
Rethinking Chain-of-Thought from the Perspective of Self-Training

Zongqian Wu * 1 Baoduo Xu * 1 Ruochen Cui 1 Mengmeng Zhan 1 Xiaofeng Zhu 1 2 Lei Feng 3

Abstract
Chain-of-thought (CoT) reasoning has emerged as
an effective approach for activating latent capabil-
ities in LLMs. Interestingly, we observe that both
CoT reasoning and self-training share the core
objective: iteratively leveraging model-generated
information to progressively reduce prediction un-
certainty. Building on this insight, we propose a
novel CoT framework to improve reasoning per-
formance. Our framework integrates two key com-
ponents: (i) a task-specific prompt module that
optimizes the initial reasoning process, and (ii) an
adaptive reasoning iteration module that dynami-
cally refines the reasoning process and addresses
the limitations of previous CoT approaches, i.e.,
over-reasoning and high similarity between con-
secutive reasoning iterations. Extensive experi-
ments show that the proposed method achieves
significant advantages in both performance and
computational efficiency. Our code is available at:
https://github.com/zongqianwu/ST-COT.

1. Introduction
Chain-of-thought (CoT) reasoning has attracted significant
attention in recent years due to its capacity to unlock the
latent potential of large language models (LLMs) (Wei et al.,
2022). By requiring LLMs to explicitly outline intermediate
reasoning processes before generating final outputs, CoT
effectively improves the reliability of inferences, particularly
when tackling complex reasoning tasks.

Previous CoT methods in LLMs can be divided into two
categories, i.e., zero-shot CoT (Kojima et al., 2022) and few-
shot CoT (Wei et al., 2022). Zero-shot CoT methods rely

*Equal contribution 1School of Computer Science and Engi-
neering, University of Electronic Science and Technology of China,
Chengdu, China 2School of Computer Science and Technology,
Hainan University, Haikou, China 3School of Computer Science
and Engineering, Southeast University, Nanjing, China. Corre-
spondence to: Xiaofeng Zhu <seanzhuxf@gmail.com>, Lei Feng
<fenglei@seu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Model Model Model

Dog

Cat

Pig

Pseudo

-labels

Pseudo

-labels

Dog

Cat

Pig

Dog

Cat

Pig

CoT CoT CoT

3 km

5 km

2 km

Iteration 0 Iteration 1 Iteration n

Iteration 0 Iteration 1 Iteration n

A travels 3

km south,

5 km east,

3 km north,

and 2 km

west. How

far is A

from home?

3 km

5 km

2 km

3 km

5 km

2 km

Self-Training Process

Chain-of-Thought Process

Figure 1. Both self-training and CoT reasoning iteratively lever-
age model-generated information (pseudo-labels or reasoning
processes) to gradually reduce the uncertainty of predictions.

on prompts (e.g., “Let’s think step by step”) to guide LLMs
to generate intermediate reasoning processes relevant to
the given question, thereby facilitating logical inference. In
contrast, few-shot CoT methods provide some examples that
include intermediate reasoning processes from the dataset,
allowing LLMs to reference these examples during testing
to construct reasoning processes. Both zero-shot and few-
shot CoT methods leverage the generative capabilities of
LLMs to augment question-relevant information, which
effectively improves the reliability of inferences. Moreover,
this process of information augmentation can be applied
iteratively, with deeper iterations enabling LLMs to tackle
more complex reasoning tasks (Zhong et al., 2024).

Interestingly, we observe that CoT methods share many con-
ceptual similarities with self-training (a well-established
semi-supervised framework), regarding leveraging itera-
tively model-generated information to enhance task perfor-
mance (as shown in Figure 1). Concretely, in self-training,
pseudo-labels are iteratively generated for unlabeled data
and used to retrain the model, thereby progressively enhanc-
ing the generalization capabilities of the model. Inspired
by this parallel, this paper aims to improve CoT reasoning
performance from the perspective of self-training.

1

Rethinking Chain-of-Thought from the Perspective of Self-Training

To this end, we conduct a theoretical analysis of entropy vari-
ation in self-training, which demonstrates that the overall
uncertainty of predicted samples exhibits a decreasing trend.
Furthermore, our experimental results validate that CoT rea-
soning follows a similar principle, as it iteratively leverages
intermediate reasoning processes to gradually reduce the
uncertainty on prediction questions. Based on the insight
that CoT reasoning is an uncertainty minimization process,
we propose a novel CoT framework to improve reasoning
performance, which comprises two main components, i.e.,
task-specific prompt and adaptive reasoning iteration.
Specifically, the task-specific prompt module is designed to
search for optimal prompts with the minimum uncertainty.
Unlike generic prompts (e.g., “Let’s think step by step”), our
tailored prompt effectively guides LLMs to generate initial
reasoning processes aligned with the intrinsic characteristics
of the task, significantly reducing the number of iterations
required for LLMs to obtain correct answers.

After establishing initial CoT reasoning processes, further
iterative refinement can help improve the reasoning process.
A straightforward method involves integrating the question,
reasoning processes, and output into a new input and reusing
the prompt for another reasoning round. However, this intu-
itive method encounters two key challenges: (i) the correct
predictions in earlier iterations may turn incorrect after mul-
tiple rounds, a phenomenon we term over-reasoning, and (ii)
the reasoning generated in new iterations often closely re-
sembles the previous reasoning. To address these challenges,
our adaptive reasoning iteration module is implemented to
assess the uncertainty of prediction questions. When the
uncertainty is low, the current prediction is adopted as the
final output, effectively mitigating challenge (i). However,
if uncertainty remains high, the reasoning process continues
into the next iteration. In these subsequent iterations, we
introduce a new prompt and employ reasoning similarity
metrics (e.g., the Jaccard index) to guide LLMs in explor-
ing alternative reasoning pathways. By fostering greater
diversity across reasoning iterations, we address the chal-
lenge (ii), thereby enhancing the ability of LLMs to tackle
complex reasoning tasks effectively.

Motivated by the conceptual connection between self-
training and chain-of-thought reasoning, our key contri-
butions can be summarized as follows:

• Through a combination of theoretical analysis and ex-
perimental validation, we reveal that both self-training
and CoT reasoning share the core objective of itera-
tively leveraging model-generated information to grad-
ually reduce the uncertainty of predictions (i.e., entropy
minimization), thereby turning some early incorrect
predictions into correct ones.

• We design a task-specific prompt module to search for
optimal prompts that generate high-quality initial rea-

soning processes, thereby significantly reducing the
number of iterations required for LLMs to obtain cor-
rect answers in CoT reasoning.

• we propose an adaptive reasoning iteration module
to dynamically refine the CoT reasoning process and
address issues of over-reasoning and high similarity
between consecutive reasoning iterations.

2. Related Work
2.1. Self-Training

Self-training (Scudder, 1965) has emerged as a widely used
approach in semi-supervised learning, aiming to expand
labeled datasets through pseudo-labeling techniques (Yang
et al., 2022). An effective pseudo-labeling strategy ensures
that the pseudo-labels assigned to unlabeled data align well
with the distribution of labeled samples. Recent research has
focused on two main directions: selecting high-confidence
pseudo-labels and optimizing multi-classifier training frame-
works (Amini et al., 2024). For pseudo-label selection, some
methods directly incorporate unlabeled samples with high
prediction confidence in iterative training (Lee et al., 2013;
Zou et al., 2018), while others explore more robust strate-
gies such as majority voting (Bartlett et al., 1998), entropy
minimization (Grandvalet & Bengio, 2004), uncertainty es-
timation (Mukherjee & Awadallah, 2020), noise injection
(Miyato et al., 2018), confidence regularization (Zou et al.,
2019), and curriculum-based pseudo-labeling (Zhang et al.,
2021). However, the presence of incorrect pseudo-labels can
mislead model optimization, motivating the development of
debiasing techniques and other corrective mechanisms to
mitigate their negative impact (Chen et al., 2022).

2.2. Chain-of-Thought Reasoning

Trustworthy reasoning is essential for large language mod-
els (LLMs), and chain-of-thought (CoT) prompting has
emerged as a key technique to improve reliability and trans-
parency by guiding LLMs to generate intermediate reason-
ing steps (Chu et al., 2024). Early CoT methods relied
on implicit prompting to help LLMs solve complex tasks
such as arithmetic and commonsense reasoning by decom-
posing them into simpler subproblems (Chia et al., 2023),
demonstrating strong generalization from limited examples
and carefully designed prompts (Sun et al., 2023). Recent
advances in CoT focus on improving flexibility by gener-
ating diverse reasoning paths, particularly for unfamiliar
tasks (Kojima et al., 2022; Ling et al., 2024). Methods like
PSPrompting (Wang et al., 2023) and Concise-CoT (Nayab
et al., 2024) selectively activate pretrained knowledge ac-
cording to task-specific needs, while approaches such as
VerifyCoT (Ling et al., 2024) enhance trustworthiness by
generating additional question-answer pairs for validation.

2

Rethinking Chain-of-Thought from the Perspective of Self-Training

3. Understanding Uncertainty in Self-Training
and Chain-of-Thought Reasoning

This section investigates the uncertainty in self-training and
CoT reasoning by analyzing variations in information en-
tropy and semantic entropy. We observe that while both
methods exhibit a general trend of entropy reduction, this
pattern does not hold for every data point. Performance
improvements are primarily driven by data points where
entropy decreases, enabling a transition from incorrect to
correct predictions. Specifically, Section 3.1 presents a
theoretical analysis of entropy variations in self-training.
Building on these insights, Section 3.2 extends the discus-
sion to CoT reasoning, deriving key conclusions that help
further enhance the performance of CoT reasoning.

3.1. Information Entropy Variation in Self-Training

The primary objective of self-training is to reduce predic-
tion uncertainty by leveraging pseudo-labels generated by
the model, where the uncertainty can be quantified using
information entropy. As empirically shown in Figure 8(a)
in Appendix, the average entropy of predictions across sam-
ples progressively declines throughout the iterative training
process. This reduction facilitates some samples being cor-
rected from initial mispredictions to accurate predictions.

However, not all samples exhibit the expected reduction
in information entropy. This deviation can be attributed
to incorrect annotations within pseudo-labels, which may
misdirect the model’s training direction. To provide deeper
insights into the entropy variation of self-training, we con-
ducted a theoretical analysis using a Gaussian mixture
model. Specifically, an initial classifier with a small yet
constant error was constructed and iteratively updated with
pseudo-labels based on model predictions. Through this
approach, we examined the classifier’s progression from
its initial state toward the optimal state, capturing the un-
derlying mechanism of entropy variation. Based on the
conclusions of (Frei et al., 2022) regarding the sample com-
plexity of unlabeled samples in self-training, we discover
that the intermediate classifier update process is a rotation
of the initial classifier towards the Bayes optimal classifier.
This conclusion is stated in the following lemma.

Lemma 3.1. Suppose (x, y) ∼ D where D is a Gaussian
mixture models in Rd×{±1} with mean µ satisfying ∥µ∥ =
Θ(1), i.e., y ∼ Unif({±1}) and x|y ∼ N (yµ, I). Let
ℓ(z) = log(1 + exp(−z)), and assume σ ≥ max(1, ∥µ∥).
Assume we can access a initial classifier βinit which satisfies
Pr(x,y)∼D[y ̸= sgn(βT

initx)] = O(1). Let ε, δ ∈ (0, 1), and
assume that B = Ω̃(ε−1), T = Ω̃(dε−1), η = Θ̃(d−1ε),
suppose θt is the angle between βt and µ, then by running
algorithm 1 with step size η and batch size B, when t <
T − 1, θt ≥ θt+1 holds with probability at least 1− δ, and
with probability at least 1− δ, θT−1 ≤ O(ε).

Building on Lemma 3.1, assuming that pseudo-labels follow
a Bernoulli distribution, and leveraging the relationship be-
tween the dot product of the classifier and the samples with
θt, we can readily derive the entropy variations for different
samples and identify the regions to which different types of
samples belong, as stated in the following theorem.

