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Abstract
In this work, we present SelfPrompt, a novel semi-supervised prompt-tuning
approach for tuning vision-language models (VLMs) in a semi-supervised learning
setup. Existing methods for tuning VLMs in semi-supervised setup struggle with
the efficient use of the limited label set budget, the accumulation of noisy pseudo-
labels and proper utilization of the unlabelled data. SelfPrompt addresses these
challenges by introducing (a) a weakly-supervised sampling technique that selects
a diverse and representative labelled set, (b) a cluster-guided pseudo-labelling
method that improves pseudo-label accuracy, and (c) a confidence-aware semi-
supervised learning module that maximizes the utility of unlabelled data by learning
from high- and low-confidence pseudo-labels differently. We conduct extensive
evaluations across 13 datasets, significantly surpassing state-of-the-art performance
with average improvements of 7.92% in semi-supervised learning using a 2-shot
setup. Our detailed ablation studies show the effectiveness of each component.

1 Introduction
Vision-language models (VLMs) [1] pre-trained on large-scale datasets of image-text pairs have shown
strong generalization on a wide range of tasks. Nonetheless, prior works [2, 3] have demonstrated that
VLMs require fine-tuning on a considerable amount of labelled data to perform well on downstream
tasks. Additionally, the size of the foundation model makes fine-tuning in a limited labelled data
setting difficult without losing generalization [4]. To reduce the reliance on labelled data, some
recent works have explored semi-supervised solutions that utilize auxiliary unlabelled data [5, 6, 7]
to improve learning from a limited set of labelled data.

Although prior works that leverage unlabelled data for tuning VLMs show substantial performance
gains, we identify several limitations in such approaches. (a) First, given a limited budget for the
labelled data (few samples per class), existing methods [7, 6] typically select the labelled sample set
randomly. However, a randomly selected set of samples may not adequately represent the underlying
data distribution, leading to inefficient use of the limited label budget. (b) Next, given the unlabelled
set, prior works [6, 7] utilize the zero-shot capabilities of pre-trained VLMs to predict pseudo-labels
for the unlabelled data to then use as labelled samples. However, pre-trained VLMs do not necessarily
possess adequate knowledge of the downstream domain, which could lead to incorrect pseudo-
labels. (c) Finally, previous works [6, 7] have employed incremental pseudo-labelling, wherein the
labelled set is continuously expanded by iteratively adding to the pseudo-label set from the unlabelled
set. Nevertheless, as Figure 1 illustrates, this method often results in the accumulation of noisy
pseudo-labels, ultimately leading to performance degradation.

To solve the above-mentioned problems, we propose SelfPrompt, a new prompt tuning approach
that uses weak supervision by the pre-trained VLM itself to fine-tune the model with a confidence-
aware semi-supervised learning approach. SelfPrompt comprises three components. (a) A weakly-
supervised labelled set sampling module: To select the most representative set of samples for the
labelled set, we propose a novel sampling technique. First, the VLM’s predictions are used as a source
of weak supervision to filter out both the most and least confident samples from the unlabelled set.
This is followed by a clustering-based selection technique that identifies a diverse set of samples from
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Figure 1: (left) Pseudo-label accuracy and (right)
Test accuracy over training sessions.

the remaining unlabelled data for labelling. (b)
Cluster-guided pseudo-labelling: To address the
second problem, we propose a cluster-guided pseudo-
labelling approach that leverages the clusters formed
in the labelled set sampling module, we select
samples that are near the centroids of the above-
mentioned clusters to which we assign the corre-
sponding class labels. (c) Confidence-aware semi-
supervised learning: To make the best use of the
unlabelled data, we propose a confidence-aware semi-
supervised module. This hybrid approach leverages
high-confidence pseudo-labels in a fully supervised learning setting, while learning from low-
confidence samples in a weakly-supervised manner.

To evaluate the proposed solution, we follow [6, 7] to perform semi-supervised learning on a 2-shot
labelled set setting with the remaining samples of the corresponding dataset used as the unlabelled set.
While previous works report these results on six datasets, we perform the evaluation of our solution
(and the previous methods) on 13 datasets. Our evaluation shows that SelfPrompt outperforms
prior works by considerable margins, in both textual prompt tuning and visual prompt tuning setups.
Specifically, it outperforms prior SOTA by up to 15.05%, with an average improvement of 7.92%.
Additionally, we show generalization by reducing the size of the labelled set to just one sample-per-
class, while outperforming prior methods by an average of 11.78%. Finally, we present extensive
ablation and sensitivity studies on different components of our proposed method.

