. Note that the results 378

might be different from the original papers as the 379

environment for each platform is different. 380

4.2 Main Results 381

Overall performance In Figure 2, we compare the 382

accuracy of MixedPruning models to other methods 383

in terms of both inference speedup and model size. 384

MixedPruning delivers more accurate models than 385

distillation and pruning baselines at every speedup 386

level and model size. Block Pruning (Lagunas et al., 387

2021), a recent work that shows strong performance 388

against TinyBERT6, is unable to achieve compara- 389

7We also apply MixedPruning to RoBERTa. Please refer
to Appendix I for details.

8We show these results in Appendix E as they are not
directly comparable to MixedPruning.

9For TinyBERT, the augmented data is 20× larger than the
original data, making the training process significantly slower.
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Figure 2: Accuracy v.s speedup (top) or model size (bottom). We compare MixedPruning against state-of-the-art
distillation and pruning baselines. Note that we exclude embedding size when calculating model size following
Lagunas et al. (2021) as forwarding through the embedding layer has little effect on inference time.

Task SST-2 QNLI MNLI QQP CoLA RTE STS-B MRPC SQuAD Train Time
(67k) (105k) (393k) (364k) (8.5k) (2.5k) (7k) (3.7k) (88k)

TinyBERT4 w/o GD 87.7 81.8 78.7 89.5 16.6 47.3 17.8 68.9 - ≤ 10
TinyBERT4 89.7 86.7 78.8 90.0 32.5 63.2 85.0 81.4 82.1 ∼ 350
Speedup 11.4× 11.4× 11.4× 11.4× 11.4× 11.4× 11.4× 11.4× 8.7× -

MixedPruning 90.6 86.1 80.6 90.1 35.6 64.7 83.1 82.6 82.6 ≤ 20
Speedup 12.0× 12.1× 12.1× 11.0× 11.5× 11.9× 12.9× 11.9× 8.7× -

Table 2: MixedPruning v.s. TinyBERT4 (Jiao et al., 2020) models with a ∼10× speedup. GD: general distillation,
which distills the student model on a large unlabeled corpus. Train time is measured in GPU hours (see Appendix J
for details). The number of parameters for both models are around 5M (around 95% sparsity). MixedPruning
closes the gap between distillation and pruning with significantly less computation. Note that we remove data
augmentation from TinyBERT for a fair comparison, see Table 9 for experiments with augmented data.

ble speedups as TinyBERT4. Instead, MixedPrun-390

ing has the option to prune both layers and heads391

& intermediate units and can achieve a model with392

a comparable or higher performance compared to393

TinyBERT4 and all the other models. Additionally,394

DynaBERT performs much worse speed-wise be-395

cause it is restricted to remove at most half of the396

MHA and FFN layers.397

Comparison with TinyBERT4 In Table 2, we398

show that MixedPruning produces models with399

over 10× inference speedup and achieves compa-400

rable or even better performance than TinyBERT4.401

General distillation (GD), which distills informa-402

tion from a large corpus, is essential for train-403

ing distillation models, especially for small-sized404

datasets (e.g., TinyBERT4 w/o GD performs poorly405

on CoLA, RTE and STS-B). While general distil-406

lation could take up to hundreds of GPU hours for407

training, MixedPruning trains for a maximum of408

20 hours on a task-specific dataset with a single409

GPU. We argue that pruning approaches—trained 410

with distillation objectives like MixedPruning—are 411

more economical and efficient in achieving com- 412

pressed models with a large speedup. 413

4.3 Ablation Study 414

Pruning units We first conduct an ablation study 415

to investigate how additional pruning units such 416

as MHA layers, FFN layers and hidden units in 417

MixedPruning affect model performance and in- 418

ference speedup beyond the standard practice of 419

pruning heads and FFN dimensions. We show re- 420

sults in Table 3 for models of similar sizes. Remov- 421

ing the option to prune hidden dimensions (zhidn) 422

leads to a slightly faster model with a performance 423

drop across the board and we find that it removes 424

more layers than MixedPruning and does not lead 425

to optimal performance under a specific sparsity 426

constraint. In addition, removing the layer masks 427

(zMHA, zFFN) brings a significant drop in terms 428
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QNLI (60%) QNLI (95%) MNLI (60%) MNLI (95%) SQuAD (60%) SQuAD (95%)
↗ acc ↗ acc ↗ acc ↗ acc ↗ F1 ↗ F1