Theorem 3.2. Under the assumptions of Lemma 3.1, let
d = 2 and suppose ŷ(t)|x ∼ Ber(ϑ(βT

t x)) is the pseudo-
label of x, where ϑ(z) = 1

1+e−z . Define l(α) as the line
xTα⊥ = 0, where α⊥ is perpendicular to α. Let A(α1, α2)
denote the region swept by l(α1) rotating to l(α2) along the
trajectory of βinit towards µ during self-training. Denote
Ht(x) = Ent[ŷ(t)|x] be the entropy of ŷ(t)|x. For t <
T − 1, with probability at least 1− δ, the entropy changes
as follows: (i) Ht(x) first decreases and then increases if
x ∈ A(β0, µ); (ii) Ht(x) decreases if x ∈ A(µ, β⊥

0); (iii)
Ht(x) first increases and then decreases if x ∈ A(β⊥

0 , µ
⊥);

and (iv) Ht(x) increases if x ∈ A(µ⊥, β0).

Based on Theorem 3.21, entropy variation during the it-
erative process of self-training can be classified into four
patterns: (i) a decrease followed by an increase; (ii) a con-
sistent decrease; (iii) a decrease followed by an increase;
and (iv) a consistent increase. These patterns are visualized
in Figure 2(a), where the light blue, gray, dark blue, and
yellow regions correspond to each respective entropy vari-
ation pattern. Specifically, we partition R2 using vectors
β0, µ, β

⊥
0 , µ

⊥ and delineate the positions of the initial classi-
fier βinit and optimal µ. The updates to the classifier during
self-training can be interpreted as the gradual rotation of
the initial classifier βinit toward the Bayes-optimal classifier
µ. Moreover, due to the small initial error of O(1) in the
classifier, the angle θ0 between β0 and µ is relatively small.
As a result, the regions A(β0, µ) and A(β⊥

0 , µ
⊥) occupy

an relatively small proportion of R2, indicating that most
samples exhibit monotonic entropy changes.

From experimental and theoretical analyses of self-training,
we derive five key insights regarding entropy variation: (i)
while the overall entropy of samples typically decreases, this
trend does not hold for every individual sample; (ii) most
samples exhibit monotonic entropy changes; (iii) the ef-
fectiveness of self-training arises from samples undergoing
entropy reduction, which enables their transition from incor-
rect to correct predictions; (iv) in some cases, an increase in
entropy could lead to a reversal of predictions, causing pre-
viously correct samples to become incorrectly classified; (v)
these entropy variations are intrinsically linked to the spatial
relationships between the samples and the classifiers βinit
and µ. These insights will help deepen our understanding
of CoT from the perspective of entropy variation.

1Proofs of Lemma 3.1 and Theorem 3.2 are in Appendix A.1.

3

Rethinking Chain-of-Thought from the Perspective of Self-Training

μβinit

ҧμ
θ𝑡

β𝑡
β0

μ⊥

β⊥

A(β0,μ)

A(μ,β0
⊥
)

A(β0
⊥
,μ⊥)

A(μ⊥, β0)

(a) Self-Training

1

2

31
23

1 2
3

Answers with the same

semantics (Incorrect)
Correct

(b) Chain-of-Thought

Figure 2. Visualizations of entropy variations in the iterative pro-
cess of self-training and CoT reasoning. In the self-training
diagram, the iterative process represents the gradual convergence
of the initial classifier βinit toward the Bayes optimal classifier µ.
At each iteration, changes in the angle between the classifier and
the samples in different regions correspond to entropy variations
within those samples. In the CoT reasoning diagram, each node
in the directed acyclic graph represents a computation, with red
nodes indicating erroneous computations. Each ellipse denotes
a set of leaf nodes, corresponding to semantically equivalent an-
swers, and the numbers indicate their respective iteration rounds.
Bold arrows are used to represent complete reasoning paths. As
the iterations proceed, these paths are gradually corrected. The
semantic entropy at each iteration is determined by the distribution
of generated answers across different semantic categories.

3.2. Semantic Entropy Variation in Chain-of-Thought

Chain-of-thought (CoT) reasoning, akin to self-training,
relies on model-generated information to enhance task per-
formance. Specifically, CoT aims to reduce prediction un-
certainty in LLMs by leveraging intermediate reasoning
processes generated by the models themselves. This uncer-
tainty can be effectively quantified using semantic entropy
(Farquhar et al., 2024). To formalize this concept, we begin
by defining the LLM generation process and the mechanism
of iterative CoT reasoning, then introduce the definition
of semantic entropy, and finally discuss its parallels with
self-training, drawing conclusions from this analogy.

Let LLM(·) denote a probabilistic language model. We
write s′ ∼ LLM(s; τ) to indicate that the output s′ is sam-
pled from the model given input s and temperature param-
eter τ . Based on this formulation, we next define how an
LLM performs reasoning to solve complex problems.

Definition 3.3 (Reasoning Structures). Given a question
q, a prompt p, and a temperature parameter τ , the set of
reasoning–answer pairs (r, a) generated by LLM is de-
noted by J (q, p; τ), with its associated joint probability
density denoted by J . A reasoning tree T = (V, E) is a
directed acyclic graph (DAG) constructed by the LLM to
represent the computational steps from the question q to
potential answers. Each node v ∈ V is associated with a
state s(v) ∈ {0, 1} indicating whether the reasoning at that
node is correct (s(v) = 1) or incorrect (s(v) = 0). A rea-

soning path r is a specific path within T that begins at the
root node corresponding to q and terminates at a leaf node
representing an answer a.

Building on the formalization of reasoning structures, we in-
troduce the definition and computation of semantic entropy.
For clarity, we present the formulation where the LLM input
consists only of the question q and the prompt p.

Definition 3.4 (Semantic Entropy). Let A =
Answer(q, p; τ) be the set of answers generated by
an LLM for a given question q and prompt p. Assume
that this answer set can be partitioned into several
disjoint semantic clusters C = {Ci}i∈[k], such that
A =

⋃
i∈[k] Ci, where exactly one cluster contains the

correct answer. Let g(C | q, p; τ) denote the probability
distribution over C. The semantic entropy is then defined
as e = EC [− log g(C | q, p; τ)]. In practical use, let LLMs
generate N distinct answers Â = {ai}i∈[N], which are then

divided into k semantic clusters Ĉ = {Cj}j∈[k]. By normal-
izing, we obtain a discrete probability distribution {gj}j∈[k],
where gj = |Cj | /N,

∑
j∈[k] gj = 1. Consequently, we can

use ê = −
∑k

j=1 gj log gj as an approximation of e.

In self-training, pseudo-labels guide the initial classifier to-
ward the Bayes-optimal classifier. Similarly, in CoT, the
reasoning process aims to steer the LLM’s predictions to-
wards the correct path, and thus, getting the correct answer.
Building on this analogy and the discussion in Section 3.1,
we propose the following definitions for CoT reasoning.

Definition 3.5 (Initial and Optimal Paths). The initial
reasoning path, r0, is the reasoning path generated by LLM
for a given question q using an initial prompt p0. The set of
optimal reasoning paths, Ropt, comprises those reasoning
paths r ∈ R(q, p; τ) for which the probability of deriving
the correct answer, acorrect, Ja|r(acorrect|r), is greater than
or equal to a predefined high confidence threshold ψ.

In Section 3.1, the classifier β is updated through informa-
tion augmentation using unlabeled data. In contrast, the
update of reasoning paths in CoT reasoning is achieved by
in-depth problem analysis, transforming the problem into
more tractable sub-problems, and awakening unused inter-
nal knowledge within LLM directly aiding problem-solving.
Based on this, existing reasoning paths are updated through
error correction or by considering different perspectives.

Definition 3.6 (Iterative CoT Reasoning). Iterative CoT
is a process that refines reasoning paths over successive iter-
ations. A new reasoning path (rt+1, at+1) is generated by
LLM based on the original question q, an adaptive prompt
p′, and the history of previously generated paths r0, . . . , rt.
The update from rt to rt+1 typically involves identifying
the first erroneous node vi in rt (where s(vi) = 0), back-
tracking, and generating a corrected sub-path.

4

Rethinking Chain-of-Thought from the Perspective of Self-Training

To further investigate how semantic entropy evolves within
the CoT framework, we adopt the following assumption.
Assumption 3.7. As the semantic entropy e decreases, the
likelihood of the LLM with CoT reasoning producing a
correct answer to question q increases.

Building on the preceding definitions and Assumption 3.7,
the iterative process of applying CoT reasoning to tackle
complex questions can be interpreted as the LLM progres-
sively producing and correcting to search for an optimal
reasoning path within Ropt, starting from an initial reason-
ing path r0. This process is often marked by a gradual
reduction in semantic entropy, supported by empirical evi-
dence presented in Figure 3. The decreasing entropy reflects
the refinement of predictions, enabling the correction of
initial errors and the generation of accurate answers.

Similar to self-training, not all questions show the expected
reduction in semantic entropy during CoT reasoning. This
phenomenon may arise from the presence of noisy infor-
mation in reasoning processes, which could misdirect the
reasoning trajectory of LLMs. To verify this, we conducted
a simple experiment involving three rounds of iterative CoT
reasoning on the AQuA arithmetic dataset, analyzing the
semantic entropy variation of LLMs. The results, presented
in Figure 8(b) in Appendix, reveal three distinct patterns
of semantic entropy variation: (i) monotonic increase or
decrease; (ii) increase followed by decrease or decrease
followed by increase; (iii) no change. These patterns are
visualized in Figure 2(b). For example, with a sampling
number N = 3 for reasoning processes, if the first iteration
yields three semantically distinct answers, this reflects high
semantic uncertainty. If the second iteration converges to
two distinct answers, uncertainty is reduced. By the third
iteration, if all processes yield the same semantic answer,
uncertainty may reduce to zero, indicating the LLM has
identified an optimal reasoning path leading to the correct
answer. Moreover, the other patterns of semantic entropy
variation can also be similarly derived.

Although iterative CoT reasoning does not update model
parameters, it dynamically adjusts the context (the set of
reasoning paths). This process essentially achieves a tight-
ening of the distribution in the generation space. That is,
the longer a correct sub-path r′ within a reasoning path r
becomes, the smaller the scope of the answer set at the ter-
minus of r′ (i.e., the leaf nodes of the reasoning tree) (see
Figure 2(b)). Consequently, the proportion of the cluster
corresponding to the correct answer increases, leading to a
decrease in semantic entropy. This reduction in semantic
entropy, equivalent to an increased probability of the correct
answer cluster, aligns with the mathematical objective of
label distribution entropy reduction in self-training.

Based on the insights gained from self-training in Section
3.1 and the experimental analysis of CoT reasoning, we de-

0.94 1.01 1.07 1.17 1.29
Semantic Entropy

72

74

76

A
cc

ur
ac

y
(%

)

AQuA Dataset

1.26 1.29 1.35 1.37 1.39
Semantic Entropy

68

70

72

74

A
cc

ur
ac

y
(%

)

LastLetter Dataset

Figure 3. Accuracy under varying levels of semantic entropy on the
AQuA and LastLetters datasets (based on 100 sampled instances).

rive five important conclusions regarding semantic entropy
variations in CoT reasoning: (i) although the overall seman-
tic entropy of questions generally decreases, this trend does
not apply to every individual question; (ii) when the reason-
ing processes of the new iteration are excessively similar
to those in the previous iteration, the semantic entropy of
certain questions may exhibit no changes; (iii) the effective-
ness of CoT reasoning stems from questions undergoing
semantic entropy reduction, facilitating a transition from
incorrect to correct predictions; (iv) for some questions, an
increase in entropy could lead to prediction reversals, where
previously correct predictions become incorrect; (v) these
variations in semantic entropy are tied to the spatial rela-
tionships between the initial state and the optimal reasoning
paths of the LLMs with CoT reasoning on a given question.

We will demonstrate in the next section how these findings
can be utilized to further enhance CoT performance.

4. Methodology
Building on the conclusions from the analysis of semantic
entropy variation in CoT reasoning presented in Section 3.2,
we propose a novel CoT framework to improve reasoning
performance. Specifically, we design a task-specific prompt
module in Section 4.1 to guide the LLMs in generating
high-quality initial reasoning processes. Next, in Section
4.2, we introduce an adaptive reasoning iteration module
to refine the reasoning process and address the limitations
of traditional CoT approaches, i.e., over-reasoning and ex-
cessive similarity between consecutive reasoning iterations.
An overview of our proposed CoT framework is provided
in Figure 4. Detailed information about the task-specific
prompt module is provided in Figure 6 in Appendix.

