
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHICAL DECISION MAKING WITH STRUC-
TURED POLICIES: A PRINCIPLED DESIGN VIA IN-
VERSE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hierarchical decision-making frameworks are pivotal for addressing complex con-
trol tasks, enabling agents to decompose intricate problems into manageable sub-
goals. Despite their promise, existing hierarchical policies face critical limita-
tions: (i) reinforcement learning (RL)-based methods struggle to guarantee strict
constraint satisfaction, and (ii) optimization-based approaches often rely on my-
opic and computationally prohibitive formulations. In this work, we propose a
bi-level reinforcement learning and optimization framework that systematically
integrates upper-level goal abstraction with structured lower-level decision mak-
ing. We adopt an inverse optimization approach to inform the structure of the
lower-level problem from expert demonstrations, ensuring that the objective of
the lower-level policy remains aligned with the overall long-term task goal. To
validate the approach, our framework is evaluated on three real-world scenarios,
where it outperforms baseline methods in both efficiency and decision quality,
demonstrating the benefits of learning structured optimization policies within a
hierarchical RL architecture.

1 INTRODUCTION

Real-time decision-making in cyber-physical systems, such as robotics, autonomous driving, power
grids, and transportation (Jendoubi & Bouffard, 2023; Zhou et al., 2024; Liang et al., 2025), is
inherently challenging due to high-dimensional state and action spaces, nonlinear dynamics, and
complex physical constraints. Existing solutions largely stem from optimal control (OC) and deep
reinforcement learning (RL). OC-based methods aim to optimize system performance over infinite
or long horizons while ensuring stability and feasibility. These methods are well-suited for safety-
critical systems due to their theoretical guarantees, but may scale poorly in high-dimensional or
nonlinear settings and often require accurate models. In contrast, RL-based approaches directly
learns a policy from interactions with the environment, which scale well to complex tasks and do
not require explicit modeling of complex system dynamics. Nevertheless, these approaches require
extensive training and lack safety or constraint satisfaction guarantees due to their black-box nature.
These trade-offs have motivated growing interest in combining OC-based and RL-based methods to
exploit the strengths of both paradigms.

A promising approach for combining OC- and RL-based methods is through a hierarchical archi-
tecture that decomposes decision-making into two sequential subproblems (Lew et al., 2023; Karn-
chanachari et al., 2020). The upper-level employs an RL policy for strategic planning, such as
generating subgoals, while the lower level uses OC to ensure safe and feasible execution. This
hierarchical architecture not only enhances scalability and feasibility but also aligns with human
cognition, as humans tend to perform abstract planning guided by intrinsic motivation, grounded by
fast, lower-level execution.

Despite the promise of hierarchical RL–OC frameworks, the formulation of the lower-level opti-
mization problem remains underexplored. The lower-level controller must be both computationally
efficient and aligned with the upper-level goals, since a poorly designed formulation may inadver-
tently exclude high-quality solutions. Existing approaches have several limitations. First, most
hierarchical methods adopt long-horizon OC formulations at the lower level to preserve stability
and feasibility guarantees, which can introduce prohibitive computational complexity for real-time

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: We propose an RL-OC hierarchical decision-making framework with lower-level policy
informed by inverse optimization.

applications. Second, recent efforts leverage single-step OC to enhance computation efficiency by
directly generating the value or constraints on the desired next state (Gammelli et al., 2023; Schmidt
et al., 2024). Nevertheless, these formulations typically rely on myopic objectives without an ap-
propriately designed formulation, causing solutions to overlook longer-term impacts and potentially
leading to suboptimal trajectories. The above challenges highlight the importance of formulating
the lower-level optimization problem in a way that reduces sub-optimality while simultaneously
ensuring tractable computational complexity.

To address these limitations, we propose an inverse optimization framework to guide the design of
the lower-level policy from a handful of demonstrations, which provide valuable insights (Figure
1). We cast the design of the lower-level cost function as an inverse optimization problem. For
a special class of lower-optimization problems with linear cost functions, we provide a theoretical
characterization of the conditions under which the expert demonstrations are optimal. Once the
formulation is established, we employ efficient methods to solve the inverse problem, determining
the exact mathematical formulation that best fits the observed data. To validate the effectiveness of
our approach, we demonstrate our method on the problem of autonomous vehicle rebalancing and
inventory management. The improvements in learning the formulation are validated from multiple
perspectives. In light of the above discussion, we summarize the main contributions of this work as
follows:

• We present a general decision-making framework that integrates RL with OC through a
hierarchical policy, proposing an inverse optimization-based approach to inform the design
of lower-level control policies.

• We provide theoretical analysis for a special class of problems with broad applications,
proposing a tractable cost structure and efficient inverse optimization formulation which
ensures inverse-feasibility, forward-stability, and computational tractability.

• We demonstrate the effectiveness of the proposed framework on several scenarios from
different fields, showcasing its practical relevance and potential impact in real-world appli-
cations.

2 RELATED WORK

This work is related to the literature on hierarchical structured control policies. Depending on
whether learning-based or model-based approaches are used at each level, existing works can be
broadly classified into two categories: (i) hierarchical reinforcement learning (HRL) that employs
RL at each level, and (ii) learning-based optimal control, e.g., frameworks integrating RL and MPC,
whereby a upper-level policy learns desired states or goals, and a simplified lower-level MPC en-
sures safe and feasible execution.

Hierarchical Reinforcement Learning HRL decomposes a complex, difficult-to-solve problem
into multiple simpler, smaller problems by setting subgoals (Kulkarni et al., 2016; Vezhnevets et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2017; Ma et al., 2021; Xie et al., 2021; Eppe et al., 2022; Qi et al., 2022; Huang et al., 2022; Gu
et al., 2023; Mao et al., 2024; Luo et al., 2024; Zhang et al., 2024b; Hirt et al., 2024). We focus on
how hierarchical policies utilize various forms of intrinsic motivation by setting subgoals. Naveed
et al. (2021) develop a hierarchical reinforcement learning framework for autonomous vehicle tra-
jectory planning, where a upper-level policy selects maneuver options, and a lower-level planner
generates waypoints accordingly. Vezhnevets et al. (2017) applies Feudal Networks for hierarchical
reinforcement learning. The manager module sets abstract goals that are conveyed to and enacted by
the Worker module. Another common way to set goals is to consider the desired states. In Nachum
et al. (2018), the author sets the upper-level actions to be goal states and reward the lower-level
policy for performing actions that yield an observation close to matching the desired goal. In recent
years, a growing body of work has investigated how to define subgoals and how to search efficiently
within the subgoal space (Liu et al., 2021; Ma et al., 2023). Nevertheless, these studies have paid
limited attention to the relationship between subgoals and the agent’s final actions. Moreover, as pre-
viously discussed, incorporating constraints to ensure safety strictly is challenging in reinforcement
learning framework. In next section, we focus on how learning, especially reinforcement learning,
interplays with optimization in the previous literature.