MixedPruning 2.1× 91.8 12.1× 86.1 2.1× 85.1 12.1× 80.6 2.0× 89.1 8.7× 82.6
−layer 2.1× 91.5 8.3× 86.7 2.1× 85.4 8.4× 80.6 2.0× 89.1 7.9× 80.5

MixedPruning 2.1× 91.8 12.1× 86.1 2.1× 85.1 12.1× 80.6 2.0× 89.1 8.7× 82.6
−hidden 2.2× 91.3 13.3× 85.6 2.1× 85.2 13.7× 79.8 2.0× 88.7 9.7× 80.8
−layer & hidden 2.2× 91.3 7.2× 84.6 2.1× 84.8 7.0× 78.4 2.1× 88.5 6.4× 74.1

Table 3: Ablation studies on pruning units on QNLI, MNLI and SQuAD. ↗: speedup. The pruned models of a
sparsity 60% and 95% have a model size of 34M and 5M respectively. −layer: When we do not prune entire layers
(no zMHA or zFFN), the speed-ups are greatly reduced for a high sparsity e.g., 95%; −hidden: when we remove the
mask variables corresponding to hidden units (zhidn), we observe a significant drop in accuracy.

SST-2 QNLI MNLI QQP SQuAD

MixedPruning 90.6 86.1 80.6 90.1 82.6
−Llayer 91.1 85.1 79.7 89.8 82.5
−Lpred,Llayer 86.6 84.2 78.2 88.1 75.8

Fixed Hidn Distil. 90.0 85.8 80.5 90.0 80.9

Table 4: Ablation study of different distillation objec-
tives on pruned models with sparsity = 95%. Fixed
hidden distillation: simply matching each layer of the
student and the teacher model, see §4.3 for more details.
In subsection F.2, we show that the dynamic layer dis-
tillation objective improves model performance more
significantly on lower sparsity rates.

of both model performance and speedup on highly429

compressed models (95%, 5M). This result shows430

that even with the same amount of parameters, dif-431

ferent configurations for a model could lead to432

drastically different speedups. However, it does433

not affect the lower sparsity regime (60%, 34M).434

In short, by placing masking variables at different435

levels, the optimization procedure is incentivized436

to prune units accordingly under the sparsity con-437

straint while maximizing the model performance.438

Distillation objectives We also ablate on distilla-439

tion objectives to see how each part contributes440

to the high performance of MixedPruning in Ta-441

ble 4. We first observe that removing distillation en-442

tirely leads to a performance drop up to 2-7 points443

across various datasets, showing the necessity to444

combine pruning and distillation for maintaining445

performance. The proposed hidden layer distilla-446

tion objective dynamically matches the layers from447

the teacher model to the student model. A simple448

and intuitive alternative (named "Fixed Hidden Dis-449

tillation") would be to match the layers from the450

teacher model to the existing layers in the student451

model— if the layer is pruned, the distillation to452

that layer stops. We find that fixed hidden distil-453

lation underperforms the dynamic layer matching454
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Figure 3: The average intermediate dimensions at each
FFN layer and the average number of heads at each
MHA layer in the pruned models across five datasets
(SST-2, MNLI, QQP, QNLI, and SQuAD 1.1). We study
different sparsities {60%, 70%, 80%, 90%, 95%}.

objective used for MixedPruning. Interestingly, the 455

proposed dynamic layer matching objective consis- 456

tently converges to a specific alignment between 457

the layers of the teacher model and student model. 458

For example, we find that on QNLI the training 459

process dynamically matches the 3, 6, 9, 12 lay- 460

ers in the teacher model to 1, 2, 4, 9 layers in the 461

student model10. Moreover, as shown in the table, 462

removing it hurts the performance for the majority 463

of the datasets except SST-2. 464

4.4 Structures of Pruned Models 465

In this section, we study the model struc- 466

tures that are pruned from MixedPruning. We 467

characterize the pruned models with sparsi- 468

ties {60%, 70%, 80%, 90%, 95%} on all the five 469

datasets that we consider. For each setting, we 470

run MixedPruning three times. Figure 3 demon- 471

strates the number of remaining heads and interme- 472

diate dimensions of the pruned models for different 473

sparsities.11 Interestingly, we discover common 474

10Please refer to subsection F.1 for more details.
11We show more layer analysis in Appendix G.
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Dataset Pruned Models