4.1. Task-Specific Prompt

The conclusion (v) presented in Section 3.2 underscores the
pivotal role of CoT reasoning quality in the initial iteration.
A high-quality initial CoT reasoning process effectively
reduces the distance between the initial state and the optimal
reasoning paths, thereby decreasing the number of iterations
required for the LLMs to converge to the correct answers.
Given that the initial CoT reasoning process is generated by

5

Rethinking Chain-of-Thought from the Perspective of Self-Training

Final

Output

Prompt ො𝑝

Reasoning

𝑞𝑖 , ො𝑝, 𝑹𝒊
′

Prediction

𝐴𝑖
′

Temporary

New

Input

(𝑞𝑖 , ො𝑝, 𝑅𝑖
′, 𝐴𝑖

′)

Prompt 𝑝∗

Input

Question 𝑞𝑖

Final

Output

Reasoning

𝑞𝑖 , ො𝑝, 𝑹𝒊
′′

Prediction

𝐴𝑖
′′

𝑰𝒇 𝑒𝑖
′ < 𝛿: 𝑰𝒇 𝑒𝑖

′′ < 𝛿:

Iteration 1

Temporary

New

Input

(𝑞𝑖 , ො𝑝, 𝑅𝑖
′′, 𝐴𝑖

′′)

…
…

𝒑𝟏 : Let's think step by

step, how to calculate

specific quantities based on

the given scenarios and

conditions in each situation.

(Semantic Entropy: 0.64)

𝒑𝟐 : Let's think step by

step, how to calculate the

total quantity of objects or

items mentioned in the

sentences.

(Semantic Entropy: 1.13)

……
𝒑𝒎 : Let's think step by

step, how to break down the

mathematical operations

and identify the key

concepts to solve them.

(Semantic Entropy: 0.91)

Prompt 𝑝∗

LLMs

Else Merge as

New Input

Else Merge as

New Input

Prompt ො𝑝

Input

Question 𝑞𝑖

Iteration 2

Figure 4. The flowchart of the proposed CoT framework consists of two key modules, i.e., Task-Specific Prompt (light purple block)
and Adaptive Reasoning Iteration (light blue block). Specifically, the task-specific prompt module first utilizes LLMs to generate
m candidate prompts and evaluates their semantic entropy on the given dataset. The prompt with the lowest entropy is selected as the
optimal prompt p̂, providing guidance for the subsequent adaptive reasoning iteration module to produce high-quality initial reasoning. In
the adaptive reasoning iteration module, the uncertainty is calculated at each iteration and compared to a predefined threshold δ. This
evaluation determines whether to accept the current prediction as the final output or to proceed to another iteration. If the uncertainty
remains high, a new reasoning round is initiated with a new prompt p∗, designed to introduce diversity compared to previous reasoning
steps. This iterative process continues until the uncertainty is substantially reduced or the maximum number of iterations is reached.

the LLMs based on the provided prompts, this highlights
the critical necessity of optimizing prompts to enhance the
quality of reasoning processes from the outset.

Previous CoT methods (Wei et al., 2022; Ling et al., 2024)
often rely on general prompts (e.g., “Let’s think step by
step”) to guide the reasoning process. Although such
prompts are effective for generic tasks, they frequently fall
short of capturing the nuances of domain-specific or fine-
grained tasks, resulting in inadequate reasoning processes.
To address this limitation, we propose a task-specific prompt
module that automatically searches for the optimal prompt
tailored to the task’s characteristics. Specifically, our ap-
proach begins by constructing an instruction: # Instruction:

“Let’s think step by step” is a general prompt that can guide
the LLMs to produce reasoning processes. However, in spe-
cialized domains, this prompt may lack accuracy and clarity.
Below is a dataset sample. Please enhance the “Let’s think
step by step, %s” prompt by adding a sentence in the %s
section to better fit the dataset’s characteristics.

We then sample a question set Q′ = {q′1, q′2, · · · , q′k} from
the dataset Q, representing the task distribution. This set
Q′ is concatenated with the instruction and fed into the
LLMs, which performs m rounds of sampling to generate
a candidate task-specific prompt set P = {p1, p2, · · · , pm}.

Next, we sample another disjoint question set Q′′ =
{q′′1 , q′′2 , · · · , q′′k} from Q, ensuring Q′ ∩ Q′′ = ∅. Each
candidate prompt from P is concatenated with the questions
in Q′′ and used for zero-shot CoT inferences (Kojima et al.,
2022). During inference, the mean semantic entropy for all
questions in Q′′ is calculated under each candidate prompt,
yielding in the set E = {e1, e2, · · · , em}. For clarity, we
define a simple mapping function f : P → E to repre-
sent the relationship between candidate prompts and their
corresponding mean semantic entropy values.

Based on conclusions (i) and (iii) from the analysis of seman-
tic entropy variation in Section 3.2, we can infer that lower
semantic entropy corresponds to better CoT performance.
Consequently, the prompt with the minimal semantic en-
tropy can be regarded as the optimal prompt:

p̂ = f−1
(
eargmini{ei|ei∈E}

)
, (1)

where f−1(·) function maps the minimum mean semantic
entropy value back to its corresponding prompt p̂. This
process ensures that the selected prompt p̂ minimizes the se-
mantic uncertainty associated with the specific task, thereby
improving the quality of initial reasoning processes.

During the testing phase, we concatenate the optimal prompt
p̂ derived from Eq. (1) with the question, and input the com-

6

Rethinking Chain-of-Thought from the Perspective of Self-Training

bined text into the LLMs. Following the self-consistency
CoT approach (Wang et al., 2022), we perform N rounds of
sampling to generate diverse reasoning processes:

R′
i = {LLM(Concat(qi, p̂))j | j = 1, 2, . . . , N}, (2)

where LLM(·)j denotes the j-th sampling result produced
by the LLMs, R′

i = {r′i,1, r′i,2, . . . , r′i,N} represents the set
of reasoning processes generated, qi corresponds to the i-
th question in the dataset Q, and the Concat(·) function
refers to the sequential concatenation of the specified texts.
Next, each of the N reasoning processes obtained from Eq.
(2) is individually concatenated with the question qi and the
prompt p̂. The resulting concatenated texts are then fed into
the LLMs to generate predictions:

A′
i = {LLM(Concat(qi, p̂, r

′
i,j)) | j = 1, . . . , N}, (3)

where A′
i = {a′i,1, a′i,2, . . . , a′i,N} represents the set of pre-

dictions generated by LLMs. At this stage, two options
are available: (i) select the most frequent class from the
N answers in A′

i as the final output (iteration terminates);
(ii) concatenate the question qi, the reasoning processes R′

i,
and the predictions A′

i for a new round of reasoning and
prediction. If option (ii) is chosen, when should the iteration
be stopped? Meanwhile, how can we ensure that the newly
generated reasoning and predictions surpass the previous
ones? These issues will be discussed in depth in Section 4.2,
where corresponding solutions will also be proposed.

4.2. Adaptive Reasoning Iteration

The conclusion (iv) presented in Section 3.2 highlights that
once the reasoning processes guide the LLMs to predictions
with low uncertainty, deeper iterations do not further reduce
semantic entropy. Instead, such iterations often introduce
noisy information, undermining predictive accuracy. This
phenomenon, which we term over-reasoning, risks altering
correct early predictions during subsequent iterations. To
address this, we calculate the semantic entropy e′i of the
predictionsA′

i and compare it against a predefined threshold
δ. If e′i ≤ δ, the predictions A′

i, derived from reasoning
processes R′

i, is accepted as the final output. By leveraging
semantic entropy to quantify the uncertainty of LLMs, we
can stop iterations at the right moment to output predictions,
effectively mitigating the risk of over-reasoning.

Conversely, if e′i > δ, the reasoning process proceeds to the
next iteration to further reduce uncertainty. A naive solution
involves concatenating the reasoning processes R′

i, predic-
tions A′

i, and question qi from the previous iteration while
reusing the prompt p̂. However, this approach often results
in new reasoning processes that closely resemble previous
iterations. As demonstrated by the conclusion (ii) presented
in Section 3.2, such high similarity could hinder further en-
tropy reduction. To overcome this, we propose introducing

greater divergence between reasoning iterations, enabling
exploration of alternative paths and enhancing the ability of
LLMs to solve complex questions. Specifically, we design a
new prompt p∗ to replace the p̂, fostering a departure from
prior reasoning steps: # p∗: Based on the above thoughts,
reevaluate from alternative perspectives to produce deeper,
solution-oriented insights that go beyond prior inferences.
Focus on identifying unexplored assumptions or challenges
in the question context, and propose new processes.

Then, we concatenate the new prompt p∗, the original ques-
tion qi, the previous reasoning processes R′

i, and the previ-
ous predictions A′

i to generate a new round of reasoning:

R′′
i = {LLM(Concat(qi, p̂, r

′
i,j , a

′
i,j , p

∗)) | j = 1, . . . , N},
(4)

the prompt p∗ encourages LLMs to critically reflect on prior
information, producing reasoning steps R′′

i that surpass and
differ from the previous R′

i. To ensure sufficient divergence
between new and previous reasoning, we measure their sim-
ilarity using the Jaccard index (Jadhao & Agrawal, 2016):

s′′i = Sim(R′′
i , R

′
i) =

|R′′
i ∩R′

i|
|R′′

i ∪R′
i|
, s′′i ∈ R, (5)

if s′′i is greater than a predefined threshold τ , Eq. (4) is
reapplied for resampling until the condition is met. Finally,
the LLMs discard the earlier reasoningR′

i and the prediction
A′

i, generating new predictions based solely on R′′
i :

A′′
i = {LLM(Concat(qi, p̂, r

′′
i,j)) | j = 1, . . . , N}}, (6)

After obtaining A′′
i via Eq. (6), its semantic entropy e′′i is

computed and compared to δ again. If e′′i > δ, the process
repeats (Eqs. (4) - (6)) until the uncertainty drops to δ or the
maximum iteration count T is reached.

When semantic entropy remains above δ after T iterations,
three scenarios may explain this outcome: (i) previous iter-
ations contained valid reasoning steps, but randomness in
LLMs sampling introduced biases in calculating semantic
entropy. Increasing N may mitigate this issue; (ii) effective
reasoning paths exist but have yet to be discovered by LLMs.
Extending T could allow LLMs to identify such paths; (iii)
the limitations of LLMs make the question inherently un-
solvable, rendering further iterations unproductive.

Although increasing T can enhance performance in the sec-
ond scenario, it also escalates time and computational costs.
To strike a balance between performance and efficiency, the
strategy proposed in this paper is to stop further iterations
when the entropy remains above δ after T iterations. Instead,
we apply majority voting across the predictions from all it-
erations, selecting the most frequent prediction as the final
output. This approach enhances overall reliability while
effectively reducing computational overhead.

7

Rethinking Chain-of-Thought from the Perspective of Self-Training

Method Arithmetic Commonsense Symbolic Overall

MultiArith GSM8K SingleEq AddSub AQuA SVAMP STQA CSQA Letter Coin Avg. (%)

RE2 91.7 76.3 81.5 72.9 54.3 78.3 66.2 74.9 57.0 91.2 74.4
RE2 + SC 96.2 77.3 87.0 80.0 60.6 83.2 68.6 77.5 63.8 98.0 79.2
Zero-Shot 51.2 10.8 62.4 56.7 38.6 56.3 66.2 74.5 1.4 50.2 46.8
Zero-Shot-CoT 92.8 74.7 84.4 74.7 55.5 77.0 63.5 73.6 55.0 93.4 74.5
Zero-Shot-CoT + SC 95.7 79.2 88.8 81.3 63.0 82.2 65.9 75.3 66.2 97.2 79.5

+ TSP 97.0
(+1.3)

81.1
(+1.8)

90.0
(+1.2)

84.8
(+3.5)

65.7
(+2.7)

85.5
(+3.3)

66.7
(+0.8)

76.7
(+1.3)

68.4
(+2.2)

97.6
(+0.4)

81.4
(+1.9)

+ ARI 96.7
(+1.0)

82.6
(+3.4)

92.1
(+3.3)

87.1
(+5.8)

69.3
(+6.3)

87.1
(+4.9)

67.5
(+1.6)

77.5
(+2.2)

75.8
(+9.6)

97.2
(+0.0)

83.3
(+3.8)

+ TSP + ARI 98.2
(+2.5)

83.0
(+3.8)

92.9
(+4.1)

88.4
(+7.1)

70.1
(+7.1)

87.5
(+5.3)

66.7
(+0.8)

76.7
(+1.4)

77.2
(+11.0)

96.4
(-0.8)

83.7
(+4.2)

Table 1. Accuracy (%) across ten reasoning datasets from three categories of zero-shot reasoning tasks. The number of self-consistency
(SC) sampling is fixed at 3 for all cases. Blue and red fonts indicate increases and decreases in task performance compared to the
“Zero-Shot-CoT + SC” method, respectively, while bold font highlights the best performance in each column.

