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Abstract—This article investigates a fully distributed inertial
neurodynamic approach for sparse recovery. The approach is
based on proximal operators and inertia items. It aims to solve
the L1-norm minimization problem with consensus and linear
observation constraints over directed communication networks.
The proposed neurodynamic approach has the advantages of only
requiring the communication network to be directed and weight-
balanced, does not involve a central processing node and global
parameters, which means that no single node can access the entire
network and observe it at any time, so it is fully distributed. To
effectively deal with the nonsmooth objective function, L1-norm,
the proximal operator method is used here. For efficiently
handling linear observation and consensus constraints, a primal-
dual method is applied to the inertial dynamic system. With the
aid of maximal monotone operator theory and Baillon–Haddad
lemmas, it reveals that the trajectories of our approach can
converge to consensus solution at the optimal solution, provided
that the distributed parameters satisfy technical conditions. In
addition, we aim to demonstrate the weak convergence of the
trajectories in our proposed neurodynamic approach toward the
zeros of the optimal operator in Hilbert space, using Opial’s
lemma. Finally, comparative experiments on sparse signal and
image recovery confirm the efficiency and effectiveness of our
proposed neurodynamic approach.

Index Terms—Distributed inertial neurodynamic approach,
maximal monotone operator, proximal operator, sparse recovery,
weak convergence.
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I. INTRODUCTION

SPARSE representation serves as a fundamental data sci-
ence method that is used to solve a breadth of problems

in science and engineering. Sparse recovery, as an important
scientific problem in sparse representation, has emerged as one
of research hotspots in signal processing, data analysis and
pattern recognition [1], [2], facial expression recognition [3]
and fault diagnosis [4]. Mathematically, sparse recovery can
be phrased as a constrained nonconvex optimization problem
as follows:

min
x∈Rn

‖x‖0, s.t. Ax = b (1)

where ‖x‖0 is called L0-norm (pseudo-norm), A ∈
R

m×n, (m � n), and b ∈ R
m. Owing to its nonconvexity,

it is NP-hard to obtain a globally optimal solution of the
problem (1). It is known from compressed sensing theory
that when the observation matrix A satisfies certain conditions
(such as, ‖x‖0 = S and every group of 2S columns of A is
linearly independent, or matrix A fulfills the restricted iso-
geometric property (RIP) condition), problem (1) allows for
convex relaxation as L1-norm minimization problem [5]

min
x∈Rn

‖x‖1, s.t. Ax = b. (2)

Problem (2) is convex but nonsmooth that has been
widely exploited for signal and image processing [6], sparse
coding [7]. To resolve the problem (2), many prominent cen-
tralized discrete numerical algorithms have been investigated,
including the proximal point algorithm [8], projection gra-
dient algorithm [9], and orthogonal matching pursuit (OMP)
approach [10].

In addition, an enormous number of neurodynamic
approaches [11], [12], [13], [14], [15] have been proposed
to conduct sparse recovery in a centralized manner due to
their advantage of physical simulation system implementation
and the possibility of using Lyapunov stability theory in con-
vergence analysis. Inspired by the projection neural networks
(PNNs), various continuous and discrete-time neurodynamics
approaches have been studied by Liu and Wang [11] for sparse
recovery by tackling the problem (2). With a combination of
the local competitive algorithm (LCA) and the Lagrangian
programming neural network (LPNN), Feng et al. [12]
proposed a LPNN-LCA for addressing problem (2) but
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only provided a local convergence property of LPNN-LCA.
Later, Wang et al. [13] further investigated an improved
LPNN-LCA framework and gave its global asymptotic sta-
bility property by means of the projection theorem. Recently,
in virtue of the sliding mode techniques, He et al. proposed
two novel neurodynamic approaches for sparse recovery via
minimizing the problem (2), and they have finite-time [14] and
fixed-time [15], [16] convergence rates, respectively.

In recent years, with the ever-increasing size of optimization
problems, distributed neurodynamic approaches have gained
more attractiveness, and are even necessary under some certain
scenarios. Compared to centralized methods, a distinguish-
ing feature of distributed methods is that they require a
communication network to exchange information. Therefore,
the performance of distributed dynamic approaches is highly
dependent on the communication network structure. Recently,
numerous distributed neurodynamic approaches have been
investigated for addressing optimization problems in dis-
tributed manner over undirected or directed communication
networks [17], [18], [19], [20], [21], [22]. Liu and Wang [17]
devised a distributed multiagent neurodynamic approach with
the help of differential inclusion method (i.e., subgradient-
based method) for nonsmooth constrained convex optimization
problems over undirected graphs. Two distributed continuous-
time projection algorithms (DCTAs) based on subgradients
and derivative feedback items have been proposed in [18]
to address nonsmooth convex problems, which have set and
equality constraints over undirected graphs. Le et al. [19]
developed a distributed neurodynamic approach using the
differential inclusion method to tackle nonsmooth convex
optimization problems equipped with both coupled equal-
ity and inequality constraints under undirected networks.
Zhang et al. [38], [39] proposed two novel distributed
optimization algorithms with event-triggered strategy for solv-
ing two-layered model problems in power grids. Yi et al. [20]
investigated a distributed inertial (second-order) dynamical
approach for resolving smooth convex problems with the
consensus of constraints over undirected graphs. Later,
Wei et al. [21] proposed a distributed smooth double proximal
primal-dual continuous-time approach to address distributed
nonsmooth optimization problems with consensus constraints
under undirected graph. In the combination with proximal
operator and Lagrangian methods, Wang et al. [22] proposed
a novel distributed inertial proximal-gradient continuous-
time approach with derivative feedback over undirected
graphs. This approach is designed to solve nonsmooth con-
vex optimization problems that are equipped with consensus
constraints. On the basis of differential inclusion method,
Gharesifard and Cortés [23] proposed a distributed continuous-
time approach for distributed unconstrained nonsmooth convex
problems over directed graphs. Jiang et al. [24] investigated
a distributed continuous-time approach by using differential
inclusion method, which is used to deal with an approxi-
mate nonsmooth distributed constrained (affine equality and
inequality constraints) optimization problem under directed
graph. Wang et al. [25] investigated a second-order primal-dual
projected dynamical approach to effectively address distributed
smooth convex optimization problems subject to consensus

and set constraints over directed networks. Wang et al. [26]
addressed the output consensus problem for heterogeneous
multiagent systems subject to input saturation constraints in
the presence of Markovian randomly switching topologies.
Furthermore, a fully distributed antiwindup control protocol
was proposed in [27] to address the intelligent interconnected
electric vehicle platooning problem, featuring switch topolo-
gies and input saturation capability.

Recently, Zhao et al. [28] made a pioneering effort to
explore the distributed version of problem (2) over undi-
rected graphs. They proposed two distributed neurodynamic
approaches specifically tailored to tackle the problem (2)
for recovering sparse signals. Later, Xu et al. [29] designed
a novel distributed neurodynamic approach with two-layer
structure for solving the distributed version of problem (2) over
undirected graphs. Depending on projection and primal-dual
dynamical methods, Zhao et al. [30] designed two distributed
neurodynamic approaches in continuous and discrete-time
to solve distributed version of the problem (2) for sparse
recovery on the undirected graph. Notably, the distributed
neurodynamic approaches [28], [29], [30] referred to above
can be used effectively to tackle the problem (2) in a
distributed manner but all require the communication topol-
ogy to be undirected. However, in practical applications,
the communication of networks requires directed graphs.
The neurodynamic approaches [28], [29], [30] are designed
with first-order dynamical systems that have slow conver-
gence rates. The above neurodynamic approaches [28], [29],
[30] only provide the asymptotic convergence properties.
In addition, the subgradient-based distributed neurodynamic
approaches [23] and [24] can deal with nonsmooth constrained
convex optimization problems under directed graphs, however
the issue of subgradient selection in sparse recovery a chal-
lenge for these above proposed approaches.