2 Related Works
Prompt tuning is a parameter-efficient technique for adapting foundation models to downstream
tasks by learning soft prompts (textual [8, 9] or visual [10, 11]) from limited labelled data [8, 11].
Text-based prompt tuning [9] involves optimizing learnable prompt vectors, which are embedded
into the input sentence tokens fed into the sentence encoder. Recently, a new stream of research has
focused on semi-supervised tuning that leverages unlabelled data alongside a small set of labelled data
to enhance downstream task performance. The core idea behind these methods is pseudo-labelling
[12, 13], where the model predicts labels for unlabelled samples and uses these pseudo-label to learn
from the unlabelled data. For example, GRIP [6] utilizes CLIP’s zero-shot capabilities to generate
pseudo-labels for unlabelled data and select the most confident samples to serve as labelled data.
However, this approach introduces a considerable amount of wrong pseudo-labels due to the inherent
miscalibration [14] and imbalanced predictions [15] issues of the pre-trained VLM. To address these
issues, CPL [7] proposes to generate refined candidate pseudo-labels through intra- and inter-instance
label selection, using a confidence score matrix to improve label accuracy and class balance during
fine-tuning. Both GRIP and CPL adopt an iterative process, where the model is used to continuously
refine and select additional samples from the unlabelled set.

3 Method
Let θ be a pre-trained image encoder and ϕ be a text encoder of a pre-trained VLM. For a given input
image x, the VLM predicts the output probability distribution over C classes as:

p(y|x) = exp(sim(z, wy)/τ)∑C
k=1 exp(sim(z, wk)/τ)

, (1)

where z = θ(x) is the image embedding and wk is the class-embedding of class k, generated using a
prompt template as wk = ϕ(‘a photo of a [category]k’). A recent class of solutions proposes the use
of semi-supervised learning for tuning VLMs by leveraging a large unlabelled set along with a small
labelled set. Despite recent progress in semi-supervised prompt tuning for VLMs, we have identified
three key open challenges in this area, including the under-utilization of the labelling budget, the
negative impact of miscalibrated pseudo-labels, and the declining quality of pseudo-labelling as the
number of samples increases.

In light of the challenges above, we propose SelfPrompt, a novel semi-supervised prompt tuning
method for VLMs that introduces three novel components: a weakly-supervised sampling module,
cluster-guided pseudo-labelling, and confidence-aware semi-supervised learning.
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Figure 2: (left) Visual illustration of the weakly-supervised sampling. (right) Cluster-
guided pseudo-labelling.

Weakly-supervised
sampling. To over-
come the limitations
of random selection,
we introduce a weakly
supervised sampling
module that selects
the most diverse and
representative N
samples from the unlabelled set. This module operates through a two-step protocol:
Step 1: Filtering with weak supervision. We leverage the zero-shot predictions of the pre-trained
VLM as weak supervision to filter the unlabelled set U . Specifically, we remove samples with both
the highest and lowest confidence predictions by the VLM. Highly confident samples offer minimal
information gain, as the model is already certain of their classification. Conversely, low-confidence
samples are likely to be outliers or noisy data points that can negatively impact model generalization,
especially in few-shot learning scenarios where training data is scarce. For each unlabelled sample
i, we generate a probability distribution over the output classes with the pre-trained VLM using
Eq. 1 as: pi = [p1i , p

2
i , · · · , pCi ]. We define the confidence score for each sample as the maximum

probability value over the classes: ci = max1≤c≤C pic = max{p1i , p2i , · · · , pCi }. We then sort the
samples in descending order of confidence: Dsorted = {x(1), x(2), . . . , x(N)}, where x(i) is the
sample with the i-th highest confidence score, satisfying: c(1) ≥ c(2) ≥ . . . ≥ c(N). Next, we
divide the sorted samples into q quantiles, {Q1, Q2, · · ·Qq}, and remove the first and last quantiles,
corresponding to the most and least confident samples. Finally, the filtered unlabelled dataset after
the first step can be represented as Dfiltered =

⋃q−1
k=2 Qk.