5. Experiments
5.1. Experimental Settings

We evaluate our CoT framework on 10 reasoning datasets,
including six arithmetic datasets (i.e., MultiArith (Roy
& Roth, 2016), GSM8K (Cobbe et al., 2021), SingleEq
(Koncel-Kedziorski et al., 2015), AddSub (Hosseini et al.,
2014), AQuA (Ling et al., 2017), and SVAMP (Patel et al.,
2021)), two commonsense reasoning datasets (i.e., Strate-
gyQA (Geva et al., 2021) and CommonsenseQA (Talmor
et al., 2018)), and two symbolic reasoning datasets (i.e.,
LastLetter and CoinFlip (Wei et al., 2022)). We utilize GPT-
3.5-turbo-0125 as the foundation model for all experiments,
given its accessibility and cost-effectiveness.

Our evaluation adopts a progressive comparative approach.
Specifically, we first test zero-shot reasoning by directly
inputting questions into the LLMs without prompts. Next,
we employ zero-shot CoT (Kojima et al., 2022), utilizing
general prompts with greedy decoding to generate answers.
Finally, we implement zero-shot CoT with self-consistency
(Wang et al., 2022), which enhances accuracy through mul-
tiple decoding attempts and a voting mechanism. Building
on these baselines, we propose a novel CoT framework
comprising two modules, i.e., task-specific prompt (TSP)
and adaptive reasoning iteration (ARI). The TSP module
improves the initial CoT reasoning process by replacing
generic prompts with task-specific ones, while the ARI
module further enhances task performance through iterative
refinement of the reasoning process. Moreover, we also
compared two popular CoT methods, i.e., RE2 (Xu et al.,
2024) and Contrastive-CoT (Chia et al., 2023).

5.2. Main Results

We followed literature (Kojima et al., 2022) to construct
zero-shot reasoning tasks across all 10 datasets, and per-
formed few-shot reasoning tasks on the MultiArith and

Method MultiArith GSM8K Avg. (%)
Contrastive-CoT 89.7 69.4 79.6
Contrastive-CoT + SC 93.0 71.9 82.5
Few-Shot 78.3 53.8 66.1
Few-Shot-CoT 94.3 69.1 81.7
Few-Shot-CoT + SC 97.2 73.7 85.5

+ ARI 97.3
(+0.1)

77.4
(+3.7)

87.4
(+1.9)

Table 2. Accuracy across the MultiArith and GSM8K datasets from
the arithmetic category of few-shot reasoning tasks. The number
of self-consistency (SC) samplings is fixed at 3 for all cases.

GSM8K datasets. The results of these experiments are
presented in Table 1 and Table 2, respectively.

For the zero-shot task, the baseline zero-shot method
achieves an overall average accuracy of 46.8%. Incor-
porating CoT reasoning (Zero-Shot-CoT) significantly en-
hances performance, raising the accuracy to 74.5%. Fur-
ther improvement is observed with the integration of self-
consistency (SC), which increases the average accuracy
to 79.5%. Building on this foundation, the addition of
task-specific prompt (TSP) and adaptive reasoning itera-
tion (ARI) modules further elevates the average accuracy to
83.7%. This represents a 4.2% improvement over the SC ap-
proach, demonstrating the advantages of our method across
various task categories. Furthermore, our method showed
the most significant performance on arithmetic datasets.
Specifically, compared to the SC approach, the average
performance across six datasets increased from 81.7% to
86.7%. This improvement can be attributed to the fact that
deep reasoning enables the LLMs to systematically identify
solution pathways. In contrast, the performance gains on
commonsense datasets are relatively weak, even approach-
ing the level of the zero-shot method. This limitation may
arise from the dependency of these tasks on the prior knowl-
edge of the LLMs. If the relevant commonsense knowledge
was not encountered during pre-training, deep reasoning
alone is insufficient to address the question.

8

Rethinking Chain-of-Thought from the Perspective of Self-Training

In the few-shot task, the SC approach achieves an average
accuracy of 85.4%. The incorporation of the ARI module
results in a significant performance improvement, raising
the accuracy to 87.4%. However, the TSP module is not
applicable to few-shot tasks, as the LLMs have already
utilized the limited examples provided to generate optimal
reasoning in the initial iteration, rendering the reconstruction
of a new reasoning process through TSP unnecessary.

Based on the above analysis, it is evident that the proposed
ARI module enhances performance in both zero-shot and
few-shot tasks, demonstrating its potential as a plug-and-
play solution applicable across all CoT methods. Similarly,
the TSP module can be applied to zero-shot methods to
improve the quality of reasoning in the initial iteration. Ab-
lation experiments presented in the last four rows of Table 2
confirm that, compared to the ARI module alone, the TSP
module contributes an average performance improvement
of 0.4%, thereby validating its effectiveness.

5.3. Adaptive Versus Fixed Iterative Reasoning

To further verify the effectiveness of our proposed method,
we compared its accuracy and time costs with the fixed
iterative reasoning approach on the AQuA dataset.

5.3.1. COMPARISON OF ACCURACY AND TIME COSTS

In terms of accuracy (see Figure 5(a)), our method demon-
strates a clear advantage. It achieves 70.8% at the second
iteration and maintains stability, reaching 71.3% by the
fifth iteration. In contrast, the fixed iteration method shows
slower improvement, peaking at 67.3% and then dropping to
62.6% by the fifth iteration. Regarding time cost (see Figure
5(b)), both methods exhibit a linear growth trend, but our
method is significantly more time-efficient. The time cost of
our approach increases gradually from 1 hour and 5 minutes
at the first iteration to 4 hours and 18 minutes at the fifth
iteration, reflecting a moderate growth rate. In comparison,
the fixed iteration method follows a steeper trajectory, with
the time cost rising from 1 hour and 5 minutes to 6 hours
and 29 minutes by the fifth iteration.

Overall, our adaptive iteration outperforms fixed iteration
in both effectiveness and efficiency, achieving an optimal
balance between the two as early as the second iteration,
highlighting its practicality and strong performance.

5.3.2. WHY OUR METHOD WORKS?

Our proposed method significantly surpasses fixed reason-
ing iteration by effectively addressing two critical chal-
lenges: (i) over-reasoning, and (ii) high similarity between
consecutive reasoning iterations. To resolve the issue of
over-reasoning, we incorporate a mechanism that quanti-
fies the prediction uncertainty of the LLMs using semantic

1 2 3 4 5
Number of Iteration

60

65

70

A
cc

ur
ac

y
(%

)

60.2

70.8 70.1
71.7 71.3

60.2 59.8

66.5 67.3

62.6

(a) Accuracy

1 2 3 4 5
Number of Iteration

2

4

6

Ti
m

e
(h

ou
rs

)

1h 5m
1h 38m

2h 26m
2h 50m

4h 18m

1h 5m 2h 9m

3h 29m

5h 8m
6h 29mOur Method

Fixed Iteration

(b) Time costs

Figure 5. Accuracy and time costs of adaptive reasoning iteration
compared to the fixed reasoning iteration on the AQuA dataset.

entropy. The iteration process is terminated as soon as a low-
uncertainty state is reached, ensuring predictions are made
at the optimal stage. For example, as illustrated in Table 7,
the semantic entropy after the first iteration falls below the
predefined threshold of 0.95 (indicating that at least two out
of three elements in the prediction set are consistent). At
this point, further iterations are deemed unnecessary, and
the current prediction is finalized as the output.

When the uncertainty is high and further iterations are re-
quired, the issue of high similarity between consecutive
iterations may arise. To address this, we propose a novel
prompt p∗ to encourage greater divergence in subsequent
reasoning iterations, with the Jaccard index introduced to
quantify this diversity. If insufficient diversity is detected,
the reasoning process is resampled until predefined condi-
tions are met. This strategy effectively ensures the diversity
and independence of consecutive reasoning iterations. For
example, as detailed in Table 7, the prompt p∗ and resam-
pling strategy successfully guided the LLMs to generate
more distinct reasoning paths, transforming an initial incor-
rect prediction into a correct one. Furthermore, as shown
in Table 5, our method achieves lower similarity between
consecutive iterations compared to existing approaches.

By dynamically adjusting reasoning iterations and promot-
ing diversity in reasoning paths, our approach enhances
accuracy while significantly reducing computational costs.

6. Conclusion
This paper explores the conceptual parallels between chain-
of-thought (CoT) reasoning and self-training, identifying
their shared objective of iteratively leveraging information
augmentation to minimize prediction uncertainty. Through
theoretical analysis and experimental validation, we reveal
semantic entropy dynamics in CoT reasoning and propose
improvements, including a task-specific prompt module to
optimize initial reasoning processes and an adaptive reason-
ing iteration module to mitigate over-reasoning and enhance
reasoning diversity in consecutive iterations. Collectively,
these innovations significantly improve the performance of
CoT reasoning in addressing complex tasks.

9

Rethinking Chain-of-Thought from the Perspective of Self-Training

Acknowledgements
This work was partially supported by the National Key Re-
search and Development Program of China under Grant
No. 2022YFA1004100, the Natural Science Founda-
tion of Guangdong Province of China under Grant No.
2024A1515011381, and the National Natural Science Foun-
dation of China under Grant No. 62476048.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Amini, M.-R., Feofanov, V., Pauletto, L., Hadjadj, L., De-

vijver, E., and Maximov, Y. Self-training: A survey.
Neurocomputing, pp. 128904, 2024.

Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E.
Boosting the margin: A new explanation for the effective-
ness of voting methods. The annals of statistics, 26(5):
1651–1686, 1998.

Chen, B., Jiang, J., Wang, X., Wan, P., Wang, J., and Long,
M. Debiased self-training for semi-supervised learning.
In NeurIPS, volume 35, pp. 32424–32437, 2022.

Chia, Y. K., Chen, G., Tuan, L. A., Poria, S., and Bing, L.
Contrastive chain-of-thought prompting. arXiv preprint
arXiv:2311.09277, 2023.

Chu, Z., Chen, J., Chen, Q., Yu, W., He, T., Wang, H., Peng,
W., Liu, M., Qin, B., and Liu, T. Navigate through enig-
matic labyrinth a survey of chain of thought reasoning:
Advances, frontiers and future. In ACL, pp. 1173–1203,
2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Farquhar, S., Kossen, J., Kuhn, L., and Gal, Y. Detecting
hallucinations in large language models using semantic
entropy. Nature, 630(8017):625–630, 2024.

Frei, S., Zou, D., Chen, Z., and Gu, Q. Self-training converts
weak learners to strong learners in mixture models. In
AISTATS, pp. 8003–8021, 2022.

Geva, M., Khashabi, D., Segal, E., Khot, T., Roth, D., and
Berant, J. Did aristotle use a laptop? a question answering

benchmark with implicit reasoning strategies. Transac-
tions of the Association for Computational Linguistics, 9:
346–361, 2021.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. In NeurIPS, volume 17, 2004.

Hosseini, M. J., Hajishirzi, H., Etzioni, O., and Kushman,
N. Learning to solve arithmetic word problems with verb
categorization. In EMNLP, pp. 523–533, 2014.

Jadhao, A. and Agrawal, A. Text categorization using jac-
card coefficient for text messages. International Journal
of Science and Research, 5(5):2047–2050, 2016.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners, 2022.

Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Et-
zioni, O., and Ang, S. D. Parsing algebraic word prob-
lems into equations. Transactions of the Association for
Computational Linguistics, 3:585–597, 2015.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In ICML, pp. 896, 2013.

Ling, W., Yogatama, D., Dyer, C., and Blunsom, P. Program
induction by rationale generation: Learning to solve and
explain algebraic word problems. In ACL, pp. 158–167,
2017.

Ling, Z., Fang, Y., Li, X., Huang, Z., Lee, M., Memisevic,
R., and Su, H. Deductive verification of chain-of-thought
reasoning. In NeurIPS, volume 36, 2024.

Liu, J., Lin, J., and Liu, Y. How much can rag help the
reasoning of llm? arXiv preprint arXiv:2410.02338,
2024.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 41(8):1979–
1993, 2018.

