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ABSTRACT

Hierarchical decision-making frameworks are pivotal for addressing complex con-
trol tasks, enabling agents to decompose intricate problems into manageable sub-
goals. Despite their promise, existing hierarchical policies face critical limita-
tions: (i) reinforcement learning (RL)-based methods struggle to guarantee strict
constraint satisfaction, and (ii) optimization-based approaches often rely on my-
opic and computationally prohibitive formulations. In this work, we propose a
bi-level reinforcement learning and optimization framework that systematically
integrates upper-level goal abstraction with structured lower-level decision mak-
ing. We adopt an inverse optimization approach to inform the structure of the
lower-level problem from expert demonstrations, ensuring that the objective of
the lower-level policy remains aligned with the overall long-term task goal. To
validate the approach, our framework is evaluated on three real-world scenarios,
where it outperforms baseline methods in both efficiency and decision quality,
demonstrating the benefits of learning structured optimization policies within a
hierarchical RL architecture.

1 INTRODUCTION

Real-time decision-making in cyber-physical systems, such as robotics, autonomous driving, power
grids, and transportation (Jendoubi & Bouffard, 2023; [Zhou et al., 2024} |Liang et al., |2025)), is
inherently challenging due to high-dimensional state and action spaces, nonlinear dynamics, and
complex physical constraints. Existing solutions largely stem from optimal control (OC) and deep
reinforcement learning (RL). OC-based methods aim to optimize system performance over infinite
or long horizons while ensuring stability and feasibility. These methods are well-suited for safety-
critical systems due to their theoretical guarantees, but may scale poorly in high-dimensional or
nonlinear settings and often require accurate models. In contrast, RL-based approaches directly
learns a policy from interactions with the environment, which scale well to complex tasks and do
not require explicit modeling of complex system dynamics. Nevertheless, these approaches require
extensive training and lack safety or constraint satisfaction guarantees due to their black-box nature.
These trade-offs have motivated growing interest in combining OC-based and RL-based methods to
exploit the strengths of both paradigms.

A promising approach for combining OC- and RL-based methods is through a hierarchical archi-
tecture that decomposes decision-making into two sequential subproblems (Lew et al.l 2023} |Karn-
chanachari et al., 2020). The upper-level employs an RL policy for strategic planning, such as
generating subgoals, while the lower level uses OC to ensure safe and feasible execution. This
hierarchical architecture not only enhances scalability and feasibility but also aligns with human
cognition, as humans tend to perform abstract planning guided by intrinsic motivation, grounded by
fast, lower-level execution.

Despite the promise of hierarchical RL-OC frameworks, the formulation of the lower-level opti-
mization problem remains underexplored. The lower-level controller must be both computationally
efficient and aligned with the upper-level goals, since a poorly designed formulation may inadver-
tently exclude high-quality solutions. Existing approaches have several limitations. First, most
hierarchical methods adopt long-horizon OC formulations at the lower level to preserve stability
and feasibility guarantees, which can introduce prohibitive computational complexity for real-time
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Figure 1: We propose an RL-OC hierarchical decision-making framework with lower-level policy
informed by inverse optimization.

applications. Second, recent efforts leverage single-step OC to enhance computation efficiency by
directly generating the value or constraints on the desired next state (Gammelli et al.| [2023;|Schmidt
et al.,|2024). Nevertheless, these formulations typically rely on myopic objectives without an ap-
propriately designed formulation, causing solutions to overlook longer-term impacts and potentially
leading to suboptimal trajectories. The above challenges highlight the importance of formulating
the lower-level optimization problem in a way that reduces sub-optimality while simultaneously
ensuring tractable computational complexity.

To address these limitations, we propose an inverse optimization framework to guide the design of
the lower-level policy from a handful of demonstrations, which provide valuable insights (Figure
[I). We cast the design of the lower-level cost function as an inverse optimization problem. For
a special class of lower-optimization problems with linear cost functions, we provide a theoretical
characterization of the conditions under which the expert demonstrations are optimal. Once the
formulation is established, we employ efficient methods to solve the inverse problem, determining
the exact mathematical formulation that best fits the observed data. To validate the effectiveness of
our approach, we demonstrate our method on the problem of autonomous vehicle rebalancing and
inventory management. The improvements in learning the formulation are validated from multiple
perspectives. In light of the above discussion, we summarize the main contributions of this work as
follows:

* We present a general decision-making framework that integrates RL with OC through a
hierarchical policy, proposing an inverse optimization-based approach to inform the design
of lower-level control policies.