Learning-based OC. In the control community, various real-world control problems are solved by
using learning-based OC. In many existing works, learning-based methods are often applied to learn
cost functions or system dynamics (Lenz et al., 2015; Coulson et al., 2019; Hewing et al., 2020;
Dogan et al., 2023; Zhang et al., 2024a; Lu et al., 2024; Zhang et al., 2024a; Dinkla et al., 2026).
However, solving optimal control problems in real time still poses challenges when long control
horizons are used, due to the high dimensionality of variables and the complexity of constraints.
Prior work has attempted to reduce the computational burden by approximating the long-horizon
MPC problem with a single-step formulation and learning terminal cost to alleviate myopic behav-
ior (Abdufattokhov et al., 2021; Alsmeier et al., 2024). However, the learning paradigm of these
methods doesn’t relate to the final cumulative rewards directly. Instead, Gammelli et al. (2023) pro-
pose to leverage reinforcement learning to learn upper-level actions to shorten the control horizon
of network flow control problem. In this framework, reinforcement learning is applied to provide
reference trajectories that guide the lower-level executor toward maximizing cumulative rewards. In
addition, Schmidt et al. (2024) applies the hierarchical RL-OC in the offline setting. They focus on
the generation of upper-level subgoals. However, a key limitation is their strict assumption that the
offline data is optimal in the lower-level problem.

Related to this line of research, our work investigates how to formulate the lower-level optimization
problem to alleviate sub-optimality issues. based on expert demonstrations. To the best of our
knowledge, this is the first work that addresses the design of lower-level optimization policy and
proposes a generalizable framework which leverages intrinsic motivation to make time-efficient and
safety-guaranteed decisions.

3 METHODOLOGY

3.1 PROBLEM SETTING AND PRELIMINARY

Let us consider a general multi-step decision-making problem formulated in (1).

min
{ut}∞

t=0

lim sup
T→∞

1

T

T−1∑
t=0

c(xt,ut)

s.t. xt+1 = f(xt) + g(xt)ut, ∀t ≥ 0

xt ∈ Xt, ∀t ≥ 0

ut ∈ Ut, ∀t ≥ 0

(1)

where xt ∈ Rn is the system state at time step t, ut ∈ Rm is the control input, and c(xt,ut) is the
stage cost function assumed to be convex. The system dynamics are assumed to be control-affine
(i.e., linear in ut) with functions f(·) and g(·), which cover a wide range of applications in cyber-
physical systems. The feasible sets Xt and Ut encode admissible states and inputs, respectively,
which are assumed to be convex. The initial state x0 is known.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Due to the infinite horizon and the presence of complex constraints, solving Problem (1) is often
computationally intractable. A standard workaround is a finite-horizon approximation. However,
OC problems with long time horizons can still be computationally challenging for large-scale sys-
tems, which do not satisfy the real-time requirements of practical applications. To address this issue,
we generalize the bi-level decision-making framework proposed by Gammelli et al. (2023) to a more
general problem setting.

3.2 BI-LEVEL FRAMEWORK

The hierarchical RL-OC framework is implemented as an end-to-end system shown in Problem (2).

π∗ ∈ argmax
π∈Π

Eτ

[∞∑
t=0

γtc(ut,xt)

]
s.t. ht ∼ π(ht | xt)

ut = FOP(ht,xt)

(2)

The overall policy π∗ composes an upper-level RL policy π and the solution to a lower-level opti-
mization problem FOP. The upper-level policy encodes task-relevant abstract information or goals
to produce the intrinsic subgoal ht. The lower-level optimization module receives both the intrinsic
subgoal ht and the current state xt to compute the control input ut that is feasible.
Remark 1 (Practical requirements for RL-OC frameworks). There are two requirements for Prob-
lem (2). First, for real-time deployment, FOP should capture operational constraints and be compu-
tationally efficient to solve. Second, to enable stable training, the intrinsic subgoal ht is preferably
low-dimensional.

Following Remark 1, a commonly used form of subgoals is a linear transformation of the desired
next state xdes

t using a known matrix C, denoted by x̂t = Cxdes
t . This subgoal guides the system

toward the desired state by inducing appropriate lower-level actions. Here, in scenarios with high
state dimensions, the transformation matrix C serves to compress the action space of the upper-
level RL by mapping the high-dimensional system state to a lower-dimensional planning space. The
transformation matrix C is typically set as an identity matrix in scenarios with low state dimensions.
Overall, the bi-level decision-making framework is given in (3) and (4).

π∗ ∈ argmax
π∈Π

Eτ

[∞∑
t=0

γtc(ut,xt)

]
s.t. x̂t ∼ π(x̂t | xt)

ut ∈ FOP(xt, x̂t)

(3)

FOP(xt, x̂t) := argmin
ut

c(xt,ut)

s.t. Cf(xt) + Cg(xt)ut = x̂t,

f(xt) + g(xt)ut ∈ Xt+1, ut ∈ Ut

(4)

By leveraging intrinsic subgoals learned by the upper-level policy, the lower-level executor is able
to make near-instantaneous, subgoal-conditioned decisions, which is particularly advantageous in
time-sensitive or high-dimensional environments. However, the formulation of FOP still remains
ambiguous in the bi-level framework, as discussed in Remark 2.
Remark 2 (Importance of proper lower-level formulations). We highlight two considerations for
Problem (4). First, the transformed desired next state x̂t produced by the upper-level RL may be
infeasible in practice, e.g., planned trajectories in robotics tasks, which require the design of a cost
function to penalize violations. Such a cost function must be aligned with the overarching objective
of the decision-making problem to avoid sub-optimality. Second, even when x̂ is feasible, the for-
mulation of the lower-level optimization still requires careful design to mitigate myopic decisions,
particularly when the transformation matrix C reduces the state dimension. Specifically, there may
exist multiple actions ut that satisfy the constraint xt + But = x̂t but yield different next states
under the true dynamics, which will influence future rewards. Therefore, it is important to properly
design the lower-level problem to align the action selection with the overarching objective.

In the next subsection, we will present an inverse optimization approach to inform the design of the
lower-level optimization problem.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 LEARNING PROBLEM FORMULATION: INVERSE OPTIMIZATION

3.3.1 GENERAL FRAMEWORK

We assume access to a set of expert data {xt,ut}t∈Te
generated by an existing decision-making

policy, such as Model Predictive Control (MPC) or other high-quality heuristics ensuring strict safety
guarantees, where Te represents the set of time steps at which the dataset is collected. We make three
remarks regarding the expert dataset. First, as high-quality solution methods may not be suitable for
making real-time decisions in practice, the expert data can be derived offline rather than from real-
world operations. Second, for the same reason, the dataset is assumed to be small, which makes
supervised learning methods such as imitation learning less suitable. Third, Te is chosen to cover
diverse operating conditions and does not have to consist of consecutive time steps.

The core of our approach is to recover latent structure encoded in the expert data. Specifically, we
parameterize the lower-level optimization problem as

FOPθ(xt, x̂t) := argmin
ut

{c(xt,ut) + dθ(xt, x̂t,ut) | at +Btut = x̂t,ut ∈ Ût} (5)

where at := Cf(xt), Bt := Cg(xt), and Ût := Ut ∩ {ut|f(xt) + g(xt)ut ∈ Xt+1}. The term
dθ(·) parameterized by parameter θ is assumed to be convex and will be properly designed to align
the lower-level optimization problem to the objective of the overarching decision-making problem.