Mukherjee, S. and Awadallah, A. Uncertainty-aware self-
training for few-shot text classification. In NeurIPS, vol-
ume 33, pp. 21199–21212, 2020.

Nayab, S., Rossolini, G., Buttazzo, G., Manes, N., and Gia-
comelli, F. Concise thoughts: Impact of output length on
llm reasoning and cost. arXiv preprint arXiv:2407.19825,
2024.

Patel, A., Bhattamishra, S., and Goyal, N. Are nlp models
really able to solve simple math word problems? arXiv
preprint arXiv:2103.07191, 2021.

10

Rethinking Chain-of-Thought from the Perspective of Self-Training

Roy, S. and Roth, D. Solving general arithmetic word
problems. arXiv preprint arXiv:1608.01413, 2016.

Scudder, H. Adaptive communication receivers. IEEE
Transactions on Information Theory, 11(2):167–174,
1965.

Sun, J., Zheng, C., Xie, E., Liu, Z., Chu, R., Qiu, J.,
Xu, J., Ding, M., Li, H., Geng, M., et al. A survey
of reasoning with foundation models. arXiv preprint
arXiv:2312.11562, 2023.

Talmor, A., Herzig, J., Lourie, N., and Berant, J. Common-
senseqa: A question answering challenge targeting com-
monsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W.,
and Lim, E.-P. Plan-and-solve prompting: Improving
zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. In NeurIPS,
volume 35, pp. 24824–24837, 2022.

Xu, X., Tao, C., Shen, T., Xu, C., Xu, H., Long, G., Lou,
J.-G., and Ma, S. Re-reading improves reasoning in large
language models. In EMNLP, pp. 15549–15575, 2024.

Yang, X., Song, Z., King, I., and Xu, Z. A survey on deep
semi-supervised learning. IEEE Transactions on Knowl-
edge and Data Engineering, 35(9):8934–8954, 2022.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling. Ad-
vances in Neural Information Processing Systems, 34:
18408–18419, 2021.

Zhong, T., Liu, Z., Pan, Y., Zhang, Y., Zhou, Y., Liang, S.,
Wu, Z., Lyu, Y., Shu, P., Yu, X., et al. Evaluation of
openai o1: Opportunities and challenges of agi. arXiv
preprint arXiv:2409.18486, 2024.

Zou, Y., Yu, Z., Kumar, B., and Wang, J. Unsupervised
domain adaptation for semantic segmentation via class-
balanced self-training. In Proceedings of the European
conference on computer vision (ECCV), pp. 289–305,
2018.

Zou, Y., Yu, Z., Liu, X., Kumar, B., and Wang, J. Confidence
regularized self-training. In CVPR, pp. 5982–5991, 2019.

11

Rethinking Chain-of-Thought from the Perspective of Self-Training

A. Appendix
A.1. Omitted Definitions and Proofs in Section 3.1

In this section, we supplement the definitions and detailed algorithm of self-training that were not elaborated in Section
3.1 and provide the proofs of Lemma 3.1 and Theorem 3.2. Our results primarily reference (Frei et al., 2022), and most
definitions and algorithms will adopt the settings from their work. Here, we consider a very simple mixture Gaussian model
(GMM) rather than adopting the more general but relatively more complex sub-exponential distribution with parameters
K,U,U ′, R as defined in (Frei et al., 2022).

Definition A.1 (Gaussian Mixture Model). A joint distribution (x, y) ∼ D over Rd × {±1} is called Gaussian mixture
model, if y ∼ Unif({±1}), and x|y ∼ N (yµ, I), where µ ∈ Rd is the mean of D. We use Dx to denote the marginal
distribution of D.

The information entropy of a discrete random variable X is defined as Ent[X] = E[− logX] = −
∑

x∈X p(x) log p(x),
where X is the set of values that the random variable X can take. A classifier for the Gaussian mixture model is given by
x 7→ sgn(βTx), where β ∈ Rd is an arbitrary vector. So we use β to denote a classifier without saying x 7→ sgn(βTx).
According to Fact 3.4 in (Frei et al., 2022), the Bayes-optimal classifier of the Guassian mixture model defined in Definition
A.1 is µ. Assume we can access a initial classifier pseudo-labeler βinit, which is also called a pseudo-labeler, and the
population error of βinit is sufficiently small but constant. We then use a weight-normalized logistic regression method to
train start from βinit using only unlabeled samples. The loss function is ℓ(z) = log(1+exp(−z)). Let σ > 0 be temperature.
The training dataset S is partitioned into T batches of size B. The general process of the self-training algorithm involves
multiple iterations, where in each iteration, a batch of data is assigned pseudo-labels. The data labeled in this iteration, along
with the existing labeled data and data pseudo-labeled in previous iterations, is used to update the model. This process
continues until all samples have been assigned pseudo-labels. The detailed and formal algorithm description of self training
using the pseudo-label strategy is presented in Algorithm 1.

Algorithm 1 Self-Training

Require: Training dataset S = {x(t)i } 1≤i≤B
0≤t≤T−1

, step size η, temperature σ > 0, initial pseudo-labeler βinit
1: β0 ← βinit/ ∥βinit∥
2: for t = 0, 1, · · · , T − 1 do
3: Generate pseudo-labels ŷ(t)i = sgn

(
βT
t x

(t)
i

)
for batch {xti}1≤i≤B

4: β̃t+1 = βt − η
B

∑B
i=1∇ℓ

(
1
σ · ŷ

(t)
i ·

(
βT
t x

(t)
i

))
5: βt+1 = β̃t+1/

∥∥∥β̃t+1

∥∥∥
6: end for
7: return βT−1

A.1.1. PROOF OF LEMMA 3.1

We first restate Lemma 3.1.

Lemma A.2 (Lemma 3.1, restate). Suppose (x, y) ∼ D follows a mixture Gaussian models in Rd × {±1} with mean
µ satisfying ∥µ∥ = Θ(1), i.e., y ∼ Unif({±1}) and x|y ∼ N (yµ, I). Let ℓ(z) = log(1 + exp(−z)), and assume
σ ≥ max(1, ∥µ∥). Assume we can access a initial pseudo-labeler βinit which satisfies Pr(x,y)∼D[y ̸= sgn(βT

initx)] = O(1).
Let ε, δ ∈ (0, 1), and assume that B = Ω̃(ε−1), T = Ω̃(dε−1), η = Θ̃(d−1ε), suppose θt is the angle between βt and µ,
then by running algorithm 1 with step size η and batch size B, when t < T − 1, θt ≥ θt+1 holds with probability at least
1− δ, and with probability at least 1− δ, θT−1 ≤ O(ε).

Proof. To prove this lemma, we first present the results on sample complexity for labeled and unlabeled data obtained in
(Frei et al., 2022) for self-training. Theorem 4.1 in (Frei et al., 2022) ensures that we can obtain a classifier with sufficiently
small but constant error. More precisely, a standard logistic regression procedure produces a pseudolabler that can achieve
the desired constant accuracy by using O(d) labeled samples, which essentially represents the sample complexity of labeled
data. As for the unlabeled data, the sample complexity is expressed in the lemma below.

12

Rethinking Chain-of-Thought from the Perspective of Self-Training

Lemma A.3 (The Sample Complexity for Unlabeled Data, Theorem 3.6 in (Frei et al., 2022)). Suppose that (x, y) ∼ D
follows a mixture distribution with mean µ satisfying ∥µ∥ = Θ(1) and parameters K,U,U ′, R = Θ(1). Let ℓ be well-
behaved for some Cℓ ≥ 1, and assume the temperature satisfies σ ≥ max(R, ∥µ∥). Assume access to a pseudo-labeler
βinit which satisfies Pr(x,y)∼D(y ̸= sgn(βinit

Tx)) ≤ Cerr, where Cerr = R2/(72CℓU
′). Let ε, δ ∈ (0, 1), and assume that

B = Ω̃
(
ε−1

)
, T = Ω̃

(
dε−1

)
, η = Θ̃

(
d−1ε

)
. Then with probability at least 1− δ, by running Algorithm 1 with step size

η and batch size B, the last iterate satisfies err(βT−1) ≤ err(µ) + ε. In particular, T = Õ(d/ε) iterations using at most
TB = Õ(d/ε2) unlabeled samples suffices to be within ε error of the Bayes-optimal classifier.

Some definitions mentioned in Lemma A.3 can be found in the original paper and are omitted here due to space constraints.
We use the function ℓ(z) = log(1 + exp(−z)) as our loss function and it’s well behaved. For GMM, it is a mixture
distribution with parameters K,U,U ′, R = Θ(1). Under the conditions of Lemma A.3, let µ = µ/ ∥µ∥. We can derive the
following lemma regarding ∥βt − µ∥, which represents the distance between the classifier produced at each iteration of the
algorithm and the normalized optimal classifier.

Lemma A.4 (Recursion of ∆2
t , Lemma D.2 in (Frei et al., 2022)). Suppose ∆2

t = ∥βt − µ∥2, then ∆2
t satisfies that for

1 ≤ t ≤ T ,

∆2
t ≤ (1− η/2Cg)∆

2
t−1 +

ηε

8Cg
+

2Cdη
2

σ2
,

where Cg, Cd, σ are all some positive constants such that K = CdC
2
gσ

2 ≥ 1, ∆0 ≤ 2.

Note that there is close relationship between θt and ∆t, we can use the changes in ∆t described in Lemma A.4 to characterize
the changes in θt, leading to the following lemma.

Lemma A.5. Let θt denote the angle between βt and µ, θt ∈ (0, π/2), and ∆2
t = ∥βt − µ∥2. Then for 1 ≤ t < T − 1,

θt ≥ θt+1, and θT ≤ ε.

Proof. Since βt and µ both have unit norm, it’s easy to verify that

∥βt − µ∥2 = 2(1− cos θ) = 4 sin2
θt
2

It’s sufficient to assume that θt ∈ (0, π/2) for any t, as the error rate of βinit is sufficiently small. Therefore ∆t = 2 sin θt
2 ,

i.e., θt = 2arcsin ∆t

2 . This implies that θt and ∆t share the same monotonicity, so it suffices to show that for t < T ,
∆t ≤ ∆t−1. By Lemma A.4, when η =

εCg

16K and T ≥ 32Kε−1 log(32Kε−1), it’s easy to verify that ∆T ≤ ε, which means
that ∆t > ε for t < T . Hence, with the recursion of ∆2

t in Lemma A.4, we have

∆2
t −∆2

t−1 ≤ −
η

2Cg
∆t−1 +

ηε

8Cg
+

2Cdη
2

σ2

= − η

2Cg

(
∆t−1 −

(
1

4
+

1

4σ4

)
ε

)
≤ − η

2Cg
(∆t−1 − ε)

≤ 0

At the same time, θT = 2arcsin ∆T

2 = Θ(∆T) = O(ε). This concludes the proof.

Finally, through the conditions and assumptions of Lemma A.3, along with the conclusion of Lemma A.5, we complete the
proof of Lemma 3.1.

13

Rethinking Chain-of-Thought from the Perspective of Self-Training

A.1.2. PROOF OF THEOREM 3.2

Theorem A.6 (Theorem 3.2, restate). Under the assumptions of Lemma 3.1, let d = 2 and suppose ŷ(t)|x ∼ Ber(ϑ(βT
t x))

is the pseudo-label of x, where ϑ(z) = 1
1+e−z . Define l(α) as the line xTα⊥ = 0, where α⊥ is perpendicular to α. Let

A(α1, α2) denote the region swept by l(α1) rotating to l(α2) along the trajectory of βinit towards µ during self-training.
Denote Ht(x) = Ent[ŷ(t)|x] be the entropy of ŷ(t)|x. For t < T , with probability at least 1 − δ, the entropy changes as
follows: (i) Ht(x) first decreases and then increases if x ∈ A(β0, µ); (ii) Ht(x) decreases if x ∈ A(µ, β⊥

0); (iii) Ht(x) first
increases and then decreases if x ∈ A(β⊥

0 , µ
⊥); and (iv) Ht(x) increases if x ∈ A(µ⊥, β0).

Proof. Lemma 3.1 describes the trend in the changes of the vector corresponding to the classifier, which is particularly
useful for analyzing entropy changes in R2, as the entropy of the pseudo-label distribution is directly related to the angle
between the classifier and the samples. Since we define the pseudo-label distribution as a Bernoulli distribution using the
sigmoid function, we first present the following lemma on the entropy of a Bernoulli distribution.