* We provide theoretical analysis for a special class of problems with broad applications,
proposing a tractable cost structure and efficient inverse optimization formulation which
ensures inverse-feasibility, forward-stability, and computational tractability.

* We demonstrate the effectiveness of the proposed framework on several scenarios from
different fields, showcasing its practical relevance and potential impact in real-world appli-
cations.

2 RELATED WORK

This work is related to the literature on hierarchical structured control policies. Depending on
whether learning-based or model-based approaches are used at each level, existing works can be
broadly classified into two categories: (i) hierarchical reinforcement learning (HRL) that employs
RL at each level, and (ii) learning-based optimal control, e.g., frameworks integrating RL and MPC,
whereby a upper-level policy learns desired states or goals, and a simplified lower-level MPC en-
sures safe and feasible execution.

Hierarchical Reinforcement Learning HRL decomposes a complex, difficult-to-solve problem
into multiple simpler, smaller problems by setting subgoals (Kulkarni et al.,[2016;|Vezhnevets et al.,
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2017; Ma et al., 2021} Xie et al., 2021} Eppe et al., 2022} Q1 et al., 2022} Huang et al.| [2022; |Gu
et al.,[2023; Mao et al., 2024; Luo et al.l|2024; [Zhang et al., [2024b; Hirt et al., 2024). We focus on
how hierarchical policies utilize various forms of intrinsic motivation by setting subgoals. Naveed
et al.| (2021) develop a hierarchical reinforcement learning framework for autonomous vehicle tra-
jectory planning, where a upper-level policy selects maneuver options, and a lower-level planner
generates waypoints accordingly. [Vezhnevets et al.|(2017) applies Feudal Networks for hierarchical
reinforcement learning. The manager module sets abstract goals that are conveyed to and enacted by
the Worker module. Another common way to set goals is to consider the desired states. In Nachum
et al.| (2018), the author sets the upper-level actions to be goal states and reward the lower-level
policy for performing actions that yield an observation close to matching the desired goal. In recent
years, a growing body of work has investigated how to define subgoals and how to search efficiently
within the subgoal space (Liu et al., 2021}; Ma et al., | 2023). Nevertheless, these studies have paid
limited attention to the relationship between subgoals and the agent’s final actions. Moreover, as pre-
viously discussed, incorporating constraints to ensure safety strictly is challenging in reinforcement
learning framework. In next section, we focus on how learning, especially reinforcement learning,
interplays with optimization in the previous literature.

Learning-based OC. In the control community, various real-world control problems are solved by
using learning-based OC. In many existing works, learning-based methods are often applied to learn
cost functions or system dynamics (Lenz et al., 2015} |Coulson et al., |2019; [Hewing et al.l 2020;
Dogan et al.| [2023} [Zhang et al., 2024a; |Lu et al.l |2024; Zhang et al., 2024a; |Dinkla et al., [2026).
However, solving optimal control problems in real time still poses challenges when long control
horizons are used, due to the high dimensionality of variables and the complexity of constraints.
Prior work has attempted to reduce the computational burden by approximating the long-horizon
MPC problem with a single-step formulation and learning terminal cost to alleviate myopic behav-
ior (Abdufattokhov et al., 2021} |/Alsmeier et al., |2024). However, the learning paradigm of these
methods doesn’t relate to the final cumulative rewards directly. Instead,|Gammelli et al.| (2023)) pro-
pose to leverage reinforcement learning to learn upper-level actions to shorten the control horizon
of network flow control problem. In this framework, reinforcement learning is applied to provide
reference trajectories that guide the lower-level executor toward maximizing cumulative rewards. In
addition, Schmidt et al.|(2024) applies the hierarchical RL-OC in the offline setting. They focus on
the generation of upper-level subgoals. However, a key limitation is their strict assumption that the
offline data is optimal in the lower-level problem.

Related to this line of research, our work investigates how to formulate the lower-level optimization
problem to alleviate sub-optimality issues. based on expert demonstrations. To the best of our
knowledge, this is the first work that addresses the design of lower-level optimization policy and
proposes a generalizable framework which leverages intrinsic motivation to make time-efficient and
safety-guaranteed decisions.

3 METHODOLOGY

3.1 PROBLEM SETTING AND PRELIMINARY

Let us consider a general multi-step decision-making problem formulated in (T).