Motivated by the discussion above, we investigate novel
distributed neurodynamic methods with inertial term for sparse
recovery by solving the problem (2) over directed graphs.
Furthermore, this article presents four major contributions,
which are summarized as follows.

1) A novel fully distributed inertial proximal neurody-
namic approach (DIProx-NA) is proposed to address the
problem (2) in a distributed way for sparse recovery.
Compared with the existing works [28], [29], [30], the
DIProx-NA is an inertial dynamical system. Moreover,
the communication graph can be directed in here, and it
is more general as compared to the undirected graph.

2) To deal with the nonsmooth objective function
(i.e., L1-norm), we utilize the proximal operators
instead of the subgradients (i.e., differential inclusion
method) [17], [18], [23], and [24], which can effectively
address the challenge of selecting an appropriate subgra-
dient at a nondifferentiable point. Furthermore, selecting
a fixed subgradient is not optimal since this method
does not guaranteed that the optimal solution is a stable
equilibrium point.

3) Instead of using global parameters in the algorithms
designing [20], [21], [23], [24], and [25], the parameters
of our DIProx-NA are fully distributed. Additionally, we
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also derive a sufficient condition for all the distributed
parameters in DIProx-NA.

4) By means of Opial’s lemma, we exhibit the trajectories
of DIProx-NA asymptotically and weakly converge to
the optimal solution set in Hilbert space. As far as
we know, this is the first study that guarantees weak
convergence of the trajectories derived from distributed
neurodynamic approaches.

This article is constructed as follows. Necessary prelimi-
naries are offered in Section II. In Section III, a distributed
optimization problem of the problem (2) under directed graphs
with weight-balanced is studied. In Section IV, the DIProx-NA
is developed, and the existence, uniqueness, global conver-
gence, and weak convergence of solutions are thoroughly
discussed. Additionally, signal and image recovery examples
are presented in Section V to showcase the effectiveness of
DIProx-NA. Finally, this article concludes with a summary of
the findings in Section VI.

Notations: For column vectors x ∈ R
n and y ∈ R

n, xT is the
transpose of x. For x1, . . . , ., xn ∈ R

m, x = col(x1, . . . , xn) ∈
R

nm is the stacked column of them. ⊗ denotes the Kronecker
product. IRm is an indicator function, i.e., IRm(u) = 0, if u ∈
R

m and IRm(u) = +∞, if u /∈ R
m. Denote In ∈ R

n×n as
a n × n identity matrix. A � 0 (A 	 0) represents that the
symmetric matrix A is positive semidefinite (definite). A � B,
A 	 B hold if A−B � 0, A−B 	 0 are satisfied, respectively.
For matrices A1 ∈ R

p1×q1 and A2 ∈ R
p2×q2 , bldiag{A1, A2} ∈

R
(p1+p2)×(q1+q2) means the block diagonal matrix of A1 and

A2; δmax(A1) denotes the maximum singular (eigenvalue) value
of A1 (p1 = q1). β̄ = max1�i�p{βi}, ᾱ = max1�i�p{αi},
θ̄ = max1�i�p{θi}, γ̄ = max1�i�p{γi}, β = min1�i�p{βi},
α = min1�i�p{αi}, θ = min1�i�p{θi}, γ = min1�i�p{γi}.
γ μ denotes the parameter matrix γ of the multiplication with
respect to variable μ. Define Id as an identity operator. For
operator H : R

2mn+p ⇒ R
2mn+p, we say H is nonexpansive

if ‖H(z) − H(ẑ)‖ � ‖z − ẑ‖ ∀z, ẑ ∈ R
2mn+p holds, and is

contractive if it satisfies ‖H(z) − H(ẑ)‖ < ‖z − ẑ‖ ∀z, ẑ ∈
R

2mn+p. zer H = {z ∈ R
2mn+p|0 ∈ H(z)}. Lq([0,+∞)), q >

0 is a set of q-times Lebesgue integrable function on region
[0,+∞). Note that the symbols 0 and 1, respectively, are a
scalar or a vector, which can be obtained depending on the
context of this article.

II. PRELIMINARIES

A. Restricted Isometry Property

Definition 1 [36]: For any signal x with S-sparsity, we
claim the matrix A fulfills RIP condition, if

(1 − σS)‖x‖2 ≤ ‖A x‖2 ≤ (1 + σS)‖x‖2

where σS ∈ (0, 1).

B. Convex Functions and Subdifferential

Definition 2 [37]:
1) g : Rn → R is a nonsmooth and convex function, then

it fulfills

g(x) � g(y) + ξT(x − y) ∀ x, y ∈ R
n (3)

where ξ means the subgradient of g at y.

2) The subdifferential ∂g(x) is a set that encompasses all
subgradients in the following way:

∂g(x) = {
ξ ∈ R

n|g(x) − g(y) � ξT(x − y) ∀x ∈ R
n}

.

(4)

C. Proximal Operator

Definition 3: If g is proper, lower semi-continuous and
convex, the proximal operator proxg(u) is denoted as

proxg(u) = arg min
v∈Rn

{
g(v) + 1

2
‖v − u‖2

}

= (In + ∂g)−1u (5)

where ‖ · ‖ is the Euclidean norm.
Lemma 1 [32]: Suppose g is a proper, lower semi-

continuous, and convex function. Then, the proximal operator
proxg is a unique nonexpansive mapping. In simpler terms,
for any u, v ∈ R

n, we have the following inequality:
∥∥proxg(u) − proxg(v)

∥∥ � ‖u − v‖. (6)

Lemma 2 [32]: If g(v) = ‖v‖1, the proximal operator
proxg(u) has a closed-form solution, i.e.,

prox‖·‖1
(u) = [

prox‖·‖1
(u1), . . . , prox‖·‖1

(un)
]

prox‖·‖1
(ui) = sign(ui) max{|ui| − 1, 0}. (7)

D. Algebraic Graph Theory

Define a directed graph of multiagents by G = (V, E,A),
where V = (ν1, . . . , νn) denotes the agents or vertexes’ sets,
E ⊆ V × V represents the set of edges consisting of the
communication among all agents, and A = {aij} ∈ R

n×n

denotes the adjacency matrix. An edge eij ∈ E indicates
that agent i can get information from agent j. Note that
aij > 0 if eij ∈ E; aij = 0, otherwise. If agent i and agent
j has a directed path, it is represented by a sequence of
edges in the form (i, i1), (i1, i2) · · · (ik, j). A digraph is called
strongly connected if there exists a directed path for any pair
of different agents. The in-degree and out-degree of agent i
are marked by din(i) = ∑

j∈Ni
aij and dout(i) = ∑

j∈Ni
aji,

respectively, where Ni = {j ∈ V|(i, j) ∈ E}. For digraph G, let
Din = diag{din(1), . . . , din(n)} be the in-degree matrix, then,
its Laplacian matrix is Ln = Din − A, and it satisfies Ln1 =
0. The digraph G is weight-balanced if and only if din(i) =
dout(i), which directly implies 1TLn = 0.