We then convert the design of the lower-level optimization problem into estimating θ from the expert
dataset. Speficically, we aim to find θ via inverse optimization such that for each expert pair (xt,ut),
the action ut is (approximately) optimal for FOPθ(xt, x̂t) under some subgoal x̂t. Specifically, let
Uopt(θ,xt, x̂t) denote the optimal solution set corresponding to parameter θ, state xt, and subgoal
x̂t. In practice, since the lower-level optimization is convex, Uopt(θ,xt, x̂t) can be characterized
by the Karush–Kuhn–Tucker (KKT) conditions. Then, the inverse optimization problem can be
formulated as

min
θ

{
κh(θ) +

1

|Te|
∑
t∈Te

ℓ
(
ut,Uopt(θ,xt, x̂t)

) ∣∣∣∣∣ θ ∈ Θ

}
. (6)

where the objective function is a weighted combination of two parts: (i) the sum of losses with
each loss ℓ(ut,Uopt

t (θ)) indicating the deviation of expert action ut from the optimal solution set
Uopt
t (θ), i.e., the sub-optimality of the expert action, and (ii) a user-defined, application-specific

regularization term h(θ) representing prior information or user preference regarding θ.
Remark 3 (Inverse optimization for lower-level formulations). We make three remarks regarding the
inverse optimization framework. First, we focus on learning the objective function of FOPθ rather
than its constraints, as constraints are typically dictated by physical requirements. Second, without
loss of generality, we assume the constraint at + Btut = x̂t is feasible. If this is not the case,
we can relax it as at + Btut = x̂t + ϵt, and augment the action, corresponding matrix, and cost
function as ũt = [ut; ϵt], B̃t = [Bt, I], and dθ(xt, x̂t, ũt), respectively, which yields a lower-level
optimizer of the same form. Third, we focus on common cases where the subgoal x̂t can be retrieved
from expert data, such as the desired next state or state representations as mentioned above. For
other cases where subgoals cannot be directly obtained, they can be introduced as additional latent
variables {x̂t}t∈Te

and estimated jointly with θ.

Without loss of generality, we assume Ũt is a polytope represented by Ũt = {u | Htu ≤ b}. Under
this assumption, the learning problem for θ can be formulated as

min
θ,{wt,λt,ϵt}t∈Te

∑
t∈Te

∥ϵt∥22 + κh(θ) (7a)

s.t. 0 ∈ ∂u (c(xt,ut) + dθ(xt, x̂t,ut)) + λT
t Ht +wT

t Bt, ∀t (7b)
at +Btut = x̂t, Htu ≤ b, ∀t (7c)
λt ≥ 0, ∀t (7d)
φ(ut,λt,wt) + ϵt = c(xt,ut) + dθ(xt, x̂t,ut), ∀t (7e)

where ∂u denotes the subdifferential of the cost function of FOPθ, which generalizes the gradient
to allow for non-smooth objectives. The vectors wt and λt are dual variables. The objective func-
tion in (7a) follows the structure of Problem (6), penalizing the sum of squared duality gaps while

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

regularizing θ via h(·). Constraints (7b)-(7e) are the KKT conditions, where (7e) relaxes the strong
duality condition with a duality gap ϵt.

Concretely, we minimize the duality gap in Problem (7) instead of the distance between given ex-
pert decisions and optimal solutions to the forward optimization problem. This aims to reduce the
computational time when Problem (7) is non-convex, which will be analyzed in more detail in the
following sections. Once the preliminary formulation of FOPθ is established and the correspond-
ing inverse optimization problem is formulated, we leverage the expert data to infer the unknown
parameters within the model, with the objective of recovering a parameterization under which the
observed decisions are (approximately) optimal.

3.3.2 SPECIAL CASE WITH THEORETICAL ANALYSIS

We next consider a special class of decision-making problems with a linear stage cost function
c⊤ut and state-independent function g(·) (i.e., Bt = B, ∀t). We show that under this setting,
our framework can achieve desirable properties such as inverse feasibility, forward stability, and
computation efficiency. At the end of this section, we generalize our conclusions to a broader class
of problems with quadratic stage cost functions.

We make the following remarks on this special setting. First, this setting captures a broad range of
applications in resource allocation, logistics, and energy systems, where strict constraint satisfaction
and fast computation are critical. Second, despite the linear cost structure, the original multi-stage
decision-making problem (1) can still be challenging to solve in real-world operations due to (i) the
potentially nonlinear structures of f(·) and g(·) and (ii) potentially high state and action dimensions.
Therefore, a hierarchical decision-making problem is still required for computational efficiency.

In this special setting, we aim to derive an FOP formulation such that the inverse optimization is
always feasible. This is important, as it can allow us to utilize any type of expert data. In this case,
we formulate the estimation of θ as

min
θ

{
φ(θ)

∣∣ θ ∈ θinv
t (ut) ∀t ∈ Te, θ ∈ Θ

}
. (8)

where θinv
t (ut) :=

{
θ
∣∣ ut ∈ Uopt

t (θ)
}

is the inverse feasible set, i.e., the set of parameter values
under which the expert action ut belongs to the optimal solution set Uopt

t (θ) of the lower-level
problem FOPθ(xt, x̂t). The function φ(θ) denotes a user-defined, application-specific objective
that resolves indeterminacy by selecting among multiple feasible parameters.

As stated in Proposition 1, Problem (8) can be infeasible without a properly designed cost structure
dθ(·). Counterexamples are constructed in Appendix A.1.
Proposition 1. The inverse feasible set for Problem (5)

θinv
t (ut) :=

{
θ
∣∣ ut ∈ Uopt

t (θ)
}
.

is not guaranteed to be non-empty, where Uopt
t (θ) is defined by the Karush–Kuhn–Tucker (KKT)

conditions of Problem (5) and θ denotes unknown parameters in the problem.

To address the sub-optimality, we propose an inverse-optimization–guided design procedure that
leverages criteria such as inverse feasibility and forward stability to inform the lower-level formula-
tion.

Stage 1: Validating optimality of expert decisions. We first construct a preliminary formulation
of FOPθ such that the historical decisions {ut}Tt=1 are possible to be optimal under the observed
states {xt}Tt=1. We achieve this goal by validating the feasibility of the inverse problem.

We select the terminal cost dθ(·) represented by the summation of ReLU-based regularization terms,
which demonstrates high efficiency despite its simplicity. Propositions 2 and 3 show the motivation
to design such cost structure from both geometric and algebraic perspectives respectively.

FOP(xt, x̂t) := argmin
ut

{
c⊤ut +

K∑
k=1

max{θT
k ut − νk, 0}

∣∣at +But = x̂t,ut ∈ Ũt

}
(9)

Proposition 2. The inverse feasible set for Problem (9), θ∗inv
t (ut) :=

{
θ
∣∣ ut ∈ U∗opt

t (θ)
}

, is al-
ways non-empty, where U∗opt

t (θ) is defined by KKT conditions of Problem (9).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 3. By appropriately enlarging the decision space with auxiliary variables in Problem
(9), any given set of expert decisions can be made optimal in the lifted space.

Stage 2: Ensuring forward stability. Although Problem (9) has proven to make expert data opti-
mal, i.e., the inverse feasibility is guaranteed, another critical issue in inverse optimization, named
forward stability, proposed by Shahmoradi & Lee (2022), is not guaranteed in the case of a linear
program. The definition of forward stability is defined as follows.
Definition 1 (Forward Instability (Shahmoradi & Lee, 2022)). Given a set of expert observations
Û , the forward instability of an inverse solution θ̂ ∈ θ∗inv(Û) is defined as

max
u∈U∗opt(θ̂)

{
d(Û , u)

}
,

where U∗opt(θ̂) denotes the set of forward optimal solutions corresponding to θ̂. This value quan-
tifies the worst-case distance between a forward solution u induced by θ̂ and the expert data Û ,
measuring how unstable the inverse solution θ̂ can be.

To solve this issue, we include small quadratic terms into objective function to ensure strong con-
vexity of objective function, such that forward stability is improved and the expert decisions are
approximately optimal at the same time. Overall, we formulate the forward optimization problem as
follows, which improves forward stability without sacrificing computational tractability at the same
time.