=
min limsup — c(xy,u
{ued2y Tooo T ; ( ! t)
st Tep1 = fxy) + g(ae)uy, VE>0 ()
x; € &}, Vi >0
ur €Uy, Yt>0

where x; € R" is the system state at time step ¢, u; € R™ is the control input, and c(x¢, u) is the
stage cost function assumed to be convex. The system dynamics are assumed to be control-affine
(i.e., linear in u;) with functions f(-) and g(-), which cover a wide range of applications in cyber-
physical systems. The feasible sets X; and U; encode admissible states and inputs, respectively,
which are assumed to be convex. The initial state z is known.
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Due to the infinite horizon and the presence of complex constraints, solving Problem (TJ) is often
computationally intractable. A standard workaround is a finite-horizon approximation. However,
OC problems with long time horizons can still be computationally challenging for large-scale sys-
tems, which do not satisfy the real-time requirements of practical applications. To address this issue,
we generalize the bi-level decision-making framework proposed by (Gammelli et al.| (2023) to a more
general problem setting.

3.2 BI-LEVEL FRAMEWORK

The hierarchical RL-OC framework is implemented as an end-to-end system shown in Problem (2).

Z v e(uy, xt)]
t=0
S.t. ht ~ 7T(ht | .’Bt)
U = FOP(I’Lt, :ct)

The overall policy 7* composes an upper-level RL policy 7 and the solution to a lower-level opti-
mization problem FOP. The upper-level policy encodes task-relevant abstract information or goals
to produce the intrinsic subgoal h;. The lower-level optimization module receives both the intrinsic
subgoal h; and the current state x; to compute the control input w, that is feasible.

Remark 1 (Practical requirements for RL-OC frameworks). There are two requirements for Prob-
lem (2). First, for real-time deployment, FOP should capture operational constraints and be compu-
tationally efficient to solve. Second, to enable stable training, the intrinsic subgoal h; is preferably
low-dimensional.

7* € argmaxE,
well

2

Following Remark [I} a commonly used form of subgoals is a linear transformation of the desired
next state £ using a known matrix C, denoted by #; = Cx{®. This subgoal guides the system
toward the desired state by inducing appropriate lower-level actions. Here, in scenarios with high
state dimensions, the transformation matrix C' serves to compress the action space of the upper-
level RL by mapping the high-dimensional system state to a lower-dimensional planning space. The
transformation matrix C' is typically set as an identity matrix in scenarios with low state dimensions.
Overall, the bi-level decision-making framework is given in (3) and ().

Z ,th(utv wt)]

7% € argmax E,
mell

=0 3)
s.t. .’f}t ~ ’/T(it | :Bt)
U € FOP(ZEt, .’f}t)
FOP(x, &) := argmin c(x, us)
st. Of(ze) + Cg(T)us = &4, )

flxe) + g(xe)ur € Xigr, up €Uy

By leveraging intrinsic subgoals learned by the upper-level policy, the lower-level executor is able
to make near-instantaneous, subgoal-conditioned decisions, which is particularly advantageous in
time-sensitive or high-dimensional environments. However, the formulation of FOP still remains
ambiguous in the bi-level framework, as discussed in Remark@}

Remark 2 (Importance of proper lower-level formulations). We highlight two considerations for
Problem (4). First, the transformed desired next state &; produced by the upper-level RL may be
infeasible in practice, e.g., planned trajectories in robotics tasks, which require the design of a cost
function to penalize violations. Such a cost function must be aligned with the overarching objective
of the decision-making problem to avoid sub-optimality. Second, even when 2 is feasible, the for-
mulation of the lower-level optimization still requires careful design to mitigate myopic decisions,
particularly when the transformation matrix C' reduces the state dimension. Specifically, there may
exist multiple actions wu; that satisfy the constraint x; + Bu; = & but yield different next states
under the true dynamics, which will influence future rewards. Therefore, it is important to properly
design the lower-level problem to align the action selection with the overarching objective.