E. Auxiliary Lemmas of Convergence

The following lemmas play a critical part in proving the
convergence of the trajectories of our proposed DIProx-NA in
this article.

Lemma 3 [33]: Let F(t), t ∈ [0,+∞) be locally abso-
lutely continuous and bounded below, then there is Ψ (t) ∈
L1([0,+∞)), i.e.,

∫ +∞
0 Ψ (t)dt < +∞, such that

d

dt
F(t) � Ψ (t) ∀ t ∈ [0,+∞). (8)

Subsequently, the limt→+∞F(t) ∈ R exists.
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Lemma 4 [33]: If 1 � q < ∞, 1 � r � ∞ and F is
locally absolutely continuous, F(t) ∈ Lq([0,+∞)), Ψ (t) ∈
Lr([0,+∞)), and

d

dt
F(t) � Ψ (t) ∀ t ∈ [0,+∞). (9)

Then, there exists limt→+∞F(t) = 0.
The following lemma is called as the continuous version of

Opial’s lemma.
Lemma 5 [34] (Opial’s Lemma): Let S ⊆ R

n be a
nonempty set and x(t) ∈ R

n be a given operator. The following
statements are true:

1) limt→+∞‖x(t) − x∗‖ exists ∀ x∗ ∈ S;
2) every weak sequential cluster point of the map x belongs

to S, then there exists x∞ ∈ S such that x(t) converges
weakly to x∞ as t → +∞.

Lemma 6 (Gronwall’s Inequality): Let π : [a, b] → R

be continuous and 
 : [a, b] → R be continuous and non-
negative. If a continuous function x : [a, b] → R satisfies

x(t) � π(t) +
∫ t

a

(s)x(s)ds (10)

for a � t � b, then on the same interval

x(t) � π(t) +
∫ t

a
π(s)
(s)e

∫ t
s 
(τ)dτ ds. (11)

In particular, if π(t) ≡ π is a constant, then, one has

x(t) � πe
∫ t

s 
(τ)dτ . (12)

If, in addition, 
(t) ≡ 
 � 0 is a constant, then

x(t) � πe
(t−a). (13)

III. PROBLEM TRANSFORMATION

It is noteworthy that the problem (2) does not adhere to
the standard format of a distributed optimization problem. In
order to tackle this problem using a distributed approach, we
first transform it into a distributed version. In this section, we
will discuss how to turn the problem (2) into a distributed
constrained consensus problem under directed graphs.

Assumption 1: The communication graph G of multiagents
is connected and weight-balanced.

Remark 1: Note that the Assumption 1 implies that Lp1 =
0, 1TLp = 0 of a p-agents network. Consequently, the
condition x1 = x2 = · · · = xp ∈ R

n holds if and only if
Lx = Lp ⊗ Inx = 0, where x = col(x1, x2, . . . , xp) ∈ R

pn.
Assumption 2 [28]: The matrix A has a full row-rank.
Taking the matrix A by rows, we split it as shown in Fig. 1,

where Ai ∈ R
mi×n represents the ith row subblock in matrix A,

then, one has
∑p

i=1 mi = m. Furthermore, the observed value
b can be decomposed as b = (bT

1 , . . . , bT
p )T ∈ R

m. By the
properties of row splitting of matrix A and G in Assumption 1,
the equation Ax = b can be equivalent to

Ax = b, Lx = 0 ∈ R
pn (14)

where b ∈ R
m, A ∈ R

m×pn, x = col(x1, . . . , xp) ∈ R
pn (see

Fig. 2), L = Lp ⊗ In, and Lp ∈ R
p×p.

Fig. 1. A is divided into p blocks by rows.

Fig. 2. Matrix A, x, and b.

Lemma 7: Assume that Assumptions 1 and 2 are fulfilled,
according to the condition (14), problem (2) can be equiv-
alently formulated as the following distributed constrained
optimization problem:

min
x∈Rpn

‖x‖1, s.t. Ax = b, Lx = 0. (15)

Proof: The proof is inspired by Theorem 3 in [28]. Note
that the directed graph G is weight-balanced, then, 1TL = 0
and L1 = 0. Define x̄ = 1 ⊗ x ∈ Rpn and Ax = b, one has

Lx̄ = (
Lp ⊗ In

)
x̄ = (

Lp ⊗ In
)
(1 ⊗ x)

= (
Lp1

) ⊗ (Inx) = 0,

Ax̄ =
p∑

k=1

Amkx̄k =
p∑

k=1

Amkx = Ax = b.

Conversely, based on the properties of Kronecker product, it
has that Lx̄ = (Lp ⊗In)x̄ = (Lp ⊗In)vec(X) = vec(InXLp) with
vec(ABC) = (CT ⊗ A)vec(B), X = (x1, . . . , xp) ∈ R

n×p and
x̄ = vec(X). Since Lx̄ = 0, such that InXLp = 0 and LpXT =
0, and 1 is the right eigenvector of Lp which corresponds to a
unique zero eigenvalue due to G is weight-balanced. Therefore,
XT = αT ⊗ 1, where � = (�1, . . . , �n)

T ∈ R
n is a column

vector. It follows that X = � ⊗ 1T . Then each column vector
x̄i of x̄ satisfies x̄i = �. Therefore, we have x̄i = α. Therefore,
the proof is thereby completed.

IV. DISTRIBUTED INERTIAL PROXIMAL NEURODYNAMIC

APPROACH FOR PROBLEM (15) UNDER DIRECTED GRAPHS

To tackle the problem (15) in a fully distributed manner
under directed graphs, we present a DIProx-NA as follows.
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For agent i, (i = 1, . . . , p), the DIProx-NA is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẍi(t) + γiẋi(t) + θi

(
xi(t) − Prox(‖·‖1)i

(
xi(t)

−αi
∑

j∈Ni
aij

(
xi(t) − xj(t)

) − βiAT
i (Aixi(t) − bi)

− AT
i λi(t) − ∑

j∈Ni
aji

(
μi(t) − μj(t)

)))
= 0

λ̈i(t) + γiλ̇i(t) − θi(Aixi − bi) = 0}
μ̈i(t) + γiμ̇i(t) − θi

∑
j∈Ni

aij
(
xi(t) − xj(t)

) = 0

(16)

where xi ∈ R
n is the primal variable and λi ∈ R

mi , μi ∈ R
n

are dual (Lagrange multiplier) variables, and γi, θi, αi, and
βi > 0, and how to choose them is discussed in detail later
(see Theorem 3).

The compact form of DIProx-NA is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ(t) + γ ẋ(t) + θ
(
x(t) − Prox‖·‖1(x(t) − αLx(t)

− βAT(Ax(t) − b) − ATλ(t) − LTμ(t)
)) = 0

λ̈(t) + γ λ̇(t) = θ(Ax(t) − b)

μ̈(t) + γ μ̇(t) = θLx(t)

(17)

where x ∈ R
pn is the primal variable and λ ∈ R

m,
μ ∈ R

pn are dual (Lagrange multiplier) variables, γ =
bldiag{γ 1, . . . , γ p} ∈ R

pn×pn, θ = bldiag{θ1, . . . , θp} ∈
R

pn×pn. γ i = γiIn and θ i = θiIn if γi and θi are the multipliers
of the variables x(t) and μ(t). Moreover, γ i = γiImi and
θ i = θiImi if bothγi and θi are the multipliers of the variable
λ(t), α = bldiag{α1, . . . ,αp} ∈ R

pn×pn, αi = αiImi , β =
bldiag{β1, . . . ,βp} ∈ R

pn×pn and β i = βiIn, i = 1, . . . , p.
In the following theorem a relation is provided between the

optimal solution of the problem (15) and the equilibrium point
of DIProx-NA (16).