Lemma A.7. Let X ∼ Ber(p), p ∈ [0, 1]. Then Ent[X] is a decreasing function of |p − 1/2|, i.e., if X1 ∼ Ber(p1),
X2 ∼ Ber(p2), then Ent[X1] ≥ Ent[X2] if and only if |p1 − 1/2| ≤ |p2 − 1/2|.

Proof. For X ∼ Ber(p), Ent[X] = f(p) = −p log p − (1 − p) log(1 − p). We define 0 log 0 = 0. It is easy to
verify that f(p) is symmetric about the line x = 1/2. On (0, 1/2), f(p) is monotonically increasing, and on (1/2, 1),
f(p) is monotonically decreasing. Thus, for X1 and X2, max(p1, 1 − p1) ∈ (1/2, 1) and max(p2, 1 − p2) ∈ (1/2, 1),
by the monotonicity and symmetry of f(p), it is straightforward to conclude that Ent(X1) ≥ Ent(X2) if and only if
max(p1, 1−p1) ≤ max(p2, 1−p2). Moreover, max(p1, 1−p1) ≤ max(p2, 1−p2) if and only if |p1−1/2| ≤ |p2−1/2|,
which completes the proof.

Now, we analyze the monotonic properties of Ht(x). From Lemma A.7, we know that for X ∼ Ber(p), Ent[X] depends
on the magnitude of |p − 1/2|. In the subsequent proof, we establish the conclusion that during the iteration process, if
ϑ(βT

t x) < 1/2, it will not happen that ϑ(βT
t+1x) > 1/2 unless ϑ(βT

t x) is very close to 1/2, causing ϑ(βT
t+1x) > 1/2 in

the next iteration. This essentially states that in the self-training process, pseudo-labels do not fluctuate across iterations.
Therefore, we only need to consider the relationship between ϑ(βT

t x) and ϑ(βT
t+1x).

Since ϑ(z) = 1
1+exp(−z) is monotonically increasing, it suffices to compare βT

t x and βT
t+1x. Let the angle between βt and

x be θ(t)(x) ∈ (0, π). Then, βT
t x = ∥x∥ cos θ(t)(x) = sgn(∥x∥ cos θ(t)(x)) ∥x∥ | cos θ(t)(x)|. For the same sample, we

only need to consider the changes in θ(t)(x) as t varies and the monotonicity of the function f(z) = | cos(z)| on (0, π)
(f(z) is decreasing on z ∈ (0, π/2) and increasing on z ∈ (π/2, π)). Define the angle between x and µ as θ(∞)(x).

We now discuss the four regions defined in the theorem respectively.

1. x ∈ A(β0, µ). When θ(0)(x) ∈ (0, π/2) and θ(0)(x) ≤ θ0, x can be considered to lie between vector β0 and vector µ.
If θt ≥ θ(t)(x), then θ(t)(x) = θt − (θ0 − θ(0)(x)) ∈ (0, π/2); if θt ≤ θ(t)(x), then θ(t)(x) = (θ0 − θ(0)(x))− θt ∈
(0, π/2). Therefore, θ(t)(x) first increases and then decreases, remaining within the interval (0, π/2), which implies
that Ht(x) first decreases and then increases. The proof for the other case is similar.

2. x ∈ A(µ, β⊥
0). When θ(0)(x) ∈ (0, π/2) and θ(0)(x) > θ0, x can be considered to lie between vector µ and β⊥

0 , with
the angle between β⊥

0 and µ lying in (0, π/2). In this case, θ(t)(x) = θt + θ(∞)(x) ∈ (0, π/2), so θ(t)(x) decreases
monotonically and remains in (0, π/2), implying that Ht(x) decreases monotonically. The other case is similar.

3. x ∈ A(β⊥
0 , µ

⊥). When θ(0)(x) ∈ (π/2, π) and θ(∞)(x) ∈ (0, π/2), x can be considered to lie between vector β⊥
0

and µ⊥, where the angle between β⊥
0 and µ, as well as the angle between µ⊥ and β⊥

0 , both lie in (0, π/2). In this
case, θ(t)(x) = θt + θ(∞)(x) decreases monotonically, but there exists some t′ such that βt becomes orthogonal to x,
leading to Ht(x) first increasing and then decreasing. The proof for the other case is similar.

4. x ∈ A(µ⊥, β0). When θ(0)(x) ∈ (π/2, π) and θ(∞)(x) ∈ (π/2, π), x can be considered to lie between µ⊥ and −β0.
In this case, θ(t)(x) = θt+θ

(∞)(x) ∈ (π/2, π) decreases monotonically, implying thatHt(x) increases monotonically.
The proof for the other case is similar.

Through the above analysis, we complete the proof of Theorem 3.2.

14

Rethinking Chain-of-Thought from the Perspective of Self-Training

A.2. Rigorous Formalization of Reasoning Concepts Introduced in Section 3.2

The definitions that were not rigorously stated in Section 3.2 are presented here in detail.

Definition A.8 (LLM Generation Model). Let Σ be an alphabet, and Σ∗ be the set of all strings over Σ. For an input s ∈ Σ∗,
and a temperature coefficient τ ∈ (0, 1), an LLM generation model is defined as a function LLM : Σ∗ × (0, 1)→ D(Σ∗),
where D(Σ∗) is the set of all probability distributions over Σ∗. We denote s′ ∼ LLM(s; τ) as an output s′ ∈ Σ∗ sampled
from this LLM given the input s and temperature τ .

Definition A.9 (Reasoning-Answer Pairs and Sets). Given a question q, a prompt p, and a temperature coefficient τ : The
set of all (Reasoning, Answer) pairs generated by the LLM under these conditions is denoted as

J (q, p; τ) = {(r, a) : (r, a) ∼ LLM(q, p; τ)}

Its probability density function is denoted concisely as J . The set of reasoning paths generated by the LLM under these
conditions is R(q, p; τ) = {r : (r, a) ∼ LLM(q, p; τ)}, with the probability density being the marginal distribution Jr of
J . The set of answers generated by the LLM under these conditions is Answer(q, p; τ) = {a : (r, a) ∼ LLM(q, p; τ)},
with the probability density being the marginal distribution Ja of J . Furthermore, we define

Answer(q, p, r; τ) = {a′ : (r′, a′) ∼ LLM(q, p, r; τ)}

as the set of all answers under a given reasoning path r, with its probability density being the conditional distribution Ja|r.
The answer set A can be partitioned into several semantic clusters: A =

⋃
C∈C C, where C is the set of these clusters, and

exactly one cluster signifies the correct answer.

Definition A.10 (Initial Reasoning Path). Given a question q, a zero-shot prompt p0, and a temperature coefficient τ , the
initial reasoning path r0 is defined such that (r0, a0) ∼ LLM(q, p0; τ).

Definition A.11 (Reasoning Tree Constructed by LLM, inspired by the definition in (Liu et al., 2024)). Given a question q,
a prompt p, and a temperature coefficient τ , the reasoning tree T = (V, E) constructed by the LLM under these conditions
is a directed acyclic graph, defined as follows:

• Each v ∈ V represents a computational node. Computational nodes generate content, including text, symbols, numerical
values, or logical expressions. The computation at each node is defined as any combination of the following:

1. Symbols and text (e.g., variable definitions, natural language descriptions).
2. Computational expressions (e.g., arithmetic, algebraic operations).
3. Logical assertions (e.g., implication relations, hypothetical reasoning).
4. External knowledge references (e.g., theorems, formulas, common sense).

• Each (u, v) ∈ E represents a dependency relationship in reasoning, i.e., the computation of v depends on the content
generated by u.

• The root node corresponds to q.

• T has multiple leaf nodes, some of which correspond to the correct answer acorrect.

• Each node v ∈ V has a state function s : V → {0, 1}, indicating whether the node is erroneous. Errors include, but are
not limited to:

1. Symbolic errors.
2. Computational errors.
3. Logical errors (e.g., using external knowledge that does not meet requirements or is false, using incorrect logical

proof methods).

Definition A.12 (Reasoning Path). The reasoning path (or reasoning process) r generated by an LLM for a question q,
prompt p, and temperature coefficient τ is defined as a path (q → v1 → · · · → a) on the reasoning tree T constructed by
the LLM under these conditions.

Definition A.13 (Optimal Reasoning Path). The set of optimal reasoning paths Ropt generated by an LLM for a question
q, prompt p, and temperature coefficient τ is defined as Ropt = {r ∈ R(q, p; τ) | Ja|r(acorrect|r) ≥ θ}, where ψ is a
confidence threshold, close to 1.

15

Rethinking Chain-of-Thought from the Perspective of Self-Training

Instruction:

The prompt "Let's think step by step" helps guide

large language models to reason more deeply, but it

may be less effective in specialized domains.

Below are examples from a specific dataset. Based

on these, please modify the "Let's think step by

step, \%s" prompt by adding a sentence in the '\%s'

section to better suit the task's characteristics.

Question set 𝑸′:

𝒒𝟏
′ : A car is being driven, in a straight line and at a

uniform speed, towards the base of …

……

𝒒𝒌
′ : A train running at a speed of 100 miles/hour,

takes 10 hours to reach its destination. After…

LLMs

𝒑𝟏 (ෝ𝒑): Let's think step by

step, how to calculate

specific quantities based on

given scenarios and

conditions in each situation.

𝒑𝟐: Let's think step by step,

how to calculate the total

quantity of objects or items

mentioned in the sentences.

𝒑𝒎 : Let's think step by

step, how to break down the

mathematical operations

and identify the key concepts

to solve them.

Question set 𝑸′′

……

Semantic

Entropy

𝒆𝟏: 0.05

𝒆𝟐: 0.13

𝒆𝒎: 0.44

……

LLMs

Figure 6. The proposed Task-Specific Prompt module tailors the prompt to the characteristics of a given task. Initially, a set of candidate
prompts {p1, p2, · · · , pm} is generated by incorporating a tailored instruction and a question set, Q′ sampled from the dataset. Next,
another disjoint question set Q′′ is sampled, distinct from Q′. The candidate prompts {p1, p2, · · · , pm} are then evaluated based on their
semantic entropy values {e1, e2, · · · , em}, and the prompt p̂ with the lowest entropy is selected as the optimal one for the task.

Due to the LLM’s knowledge gaps and generation limitations, “optimal” needs to be defined as the most reliable path within
the model’s capabilities.

Definition A.14 (Iterative CoT Reasoning). Let r0 be defined as in Definition A.10. Then, in an iterative CoT process,
(rt+1, at+1) ∼ LLM(q, p′, r0, . . . , rt; τ), where p′ may be an adaptive prompt.

Definition A.15 (Update of Reasoning Path in Iterative CoT). For the current reasoning path rt, a new path rt+1 is
generated as follows: the LLM identifies the node vi in rt closest to the root that satisfies s(vi) = 0 (i.e., is erroneous),
reverts to node vi−1, corrects the error, and generates a new sub-path, thereby forming rt+1.

The conceptual parallels between self-training and chain-of-thought are summarized in Table 3.

Self-Training Chain-of-Thought
Distribution D over feature-label space X × Y LLM’s generation distribution J of (Reasoning, An-

swer) pairs for a given (q, p, τ)
Classifier β mapping an input x ∈ X to a label y ∈ Y LLM generating an answer a ∈ Answer(q, p, r; τ) con-

ditioned on a reasoning path r
Initial classifier β0 Initial reasoning path r0 generated from (q, p0, τ)
Bayes-optimal classifier µ Set of optimal reasoning paths Ropt that yield acorrect

with high probability
Iterative classifier update: βt → βt+1 Iterative reasoning path update: rt → rt+1 through

error correction and refinement
Information augmentation for updates (e.g., pseudo-
labels from unlabeled data)

Information augmentation for updates (e.g., deeper anal-
ysis of q, problem decomposition, prompting strategies
to elicit new reasoning steps from LLM’s internal knowl-
edge)

Table 3. Analogy between self-training and chain-of-thought reasoning.

A.3. Task-Specific Prompt and Experimental Dataset Details

The specific details of the task-specific prompt module elaborated in Figure 6, and the particulars of the experimental
datasets described in Table 4.