FOP(x̂t,xt) := argmin
ut

c⊤ut +

K∑
k=1

max{θT
k ut − νk, 0}+ l ∗ ∥ut∥22

s.t. at +But = x̂t, t ∈ Te
ut ∈ Ut, t ∈ Te

(10)

We propose the following inverse optimization formulation, where dual variables are denoted by
zkt,ykt,wt,λt and τkt is the auxiliary variable. g(λt, zt,yt,wt) is the dual objective function
with explicit form in this problem. To keep the formulation concise, we omit the explicit form of
this function.

min
zkt,ykt,λt,wt,ϵt,θ(k)

∑
t∈Te

∥ϵt∥22 + ρ
∑
k

∥θ(k)∥22 (11a)

s.t. 1− zkt − ykt = 0, k = 1, ...K, t ∈ Te (11b)

cT + λT
t H +wT

t B +
∑
k

zktθ
T
k + 2lut = 0, t ∈ Te (11c)

g(λt, zt,yt,wt) + ϵt = c⊤ut +

K∑
k=1

τkt + luT
t ut, t ∈ Te (11d)

τkt ≥ θT
k ut − νk, k = 1, ...K, t ∈ Te (11e)

zkt,ykt,λt, τkt ≥ 0, k = 1, ...K, t ∈ Te (11f)

We minimize duality gap together with regularizing norm of θk for robustness. This reformula-
tion aims to reduce the computational time required to solve the non-convex problem which poses
significant challenges for computational tractability. Instead of minimizing distance between opti-
mal solutions and given expert decisions, this formulation reduces the number of bilinear terms by
avoiding introducing new variables corresponding to the optimal solutions of the forward problem
10. What’s more, quadratic term is introduced to ensure that forward stability is improved. Propo-
sition 4 demonstrates that the distance between the input and optimal solutions remains bounded.
By introducing a sufficient number of ReLU-based terms, we can constrain the values of ϵ0 within
a small range, thereby controlling the upper bound of the distance.
Proposition 4. Problem (11) yields optimal solutions u∗

t satisfying |f(u∗
t)− f(ut)| ≤ ϵ0, s.t.

∥u∗
t − ut∥ ≤

√
ϵ0
l

(12)

where ϵ0 = maxt ϵ
∗
t and ut is the given expert decision in time step t.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

For solving Problem (11), it can be reformulated as a Mixed Integer Program and solved using the
spatial branch-and-bound algorithm within a reasonable time (Smith & Pantelides, 1999). By mini-
mizing the duality gap instead of the distance between optimal solutions and given expert solutions,
the number of bilinear terms is reduced from O(|A|K + |A|2) to O(|A|K). Thus, the number of
constraints introduced by the construction of the McCormick envelope can be significantly reduced.

For the broader class of control problems with quadratic objective functions, we can still infer pa-
rameters as shown in Problem (11). Proposition 4 can be extended as shown below.

Corollary 1. When the objective function is given by uTRu + xTQx with the assumption R ≻ 0,

the upper bound will be achieved by
√

λmin(R)
l , where λmin(R) denotes the minimum eigenvalue

of R.

4 CASE STUDY

In this section, we evaluate the proposed framework through three case studies from different fields:
(1) autonomous vehicle rebalancing; (2) supply chain inventory management problems, and (3)
mobile robot navigation. The results highlight its ability to enhance decision quality and provide
interpretable solutions in dynamic environments. The details of the three environments are given in
Appendix B.

To conduct our numerical experiments, we first collect expert demonstrations by simulating a full-
horizon MPC controller over a finite horizon T across N regions. Using a handful of demonstrations,
we then learn the formulation of the lower-level optimization policy. Finally, we evaluate the per-
formance of the learned policy within our proposed bi-level framework. We compare our results
to:

1. MPC: MPC that receives perfect information of the system dynamics and future states of
mobility requests.

2. Bi-level-unchanged: Bi-level framework where lower-level optimization policy is un-
changed with original single-step cost.

3. Bi-level-cvxpy: Embed optimization problem as a differential layer and solve for the opti-
mal parameters using gradient-based method.

4. End-to-end RL: End-to-end reinforcement learning that trains a single model to directly
map inputs to the final control actions.

5. Learning-Based Terminal Cost Approximation: Assume quadratic structure of terminal
cost and estimate the value function.

4.1 MODEL EVALUATION

We compare the bi-level framework equipped with a learned lower-level policy against variants that
rely on a suboptimal lower-level policy and end-to-end RL.

Table 1 and 2 present the system performance. Our Bi-level-learned approach improves upon the
Bi-level-unchanged and Bi-level-cvxpy baseline by employing a refined lower-level formulation.
And our bi-level framework significantly outperforms end-to-end architectures, revealing a substan-
tial performance gap. Moreover, compared with MPC, the bi-level framework shortens the planning
horizon from T steps to one step, which significantly reduces decision-making time. We compare
the time spent to make decisions for one step in Table 3. It shows a significant reduction in runtime
which indicates that our method can significantly improve computational efficiency without sub-
stantially compromising solution quality, thereby enabling faster real-time decision-making. These
results highlight the effectiveness of optimizing the lower-level problem structure in enhancing over-
all system performance. Besides, sensitivity analysis, interpretations of the results and discussions
of methods are provided and discussed in the Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on Autonomous Vehicles Rebalancing and Supply Chain Inven-
tory Management.

Autonomous Vehicle Rebalancing Inventory Management
Method Reward Served Demand Reward Served Demand
MPC 35725 (±41.6) 3203 (±3.07) 11335 (±34.3) 1337 (±5.61)
Bi-level-unchanged 33406 (±128.1) 2993 (±8.06) 7491 (±26.5) 778 (±2.62)
End-to-end RL 20989 (±213.5) 2334.8 (±14.9) 2764 (±90.9) 476 (±18.4)
Bi-level-cvxpy 34403 (±108.7) 3086 (±7.06) 9268 (±32.1) 912 (±2.20)
Bi-level-learned (Ours) 35019 (±53.0) 3141 (±6.14) 9442 (±42.3) 930 (±1.17)

Table 2: Performance comparison of different control methods.
Method Travel Time (s) Path Length (m) Energy (J)
MPC 3.50 3.50 4.81
End-to-end RL 7.60± 0.11 4.29± 0.02 6.78± 0.23
Bi-level-unchanged 9.14± 0.08 4.35± 0.02 6.20± 0.13
Bi-level-learned (Ours) 4.82 ± 0.30 4.16 ± 0.19 2.92 ± 1.04

Table 3: Comparison of Computational Time (in seconds) Across Various Scenarios
Scenarios Our Method MPC

AV Rebalancing 0.025 1.44
SCIM 0.034 0.082
Mobile Robot 0.0187 0.0275

5 FUTURE WORK

There are several promising directions for future research. First, to enhance the generalizability of
the proposed framework, it’s critical to make the learning procedure more generalizable. We aim
to extend it to settings involving more complex system dynamics beyond the current control-affine
formulation to figure out how the current framework can be adapted to different problems more ef-
ficiently. Second, as the inverse optimization component can become computationally intensive in
large-scale scenarios, developing more scalable and efficient algorithms for inverse problem solving
remains an important avenue. Besides, the subgoal in the hierarchical framework may not be re-
trived from expert demonstrations which requires further analysis to extend the applicability of the
proposed method.