Step 2: Diversity Sampling. Next, we select N diverse samples from the filtered dataset Dfiltered,
with a cluster-based sampling technique. First, we obtain the representations for each sample
using a pre-trained vision encoder θ as zi = θ(xi) ∈ Rd, where zi is the d-dimensional
embedding of sample xi. We then apply k-means clustering to group the samples into N clusters
C = {C1, C2, . . . , CN}, such that each cluster contains semantically similar samples, while different
clusters have diverse semantics. We select the sample closest to the cluster center from each
cluster by x∗

j . Finally, our labelled set is formed by gathering the labels of the selected samples,
XL = {(x∗

1, y1), (x
∗
2, y2), · · · , (x∗

N , yN )}. The proposed module is illustrated in Figure 2 (left).

Cluster-guided pseudo-labelling. To improve the pseudo-label quality, especially at the beginning
of the training, we propose a novel clustering-guided pseudo-labelling approach that does not rely
on the VLM to generate the pseudo-labels. Instead, our proposed solution leverages the clusters
(C = {C1, C2, . . . , CN}) formed during the weakly supervised sampling step. Since the clusters
are formed based on embedding similarity, samples under the same cluster have similar semantics.
Especially the samples close to the cluster centres (also close to the selected labelled sample) are likely
to belong to the same class as the sample at the cluster’s center. Implicating this realization, we select
additional p samples from each cluster and label them with the label of the cluster center. Specifically,
for each cluster Cj , we pick the p samples closest the cluster centers to form a pseudo-label set
Pj = {x1

j , x
2
j , . . . , x

p
j}, where Pj is the pseudo-label set for cluster Cj , and xk

j is the k-th closest
sample to x∗

j . Finally, each sample in Pj is assigned to the label of the cluster center of Cj to form our
pseudo-label set Xp = {(xj1, yj), (xj2, yj), . . . , (xNp, yN )}. Our cluster-guided pseudo-labelling
technique is illustrated in Figure 2 (right).

Confidence-aware semi-supervised learning. To make the best use of the unlabelled data, we
propose a confidence-aware semi-supervised module that learns from the high-confident samples in a
supervised learning setup, while learning from the low-confident samples in a weakly-supervised
setting. Specifically, we first predict the output probability distribution for each sample in the
unlabelled set U as pi = f(xi) ∈ RC . Then we incorporate the t (defined as τ ×M ) most confident
samples-per-class into our pseudo-label set as X+ = XP ∪

(⋃C
c=1 topt({xi| argmax(pi) = c})

)
,

where τ is a hyper-parameter. We learn from the remaining relatively low-confident samples in a
weakly-supervised setting. Specifically, we follow CPL [7], and gather the top-k predictions per
sample to form a weakly-labelled set Xweak = {(xi, si)|xi /∈ X+}, where si is a one-hot vector
containing si,c = 1 if class c is among the top predictions for sample i. Finally, we learn from the
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Table 1: Comparison results of top-1 test accuracy (%) on 13 benchmarks on the semi-supervised learning with
textual prompt strategy.

Methods Average Flowers102 RESISC45 DTD CUB EuroSAT FGVCAircraft
Zero-shot CLIP 55.17 63.670.00 54.480.00 43.240.00 51.820.00 32.880.00 17.580.00
CoOp 62.28 75.960.74 68.130.55 37.105.45 55.290.59 62.051.64 20.020.77
GRIP 67.40 83.600.48 74.110.68 56.070.79 56.650.33 58.662.64 16.980.20
CPL 71.41 89.660.36 80.980.11 61.210.56 58.530.24 77.510.80 22.480.63
SelfPrompt 79.33 93.040.33 85.580.18 72.180.78 68.840.16 87.490.12 36.710.70
∆ ↑ 7.92 ↑ 3.38 ↑ 4.60 ↑ 10.97 ↑ 12.31 ↑ 9.98 ↑ 14.23