SST-2
M F M M M F M F F M F M F
M F M F M F M M F M F
M F M F M F M M M

QNLI
M F M M F M F M F M
M F M M F M M M
M F M M F M F M F

MNLI
F M F M M F F

M F M F M M F M M
M F M F M F M M M

QQP
F M M M F M F F M F
F M F M F M F M F
F M M F M M F M F M M

SQuAD
F M F M F M M F M F
F M M F M F M F M F
F M F M M F M F M F

Table 5: Remaining layers in the models pruned by
MixedPruning on different datasets. All models are
pruned at a sparsity of 95%. For each setting, we run
the experiments three times to obtain three different
pruned models. M represents a remaining MHA layer
and F represents a remaining FFN layer.

structural patterns in the pruned models: (1) Feed-475

forward layers are significantly pruned across all476

sparsities. For example, for the sparsity 60%,477

the average number of intermediate dimensions478

in FFN layers after pruning is reduced by 71%479

(3, 072 → 884), and the average number of heads480

in MHA is reduced by 39% (12 → 7.3). This sug-481

gests FFN layers are more redundant than MHA482

layers. (2) MixedPruning tends to prune submod-483

ules more from upper layers than lower layers. For484

example, upper MHA layers have fewer remaining485

heads than lower layers on average.486

Furthermore, we study the number of remain-487

ing FFN and MHA layers and visualize the results488

in Table 5 for highly compressed models (sparsity489

= 95%). Although all the models are roughly of490

the same size, the remaining layers present differ-491

ent patterns for different datasets. We find that492

on SST-2 and QNLI, the first MHA layer is pre-493

served but can be removed on QQP and SQuAD.494

We also observe that some layers are particularly495

important across all datasets. For example, the first496

MHA layer and the second MHA layer are pre-497

served most of the time, while the middle layers498

are often removed. Generally, the pruned models499

contain more MHA layers than FFN layers (see500

Appendix G), which suggests that MHA layers are501

more important for solving the downstream tasks.502

The model structures discovered by different runs503

on one particularly dataset do not vary much, in-504

dicating that there exists task-specific model struc- 505

tures with a specific sparsity. Similar to Press et al. 506

(2020), we find that although standard Transformer 507

networks have interleaving FFN layers and MHA 508

layers, in our pruned models, adjacent FFN/MHA 509

layers could possibly lead to a better performance. 510

5 Related Work 511

Structured pruning is more widely explored in com- 512

puter vision, where channel pruning (He et al., 513

2017; Luo et al., 2017; Liu et al., 2017, 2019c,b; 514

Molchanov et al., 2019) is a standard approach for 515

convolution models. The techniques can be adapted 516

to Transformer based models as introduced in sub- 517

section 2.2. Unstructured pruning is another major 518

research direction, especially gaining popularity 519

in the theory of Lottery Ticket Hypothesis (Fran- 520

kle and Carbin, 2019; Zhou et al., 2019; Renda 521

et al., 2020; Frankle et al., 2020). Several works 522

explore pruning at initialization with or without 523

using training data (Lee et al., 2019; Wang et al., 524

2020a; Tanaka et al., 2020; Su et al., 2020). 525

Besides pruning, many other techniques have 526

been explored to gain inference speed-up of Trans- 527

former models, including distillation (Turc et al., 528

2019; Wang et al., 2020b; Sanh et al., 2019; Jiao 529

et al., 2020), quantization (Shen et al., 2020; Fan 530

et al., 2021), dynamic inference acceleration (Xin 531

et al., 2020). We refer the readers to Ganesh et al. 532

(2021) for a comprehensive survey. 533

6 Conclusion 534

We proposed MixedPruning, a pruning strategy that 535

incorporates all levels of pruning, including layers, 536

heads, intermediate dimensions, and hidden dimen- 537

sions for Transformer-based models. Coupled with 538

a distillation objective tailored to structured prun- 539

ing, we show that MixedPruning compresses mod- 540

els into a rather different structure from standard 541

distillation models but still achieves competitive 542

results with more than 10× speedup. We conclude 543

that task-specific structured pruning from large- 544

sized models could be an appealing replacement 545

for distillation to achieve extreme model compres- 546

sion without resorting to expensive pre-training or 547

data augmentation. We hope that future research 548

continues this line of work by investigating struc- 549

tured pruning for task-agnostic models, given that 550

pruning from a large pre-trained model could save 551

computation from general distillation and results in 552

compressed models with a more flexible structure. 553
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A Reproducibility & Hyperparameters798

We report the hyperparameters that we use in our799

experiments in Table 6. We will be releasing codes800

and running scripts in the final version.