Remark 2: In the problem (2) or problem (13), the L1-norm
(objective function) is convex but nonsmooth, the subgradient-
based method may be a good choice, however it suffers from
the difficulty of subgradient selection at the nondifferentiable
point, i.e., there exists no exact single-valued gradient of
L1-norm at 0.

For example:
1) let A = [1, (3/4)], b = 3, the optimal sparse solution

is x∗ = (3, 0)T . According to the KKT condition of
problem (2), one has ∂|x1| + λ = 0; ∂|x2| + (3/4)λ =
0; (x1 + (3/4)x2) = 3, which become ∂|x∗

1| = −λ =
1, ∂|x∗

2| = −(3/4)λ = (3/4), (i.e., we should choose
a suitable subgradient ∂|x2| = (3/4)) at the optimal
solution x∗ = (3, 0)T and

2) let A = [1, (3/5)], b = 3, we should choose a suitable
subgradient ∂|x2| = (3/5) at the optimal solution x∗ =
(3, 0)T .

Similarly, in the case where an optimal point contains
multiple zero elements, using a fixed subgradient is not
suitable.

To overcome this issue of fixed subgradient selection, an
approximation operator of L1-norm, i.e., soft threshold is used
to adaptive capture the subgradient of L1-norm in DIProx-
NA (15), which can effectively avoid the subgradient selection
problem.

Fig. 3. Relationship between subgradient ∂|xi| and proximal operator
Prox|·|(wi).

Denote ∂‖x‖1 = (∂|x1|, . . . , ∂|xpn|)T , where

∂‖xi‖1 =

⎧
⎪⎨

⎪⎩

1, xi > 0

[−1, 1], xi = 0,

−1, xi < 0.

i = 1, . . . , pn

Let wi = xi + ∂‖xi‖1, i.e., wi =

⎧
⎪⎨

⎪⎩

xi + 1, xi > 0

[−1, 1], xi = 0,

xi − 1, xi < 0

, thus,

we can obtain that xi =

⎧
⎪⎨

⎪⎩

wi − 1, wi > 1

0, w ∈ [−1, 1]

wi + 1, wi < −1

(see Fig. 3).

Note that xi = Prox|·|(wi) = arg minwi
{|xi| + (1/2)(xi −

wi)
2} = (1 + ∂‖ · ‖1)

−1wi adaptively updates according to
the variable wi. Hence, it is possible to address the issue of
subgradient selection with the use of the projection operator,
i.e., our proposed DIProx-NA is suitable for the considered
problem (13).

Theorem 1: If Assumptions 1 and 2 hold and x∗ ∈ R
pn be

the optimal solution for the problem (15) if and only if there
exists μ∗ ∈ R

pn and λ∗ ∈ R
pn, such that col(x∗, λ∗, μ∗) is the

equilibrium point of DIProx-NA (16).
Proof: Necessity: x∗ is optimal of problem (15) from the

Karush–Kuhn–Tucker (KKT) conditions that if and only if
there exist λ∗ and μ∗ that fulfill the following conditions:

∂
∥∥x∗∥∥

1 + ATλ∗ + LTμ∗ � 0 (18a)

Ax∗ = b, Lx∗ = 0. (18b)

Add x∗ to both sides of (18a) and arrange it, one has

x∗ + ∂
∥∥x∗∥∥

1 � x∗ − ATλ∗ − LTμ∗. (19)

The conditions Ax∗ = b (i.e., AT(Ax∗ − b) = 0), Lx∗ = 0
and α, β 	 0 imply that αLx∗ + βAT(Ax∗ − b) = 0, which is
added in the right-hand of (19) and yields

x∗ + ∂
∥∥x∗∥∥

1 � x∗ − ATλ∗ − LTμ∗

−αLx∗ + βAT(
Ax∗ − b

)
(20)

then, by the aid of condition (5), (19) becomes

x∗ = prox‖·‖1

(
x∗ − ATλ∗ − LTμ∗

−αLx∗ − βAT(
Ax∗ − b

))
. (21)

Combining (18b) with (21), one obtains that the optimal
solution of problem (15) is an equilibrium of (16), i.e., (17).
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Sufficiency: Let col(x̄, λ̄, μ̄) ∈ R
2pn+m is an equilibrium

point of (16), i.e., (17), then col(x̄, λ̄, μ̄) satisfies

x̄ = prox‖·‖1
(x̄ − AT λ̄ − LT μ̄

−αLx̄ − βAT(Ax̄ − b)) (22a)

Lx̄ = 0, Ax̄ = b. (22b)

From (5) and, (21) can be written as

x̄ + ∂‖x̄‖1 � x̄ − AT λ̄ − LT μ̄ − αLx̄ + βAT(Ax̄ − b).

Note that, the conditions Lx̄ = 0, Ax̄ = b in (22b)
and α 	 0, β 	 0 imply αLx̄ = 0, βAT(Ax̄ − b) = 0.
Therefore, (22) can be reduced to

∂‖x̄‖1 + AT λ̄ + LT μ̄ � 0

Lx̄ = 0, Ax̄ = b. (23)

which coincides with the KKT conditions of problem (15),
thus the equilibrium point col(x̄, λ̄, μ̄) ∈ R

2pn+m is the optimal
solution of the optimization problem (15) due to the convexity
of problem (15). Therefore, the Sufficiency holds. In summary,
the proof is completed, i.e., Theorem 1 holds.

Remark 3: The choice of parameter for the soft thresh-
olding depends on the coefficients in front of the objective
function ‖x‖1 in (15). It is worth noting that multiplication of
a non-negative constant in front of the objective function ‖x‖1
in optimization problem (15) does not affect the its optimal
solution, that is, the soft threshold can be chosen as ρ > 0,
i.e., the objective function in optimization problem (15) is
multiplied in front by a parameter ρ > 0. However, when
a specific parameter ρ > 0 is chosen as the soft threshold,
each agent must adopt the global parameter ρ > 0 as the
threshold for computation. This destroys the fully distributed
characteristic of the neurodynamic approach.. In this article,
there is no specific parameter set in front of the objective
function ‖x‖1 in the optimization problem (15) (the default
is 1), accordingly every agent can choose its own soft threshold
parameter 1 according to its own objective function (without
a specific setting of the global parameter), and there is no
global parameter used, so it can be effective to realize the fully
DIProx-NA.

Next, we show the convergence analysis of DIProx-NA (17).
However, before performing convergence analysis of DIProx-
NA (17), we need to give two important lemmas that act as
an key role in convergence analysis.

Let z = col(x, λ, μ) ∈ R
2pn+m, then, the DIProx-NA (17)

is equivalent to

z̈(t) + ���ż(t) + ���
(
z(t) − Proxf(z(t)−G(z(t))

) = 0

where

Proxf =
⎡

⎣
Prox‖·‖1

ProxIRm

ProxIRpn

⎤

⎦ : R2pn+m → R
2pn+m

G(z(t)) =
⎛

⎝
αLx(t) + βAT(Ax(t) − b) + ATλ(t) + LTμ(t)

−(Ax(t) − b)

−Lx(t)

⎞

⎠.