Caltech101 MNIST Food101 StanfordCars OxfordPets SUN397 UCF101
Zero-shot CLIP 82.010.00 25.100.00 78.810.00 60.290.00 84.320.00 62.540.00 60.420.00
CoOp 84.691.43 58.221.98 76.231.45 58.232.45 82.341.44 62.191.78 69.191.03
GRIP 85.991.06 71.782.59 80.891.14 62.831.42 89.400.33 67.340.98 71.940.95
CPL 92.871.14 75.184.40 79.381.05 61.931.30 87.791.31 66.980.65 73.881.32
SelfPrompt 94.100.92 90.230.36 82.190.17 75.210.33 89.860.48 74.770.18 81.070.44
∆ ↑ 1.23 ↑ 15.05 ↑ 2.81 ↑ 13.28 ↑ 2.07 ↑ 7.79 ↑ 7.19

labelled set XL, pseudo-labeled set X+, and weakly labelled set Xweak, together as follow:

Lfinal =
1

|XL|
∑

(x,y)∈XL

ℓ(f(x), y) +
1

|X+|
∑

(x,y)∈X+

ℓ(f(x), y) +
λ

|Lweak|
∑

(x,s)∈Lweak

ℓw(f(x), s). (2)

Here, ℓ is the cross-entropy loss and ℓw is a partial label learning loss from CPL [7].

4 Experiments
Implementation details. Following [7] and [6] we adopt a CLIP ViT-B/32 [1] as the pre-trained
backbone of our model. All experiments are conducted in a 2-shot setup, with ten sessions of iterative
pseudo-labelling (50 epochs per session). The model is optimized using SGD with a learning rate of
0.02 and a batch size of 64. Results are reported as the average accuracy over three runs.

Results. First, we present our results on semi-supervised learning. The results of this experiment are
presented in Table 1, where we observe that SelfPrompt shows large and consistent improvements
over prior works across the 13 datasets. On average, SelfPrompt achieves an accuracy of 79.33%
with just two labelled samples per class, which is a 7.92% improvement over the previous SOTA CPL
and a 12.04% improvement over GRIP. Notably, SelfPrompt shows up to 15.05% improvement over
the previous SOTA on individual datasets. More importantly, SelfPrompt shows higher improvements
on datasets with lower zero-shot (VLM) accuracies (e.g., FGVCAircraft and MNIST).

Table 2: Ablation study. W.S.S., C.G.P.,
and C.A.SSL correspond to weakly-
sup sampling, cluster-guided pseudo-
labelling, and confidence-aware SSL.

W.S.S. C.G.P. C.A.SSL Accuracy
✓ ✓ ✓ 79.33
✗ ✓ ✓ 76.12
✓ ✗ ✓ 74.39
✓ ✓ ✗ 78.01
✗ ✗ ✓ 73.49
✗ ✓ ✗ 75.67
✓ ✗ ✗ 73.08
✗ ✗ ✗ 71.41

We present an ablation study on our proposed method in Table
2. Here, W.S.S., C.G.P., and C.A.SSL correspond to the three
modules of our proposed solution, namely, weakly-supervised
sampling, cluster-guides pseudo-labelling, and confidence-
aware semi-supervised learning. The results are reported as the
average accuracy over all datasets. Here, including all compo-
nents has an average accuracy of 79.33%, while removing all
components (the baseline) has an accuracy of 71.41%. As we
find from this table, cluster-guides pseudo-labelling has a high
impact on the overall performance of our proposed solution,
removing which results in a 4.94% drop in the performance.
This is also evident from the fact including only this compo-
nent shows a 4.26% improvement over the baseline. Next, removing weakly-supervised sampling
shows a 3.21% drop in performance, while adding only these components shows a 1.61% gain
in performance. This is due to the fact that without weakly supervised sampling, cluster-guides
pseudo-labelling with the randomly selected samples do not show the best performance. Finally,
removing confidence-aware semi-supervised learning also shows a 1.32% drop in performance.

5 Conclusion
In this paper, we propose SelfPrompt, a novel semi-supervised tuning approach for vision-language
models that addresses three key limitations of prior methods: under-utilization of limited labeled
data, miscalibrated pseudo-labeling, and the negative impact of noisy labels. SelfPrompt outperforms
previous works by an average of 7.92% in semi-supervised learning and 4.9% in base-to-novel
generalization across 13 datasets. Notably, it achieves strong generalization with just one labeled
sample per class, demonstrating its effectiveness in real-world tasks with minimal labeled data.
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