6 CONCLUSION

In this work, we propose a hierarchical reinforcement learning and optimization framework that
addresses key challenges in real-time, safety-critical decision-making scenarios. By leveraging in-
trinsic motivation, the upper-level policy generates subgoals that abstract planning objectives, while
the lower-level controller executes these subgoals through a structured optimization problem. A
central contribution of this work lies in the data-driven design of the lower-level optimization for-
mulation based on expert demonstrations. Our method is evaluated on several real-world scenarios
from different fields, where it demonstrates strong empirical performance. Furthermore, our model
exhibits improved alignment with expert decisions and offers interpretable, structured control poli-
cies. This work highlights promising directions for combining learning-based goal abstraction with
structured optimization. Our results suggest that such structured, bi-level approaches are promising
for scaling decision-making in dynamic and safety-critical domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shokhjakon Abdufattokhov, Mario Zanon, and Alberto Bemporad. Learning convex terminal costs
for complexity reduction in mpc. In 2021 60th IEEE Conference on Decision and Control (CDC),
pp. 2163–2168. IEEE, 2021.

Hendrik Alsmeier, Anton Savchenko, and Rolf Findeisen. Neural horizon model predictive control-
increasing computational efficiency with neural networks. In 2024 American Control Conference
(ACC), pp. 1646–1651. IEEE, 2024.

Jeremy Coulson, John Lygeros, and Florian Dörfler. Data-enabled predictive control: In the shallows
of the deepc. In 2019 18th European control conference (ECC), pp. 307–312. IEEE, 2019.

Rogier Dinkla, Tom Oomen, Sebastiaan Paul Mulders, and Jan-Willem van Wingerden. Closed-loop
data-enabled predictive control and its equivalence with closed-loop subspace predictive control.
Automatica, 183:112556, 2026.

Ilgin Dogan, Zuo-Jun Max Shen, and Anil Aswani. Regret analysis of learning-based mpc with
partially unknown cost function. IEEE Transactions on Automatic Control, 69(5):3246–3253,
2023.

Manfred Eppe, Christian Gumbsch, Matthias Kerzel, Phuong DH Nguyen, Martin V Butz, and
Stefan Wermter. Intelligent problem-solving as integrated hierarchical reinforcement learning.
Nature Machine Intelligence, 4(1):11–20, 2022.

Daniele Gammelli, James Harrison, Kaidi Yang, Marco Pavone, Filipe Rodrigues, and Francisco C
Pereira. Graph reinforcement learning for network control via bi-level optimization. arXiv
preprint arXiv:2305.09129, 2023.

Ziqing Gu, Lingping Gao, Haitong Ma, Shengbo Eben Li, Sifa Zheng, Wei Jing, and Junbo Chen.
Safe-state enhancement method for autonomous driving via direct hierarchical reinforcement
learning. IEEE Transactions on Intelligent Transportation Systems, 24(9):9966–9983, 2023.

Lukas Hewing, Kim P Wabersich, Marcel Menner, and Melanie N Zeilinger. Learning-based model
predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and
Autonomous Systems, 3(1):269–296, 2020.

Sebastian Hirt, Maik Pfefferkorn, Ali Mesbah, and Rolf Findeisen. Stability-informed bayesian
optimization for mpc cost function learning. IFAC-PapersOnLine, 58(18):208–213, 2024.

Keke Huang, Ke Wei, Fanbiao Li, Chunhua Yang, and Weihua Gui. Lstm-mpc: A deep learning
based predictive control method for multimode process control. IEEE Transactions on Industrial
Electronics, 70(11):11544–11554, 2022.

Imen Jendoubi and François Bouffard. Multi-agent hierarchical reinforcement learning for energy
management. Applied Energy, 332:120500, 2023.

Napat Karnchanachari, Miguel Iglesia Valls, David Hoeller, and Marco Hutter. Practical reinforce-
ment learning for mpc: Learning from sparse objectives in under an hour on a real robot. In
Learning for Dynamics and Control, pp. 211–224. PMLR, 2020.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems, volume 10, pp. 25. Rome, Italy,
2015.

Thomas Lew, Sumeet Singh, Mario Prats, Jeffrey Bingham, Jonathan Weisz, Benjie Holson, Xi-
aohan Zhang, Vikas Sindhwani, Yao Lu, Fei Xia, et al. Robotic table wiping via reinforcement
learning and whole-body trajectory optimization. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pp. 7184–7190. IEEE, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jinhao Liang, Chaopeng Tan, Longhao Yan, Jingyuan Zhou, Guodong Yin, and Kaidi Yang.
Interaction-aware trajectory prediction for safe motion planning in autonomous driving: A
transformer-transfer learning approach. IEEE Transactions on Intelligent Transportation Systems,
2025.

Chenghao Liu, Fei Zhu, Quan Liu, and Yuchen Fu. Hierarchical reinforcement learning with auto-
matic sub-goal identification. IEEE/CAA journal of automatica sinica, 8(10):1686–1696, 2021.

Yiwen Lu, Zishuo Li, Yihan Zhou, Na Li, and Yilin Mo. Mpc-inspired reinforcement learning for
verifiable model-free control. In 6th Annual Learning for Dynamics & Control Conference, pp.
399–413. PMLR, 2024.

Yu Luo, Tianying Ji, Fuchun Sun, Huaping Liu, Jianwei Zhang, Mingxuan Jing, and Wenbing
Huang. Goal-conditioned hierarchical reinforcement learning with high-level model approxi-
mation. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. Human-ai collaborative sub-goal optimization in
hierarchical reinforcement learning. In Proceedings of the AAAI symposium series, volume 1, pp.
86–89, 2023.

Yi Ma, Xiaotian Hao, Jianye Hao, Jiawen Lu, Xing Liu, Tong Xialiang, Mingxuan Yuan, Zhigang
Li, Jie Tang, and Zhaopeng Meng. A hierarchical reinforcement learning based optimization
framework for large-scale dynamic pickup and delivery problems. Advances in neural information
processing systems, 34:23609–23620, 2021.

Zhiqi Mao, Yang Liu, and Xiaobo Qu. Integrating big data analytics in autonomous driving: An
unsupervised hierarchical reinforcement learning approach. Transportation Research Part C:
Emerging Technologies, 162:104606, 2024.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Kaleb Ben Naveed, Zhiqian Qiao, and John M Dolan. Trajectory planning for autonomous vehicles
using hierarchical reinforcement learning. In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), pp. 601–606. IEEE, 2021.

Chunyang Qi, Yiwen Zhu, Chuanxue Song, Guangfu Yan, Feng Xiao, Xu Zhang, Jingwei Cao,
Shixin Song, et al. Hierarchical reinforcement learning based energy management strategy for
hybrid electric vehicle. Energy, 238:121703, 2022.

Carolin Schmidt, Daniele Gammelli, James Harrison, Marco Pavone, and Filipe Rodrigues. Offline
hierarchical reinforcement learning via inverse optimization. arXiv preprint arXiv:2410.07933,
2024.

Zahed Shahmoradi and Taewoo Lee. Quantile inverse optimization: Improving stability in inverse
linear programming. Operations research, 70(4):2538–2562, 2022.

Edward MB Smith and Constantinos C Pantelides. A symbolic reformulation/spatial branch-and-
bound algorithm for the global optimisation of nonconvex minlps. Computers & chemical engi-
neering, 23(4-5):457–478, 1999.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
International conference on machine learning, pp. 3540–3549. PMLR, 2017.