16

Rethinking Chain-of-Thought from the Perspective of Self-Training

Dataset Answer Format (*1) # of samples Avg # words (*2) Data split (filename) License

SingleEq N 508 27.4 questions.json No License
AddSub N 395 31.5 AddSub.json Unspecified
MultiArith N 600 31.8 MultiArith.json Unspecified
GSM8K N 1319 46.9 test.jsonl MIT License
AQUA M 254 51.9 test.jsonl Apache-2.0
SVAMP N 1000 31.8 SVAMP.json MIT License
CommonsenseQA M 1221 27.8 dev rand split.jsonl Unspecified
StrategyQA Y 2290 9.6 task.json Apache-2.0
LastLetters F 500 15.0 - -
CoinFlip Y 500 37.0 - -

Table 4. Detailed description of the datasets used in our experiments, highlighting their diversity and structure. (1) The “Answer Format”
column indicates the type of responses expected for each dataset: N represents a numerical answer, M corresponds to selecting one option
from multiple choices, Y indicates a binary answer (Yes or No), and F stands for free-form answers. (2) The “Avg # words” column
represents the average number of words in the question texts, providing an estimate of their complexity.

A.4. Parameter Sensitivity Analysis

Our proposed method involves two important hyper-parameters, i.e., the number of iterations T , and the number of sampled
reasoning paths N . We investigate the sensitivity of our method to these hyper-parameters on the AQuA dataset and report
the results in Figure 5 and Figure 7. First, we fixed N = 3 and varied T across the range of {1, 2, · · · , 5}. The results
indicate that our method is highly sensitive to the value of T . Accuracy increased sharply from 60.2% at the first iteration to
70.8% at the second iteration, after which the improvement plateaued. By the fourth iteration, accuracy reached 71.7%,
with negligible changes in subsequent iterations. This trend suggests that with three reasoning paths, four iterations are
sufficient to explore nearly all plausible solutions. Additional iterations yielded diminishing returns, likely constrained by
the inherent reasoning capabilities of the employed LLMs. Moreover, the linear growth in computation time with increasing
T highlights the practical need to limit iterations for efficiency.

Next, we set T = 3 and varied N from {1, 2, · · · , 7}. The method exhibited significant sensitivity to N , with accuracy
rising from 55.5% when using a single path to 70.9% with two paths. This underscores the method’s capacity to aggregate
diverse reasoning paths effectively. Additionally, increasing N enhanced the accuracy of semantic entropy calculations,
allowing more precise identification of samples prone to over-reasoning. However, this improvement came at the cost of
steeply rising computation times, indicating a trade-off between accuracy and efficiency as N increases.

A.5. Additional Experimental Results

Prompt Type Iterations 1 & 2 Iterations 2 & 3 Avg.
General Prompt 0.44 0.32 0.38
Our Prompt p∗ 0.28 0.29 0.29
∆ -0.16 -0.03 -0.10
∆% 36.4% -9.4% -26.3%

Table 5. The reasoning similarity between new and previous iterations guided by general prompt and our p∗ on the AQuA dataset.

17

Rethinking Chain-of-Thought from the Perspective of Self-Training

1 2 3 4 5 6 7
Sampled Reasoning Paths

55

60

65

70

75

80
A

cc
ur

ac
y

(%
)

53.9

70.9 70.1
71.3

72.4
74.8 75.2

(a) Accuracy

1 2 3 4 5 6 7
Sampled Reasoning Paths

1

2

3

4

5

Ti
m

e
(h

ou
rs

)

26m

1h 30m

2h 26m
2h 30m

3h 1m

4h 30m 5h 9m

(b) Time costs

Figure 7. Impact of the number of sampled reasoning paths on accuracy and time costs in our proposed method.

0 50 100 150 200 250 300 350 400
Number of Iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
tro

py

Region: 1, Coordinates: [2.2 -6.1]
Region: 2, Coordinates: [3.2 5.9]
Region: 3, Coordinates: [-6.9 -1.7]
Region: 4, Coordinates: [6.5 -3.5]
Average entropy of 1000 samples

(a) Information entropy variation in self-training

1 2 3
Number of Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Se

m
an

tic
 E

nt
ro

py

A Question Example for Pattern 1
A Question Example for Pattern 2
A Question Example for Pattern 3
Average Semantic Entropy of 50 Samples

(b) Semantic entropy variation in CoT reasoning

Figure 8. Subfigure (a): entropy variation over iterations of self-training for four test samples in different regions. Sample 1 is in region
A(β0, µ), and its entropy first decreases and then increases. Sample 2 is in region A(µ, β⊥

0), and its entropy decreases stably. Sample 3 is
in region A(β⊥

0 , µ⊥), and its entropy first increases then decreases steadily. Sample 4 is in region A(µ⊥, β0), and its entropy increases
stably. During the iteration, the average entropy decreases until it stabilizes. Subfigure (b): semantic entropy variation during iterations of
CoT reasoning for questions across three patterns. In pattern 1, the semantic entropy of the question decreases gradually. In pattern 2, the
semantic entropy remains constant. In pattern 3, the semantic entropy initially decreases before increasing.

18

Rethinking Chain-of-Thought from the Perspective of Self-Training

Question Iteration 1 Iteration 2 Output

Suppose you can travel
from a place M to a place
N by 3 buses, from place
N to place O by 4 buses,
from place O to place P by
1 buses and from place P to
place Q by 3 buses. In how
many ways can you travel
from M to Q?

Path 1: We multiply the number of ways for each seg-
ment: from M to N (3 ways), N to O (4 ways), O to P (1
way), and P to Q (3 ways). This gives us: 3 * 4 * 1 * 3
= 36 ways. # Path 2: We have 3 options from M to N, 4
options from N to O, 1 option from O to P, and 3 options
from P to Q. The answer is 3 * 4 * 1 * 3 = 36 ways. # Path
3: We calculate the number of ways for each segment: 27
ways from M to N, 256 ways from N to O, 1 way from O
to P, and 27 ways from P to Q. Multiplying these together
gives 27 * 256 * 1 * 27 = 186,624 ways.

Path 1: I hope that explanation was helpful to you. If
you have any more questions or need further assistance,
feel free to ask! The answer is 186,624. # Path 2: That’s
correct! The total number of ways to travel from M to Q
is 3 options for M to N multiplied by 4 options for N to O
multiplied by 1 option for O to P multiplied by 3 options
for P to Q, which equals 36 ways. # Path 3: To travel
from M to Q, there are 27 ways from M to N, 256 ways
from N to O, 1 way from O to P, and 27 ways from P to Q.
Therefore, the answer is 186,624 ways.

186,624
(Answer: 36)

A starts travel towards
south 3km, then travel 5
km towards east, and again
travels 3 km to north, and
finally travels 2km towards
west. In the end how far
from is A from home?

Path 1: A starts at home, travels 3 km south, 5 km east,
3 km north, and 2 km west. After these movements, A
is about 5.39 km from home, rounding to 5 km. # Path
2: A travels 3 km south, 5 km east, 3 km north, and then
2 km west. The movements north and south cancel each
other out, as do the movements east and west, leaving A 2
km east of the starting point. # Path 3: A travels 3 km
south, 5 km east, 3 km north, and 2 km west. The north
and south distances cancel out, leaving A 3 km east, and
the east-west difference results in a final position 5 km
east of the starting point.

Path 1: A travels south 3 km, east 5 km, north 3 km
(canceling the southward distance), and west 2 km. Using
the Pythagorean theorem, the final distance from home
is 5.39km. The closest answer is 5 km. # Path 2: A
travels 3 km south, 5 km east, 3 km north (canceling the
southward distance), and 2 km west. This leaves A 2 km
east of the starting point. # Path 3: Great job analyzing
A’s journey step by step! By considering how opposite
movements cancel out, we can accurately determine the
final position. Therefore, the answer is 4 km.

5 km
(Answer: 3 km)

Table 6. Over-reasoning (row 2) and high similarity between consecutive reasoning iterations (row 3). In Iteration 2, Paths 1, 2, & 3
are updated based on their paths in Iteration 1. Over-reasoning occurs when the LLMs can already provide correct answers to the question
in Iteration 1 but continue reasoning unnecessarily, introducing noise that leads to incorrect answers in Iteration 2. High similarity refers
to cases where the corresponding paths in the two iterations are overly similar, failing to correct errors from the previous iteration.

Question Iteration 1 Iteration 2 Output

Suppose you can travel
from a place M to a place
N by 3 buses, from place
N to place O by 4 buses,
from place O to place P by
1 buses and from place P to
place Q by 3 buses. In how
many ways can you travel
from M to Q?

Path 1: We multiply the number of ways for each seg-
ment: from M to N (3 ways), N to O (4 ways), O to P (1
way), and P to Q (3 ways). This gives us: 3 * 4 * 1 * 3
= 36 ways. # Path 2: We have 3 options from M to N, 4
options from N to O, 1 option from O to P, and 3 options
from P to Q. The answer is 3 * 4 * 1 * 3 = 36 ways. # Path
3: We calculate the number of ways for each segment: 27
ways from M to N, 256 ways from N to O, 1 way from O
to P, and 27 ways from P to Q. Multiplying these together
gives 27 * 256 * 1 * 27 = 186,624 ways.

This iteration is skipped because the semantic entropy of
the previous iteration is below the predefined threshold.

36
(Answer: 36)

A starts travel towards
south 3km, then travel 5
km towards east, and again
travels 3 km to north, and
finally travels 2km towards
west. In the end how far
from is A from home?

Path 1: A starts at home, travels 3 km south, 5 km east,
3 km north, and 2 km west. After these movements, A
is about 5.39 km from home, rounding to 5 km. # Path
2: A travels 3 km south, 5 km east, 3 km north, and then
2 km west. The movements north and south cancel each
other out, as do the movements east and west, leaving A 2
km east of the starting point. # Path 3: A travels 3 km
south, 5 km east, 3 km north, and 2 km west. The north
and south distances cancel out, leaving A 3 km east, and
the east-west difference results in a final position 5 km
east of the starting point.

Path 1: We reconsider A’s movements as vectors: 3 km
south, 5 km east, 3 km north, and 2 km west. The north
and south movements cancel each other out, leaving a net
displacement of 3 km east. # Path 2: A’s total displace-
ment from home can be calculated using the Pythagorean
theorem by summarizing the journey. The net displace-
ment is (5 - 2) km east and (3 - 3) km north, resulting
in (3, 0). # Path 3: Excellent work breaking down A’s
journey step by step! By accounting for the cancellation
of opposite movements, we can precisely calculate the
final position. As a result, the answer is 4 km.

3 km
(Answer: 3 km)

Table 7. Examples of how our method addresses the issues of over-reasoning and high similarity between consecutive reasoning iterations.

19

Rethinking Chain-of-Thought from the Perspective of Self-Training

Question Iteration 1 Iteration 2 Output

John likes to have lightly
flavored tea every evening.
In a 50% strong milk tea,
he replaces 15% of it with
milk twice. Then, he re-
places 10 percent of the re-
sultant solution with more
milk. What is the final
concentration of tea John
drinks? Answer Choices:
(A) 15.38% (B) 42% (C)
39.86% (D) 22.35% (E)
32.51%

Path 1: First, let’s start with the 50% strong milk tea.
John replaces 15% of it with milk twice. After the first
replacement, the tea concentration becomes 50% * (1 -
15%) = 42.5%, and the milk concentration becomes 50%
* 15% = 7.5%. After the second replacement, the tea con-
centration becomes 42.5% * (1 - 15%) = 36.125%, and
the milk concentration becomes 7.5% + 42.5% * 15% =
14%. Next, John replaces 10% of this solution with more
milk. The tea concentration becomes 36.125% * (1 - 10%)
= 32.5125%, and the milk concentration becomes 14% +
36.125% * 10% = 17.6125%. Therefore, the final con-
centration of tea John drinks is approximately 32.51%. #
Path 2: John starts with 50% strong milk tea and replaces
15% of it with milk twice. After the first replacement,
7.5% of tea is replaced, resulting in 42.5% tea. After the
second replacement, 6.375% of tea is replaced, resulting
in 36.125% tea. Then, John replaces 10% of this solution
with more milk, which removes 3.6125% of tea, leaving
32.5125% tea. Therefore, the final concentration of tea
is 32.51%. # Path 3: John starts with 50% strong milk
tea and replaces 15% of it with milk twice. After the first
replacement, 85% of the original tea remains, resulting in
42.5% tea. After the second replacement, 85% of the new
mixture remains, resulting in 36.125% tea. The final con-
centration of tea is 36.125%, which is closest to answer
choice (C) 39.86%.