��� = bldiag(γ x, γ λ, γ μ) ∈ R
(2pn+m)×(2pn+m) and ��� =

bldiag(θx, θλ, θμ) ∈ R
(2pn+m)×(2pn+m).

Furthermore, defining two operators T(z) = Proxf(z−G(z))
and H(z) = z − T(z). Then, the DIProx-NA (17) becomes

z̈(t) + ���ż(t) + ���(H(z(t))) = 0. (24)

Lemma 8: If 2δmax(A) + β̄δmax(AT A)+√
(ᾱ2 + ᾱ + 1)δmax(LT L)

∈ (0, 2], i.e., [(34) and (35) hold], then the operator T is
nonexpansive.

Proof: Because the proximal operator Proxf in Lemma 1 is
nonexpansive, one has

∥∥T(z) − T
(
ẑ
)∥∥2

= ∥∥Proxf(z − G(z)) − Proxf
(
ẑ − G

(
ẑ
))∥∥2

�
∥∥z − G(z) − ẑ + G

(
ẑ
)∥∥2

= ∥∥z − ẑ
∥∥2 + ∥∥G

(
ẑ
) − G(z)

∥∥2

+2(z − ẑ)T(G
(
ẑ
) − G(z)). (25)

For ‖G(ẑ) − G(z)‖, we have
∥∥G

(
ẑ
) − G(z)

∥∥

=
∥∥∥∥∥∥

αL
(
x − x̂

) + βATA
(
x − x̂

)

−A
(
x − x̂

)

−L
(
x − x̂

)

+AT
(
λ − λ̂

)
+ LT

(
μ − μ̂

)

0
0

∥∥∥∥∥∥∥

�

∥∥∥∥∥∥∥

AT
(
λ − λ̂

)
+ βATA

(
x − x̂

)

−A
(
x − x̂

)

0

∥∥∥∥∥∥∥

∥∥z − ẑ
∥∥

+
∥∥∥∥∥∥

⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

∥∥∥∥∥∥

∥∥z − ẑ
∥∥

�

⎛

⎝2δmax(A) + β̄δmax
(
ATA

) +
∥∥∥∥∥∥

⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

∥∥∥∥∥∥

⎞

⎠

× ∥∥z − ẑ
∥∥. (26)

In addition, for

∥∥∥∥∥∥

⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

∥∥∥∥∥∥
, one has

∥∥∥∥∥∥

⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥

⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

T⎡

⎣
αL 0 LT

0 0 0
−L 0 0

⎤

⎦

∥∥∥∥∥∥∥

=
∥∥∥∥∥∥

⎡

⎣
LT

(
α2

)
LT − L2 0 LTαLT

0 0 0

−LTαL 0 −(
LT

)2

⎤

⎦

∥∥∥∥∥∥

�
(
ᾱ2 + ᾱ + 1

)
δmax

(
LTL

)
(27)

which further implies
∥∥∥∥∥∥

⎡

⎣
αL 0 L
0 0 0

−L 0 0

⎤

⎦

∥∥∥∥∥∥
�

√(
ᾱ2 + ᾱ + 1

)
δmax

(
LTL

)
. (28)
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Substituting (28) in (26), one obtains
∥∥G(z) − G

(
ẑ
)∥∥ �

(
2δmax(A) + β̄δmax

(
ATA

)

+
√(

ᾱ2 + ᾱ + 1
)
δmax

(
LTL

))∥∥z − ẑ
∥∥ (29)

which implies that ‖G(z) − G(ẑ)‖ is Lipschitz continuous.
Note that G(z) is monotonic of z since it fulfills

(
G(z) − G

(
ẑ
))T(

z − ẑ
) = (

x − x̂
)T

αL
(
x − x̂

)

+(
x − x̂

)T
ATA

(
x − x̂

)
� 0.

Based on Baillon–Haddad lemma [35], one has
〈
ẑ − z, G

(
ẑ
) − G(z)

〉

� 1

2δmax(A) + β̄δmax
(
ATA

) +
√(

ᾱ2 + ᾱ + 1
)
δmax

(
LTL

)

× ∥∥G
(
ẑ
) − G(z)

∥∥2
. (30)

Moreover, note that if 2δmax(A) + β̄δmax(ATA) +√
(ᾱ2 + ᾱ + 1)δmax(LTL) ∈ (0, 2], one has

∥∥G(z) − G
(
ẑ
)∥∥2 + 2

〈
z − ẑ, G

(
ẑ
) − G(z)

〉
� 0. (31)

Inserting (31) into (25), we obtain
∥∥T(z) − T

(
ẑ
)∥∥ �

∥∥z − ẑ
∥∥ (32)

i.e., the operator T is nonexpansive.
Remark 4: The operator T is nonexpansive and dependent

on the parameters ᾱ, β̄ and δmax(ATA). Applying the basic
matrix parametric inequality, we deduce that

δmax
(
LTL

) = ‖L‖2 � ‖L‖1‖L‖∞

�

⎛

⎝max
i

n∑

j=1

∣∣aji
∣∣

⎞

⎠

⎛

⎝max
i

n∑

j=1

∣∣aij
∣∣

⎞

⎠ = 4
(
dmax

in

)2

(33)

where dmax
in = maxi∈V dmax

in (i) and the last equality holds due
to dmax

in = dmax
out .

For parameters ᾱ and β̄. According to
(
ᾱ2 + ᾱ + 1

)
δmax

(
LTL

)
�

(
2 − 2δmax(A) − β̄δmax

(
ATA

))2

one has

0 < ᾱ �

√
4(2−2δmax(A)−β̄δmax(AT A))

2

δmax(LT L)
− 3 − 1

2
(34)

when the β̄ satisfies

⎡

⎣ 2

δmax
(
ATA

) − 2δmax(A)

δmax
(
ATA

) +
√

1
δmax(LT L)

δmax
(
ATA

)

⎤

⎦

+

< β̄. (35)

Combining (33)–(35), we have the conclusion that if param-
eters ᾱ, β̄ satisfy

β̄ ∈
([

2

δmax
(
ATA

) − 2δmax(A)

δmax
(
ATA

)

+ 1

2
(
dmax

in

)
δmax

(
ATA

)

]+
,+∞

)

ᾱ ∈

⎛

⎜⎜
⎝0,

√
(2−2δmax(A)−β̄δmax(AT A))

2

(dmax
in )

2 − 3 − 1

2

⎞

⎟⎟
⎠ (36)

the operator T is contractive, thus, T is nonexpansive.
Lemma 9: If operator T is nonexpansive, then operator

H = Id − T is maximal monotone and (1/2)-coercive, i.e.,

(
H(z) − H

(
ẑ
))T(

z − ẑ
)
� 1

2

∥∥H(z) − H
(
ẑ
)∥∥2 ∀z, ẑ ∈ R

2pn+m

(37)

where (37) implies operator H is 2-Lipschitz.
Proof: For any z, ẑ ∈ R

2pn+m, by a direct calculation, we
get

(
H(z) − H

(
ẑ
))T(

z − ẑ
) − 1

2

∥∥H(z) − H
(
ẑ
)∥∥2

= (
z − T(z) − ẑ + T

(
ẑ
))T(

z − ẑ
) − 1

2

∥∥z − ẑ
∥∥2

− 1

2

∥∥T(z) − T
(
ẑ
)∥∥2 + (

z − ẑ
)T(

T(z) − T
(
ẑ
))

= 1

2

∥∥z − ẑ
∥∥2 − 1

2

∥∥T(z) − T
(
ẑ
)∥∥2 � 0 (38)

where the last inequality is satisfied from Lemma 7.
Theorem 2: There is a unique solution of z(t) of DIProx-

NA (24) with any initial values z0 ∈ R
2pn+m and ż0 ∈ R

2pn+m.
Proof: Note that DIProx-NA (24) could be equivalently

converted to the following first-order dynamical system:

ż(t) = �(z(t))

�(z(t)) =
(

W(t)
���W(t) + ���(H(z(t)))

)
. (39)

Let z1 = (z1, W1), z2 = (z2, W2) ∈ R
4pn+2m be two solutions

of DIProx-NA (39) with the same initial values z0 ∈ R
2pn+m.