Ruobing Xie, Shaoliang Zhang, Rui Wang, Feng Xia, and Leyu Lin. Hierarchical reinforcement
learning for integrated recommendation. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 4521–4528, 2021.

Fawang Zhang, Jingliang Duan, Haoyuan Xu, Hao Chen, Hui Liu, Shida Nie, and Shengbo Eben
Li. Inverse model predictive control: Learning optimal control cost functions for mpc. IEEE
Transactions on Industrial Informatics, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhaofan Zhang, Yanan Xiao, Lu Jiang, Dingqi Yang, Minghao Yin, and Pengyang Wang. Spatial-
temporal interplay in human mobility: A hierarchical reinforcement learning approach with hy-
pergraph representation. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 38, pp. 9396–9404, 2024b.

Jingyuan Zhou, Longhao Yan, and Kaidi Yang. Enhancing system-level safety in mixed-autonomy
platoon via safe reinforcement learning. IEEE Transactions on Intelligent Vehicles, 2024.

A PROOF OF PROPOSITIONS

A.1 PROPOSITION 1

The inverse feasible set for Problem 4

θinv
t (ut) :=

{
θ
∣∣ ut ∈ Uopt

t (θ)
}
.

is not guaranteed to be non-empty, where Uopt
t (θ) is defined by KKT optimality conditions of Prob-

lem 4.

Proof. We explore whether there exists θ belonging to the inverse feasible set for Problem 4, which
is making ut to satisfy all KKT conditions.

• KKT conditions for Problem 4:

1. Stationary Conditions:
cT + λT

t H +wT
t B = 0

2. Complementary Slackness:

λT
t (Hut − h) = 0

3. Dual Feasibility and Primal Feasibility:

λt ≥ 0

Hut ≤ h

We assume Hut ≤ h is not active, which means λt = 0. The system BTwt = −c has no feasible
solution if the vector −c does not lie in the column space of BT . For example, when the system is
overdetermined and rank(BT) is larger than dimension of wt.

A.2 PROPOSITION 2

The inverse feasible set for Problem (9)

θ∗inv
t (ut) :=

{
θ
∣∣ ut ∈ U∗opt

t (θ)
}
.

is always non-empty, where U∗opt
t (θ) is defined by KKT optimality conditions of Problem (9).

Proof. We explore whether there exists θ belonging to the inverse feasible set for Problem (9),
which is making ut to satisfy all KKT conditions.

• KKT conditions for Problem 9:

1. Stationary Conditions:

cT +

K∑
k=1

zktθ
T
k + λT

t H +wT
t B = 0, for t ∈ Te

1− zkt − ykt = 0, for k = 1, ...K and t ∈ Te

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2. Complementary Slackness:

zkt(τkt − θT
k ut + νk) = 0, for k = 1, ...K and t ∈ Te

yktτkt = 0, for k = 1, ...K and t ∈ Te
λT
t (Hut − h) = 0, for t ∈ Te

3. Dual Feasibility and Primal Feasibility:

zkt, ykt, λt ≥ 0, for k = 1, ...K and t ∈ Te
Hut ≤ h, for t ∈ Te

τkt ≥ θT
k ut − νk, τkt ≥ 0, for k = 1, ...K and t ∈ Te

There exist trivial feasible solutions to satisfy all KKT conditions:
We assume zkt = 1, ykt = 0 and λt = 0. Then the set of KKT conditions are transformed into

cT +

K∑
k=1

θT
k +wT

t B = 0, for t ∈ Te

τkt = θT
k ut − νk, τkt ≥ 0, for k = 1, ...K and t ∈ Te

(13)

We must find {θk}Kk=1 to satisfy cT +
∑K

k=1 θ
T
k +wT

t B = 0 and let νk = minTt=1{θT
k ut}

A.3 PROPOSITION 3

By appropriately enlarging the decision space with auxiliary variables in Problem (9), any given set
of expert decisions can be made optimal in the lifted space.

Proof. Consider a collection of expert decisions {ui}Ni=1 with ui ∈ Rn. Problem (9) can be refor-
mulated as a linear program by introducing auxiliary variables {tk}Kk=1, which effectively enlarges
the decision space from Rn to Rn+K . For clarity, let us focus on the case K = 1. By adding the
constraints

tk ≥ θ⊤
k ui − ν, (14)

We can at least guarantee that all expert decisions {ui}Ni=1 lie on the same n-dimensional face of
the feasible polytope in the augmented space by making the new added constraint active. This face
can be made parallel to the hyperplane defined by the objective function by adjusting the new added
constraint.

This situation, however, represents an extreme case. In practice, the set {ui}Ni=1 may lie within a
face of dimension strictly smaller than n. To illustrate, suppose ui ∈ R2. If all expert decisions lie
on a one-dimensional face (an edge) of the feasible polytope, then they remain on a corresponding
one-dimensional face in the lifted R3 space. Assume that this edge arises as the intersection of two
adjacent facets, whose supporting hyperplanes have normal vectors n⃗1 and n⃗2, respectively. The
direction vector of the edge is then given by

d⃗edge = n⃗1 × n⃗2, (15)

since it is simultaneously orthogonal to both n⃗1 and n⃗2.

For the expert decisions to be optimal, it suffices that the objective hyperplane be parallel to this
edge. Equivalently, the edge direction d⃗edge must be orthogonal to the objective normal n⃗obj, i.e.,

d⃗edge · n⃗obj = 0. (16)

This condition establishes the required relationship between the optimal geometry and the objective
orientation. Thus, we can solve the equation for feasible unknown parameters in the terminal cost.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 PROPOSITION 4

Problem (11) yields optimal solutions u∗
t satisfying |f(u∗

t)− f(ut)| ≤ ϵ0, s.t.

∥u∗
t − ut∥ ≤

√
ϵ0
l

(17)

Proof. First, we show that the feasible region of Problem (11) is non-empty. Since the strong duality
constraint has been relaxed, the main task reduces to verifying the stationarity condition

cT + λT
t H +wT

t B +
∑
k

zktθ
T
k + 2lut = 0, t = 1, . . . , T. (18)

For the i-th expert decision, suppose there are ni active inequality constraints. Each such active
constraint introduces one additional degree of freedom in the stationarity condition. Together with
the N equality constraints, the total number of effective constraints across T time periods is

T∑
i=1

ni +NT. (19)

Since the decision variable c lies in RM , the stationarity condition can be satisfied provided that
the number of auxiliary terms is large enough to compensate for the remaining degrees of freedom.
More precisely, the required number of ReLU terms is bounded above by

max

{
0, T −

∑T
i=1 ni +NT

M

}
. (20)

This establishes the feasibility of the relaxed problem. Next, we derive the upper bound of distance.