This iteration is skipped because the semantic entropy of
the previous iteration is below the predefined threshold.

(E) 32.51%
(Answer: (E))

Alex and Jacob works at
a toy shop that make toys.
Alex takes 7 hours to make
a toy, and Jacob takes 9
hours to make a toy. Dur-
ing a month, both of them
makes 35 toys in total. If
both of them have worked
for almost similar number
of hours how many toys
have been prepared by Ja-
cob? Choices: (A) 15 (B)
16 (C) 17 (D) 18 (E) 19

Path 1: Alex takes 7 hours to make a toy, while Jacob
takes 9 hours to make a toy. Together, they made a total of
35 toys, and both worked for almost the same number of
hours. To determine how many toys Jacob made, we can
calculate their individual production rates: Alex makes 1

7

of a toy per hour, and Jacob makes 1
9 of a toy per hour. Let

x represent the number of toys Jacob made. Since Alex
made 35 − x toys, the total hours Alex worked would be
7(35 − x), and the total hours Jacob worked would be
9x. Given that their working hours are nearly equal, we
set up the equation 7(35 − x) = 9x. Solving this, we
get 245 − 7x = 9x, which simplifies to 245 = 16x,
yielding x = 15.3125. Since the number of toys must
be a whole number, we round down to conclude that Jacob
made **15 toys**. # Path 2: To determine how many
toys Jacob made, we first calculate the combined work
rate of Alex and Jacob. Alex makes 1

7 of a toy per hour,
and Jacob makes 1

9 of a toy per hour, giving a combined
rate of 1

7 + 1
9 = 16

63 toys per hour. Since both Alex
and Jacob worked for approximately the same number
of hours, let x represent the hours each worked. The
total hours worked by both is 2x, and the total number
of toys made is 35. Using the combined work rate, we
set up the equation 16

63 × 2x = 35. Solving for x, we
get 32x

63 = 35, which simplifies to 32x = 2205 and
x ≈ 68.90625 hours. To find the number of toys Jacob
made, we multiply his work rate by the hours he worked:
1
9 × 68.90625 ≈ 7.65625. Since the number of toys
must be a whole number, Jacob made approximately **8
toys**. However, this answer does not match any of the
provided choices, indicating a discrepancy in the problem
setup or calculations. # Path 3: Alex takes 7 hours to
make a toy, so in one hour, he makes 1/7 of a toy, while
Jacob takes 9 hours to make a toy, making 1/9 of a toy in
one hour. Let A and J represent the number of toys Alex
and Jacob made, respectively. Together, they made 35
toys in a month, which gives the equation: A/7 + J/9 = 35.
Since they worked almost the same number of hours, the
ratio of toys they made should be close to the ratio of their
working speeds, which is 9:7, since Alex takes 7 hours to
make a toy and Jacob takes 9 hours. Therefore, the number
of toys Alex made should be 9x, and the number of toys
Jacob made should be 7x. Given that the total number of
toys is 35, we have 9x + 7x = 35, which simplifies to 16x
= 35. Solving for x gives x = 35/16 = 2.1875. Since the
number of toys must be whole, we round to the nearest
whole numbers: Alex made 9 * 2 = 18 toys, and Jacob
made 7 * 2 = 14 toys. Therefore, the answer is 18 toys.
Hence, the correct answer is (D) 18.

Path 1: I agree with your approach. Let’s solve the
equation step by step to find the number of toys made
by Jacob. Let x represent the number of toys made by
Jacob. Since Alex and Jacob together made 35 toys, the
number of toys made by Alex is 35 - x. Given that Alex
takes 7 hours to make a toy and Jacob takes 9 hours, the
total number of hours spent by both making toys should
be equal, leading to the equation 7 * (35 - x) = 9 * x.
Expanding the left side, we get 245 - 7x = 9x. Rearranging
the equation gives 245 = 16x. Dividing both sides by 16,
we find x = 245 / 16 = 15.3125. Since x represents the
number of toys made by Jacob and it cannot be fractional,
we round down to the nearest whole number, so Jacob
made 15 toys. Therefore, the correct answer is (A) 15. #
Path 2: Let’s consider the total amount of work done
by Alex and Jacob in terms of the number of toys they
each made. If Alex takes 7 hours to make a toy, then in
x hours, he would make x/7 toys. If Jacob takes 9 hours
to make a toy, then in x hours, he would make x/9 toys.
Given that both of them together made 35 toys in total, we
can set up the equation: x/7 + x/9 = 35. To solve for x, we
need to find a common denominator, which in this case
would be 63, so the equation becomes (9x + 7x) / 63 = 35.
Simplifying this gives 16x / 63 = 35, which leads to 16x
= 35 * 63, or 16x = 2205. Solving for x gives x = 2205
/ 16 = 137.8 hours. Since we are looking for the number
of toys made by Jacob, we substitute x back into Jacob’s
rate, so the number of toys made by Jacob is x/9 = 137.8 /
9 = 15.3. Therefore, Jacob made approximately 15 toys,
and since we are looking for the nearest whole number,
Jacob made 15 toys. # Path 3: Alex takes 7 hours to make
a toy, so in one hour, he makes 1/7 of a toy. Jacob takes
9 hours to make a toy, so in one hour, he makes 1/9 of a
toy. Together, they made 35 toys, so we have the equation:
A/7 + J/9 = 35. Since their working speeds are in the ratio
of 9:7, we assume Alex made 9x toys and Jacob made 7x
toys. Solving for x, we get x = 35/16 = 2.1875. Rounding
to the nearest whole number, Alex made 18 toys and Jacob
made 14 toys. Therefore, the answer is 18 toys (D).

(A) 15
(Answer: (A)

Table 8. Examples of how our method addresses the issues of over-reasoning and high similarity between consecutive reasoning iterations.

20

Rethinking Chain-of-Thought from the Perspective of Self-Training

Question Iteration 1 Iteration 2 Output

The ratio of the volumes of
a cube to that of the sphere
which will fit inside the
cube is? Answer Choices:
(A) 2: π (B) 7:2 (C) 8:2
(D) 6: π (E) 8:3

Path 1: The volume of a cube is given by Vcube =
s3, where s is the side length, while the volume of a
sphere is calculated as Vsphere = 4

3πr
3, with r being the

radius. When a sphere fits perfectly inside a cube, the
sphere’s diameter equals the cube’s side length, making
the radius r = 1

2 s. Substituting this into the sphere’s
volume formula yields Vsphere = 1

6πs
3. The ratio of

the cube’s volume to the sphere’s volume is therefore
Vcube : Vsphere = s3 : 1

6πs
3 = 6 : π. Thus, the

correct ratio is 6 : π, corresponding to option (D). # Path
2: First, consider the volume of a cube and a sphere. The
volume of a cube is Vcube = s3, where s is the side length,
and the volume of a sphere is Vsphere = 4

3πr
3, where r

is the radius. If the sphere fits perfectly inside the cube,
its diameter equals the side length of the cube, so 2r = s,
which gives r = s

2 . Substituting this into the sphere’s
volume formula, we get Vsphere = 4

3π
(
s
2

)3 = π
6 s3.

Comparing the volumes, the ratio of the cube’s volume to
the sphere’s volume is Vcube : Vsphere = s3 : π

6 s3 = 6 :
π. Thus, the ratio of the volumes is 6 : π, and the correct
answer is (D). # Path 3: Let’s begin by considering the
cube. The volume of a cube is Vcube = s3, where s is the
side length. Next, let’s think about the largest sphere that
can fit inside the cube. The diameter of this sphere equals
the side length of the cube. The volume of a sphere is
Vsphere = 4

3πr
3, where r is the radius. Since the sphere’s

diameter is the same as the cube’s side length, the radius
of the sphere is r = s

2 . Substituting this into the sphere’s
volume formula, we get Vsphere = 4

3π
(
s
2

)3 = π
6 s3.

The ratio of the volumes of the cube and the sphere is
Vcube : Vsphere = s3 : π

6 s3 = 6 : π. Thus, the correct
answer is (D) 6 : π.

This iteration is skipped because the semantic entropy of
the previous iteration is below the predefined threshold. (D) 6 : π

(Answer: (D))

The events A and B are in-
dependent. The probability
that event A occurs is 0.6,
and the probability that at
least one of the events A or
B occurs is 0.96. What is
the probability that event B
occurs? Answer Choices:
(A) 0.5 (B) 0.6 (C) 0.7 (D)
0.8 (E) 0.9

Path 1: Given that events A and B are independent,
we can calculate P (A ∩ B) = P (A) × P (B). With
P (A) = 0.6 and P (A ∪ B) = 0.96, we use the for-
mula for the union of independent events: P (A ∪ B) =
P (A)+P (B)−P (A)×P (B). Substituting, we get
0.6+P (B)− 0.6×P (B) = 0.96, which simplifies
to 0.6 + 0.4P (B) = 0.96, yielding P (B) = 0.9.
Therefore, the probability that event B occurs is 0.9 (E). #
Path 2: Given that events A and B are independent, we
know that P(A and B) = P(A) * P(B). With P(A) = 0.6 and
P(A or B) = 0.96, the equation becomes: P(A) + P(B) -
P(A and B) = 0.96. Since P(A and B) = 0.6 * P(B), this
simplifies to 0.6 + P(B) - 0.6 * P(B) = 0.96. Solving this
equation, we find that P(B) = 0.8. Therefore, the answer is
(D) 0.8. # Path 3: Given that the probability of event A is
P(A) = 0.6 and the probability of event B is P(B), and that
A and B are independent, P(A ∩ B) = P(A) * P(B). The
probability of at least one of the events occurring is 0.96,
expressed as P(A ∪ B) = 0.96. Substituting the known
values, we get 0.6 + P(B) - 0.6 * P(B) = 0.96, which sim-
plifies to 0.4 + 0.4P(B) = 0.96. Solving for P(B) gives 1.4,
which is impossible since probabilities cannot exceed 1.
Thus, the correct answer is (C) 0.7.

Path 1: Given: P(A) = 0.6 P(A ∪ B) = 0.96 We can
use the formula for the union of events: P(A ∪ B) = P(A)
+ P(B) - P(A ∩ B) Since events A and B are independent,
P(A ∩ B) = P(A) * P(B). Substitute the values: 0.96 = 0.6
+ P(B) - 0.6 * P(B) Solving the equation: 0.36 = 0.4 * P(B)
P(B) = 0.36 / 0.4 P(B) = 0.9 Therefore, the probability that
event B occurs is 0.9, which matches answer choice (E).
Path 2: 1. Given that events A and B are independent,
we know that the probability of both A and B occurring is
equal to the product of their individual probabilities: P(A
and B) = P(A) * P(B). 2. The probability that event A
occurs is 0.6, so P(A) = 0.6. 3. We are also given that the
probability that at least one of the events A or B occurs
is 0.96. This can be represented as: P(A or B) = P(A) +
P(B) - P(A and B) = 0.96. 4. Since events A and B are
independent, P(A and B) = P(A) * P(B) = 0.6 * P(B). 5.
Plugging this into the equation from step 3, we get: 0.6
+ P(B) - 0.6 * P(B) = 0.96. 6. Solving this equation will
give us the probability that event B occurs. Let’s continue
from here. Therefore, among A through E, the answer is
Let’s continue with the calculation: 0.6 + P(B) - 0.6 * P(B)
= 0.96. 0.6 + P(B) - 0.6P(B) = 0.96 0.4 + 0.4P(B) = 0.96
0.4P(B) = 0.56 P(B) = 0.56 / 0.4 P(B) = 0.7 Therefore, the
probability that event B occurs is 0.7, which corresponds
to answer choice (C). # Path 3: We have: P(A) = 0.6
P(A ∩ B) = P(A) * P(B) (since A and B are independent)
Given that P(A ∪ B) = 0.96, we can express this as: P(A
∪ B) = P(A) + P(B) - P(A ∩ B) 0.96 = 0.6 + P(B) - (0.6
* P(B)) 0.96 = 0.6 + P(B) - 0.6P(B) 0.36 = 0.4P(B) P(B)
= 0.36 / 0.4 P(B) = 0.9 Therefore, the correct probability
that event B occurs is 0.9, which corresponds to answer
choice E. Therefore, the answer is (E) 0.9

(E) 0.9
(Answer: (E)

Table 9. Examples of how our method addresses the issues of over-reasoning and high similarity between consecutive reasoning iterations.

21