Hyperparameter

λ 0.1, 0.3, 0.5
distillation temperature t 2
finetuning epochs 20
finetuning learning rate 1e− 5, 2e− 5, 3e− 5
training learning rate 2e− 5 (GLUE), 3e− 5 (SQuAD)
batch size 32 (GLUE), 16 (SQuAD)

Table 6: Hyperparemeters in the experiments.

801
For 4 relatively larger GLUE datasets, MNLI,802

QNLI, SST-2 and QQP, and SQuAD, we train the803

model for 20 epochs in total and finetune the fi-804

nalized sub-network for another 20 epochs. In the805

first 20 epochs, following (Lagunas et al., 2021)806

and (Wang et al., 2020c), we first finetune the807

model with the distillation objective for 1 epoch,808

and then start pruning with a linear schedule to809

achieve the target sparsity within 2 epochs. For810

the 4 small GLUE datasets, we train the model for811

100 epochs in total and finetune for 20 epochs. We812

finetune the model with the distillation objective813

for 4 epoch and prune till the target sparsity within814

next 20 epochs. Note that even if the final sparsity815

is achieved, the pruning process keeps searching816

better performing structures in the rest of the train-817

ining epochs. In addition, we find that finetuning818

the final subnetwork is essential for high sparsity819

models. Hyperparameters like λ, batch size and820

learning rate do not affect performance much.821

B Optimization Details822

Louizos et al. (2018) proposes l0 optimization for823

model compression where the masks are modelled824

with hard concrete distributions as follows:825

u ∼ U(0, 1)

s = sigmoid
(
1

β
log

u

1− u
+ logα

)
s̃ = s× (r − l) + l

z = min(1,max(0, s̃)).

826

U(0, 1) is a uniform distribution in the interval827

[0, 1]; l < 0 and r > 0 are two constants that828

stretch the sigmoid output into the interval (l, r). β829

is a hyperparameter that controls the steepness of 830

the sigmoid function and logα is the main learn- 831

able parameter. We learn the masks through up- 832

dating the learnable parameters of the distributions 833

from which the masks are sampled in the forward 834

pass. 835

In our preliminary experiments, we find that op- 836

timizing λ∥z∥0 with different learning rates and 837

pruning schedules may converge to models of dras- 838

tically different sizes. Hence, we follow Wang et al. 839

(2020c) to add a Lagrangian term, which imposes 840

an equality constraint s(α) = t by introducing a 841

violation penalty: 842

Lc = λ1 · (s(α)− t) + λ2 · (s(α)− t)2, 843

where s(α) is the expected model sparsity calcu- 844

lated from z. 845

Different from (Wang et al., 2020c), where each 846

parameter is controlled by one single mask, in 847

MixedPruning, each parameter is controlled by 848

three masks with the sparsity calculated as follows: 849

s(α) =
1

M
· 4 ·

L∑
i

Nh∑
j

dmodel∑
k

z
(i)
MHA · z(i,j)head · z(k)hidden

+
1

M
· 2 ·

L∑
i

4·dmodel∑
j

dmodel∑
k

z
(i)
FFN · z(i,j)int · z(k)hidden

850

where M denotes the full model size. 851

C Details of Baseline Methods 852

We compare against several strong pruning and dis- 853

tillation models, including 1) DistillBERT6 (Sanh 854

et al., 2019); 2) TinyBERT6 and TinyBERT4 (Jiao 855

et al., 2020) both include general distillation for 856

pretraining and task-specific distillation; 3) Dyn- 857

aBERT (Hou et al., 2020): a method that provides 858

dynamic-sized models by specifying width and 859

depth; 4) Block Pruning (Lagunas et al., 2021): 860

a pruning method coupled with prediction-layer 861

distillation. We choose their strongest approach 862

“Hybrid Filled” as our baseline. 863

D Data Statistics 864

We show train sizes and metrics for each dataset 865

we use in Table 7. 866

E Additional Comparisons 867

E.1 Comparison to Movement Pruning 868

We compare MixedPruning with a state-of-the-art 869

unstructured pruning method, Movement Prun- 870
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Task Train Size Metric

SST-2 67k accuracy
QNLI 105k accuracy
MNLI 393k accuracy
QQP 364k accuracy
CoLA 8.5k Matthews corr.
RTE 2.5k accuracy
STS-B 7k Spearman corr.
MRPC 3.7k accuracy
SQuAD 88k F1