Based on strong convexity of f(u), we have

f(ut) ≥ f(u∗
t) +∇f(u∗

t)
⊤(ut − u∗

t) +
µ

2
∥ut − u∗

t ∥2 (21)

where ∇2f(ut) ≥ µI > 0. By stationary conditioin ∇f(u∗
t) = 0,

f(ut)− f(u∗
t) ≥

µ

2
∥ut − u∗

t ∥2 (22)

The dual objective function g(λt, zt,yt,wt) ≤ f(u∗
t) ≤ f(ut) and we have f(ut) −

g(λt, zt,yt,wt) ≤ ϵ0 by constraining strong duality gap, s.t.

f(ut)− f(u∗
t) ≤ ϵ0 (23)

Thus, we have

∥ut − u∗
t ∥2 ≤ ϵ0 ∗

2

µ
=

ϵ0
l

(24)

B DETAILS OF CASE STUDIES

We consider three simulation scenarios described as follows:

Autonomous Vehicle Rebalancing. Autonomous Mobility-on-Demand (AMoD) systems are an
evolving mode of transportation in which a centrally coordinated fleet of self-driving vehicles dy-
namically serves travel requests. In real-world systems, the effectiveness of rebalancing strategies
is central to the overall system performance, with sub-optimal strategies potentially exacerbating
congestion through unnecessary trips or increased passenger waiting time. The control of these sys-
tems is typically formulated as a large network optimization problem. This framework comprises
two stages: (1) determining the desired distribution of idle vehicles q̂t through the use of the learned
policy πϕ(q̂t|st) by reinforcement learning, (2) converting this distribution to a passenger flow gtij
and rebalancing flow f t

ij by solving a linear control problem.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Supply Chain Inventory Management. In the supply chain inventory management task, we aim
to determine the optimal ordering and distribution strategies across a network of interconnected
warehouses and retail stores to satisfy customer demand while minimizing storage, production and
transportation costs. We choose upper-level goals as (i) desired production in warehouse nodes ŵt

i
and (ii) desired inventory in store nodes q̂ti . And the lower-level optimization module determines the
amount of commodities wt

i to order in each warehouse, and the shipping flow f t
ij from warehouses

to stores.

Mobile Robot Navigation. In the mobile robot navigation task, a ground robot moves from a start
location to a target destination while avoiding static obstacles. The control problem is typically
formulated in a hierarchical framework. At the high level, a learned policy πθ(p̂t | st) outputs
intermediate waypoints, conditioned on the robot’s state, the goal position, and obstacle information.
At the low level, these actions are converted into executable control inputs (vt,ωt) for the unicycle
dynamics, ensuring feasibility under kinematic and dynamic constraints.

The detailed formulations of the lower-level optimization problems for these three environments are
given as follows.

B.1 AUTONOMOUS VEHICLES REBALANCING

The lower-level optimization policy is represented in a matrix form as follows.

min cT ft − pT gt +
∑
k

max{−θ
(k)
f

T
ft + θ(k)

g

T
gt − µ(k), 0}

s.t. qt −A(ft + gt) ≥ q̂t

qt −G(ft + gt) ≥ 0

ft ≥ 0, gt ≥ 0

gt ≤ λt

(25)

where A is the instance matrix, λt is the travel requests in time slot t and ft, gt denote rebalancing
flow and passenger flow respectively.

Proposition 5. The inverse feasible set for Problem 25

θ∗inv
t (ft,gt) :=

{
θ
∣∣ ft,gt ∈ X ∗opt

t (θ)
}
. (26)

is always non-empty, where X ∗opt
t (θ) is defined by KKT optimality conditions of Problem 25.

Next, we will prove this proposition and also show that the solved parameters have practical signifi-
cance which has not been discussed further in the general setting.

Proof. The inverse optimization solving for unknown parameters in Problem 25 is formulated as
follows

min
xt,yt,wt,v1t,v2t,z1t,z2t,τt,θ,µ

∑
k

∥(θ(k))∥2

1− z
(k)
1t − z

(k)
2t = 0, k = 1, ...K, t = 1, ...T

cT + xT
t A+ yT

t G−wT
t −

∑
k

z
(k)
1t θ

(k)T
f + 2l1ft = 0, t = 1, ...T

−pT + xT
t A+ yT

t G− vT1t + vT2t +
∑
k

z
(k)
1t θ(k)T

g + 2l2gt = 0, t = 1, ...T

xT
t (qt −A(ft + gt)− q̂t) = 0, t = 1, ...T

yT
t (qt −G(ft + g + t) = 0, t = 1, ...T

wT
t ft = 0, t = 1, ...T

vT1tgt = 0, t = 1, ...T

vT2t(gt − λt) = 0, t = 1, ...T

(other feasiblity constraints)

(27)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Given historical data {fi, gi, qi, λi}Ni=1, we consider the worst-case scenario where

Gfi +Ggi ̸= qi, fi ̸= 0, gi ̸= 0, gi ̸= λi ∀i = 1, . . . , N.

This implies that all corresponding dual variables

yi = wi = v1i = v2i = 0 ∀i = 1, . . . , N.

We proceed with the analysis under this assumption. Moreover, We further set

z
(k)
1i = 1, z

(k)
2i = 0

which simplifies inverse problem corresponding to Problem 25 into the following form:

min
θ(k),µ(k),xi

∑
k

∥θ(k)∥2

s.t. − θ
(k)
f

⊤
fi + θ(k)

g

⊤
gi − µ(k) = τ

(k)
i , ∀k = 1, . . . ,K,

c⊤ + x⊤
i A−

∑
k

θ
(k)
f

⊤
= 0,

− p⊤ + x⊤
i A+

∑
k

θ(k)
g

⊤
= 0,

(other feasibility constraints).

(28)

Now assume xi ⪯ ϵ1 for some small ϵ > 0. Then we have

−ϵ1 ⪯ x⊤
i A ⪯ ϵ1.

Suppose c,p ∈ Rn
++. We can select ϵ such that

min
1≤j≤M

cj ≥ ϵ, min
1≤j≤M

pj ≥ ϵ.

Then the constraints in 28 reduce to

−θ
(k)
f

⊤
fi + θ(k)

g

⊤
gi − µ(k) ≥ 0, ∀k = 1, . . . ,K,

c⊤ + x⊤
i A−

∑
k

θ
(k)
f

⊤
= 0,

−p⊤ + x⊤
i A+

∑
k

θ(k)
g

⊤
= 0.

(29)

Assume further that K = 1 (for simplicity). Then the last two equalities yield:

θf = c+A⊤xi, θg = p−A⊤xi.

In the context of autonomous vehicle rebalancing, it is reasonable to assume that the total revenue
exceeds the cost, i.e., p⊤gi > c⊤fi. Then we compute:

−θ⊤
f fi + θ⊤

g gi − µ = −(c⊤ + x⊤
i A)fi + (p⊤ − x⊤

i A)gi − µ

= (p⊤gi − c⊤fi)− x⊤
i A(fi + gi)− µ

≥ (p⊤gi − c⊤fi)− ϵ1⊤(fi + gi)− µ.

(30)

Therefore, we can choose ϵ sufficiently small and µ accordingly, such that the right-hand side of
30 remains non-negative. This guarantees that the constraints in 29 are satisfied, hence the problem
admits a feasible solution.

Problem 25 is constructed so that the historical expert decisions {fi, gi}Ni=1 are optimal solutions
to the forward problem. There exist model parameters {θ(k)

f ,θ
(k)
g , µ(k)}Kk=1 and desired next states

{q̂i}Ni=1, which can be learned via reinforcement learning, such that the expert decisions become
approximately optimal.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 SUPPLY CHAIN INVENTORY MANAGEMENT

The lower-level policy is formulated as follows

min
ft
ij ,w

t
i

∑
i∈VW

mO
i ·wt

i +
∑

(i,j)∈E

mT
ij · f t

ij +
∑
i∈VS

|ϵfi |+
∑
i∈VW

|ϵwi |+
K∑

k=1

max{θT
k f − µk, 0}

(31a)

s.t.
∑

j∈N−(i)

f t
ji + ϵfi = q̂t+1

i , i ∈ VS (31b)

qti +
∑

j∈N−(i)

f t
ji − dti ≤ cti, i ∈ VS (31c)

∑
j∈N+(i)

f t
ij ≤ qti , i ∈ VW (31d)

qti +wt
i −

∑
j∈N+(i)

f t
ij ≤ cti, i ∈ VW (31e)

wt
i + ϵwi = ŵt

i , i ∈ VW (31f)

f t
ij ≥ 0, (i, j) ∈ E ,wt

i ≥ 0, i ∈ VW (31g)

where mo,mT , d, c are production cost, transportation cost, customer demand and capacity respec-
tively, wi denotes order quantity in warehouse i and fij denotes the departing flow from warehouse
i to store j, and q denotes the inventory level.