In the next subsection, we will present an inverse optimization approach to inform the design of the
lower-level optimization problem.
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3.3 LEARNING PROBLEM FORMULATION: INVERSE OPTIMIZATION
3.3.1 GENERAL FRAMEWORK

We assume access to a set of expert data {@s, u;}+c7, generated by an existing decision-making
policy, such as Model Predictive Control (MPC) or other high-quality heuristics ensuring strict safety
guarantees, where 7 represents the set of time steps at which the dataset is collected. We make three
remarks regarding the expert dataset. First, as high-quality solution methods may not be suitable for
making real-time decisions in practice, the expert data can be derived offline rather than from real-
world operations. Second, for the same reason, the dataset is assumed to be small, which makes
supervised learning methods such as imitation learning less suitable. Third, 7. is chosen to cover
diverse operating conditions and does not have to consist of consecutive time steps.

The core of our approach is to recover latent structure encoded in the expert data. Specifically, we
parameterize the lower-level optimization problem as

FOPg(x, &) := arg min{c(z, u;) + do (@, &4, ur) | @y + Bruy = &, uy € LA{t} 5

where a; := Cf(x;), By := Cg(x;), and U, = U, N {ut|f(x:) + g(xs)us € Xep1}. The term
dg(-) parameterized by parameter 6 is assumed to be convex and will be properly designed to align
the lower-level optimization problem to the objective of the overarching decision-making problem.

We then convert the design of the lower-level optimization problem into estimating € from the expert
dataset. Speficically, we aim to find 8 via inverse optimization such that for each expert pair (x;, u;),
the action w, is (approximately) optimal for FOPg(x;, &) under some subgoal &;. Specifically, let
U (0, x:, &) denote the optimal solution set corresponding to parameter 0, state x;, and subgoal
&;. In practice, since the lower-level optimization is convex, U°"(0, x;, &;) can be characterized
by the Karush—Kuhn-Tucker (KKT) conditions. Then, the inverse optimization problem can be
formulated as

mln{f@'h ZZ ug, UP(O, a:t,:ct)) 06@}. (6)
0 ITI

teT.
where the objective function is a weighted combination of two parts: (i) the sum of losses with
each loss £(us, U™ (0)) indicating the deviation of expert action u; from the optimal solution set
U (), i.e., the sub-optimality of the expert action, and (ii) a user-defined, application-specific
regularization term h(60) representing prior information or user preference regarding 6.
Remark 3 (Inverse optimization for lower-level formulations). We make three remarks regarding the
inverse optimization framework. First, we focus on learning the objective function of FOPg rather
than its constraints, as constraints are typically dictated by physical requirements. Second, without
loss of generality, we assume the constraint a; + Byu; = &, is feasible. If this is not the case,
we can relax it as a; + Biyu; = &; + €;, and augment the action, corresponding matrix, and cost
function as @; = [uy; €], By = [By, I], and dg (1, &4, U;), respectively, which yields a lower-level
optimizer of the same form. Third, we focus on common cases where the subgoal &; can be retrieved
from expert data, such as the desired next state or state representations as mentioned above. For
other cases where subgoals cannot be directly obtained, they can be introduced as additional latent
variables {&; }+c7. and estimated jointly with 6.

Without loss of generality, we assume L~{t is a polytope represented by ﬁt = {u | Hyu < b}. Under
this assumption, the learning problem for § can be formulated as

2
€||5 + kh(@ 7a
i, el o) (7a)
st. 0¢ 8u (c(wt, ut) + dg((l?t,jt,ut)) —+ A?Ht —+ w?Bt, YVt (7b)
a; + Btut = ifﬂt, Htu < b7 Vit (70)
A >0, Vt (7d)
o(wg, Ap,wy) + € = c(, wy) + do(s, By, us), Vi (7e)

where 0,, denotes the subdifferential of the cost function of FOPg, which generalizes the gradient
to allow for non-smooth objectives. The vectors w; and A; are dual variables. The objective func-
tion in follows the structure of Problem (6), penalizing the sum of squared duality gaps while
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regularizing @ via h(-). Constraints (7b)-(7¢) are the KKT conditions, where relaxes the strong
duality condition with a duality gap e;.

Concretely, we minimize the duality gap in Problem (7)) instead of the distance between given ex-
pert decisions and optimal solutions to the forward optimization problem. This aims to reduce the
computational time when Problem (7)) is non-convex, which will be analyzed in more detail in the
following sections. Once the preliminary formulation of F'O P, is established and the correspond-
ing inverse optimization problem is formulated, we leverage the expert data to infer the unknown
parameters within the model, with the objective of recovering a parameterization under which the
observed decisions are (approximately) optimal.