Table 7: Data statistics of GLUE and SQuAD datasets.

ing (Sanh et al., 2020) in Figure 4. As Movement871

Pruning is trained with logit distillation only, we872

also show results of MixedPruning trained with the873

same distillation objective. We observe that Mixed-874

Pruning largely outperforms Movement Pruning875

even without layerwise distillation on MNLI and is876

comparable to SQuAD on models with a size over877

10M parameters. MixedPruning, as a structured878

pruning method, is less performant on models of a879

sparsity higher than 95%, as pruning flexibility is880

largely restricted by the smallest pruning submod-881

ule. However, pruned models from MixedPrun-882

ing achieve 2− 11× inference speedups while no883

speedup gains are achieved from Movement Prun-884

ing.
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Figure 4: MixedPruning v.s. Movement Pruning (un-
structured pruning). MixedPruning Logit Distill denotes
that we run MixedPruning with logit distillation only as
Movement Pruning.

885

E.2 Comparison to Block Pruning886

In Figure 6, we compare MixedPruning with Block887

Pruning while unifying the distillation objective.888

Without the layer distillation objective, MixedPrun-889

ing still outperforms or is on par with Block Prun-890

ing. Block Pruning never achieves a speedup of891

10 even the pruned model is of a similar size as892

MixedPruning (SST-2), backing up our argument893

that pruning layers for high sparsity models is the894

key to high speedups. 895

E.3 More Baselines 896

We show additional pruning and distillation meth- 897

ods that are not directly comparable to our method 898

in Table 8. MixedPruning still largely outperforms 899

these baselines even though these methods hold 900

an inherent advantage due to a stronger teacher or 901

base model.

↗ SST-2 QNLI MNLI SQuAD

Wang et al. (2020c)‡ 1.5× 92.1 89.1 - 85.4
Sajjad et al. (2020) 2.0× 90.3 - 81.1 -
Fan et al. (2020)‡ 2.0× 93.2 89.5 84.1 -
Sun et al. (2020)⋄ 2.3× 92.1 91.0 83.9 90.3
Yin et al. (2021)♠ 4.3× 91.4 89.7 82.3 87.6

MixedPruning (ours) 2.0× 93.0 91.8 85.3 89.1
MixedPruning (ours) 4.6× 92.6 89.7 83.4 86.4

Table 8: More pruning and distillation baselines. ↗:
speedup. ‡ denotes that the model prunes from a
RoBERTabase model. ♠: AutoTinyBERT is distilled
from an ELECTRAbase model. ⋄: MobileBERT (Sun
et al., 2020) has specialized architecture designs and
trains their own teacher model from the scratch. Mixed-
Pruning models have a model size of 34M and 13M
respectively, corresponding to a 60% and 85% sparsity.

902

F More Analyses on Layer Distillation 903

F.1 Layer Alignment 904

We find that the alignment between the layers of 905

the student model and the teacher model shifts dur- 906

ing the course of training. To take SST-2 for an 907

example, at the beginning of training, the last layer 908

of the pretrained model matches to all four layers 909

of the teacher model. As the training goes on, the 910

model learns the alignment to match the 7, 9, 10, 11 911

layers of the student model to the 3, 6, 9, 12 layers 912

of the teacher model. For QQP, the model even- 913

tually learns to map 2, 5, 8, 11 layers to the four 914

layers of the teacher model. The final alignment 915

shows that our dynamic layer matching distillation 916

objective is able to find task-specific alignment and 917

improves performance. 918

F.2 Ablation on Distillation Objectives 919

In Table 10, we show ablation studies on adding the 920

dynamic layer distillation onto prediction distilla- 921

tion across all sparsities. Using the layer distillation 922

loss clearly helps improve the performance on all 923

sparisity rates and on different tasks. 924
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Task
MixedPruning TinyBERT4

w/ DA w/o DA w/ DA w/o DA
speedup acc speedup acc speedup acc† acc‡ acc

SST-2 12.4× 92.4 12.0× 90.6 11.4× 91.6 92.7 89.7
QNLI. 13.6× 86.8 12.1× 86.1 11.4× 87.6 88.0 86.7
RTE 11.5× 67.5 11.9× 64.7 11.4× 62.5 65.7 63.2
MRPC 12.1× 84.6 11.9× 82.6 11.4× 83.6 85.8 81.4

Table 9: MixedPruning v.s. TinyBERT4 (Jiao et al., 2020) trained with augmented data and without augmented
data. The MixedPruning models have a sparsity of 95%. DA: data augmentation, introduced in Jiao et al. (2020). †
denotes that we train TinyBERT4 with the same copy of data and same teacher model as MixedPruning. ‡ denotes
the numbers from released checkpoints of TinyBERT. The difference between these two sets of scores may stem
from augmented data or teacher models.