B.3 MOBILE ROBOT

min
ut=(vt,ωt)

cp∥pt+1 − p̂t∥2 + ch∥θt+1 − θ̂t∥2 + cu∥ut∥2 +
K∑

k=1

max{αkut − βk, 0} (32a)

s.t. xt+1 = xt + Tsvt cosθt (32b)
yt+1 = yt + Tsvt sinθt (32c)
θt+1 = θt + Tsωt (32d)
vmin ≤ vt ≤ vmax (32e)
ωmin ≤ ωt ≤ ωmax (32f)

∥pt+1 − pobs
j ∥ ≥ rj + dsafe, ∀j = 1, . . . ,M (32g)

where vt and ωt denote speed and angular speed of mobile robot. pt = (xt,yt) represents its
position and p̂t is the reference waypoint generated by upper-level RL module. The objective is to
reach the final goal and avoid obstacles.

C FURTHER EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 MOTIVATIONS FOR INVERSE OPTIMIZATION APPROACH

We first show the evidences supporting to choose inverse optimization to infer cost structure. Un-
der the assumption that RL enable to offer optimal upper-level goals, we depart the learning of
cost structure from the bi-level framework training and explore which method mimics the expert
decisions best.

Based on Table 4, inverse optimization outperforms the other two methods to large extent. First,
value function approximation method doesn’t perform well in both tasks since it cannot embed the
designed structure of lower-level policy explicitly. Second, cvxpylayers perform well on AV Rebal-
ancing task in certain scenario, but fail in some other tasks. It’s due to the following reasons. First,
such gradient-based optimization method is sensitive to the differentiation. When the derivative of

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 4: Similarity scores between expert decisions and decisions chosen by different methods.
AV Rebalancing Inventory Management

Method Reb. flow Pax. flow Commodity. flow
Value Approximation 0.522 0.943 0.461
cvxpylayers 0.541 0.946 0.445
Inverse Optimization 0.703 0.958 0.997

objective with respect to the unknown parameter is small, the algorithm will struggle to optimize the
parameters. Second, the optimal distribution of parameters may be complex, and thus challenging
to estimate within the scope of commonly distribution families.

C.2 INTERPRETABILITY

Interpretations of Optimal Parameters. The optimal parameters inferred by inverse optimization
are visualized in the following figures, which show that different weights are assigned to different
edges. For example, the district ”0” of higher value motivates the repositioning of idle vehicles
towards this area, particularly along paths with low travel costs. Thus, a significant penalty is applied
to insufficient rebalancing flows on the corresponding routes. The yellow line in the figure, which
denotes high inferred penalty weights, achieves this motivation. In scenario 2, the situation becomes
more complex, but we can still notice some ”important” routes and the ”not important” ones are not
penalized.

Figure 2: Optimal Weights in Scenario 1 Figure 3: Optimal Weights in Scenario 2

Interpretations of Outputs. To gain deeper insights into the effectiveness of the inverse method and
explain model interpretability, we analyze how decisions made by two bi-level frameworks deviate
from trajectories made by MPC. Table 5 shows that Bi-level-learned framework make decisions
much closer to MPC trajectories, which indicates that the learned lower-level policy based on expert
demonstrations extracts information efficiently compared with the original policy with short-sighted
cost functions.

Table 5: Comparison of the cosine similarity and Manhattan distance between the rebalancing flow
f obtained from different bi-level models and the flow generated by the MPC.

Formulation Cosine Similarity Manhattan Distance
Bi-level-unchanged 0.477 44
Bi-level-learned 0.976 7

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 4: Sensitivity to the Number of ReLU Terms

Figure 5: Sensitivity to Noise in Offline Data

C.3 SENSITIVITY ANALYSIS

In this subsection, we analyze how the number of ReLU terms included in the cost function and
the noise in expert data influence the performance of inverse optimization. We use cosine similarity
and Manhattan distance between the noise-free expert decisions and decisions made by solving the
lower-level optimization problem with different settings.

• Sensitivity to Number of ReLU Terms

Based on Figure 4, we notice that the quality of solutions doesn’t vary a lot as number of ReLU terms
varies. We can infer well-performed parameters via inverse optimization utilizing only a handful of
expert decisions and very few ReLU terms.

• Sensitivity to Data Noise

Sometimes given demonstrations are not optimal, thus we figure out how the noise affect inverse op-
timization. As figure 5 shows, the solution is much closer to optimal expert demonstrations although
some noise exists in offline data. Moreover, when we utilize noisy expert demonstrations to derive
lower-level problem formulation and apply it in the bi-level framework, the framework improves the
reward compared to the one achieved by original noisy expert demonstrations by 1.7%. Although
the improvement is not so significant, it suggests a promising direction that we can employ our in-
verse optimization-guided bi-level framework to extract insights from sub-optimal offline data and
make better decisions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.4 DISCUSSIONS

In this section, we talk about the motivation utilizing inverse optimization to infer the terminal
cost. We implement the method proposed by Abdufattokhov et al. (2021) which assumes quadratic
structure of terminal cost and estimates the value function directly. We compare the performance
on autonomous vehicle rebalancing task. As table 6 suggests, there exists a large optimality gap.
A key limitation of value function approximation method is that the formulation of the lower-level
optimization problem cannot be explicitly incorporated. More experiments even suggest that this
class of methods fails in some tasks where the terminal cost cannot alleviate myopic issues in the
bi-level RL-OC framework.

Table 6: Performance Comparison on Autonomous Vehicle (AV) Rebalancing Task.
Scenario Method Performance Metrics

Reward Served Demand

Scenario 1
MPC 35725 (±41.6) 3203 (±3.07)
Bi-level-learned (Ours) 35019 (±53.0) 3141 (±6.14)
Value Approximation 24774 2395

Scenario 2
MPC 68637 (±194) 7540 (±14.1)
Bi-level-learned (Ours) 61880 (±370.3) 6619 (±22.3)
Value Approximation 29905 3160

D USE OF LLMS

We utilized a large language model (LLM) to assist with improving the clarity, grammar, and overall
readability of the text. The use of the LLM was strictly limited to language editing and refinement.
All scientific contributions, including the core ideas, the methodological framework, the experimen-
tal design, and the mathematical derivations, are the original work of the authors.

20

	Introduction
	Related Work
	Methodology
	Problem Setting and Preliminary
	Bi-level Framework
	Learning Problem Formulation: Inverse Optimization
	General Framework
	Special Case with Theoretical Analysis

	Case Study
	Model Evaluation

	Future Work
	Conclusion
	Proof of Propositions
	Proposition 1
	Proposition 2
	Proposition 3
	Proposition 4

	Details of Case Studies
	Autonomous Vehicles Rebalancing
	Supply Chain Inventory Management
	Mobile Robot

	Further Experimental Results and Discussions
	Motivations for Inverse Optimization Approach
	Interpretability
	Sensitivity Analysis
	Discussions

	Use of LLMs