Assume that there exist t̃ > 0 and z1(t) �= z2(t), then z1(t) �=
z2(t) for ∀t ∈ [t̃, t̃ + υ] with υ > 0. And denote

�
(
zk(t)

)
=

(
Wk(t)

���Wk(t) + ���
(
H

(
zk(t)

))
)

∀k = 1, 2.

First, for ∀ t ∈ [0, t̃ + υ], we show
∥∥∥�

(
z1(t)

)
− �

(
z2(t)

)∥∥∥

�
∥∥∥W1(t) − W2(t)

∥∥∥ +
∥∥∥���W1(t) − ���W2(t)

∥∥∥

+
∥∥∥���

(
H

(
z1(t)

))
− ���

(
H

(
z2(t)

))∥∥∥

�
(
1 + γ̄ + 2θ̄

)∥∥∥z1(t) − z2(t)
∥∥∥.

Setting V(t) = (1/2)‖z1(t) − z2(t)‖2, then, it yields

V̇(t) =
(
z1(t) − z2(t)

)T(
�

(
z1(t)

)
− �

(
z2(t)

))

≤ (
1 + γ̄ + 2θ̄

)∥∥∥z1(t) − z2(t)
∥∥∥

2
(40)
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then, we get z1(t) = z2(t) for ∀t ∈ [0, t̃ + υ]. Integrating the
above inequality (40) from 0 to t(� t̃ + υ), we have z1(t) =
z2(t) for ∀ t ∈ [0, t̃ + υ] by using Gronwall’s inequality in
Lemma 6. Therefore, a unique solution z(t) exists, for ∀ t ∈
[0, t̃ + υ]. Furthermore, from the theorem on the extension of
a solution, z(t) is exists for t ∈ [0,+∞], thus, the proof is
completed.

Theorem 3: If

1):0 < γ � γi
1�i�p

� γ̄

2):0 < θ � θi
1�i�p

� θ̄

3):γ �

√
2θ̄2(1 + ω)

θ
, ω > 0 (41)

holds, then one has:
1) x(t), λ(t), μ(t) generated by DIProx-NA (17) are

bounded and ż(t), z̈(t) and H(z(t)) ∈ L2([t0,+∞));
2) limt→+∞z̈(t) = 0, limt→+∞z(t) = 0, and

limt→+∞H(z(t)) = 0, which means DIProx-NA (17) is
convergent.

Proof: 1) Let z∗ ∈ R
2pn+m be the optimal solution of

DIProx-NA (17), i.e., 0 ∈ Zer H. Set hk(t) = (1/2)‖zk(t) −
zk

∗‖2, h(t) = col(h1(t), . . . , h2pn+m(t)), we have

ḣk(t) = (
zk(t) − zk

∗)T
żk(t)

ḧk(t) = ‖żk(t)‖2 + (
zk(t) − zk

∗)T
z̈k(t). (42)

It follows that, for any k = 1, . . . , 2pn + m, one has:

ḧk(t) + γk(t)ḣk(t)

= ‖żk(t)‖2 + (
zk(t) − zi

∗)T
(z̈k(t) + γkżk(t)). (43)

By summing (43) from k = 1 to k = 2pn+m and combining
with DIProx-NA (17), we have

1T ḧ(t) + 1T���(t)ḣ(t) + (
z(t) − z∗)T

���(H(z(t))) = ‖ż(t)‖2.

(44)

Since H(z∗) = 0, then (43) becomes

1T ḧ(t) + 1T���ḣ(t) + (
z(t) − z∗)T

���
(
H(z(t)) − H

(
z∗))

= ‖ż(t)‖2. (45)

According to Lemma 8 and ��� � θ I2np+m, we have (z(t) −
z∗)T���(H(z(t)) − H(z∗)) � (θ/2)‖H(z(t))‖2, with H(z∗) = 0
it yields

1T ḧ(t) + 1T���(t)ḣ(t) + θ

2 ‖H(z(t))‖2 � ‖ż(t)‖2. (46)

From (24), (46) reduces to

1T ḧ(t) + 1T���ḣ(t) + θ

2

∥∥∥���−1(z̈(t) + ���ż(t))
∥∥∥

2
� ‖ż(t)‖2 (47)

and it implies

1T ḧ(t) + 1T���ḣ(t) + θ

2θ̄2
‖z̈(t)‖2

+
(

γ 2θ

2θ̄2
− 1

)

‖ż(t)‖2 + θ

θ̄2
z̈(t)T(���ż(t)) � 0. (48)

Combining (48) with the following two conditions:

z̈(t)T���ż(t) = 1

2

d

dt

(
ż(t)T���ż(t)

)
(49)

and
d

dt

(
1T���h(t)

) = 1T���ḣ(t) (50)

we get

1T ḧ(t) + d

dt

(
1T���h(t)

) + θ

2θ̄2
‖z̈(t)‖2

+
(

γ 2θ

2θ̄2
− 1

)

‖ż(t)‖2 + θ

2θ̄2

d

dt

(
ż(t)T���ż(t)

)
� 0. (51)

Since γ �
√

[(2θ̄2(1 + ω))/(θ)] with ω > 0, i.e.,

γ 2θ

2θ̄2
− 1 � ω > 0. (52)

Therefore, the inequality (51) yields

1T ḧ(t) + d

dt

(
1T���h(t)

) + θ

2θ̄2

d

dt

(
ż(t)T���ż(t)

)
� 0 (53)

which indicates that the function 1T ḣ(t) + 1T���h(t) +
(θ/2θ̄2)ż(t)T���ż(t) is monotonically decreasing. Therefore,
there is a positive constant M, such that

1T ḣ(t) + 1T���h(t) + θ

2θ̄2
ż(t)T���ż(t)

� 1T ḣ(t0) + 1T���h(t0) + θ

2θ̄2
ż(t0)

T���ż(t0) = M (54)

which further implies

1T ḣ(t) + γ 1Th(t) � M (55)

since 1T ḣ(t) + γ 1Th(t) � 1T ḣ(t) + 1T���h(t).
By multiplying (55) with eγ t and then integrating it from

t0 ∈ [0, t) to t, we get

1Th(t) �

(
1 − e

γ
(

t0
t

))
M

γ
+ eγ t0 1Th(t0)

� M

γ
+ eγ t01Th(t0) (56)

thus, it can be concluded that 1Th(t) is bounded, implying that
x(t), λ(t) and μ(t) are bounded.