3.3.2 SPECIAL CASE WITH THEORETICAL ANALYSIS

We next consider a special class of decision-making problems with a linear stage cost function
c¢'u,; and state-independent function ¢(-) (i.e., By = B,Vt). We show that under this setting,
our framework can achieve desirable properties such as inverse feasibility, forward stability, and
computation efficiency. At the end of this section, we generalize our conclusions to a broader class

of problems with quadratic stage cost functions.

We make the following remarks on this special setting. First, this setting captures a broad range of
applications in resource allocation, logistics, and energy systems, where strict constraint satisfaction
and fast computation are critical. Second, despite the linear cost structure, the original multi-stage
decision-making problem (I)) can still be challenging to solve in real-world operations due to (i) the
potentially nonlinear structures of f(-) and ¢(-) and (ii) potentially high state and action dimensions.
Therefore, a hierarchical decision-making problem is still required for computational efficiency.

In this special setting, we aim to derive an FOP formulation such that the inverse optimization is
always feasible. This is important, as it can allow us to utilize any type of expert data. In this case,
we formulate the estimation of 6 as

min {0(0)|0cO™u)VteT., 6 O}. (8)

where 0™ (u;) := {6 | u; € U;™'(0)} is the inverse feasible set, i.e., the set of parameter values

under which the expert action u; belongs to the optimal solution set ;™ (8) of the lower-level
problem FOPg(x¢, &;). The function ¢(0) denotes a user-defined, application-specific objective
that resolves indeterminacy by selecting among multiple feasible parameters.

As stated in Proposition |1} Problem (8) can be infeasible without a properly designed cost structure
dg(-). Counterexamples are constructed in Appendix
Proposition 1. The inverse feasible set for Problem ())

01" (ur) == {0 | ur € U (0)} .

is not guaranteed to be non-empty, where U;"'(0) is defined by the Karush—Kuhn—Tucker (KKT)
conditions of Problem (|5) and 0 denotes unknown parameters in the problem.

To address the sub-optimality, we propose an inverse-optimization—guided design procedure that
leverages criteria such as inverse feasibility and forward stability to inform the lower-level formula-
tion.

Stage 1: Validating optimality of expert decisions. We first construct a preliminary formulation
of FOPy such that the historical decisions {u;}7_, are possible to be optimal under the observed
states {z;}Z_,. We achieve this goal by validating the feasibility of the inverse problem.

We select the terminal cost dg (-) represented by the summation of ReLU-based regularization terms,
which demonstrates high efficiency despite its simplicity. Propositions 2 and 3 show the motivation
to design such cost structure from both geometric and algebraic perspectives respectively.

K
FOP(x;, &) := arg min {cTut + Z max{@,{ut — U, O}|at + Bu; = &4, us € Zj[t} 9
! k=1
Proposition 2. The inverse feasible set for Problem @) 0;™ (u,) == {0 | u, €U"(0)}, is al-
ways non-empty, where U; " () is defined by KKT conditions of Problem
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Proposition 3. By appropriately enlarging the decision space with auxiliary variables in Problem
(9), any given set of expert decisions can be made optimal in the lifted space.

Stage 2: Ensuring forward stability. Although Problem (9) has proven to make expert data opti-
mal, i.e., the inverse feasibility is guaranteed, another critical issue in inverse optimization, named
forward stability, proposed by [Shahmoradi & Lee| (2022), is not guaranteed in the case of a linear
program. The definition of forward stability is defined as follows.

Definition 1 (Forward Instability (Shahmoradi & Leel 2022)) Given a set of expert observations
U, the forward instability of an inverse solution 0c 0+ (U ) is defined as
max {d(ﬁ, u)} ,
ueld*ort(6)
where U *Opt(e) denotes the set of forward optimal solutions correspondlng t0 0. This value quan-

tifies the worst-case distance between a forward solution v induced by 6 and the expert data U,
measuring how unstable the inverse solution 6 can be.