G FFN/MHA Layers in Pruned Models925

Figure 5 shows the average number of FFN lay-926

ers and MHA layers in the pruned models by927

MixedPruning. We study different sparsities928

{60%, 70%, 80%, 90%, 95%}. It is clear that when929

the sparsity increases, the pruned models become930

shallower (i.e., the number of layers becomes931

fewer). Furthermore, we find that the pruned mod-932

els usually have more MHA layers than FFN lay-933

ers. This may indicates that MHA layers are more934

important for solving these downstream tasks com-935

pared to FFN layers.
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Figure 5: The average number of FFN layers and MHA
layers in the pruned models at different sparsities.

936

H Results with Data Augmentation937

We compare MixedPruning with TinyBERT4 under938

the data augmentation setting in Table 9. As the939

augmented dataset is not released by TinyBERT au-940

thors, we follow its GitHub repository to create our941

own augmented data. We train MixedPruning with942

the same set of augmented dataset and find that it943

outperforms or is comparable to TinyBERT4. Note944

that we only conduct experiments with data aug-945

mentation on four datasets due to the high training946

costs. For example, augmenting the MNLI dataset947

and training on the augmented dataset will take948

> 200 GPU hours in total.949

I RoBERTa Pruning 950

We show MixedPruning results with RoBERTa in 951

Figure 7 across sparsities from 60% to 95%. Sim- 952

ilar to BERT, models with 60% weights pruned 953

are able to maintain of a full model. Pruning 954

from RoBERTa outperforms BERT on sparsities 955

lower than 90% but as the sparsity further increases, 956

BERT surpasses RoBERTa. Similar patterns are 957

observed from DynaBERT (Hou et al., 2020). 958

J Training Time Measurement 959

We use NVIDIA RTX 2080Ti GPUs to measure the 960

training time of TinyBERT. For the general distil- 961

lation step of TinyBERT, we measure the training 962

time on a small corpus (containing 10.6M tokens) 963

on 4 GPUs and estimate the training time on the 964

original corpus (containing 2500M tokens) by scal- 965

ing the time with the corpus size difference. Specif- 966

ically, it takes 430s to finish one epochs on 10.6M 967

tokens with 4 GPUs, and we estimate that it will 968

take 338 GPU hours (or 3.5 days with 4 GPUs) to 969

finish three epochs on 2500M tokens. 970
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Figure 6: MixedPruning v.s. Block Pruning with the same distillation objective – logit distillation. MixedPruning
still outperforms or is on par with Block Pruning.

SST-2 QNLI MNLI SQuAD
sparsity Lpred +Llayer Lpred +Llayer Lpred +Llayer Lpred +Llayer

60% 92.66 93.00 (+0.34) 90.66 91.84 (+1.18) 85.16 85.31 (+0.15) 88.84 89.13 (+0.29)
70% 91.74 93.00 (+1.26) 89.93 91.29 (+1.36) 84.57 84.89 (+0.32) 88.11 88.56 (+0.45)
75% 91.40 92.89 (+1.49) 88.96 91.31 (+2.35) 84.19 84.75 (+0.56) 87.54 87.99 (+0.45)
80% 91.06 92.89 (+1.83) 88.76 90.43 (+0.67) 83.36 84.26 (+0.90) 86.52 87.26 (+0.74)
85% 90.48 92.55 (+2.07) 86.84 89.69 (+2.85) 82.69 83.44 (+0.75) 85.76 86.40 (+0.64)
90% 90.25 91.51 (+1.26) 85.80 88.89 (+3.19) 81.09 82.61 (+1.52) 83.28 84.08 (+0.80)
95% 91.06 90.37 (−0.69) 85.08 86.14 (+1.06) 79.66 80.55 (+0.89) 82.52 82.59 (+0.07)

Table 10: Ablation study on the proposed layer distillation objective across all sparsities.
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Figure 7: MixedPruning with BERT and RoBERTa on SST-2 and MNLI.
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