Conversely, from (53), we obtain

1T ḣ(t) + θ

2θ̄2
ż(t)T���ż(t)

= ż(t)T(
z(t) − z∗) + θ

2θ̄2
ż(t)T���ż(t) � M (57)

which together with the boundedness of z(t) implies ż(t) is
bounded, and furthermore, obtaining 1T ḣ(t) is bounded.

Recalling (51), one has

1T ḧ(t) + d

dt

(
1T���h(t)

) + θ

2θ̄2
‖z̈(t)‖2

+ω‖ż(t)‖2 + θ

2θ̄2

d

dt

(
ż(t)T���ż(t)

)
� 0. (58)
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Integrating (58) from t0 to t, which gives us that there is a
N > 0, such that

1T ḣ(t) + 1T���h(t) + θ

2θ̄2

∫ t

t0
‖z̈(s)‖2ds

+ω

∫ t

t0
‖ż(s)‖2ds + θ

2θ̄2
ż(t)T���ż(t)

� 1T���h(t0) + 1T ḣ(t0) + θ

2θ̄2
ż(t0)

T���ż(t0) = N (59)

which complies with the boundedness of 1T ḣ(t) and implies
that ż(t), z̈(t) ∈ L2([t0,+∞)), i.e.,

∫ +∞
t0

ż(t)dt < +∞,
∫ +∞

t0
z̈(t)dt < +∞.

It further implies H(z(t)) ∈ L2([t0,+∞)), i.e.,
∫ +∞

t0
‖H(z(s))‖2ds < +∞.

2) One has

d

dt

(
1

2
‖ż(t)‖2

)
= ż(t)T z̈(t)

� 1

2
‖ż(t)‖2 + 1

2
‖z̈(t)‖2 ∀ t ∈ [t0,+∞) (60)

and it togethers with Lemma 4 gives that limt→+∞ ż(t) = 0.
Next, let us prove limt→+∞ H(z(t)) = 0. Writing DIProx-

NA (24) at time t and t + ε with ε > 0, and setting yε(t) =
(1/ε)(ż(t+ε)− ż(t)), ÿε(t) = (1/ε)(z̈(t+ε)− z̈(t)) and Υε(t) =
(1/ε)(H(z(t + ε)) − H(z(t))), we have

ẏε(t) + ���yε(t) = �(Υε(t)). (61)

Since the operator H is 2-Lipschitz in Lemma 8, then

Υε(t) �
2

ε
‖z(t + ε) − z(t)‖ � 2 sup

s∈[t,+∞)

‖ż(s)‖ = g(t). (62)

Note that limt→+∞ ż(t) = 0, we have limt→+∞ g(t) = 0.
Integrate (61) from t0 to t and we can get

‖yε(t)‖
�

(
e���t���

)−1
∫ t

t0
e���sΥε(s)ds +

(
e���t

)−1
e���t0‖yε(t0)‖ (63)

which implies limt→+∞(supε>0 ‖yε(t)‖) = 0 as t →
+∞. Since ‖z̈(t)‖ � supε>0 ‖yε(t)‖, we deduce that
limt→+∞ z̈(t) = 0.

Furthermore, for any t ∈ [t0,+∞), one has

d

dt

(
1

2
‖H(z(t))‖2

)
= H(z(t))T d

dt
H(z(t))

� 1

2
‖H(z(t))‖2 + 2

2
‖ż(t)‖2

� 1

2

∥∥∥���−1(z̈(t) + ���ż(t))
∥∥∥

2 + ‖ż(t)‖2

� 1

θ2
‖z̈(t)‖2 +

(
1 + γ̄

θ2

)
‖ż(t)‖2 (64)

in which the first inequality is valid because the Lipschitz
property of operator H in Lemma 8 and the second inequality
is satisfied from the conditions 1) and 2) in (41).

Fig. 4. Communication digraph of five agents.

Remark 5: In comparison with existing related distributed
dynamical approaches, our DIProx-NA has the following
advantages.

1) The Local Objective Functions Are All Nonsmooth,
Convex Functions: Unlike the distributed dynamical
approaches in [21] and [40], which rely on the strong
convexity of the local objective function, and only
one nonsmooth term of local objective function was
considered in [25] and [41], the DIProx-NA proposed in
this article can be used for locally convex, nonsmooth
L1-norm minimization problems.

2) Avoiding the Subgradient Selection Dilemma: Instead
of the subgradients (i.e., differential inclusion
method) [17], [18], [23], and [24], which can effectively
address the challenge of selecting an appropriate
subgradient at a nondifferentiable point. Furthermore,
selecting a fixed subgradient is not optimal since this
method does not guaranteed that the optimal solution is
a stable equilibrium point (refer to Remark 2).

3) Fully Distributed: Instead of using global parameters
in distributed continuous time approaches in [20], [21],
[23], [24], and [25], the parameters in our DIProx-
NA are fully distributed. Additionally, we also derive a
sufficient condition for all the distributed parameters in
DIProx-NA.

4) Directed Graph: In contrast to distributed projection
neurodynamic approaches for problem (18) in [28], [29],
and [30], which require the communication topology
to be an undirected graph, the DIProx-NA proposed in
this article only requires the communication graph to be
directed, which is more generalizable.

5) Weak Convergence: Moreover, by means of Opial’s
lemma, we prove that the trajectory of DIProx-NA
in Hilbert space asymptotically and weakly converges
to the set of optimal solutions. To the best of our
knowledge, this is the first attempt to investigate the
trajectories of distributed neurodynamics approaches
with weak convergence.

Theorem 4: The trajectory of z(t) of (24), i.e., DIProx-
NA (17) converges weakly to an element in Zer H, i.e., the
optimal solution set of problem (15) on real Hilbert space H.
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Fig. 5. Top: (Left) States transition curves of x(t) to DIProx-NA (24). (Middle) Recovered signal of agent 1 in DIProx-NA. (Right) Recovered signal of
agent 2 in DIProx-NA. Bottom: (Left) Recovered signal of agent 3 in DIProx-NA. (middle) Recovered signal of agent 4 in DIProx-NA. (Right) Recovered
signal of agent 5 in DIProx-NA.

Proof: This proof is derived by the fact that both conditions
in Lemma 5.

It is notable that the conclusions of this article still hold
when the space of optimized variables is a real Hilbert space
H. In this case, the optimal problem (15) becomes

min
x∈X

‖x‖1, s.t. Ax = b, Lx = 0 (65)

where X,Y,Z are real Hilbert spaces, ‖x‖1 : X → R is a
convex function, and A : H → Y, L� : H → Z are linear
continuous operators and 0 ∈ Z. Moreover, L� : H → Z
denotes the adjoint operator of Laplacian matrix L.

The corresponding DIProx-NA becomes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẍ(t) + γ ẋ(t) + θ
(
x(t) − Prox‖·‖1(x(t) − αLx(t)

−βA�(Ax(t) − b) − A�λ(t) − L�μ(t))) = 0

λ̈(t) + γ λ̇(t) = θ(Ax(t) − b)

μ̈(t) + γ μ̇(t) = θLx(t).

(66)

The conclusions of Lemmas 5–8 and Theorems 2 and 3
above are satisfied, which needs to do the computationally
equivalent substitution, by replacing the transpose multiplica-
tion with the inner product operation aTb = <a, b>, ‖a‖ =√

<a, a> (we still use the symbol ‖a‖2 to denote the inner
product <a, a> in a real Hilbert space H) and use the property
that the inner product space is complete.