To solve this issue, we include small quadratic terms into objective function to ensure strong con-
vexity of objective function, such that forward stability is improved and the expert decisions are
approximately optimal at the same time. Overall, we formulate the forward optimization problem as
follows, which improves forward stability without sacrificing computational tractability at the same

time.
K

FOP(&;,x;) := argmin c¢' u; + Zmax{@,{ut — U, 0} + 1 [|Jug||3
uy
' k=1 (10)
S.t. at+But :.’f}t, te 7;
U S Z/lt, te 7;
We propose the following inverse optimization formulation, where dual variables are denoted by
Zkt, Ykt, Wi, Ay and Ty is the auxiliary variable. g(A:, z¢, yr, wy) is the dual objective function

with explicit form in this problem. To keep the formulation concise, we omit the explicit form of
this function.

min > lledll3 +pZH 13 (11a)

Zkt Ykt At , Wy, €¢,0(F)

teTe
s.t. 1—zkt—ykt:O, k=1,.K,teT7, (11b)
"+ ATH+w/B+Y 240] +20u, =0, t €T, (11c)
k
K
g( A, ze, Yy, wi) + €, = e uy + ZTM + lutTut, teT. (11d)
k=1
The > 0L us — v, k=1, K, t€T, (11e)
zktaykhAtht Z 07 k= 1) Ka t e 7—6 (11f)

We minimize duality gap together with regularizing norm of 6y, for robustness. This reformula-
tion aims to reduce the computational time required to solve the non-convex problem which poses
significant challenges for computational tractability. Instead of minimizing distance between opti-
mal solutions and given expert decisions, this formulation reduces the number of bilinear terms by
avoiding introducing new variables corresponding to the optimal solutions of the forward problem
[I0] What’s more, quadratic term is introduced to ensure that forward stability is improved. Propo-
sition 4 demonstrates that the distance between the input and optimal solutions remains bounded.
By introducing a sufficient number of ReLLU-based terms, we can constrain the values of ¢y within
a small range, thereby controlling the upper bound of the distance.

Proposition 4. Problem yields optimal solutions uf satisfying |f (uf) — f(us)| < €, s.t.

€
g — | < 1/70 (12)

where €9 = max; €; and u; is the given expert decision in time step t.
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For solving Problem (TTJ), it can be reformulated as a Mixed Integer Program and solved using the
spatial branch-and-bound algorithm within a reasonable time (Smith & Pantelides} |1999). By mini-
mizing the duality gap instead of the distance between optimal solutions and given expert solutions,
the number of bilinear terms is reduced from O(|A|K + |A|?) to O(JA|K). Thus, the number of
constraints introduced by the construction of the McCormick envelope can be significantly reduced.

For the broader class of control problems with quadratic objective functions, we can still infer pa-
rameters as shown in Problem (TT). Proposition 4 can be extended as shown below.

Corollary 1. When the objective function is given by u? Ru + xT Qx with the assumption R = 0,

the upper bound will be achieved by +/ %(R) where \pin(R) denotes the minimum eigenvalue
of R.

4 CASE STUDY

In this section, we evaluate the proposed framework through three case studies from different fields:
(1) autonomous vehicle rebalancing; (2) supply chain inventory management problems, and (3)
mobile robot navigation. The results highlight its ability to enhance decision quality and provide
interpretable solutions in dynamic environments. The details of the three environments are given in

Appendix [B]

To conduct our numerical experiments, we first collect expert demonstrations by simulating a full-
horizon MPC controller over a finite horizon 7" across N regions. Using a handful of demonstrations,
we then learn the formulation of the lower-level optimization policy. Finally, we evaluate the per-
formance of the learned policy within our proposed bi-level framework. We compare our results
to:

1. MPC: MPC that receives perfect information of the system dynamics and future states of
mobility requests.

2. Bi-level-unchanged: Bi-level framework where lower-level optimization policy is un-
changed with original single-step cost.

3. Bi-level-cvxpy: Embed optimization problem as a differential layer and solve for the opti-
mal parameters using gradient-based method.

4. End-to-end RL: End-to-end reinforcement learning that trains a single model to directly
map inputs to the final control actions.

5. Learning-Based Terminal Cost Approximation: Assume quadratic structure of terminal
cost and estimate the value function.

4.1 MODEL EVALUATION

We compare the bi-level framework equipped with a learned lower-level policy against variants that
rely on a suboptimal lower-level policy and end-to-end RL.

Table[T]and 2] present the system performance. Our Bi-level-learned approach improves upon the
Bi-level-unchanged and Bi-level-cvxpy baseline by employing a refined lower-level formulation.
And our bi-level framework significantly outperforms end-to-end architectures, revealing a substan-
tial performance gap. Moreover, compared with MPC, the bi-level framework shortens the planning
horizon from T steps to one step, which significantly reduces decision-making time. We compare
the time spent to make decisions for one step in Table[3] It shows a significant reduction in runtime
which indicates that our method can significantly improve computational efficiency without sub-
stantially compromising solution quality, thereby enabling faster real-time decision-making. These
results highlight the effectiveness of optimizing the lower-level problem structure in enhancing over-
all system performance. Besides, sensitivity analysis, interpretations of the results and discussions
of methods are provided and discussed in the Appendix
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Table 1: Performance Comparison on Autonomous Vehicles Rebalancing and Supply Chain Inven-

tory Management.