For 1) in Lemma 5, from (53), we have a similar result
that ϕ(t) =< 1, ḣ(t) > + < 1, γ h(t) > +(θ/2θ̄2) <

ż(t),���ż(t) > is monotonically decreasing, which means
limt→+∞Ψ (t) exists.

According to Theorem 3, one also has limt→+∞ż(t) = 0.
It combines with < 1, ḣ(t) >=< ż(t), z(t) − z∗ > and the
boundedness of z(t), we have limt→+∞ < 1, ḣ(t) >= 0. Then,
one has

lim
t→+∞Ψ (t) = γ lim

t→+∞〈1, h(t)〉 exists. (67)

As a result, we get the existence of limt→+∞ ‖z(t) − z∗‖ =
limt→+∞ < z(t) − z∗, z(t) − z∗ > (i.e., limt→+∞ ‖z(t) − z∗‖2

or limt→+∞ ‖x(t) − x∗‖2 + ‖λ(t) − λ∗‖2 + ‖μ(t) − μ∗‖2 ).
To prove 2) in Lemma 5, let z be a weak sequential cluster

point of z, i.e., a sequence exists tn → +∞(n → +∞)

which weakly converges to z. Since operator H is maximally
monotone, then for the weak-strong topology of the product
space H × H (H is a real Hilber space), the graph of it is
continuously closed. Since limn→+∞ H(z(tn)) = 0, we deduce
that Hz = 0, hence z ∈ Zer H.

V. EXPERIMENTAL SIMULATION

The validity of DIProx-NA (17) in recovering sparse signals
and images is illustrated in this section.

Sparse Signal Recovery: Selecting Gaussian matrix Am×n as
a measurement matrix with m = 64 and n = 128. Producing
a random sparse signal of sparsity S = 10, that is, there exist
10 elements that are nonzero. Splitting the matrices A and
b into 5 segments A = bldiag{A1, A2, A3, A4, A5} ∈ R

64×640

and b = col(b1, b2, b3, b4, b5) ∈ R
64. Every agent can access

to local information of Ai, bi and Aj, bj where j ∈ Nin
i =

{j ∈ V|eij ∈ E} (i.e., agent j is a in-neighbor). The directed
communication graph is given in Fig. 4.

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:26:12 UTC from IEEE Xplore.  Restrictions apply. 



6190 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 54, NO. 10, OCTOBER 2024

Fig. 6. (Left) Undirected communication digraph of five agents. (Right) Convergence rate with various distributed neurodynamic approaches in m=64,
n=128, and S=10.

Fig. 7. (Left) Directed communication digraph of five agents, (Right) Convergence rate with various distributed neurodynamic approaches in m = 64,
n = 128, and S = 10.

All these choices of the parameters γi, θi and αi, βi comply
with the requirements in Theorem 3 and Remark 2. Fig. 5
displays the results of convergence properties and restoration
of sparse signals by DIProx-NA (17) under a directed graph
in Fig. 4. In addition, Fig. 5 (top, left) visualizes the state x(t)
is consensus (i.e., LTx = 0) of DIProx-NA (17) and globally
asymptotically stable which is consistent with the expression
of Theorem 3. It is indicated from Fig. 5 (except the (top, left))
that the optimal solution of every agent in DIProx-NA (17)
almost converges to the same original sparse signals. The
results from Fig. 5 further confirm the effectiveness of DIProx-
NA (17) and the correctness of Theorem 3.

To exhibit the effectiveness and superiority of DIProx-
NA (17), we first compare it with some classical distributed
neurodynamic approaches DCPNA-R [30], CNA-R [28],
SMN [17], and DCTA [18] over undirected communica-
tion graph in Fig. 6. The RelErr = [(‖x(t) − xo‖)/(‖xo‖)]
(xo stands for the true signal and x(t) is the trajectory of
DIProx-NA.) is used to evaluate the validity. As seen in Fig. 6
(right) that the DIProx-NA (17) has enjoyed faster convergence
than DCPNA-R [30] and CNA-R [28] due to the fact that it has
a inertial item (acceleration), moreover, it avoids the difficulty
of choosing subgradients than SMN [17] and DCTA [18].

In addition, we compare DIProx-NA (17) with neurody-
namic approaches DCTOC [23], CNA-R [28] and DCTA [18]
over a directed communication graph in Fig. 7. As we can
see from Fig. 7 (right) that DIProx-NA (17) converges faster
due to it has a inertial item (acceleration) and has no trouble
in choosing the subgradient than DCTCO [23]. From Fig. 7
(right), we also obtain that both CNA-R [28] and DCTA [18]
are divergent, that is, they cannot solve the problem (15) over
directed communication graphs.

Image Restoration: To further demonstrate the effectiveness
of the DIProx-NA (17) over a directed graph that is shown in
Fig. 4, we conduct an image reconstruction experiment with a
“Cameraman” image in Fig. 8 (top,left), where the size of it is
128 × 128. We set the measurement number of measurement
matrix (Hadamard matrix) to be m = 90 and utilize the peak-
signal noise ratio (PSNR) to assess the performance of the
image reconstruction, which is given by

PSNR = 10 log10
2552

MSE

in which MSE = 1

/
(n × n)

∑
i,j (x̄(i, j) − x(i, j))2 and x̄(i, j),

x(i, j) represents the pixel values in the original and recovered
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Fig. 8. Top: (left) Original “Cameraman” image; (right) Recovered image
of OMP [10] with PSNR=27.6496dB; Bottom: (left) Recovered image of
DCTCO [23] with PSNR=30.2682dB; (right) Recovered image of DIProx-NA
(17) with PSNR=32.9648dB.

images, respectively, and n represents the size (width or height)
of the image.

As depicted in Fig. 8, it is evident that DIProx-
NA (17) surpasses other methods in performance since
it employs proximal operator of L1-norm, avoiding the
dilemma of subgradients selection at a nondifferential point
of L1-norm than DCTCO [23], moreover, the DIProx-NA (17)
is designed based on convex optimization theory, so it
has a greater probability of obtaining an optimal solu-
tion of the image reconstruction problem compared than
OMP [10].

VI. CONCLUSION

We have already researched the distributed L1-minimization
problem depending on the row partition of measurement
matrix A, then proposed a novel fully DIProx-NA in this
article. The proximal operator of L1-norm is carried out to
effectively address the nonsmooth objective function, and the
primal-dual frame with inertia is also applied to deal with
the linear observation and consensus constraints. Furthermore,
we have theoretically proved the optimality and weak conver-
gence of the DIProx-NA by employing the KKT conditions,
Lipschitz condition, theory of maximal monotone operator
and Opial’s lemma, respectively. The reconstruction results on
sparse signals and “Lena” image have shown the feasibility
and effectiveness of DIProx-NA over directed graphs. In our
future work, we plan to investigate the distributed L1-norm
sparse signal reconstruction problem in weight unbalanced
directed graph scenarios using distributed accelerated neu-
rodynamic approaches. Additionally, we aim to expand the
L1-norm distributed optimization problem by employing the
nonconvex Lp(1 � p > 0)-norm instead of L1-norm under
undirected graph scenario, explore the correspondingly dis-
tributed neurodynamic approaches. However, there are very

few studies exploring the convergence rates of distributed
convex optimization problems with only nonsmooth, convex
functions. This is primarily due to their weaker properties com-
pared to strongly convex functions. The latest literatures [42]
and [43] focuss on exploring the convergence properties of the
algorithms, which is an important direction for further study
in the future.
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