Autonomous Vehicle Rebalancing

Inventory Management

Method Reward Served Demand Reward Served Demand
MPC 35725 (+41.6) 3203 (£3.07) 11335 (£34.3) 1337 (£5.61)
Bi-level-unchanged 33406 (£128.1) 2993 (+8.06) 7491 (£26.5) 778 (£2.62)
End-to-end RL 20989 (£213.5) 2334.8 (£14.9) 2764 (£90.9) 476 (+18.4)
Bi-level-cvxpy 34403 (£108.7) 3086 (£7.06) 9268 (+32.1) 912 (+2.20)
Bi-level-learned (Ours) 35019 (453.0) 3141 (£6.14) 9442 (£42.3) 930 (+1.17)
Table 2: Performance comparison of different control methods.

Method Travel Time (s) Path Length (m) Energy (J)

MPC 3.50 3.50 4.81

End-to-end RL 7.60 £ 0.11 4.29 +0.02 6.78 £0.23

Bi-level-unchanged 9.14 £0.08 4.35+0.02 6.20 £0.13

Bi-level-learned (Ours) 4.82 + 0.30 4.16 + 0.19 292 +1.04

Table 3: Comparison of Computational Time (in seconds) Across Various Scenarios

Scenarios Our Method MPC
AV Rebalancing 0.025 1.44

SCIM 0.034 0.082
Mobile Robot 0.0187 0.0275

5 FUTURE WORK

There are several promising directions for future research. First, to enhance the generalizability of
the proposed framework, it’s critical to make the learning procedure more generalizable. We aim
to extend it to settings involving more complex system dynamics beyond the current control-affine
formulation to figure out how the current framework can be adapted to different problems more ef-
ficiently. Second, as the inverse optimization component can become computationally intensive in
large-scale scenarios, developing more scalable and efficient algorithms for inverse problem solving
remains an important avenue. Besides, the subgoal in the hierarchical framework may not be re-
trived from expert demonstrations which requires further analysis to extend the applicability of the
proposed method.

6 CONCLUSION

In this work, we propose a hierarchical reinforcement learning and optimization framework that
addresses key challenges in real-time, safety-critical decision-making scenarios. By leveraging in-
trinsic motivation, the upper-level policy generates subgoals that abstract planning objectives, while
the lower-level controller executes these subgoals through a structured optimization problem. A
central contribution of this work lies in the data-driven design of the lower-level optimization for-
mulation based on expert demonstrations. Our method is evaluated on several real-world scenarios
from different fields, where it demonstrates strong empirical performance. Furthermore, our model
exhibits improved alignment with expert decisions and offers interpretable, structured control poli-
cies. This work highlights promising directions for combining learning-based goal abstraction with
structured optimization. Our results suggest that such structured, bi-level approaches are promising
for scaling decision-making in dynamic and safety-critical domains.
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A PROOF OF PROPOSITIONS

A.1 PROPOSITION 1
The inverse feasible set for Problem [4]
0 (uy) == {6 | u, €U ()}

is not guaranteed to be non-empty, where I4,™ () is defined by KKT optimality conditions of Prob-
lem [l

Proof. We explore whether there exists € belonging to the inverse feasible set for Problem ] which
is making wu; to satisfy all KKT conditions.

¢ KKT conditions for Problem

1. Stationary Conditions:
'+ ANTH+w!/B=0

2. Complementary Slackness:
A (Huy —h) =0

3. Dual Feasibility and Primal Feasibility:

At >0

Hut S h
We assume Hu; < h is not active, which means \; = 0. The system BT w; = —c has no feasible
solution if the vector —c does not lie in the column space of B”. For example, when the system is
overdetermined and rank(BT) is larger than dimension of w;. O

A.2  PROPOSITION 2
The inverse feasible set for Problem (9)
0;7™ (uy) := {0 | ur € U™ (6)}.

is always non-empty, where ;™ () is defined by KKT optimality conditions of Problem @)

Proof. We explore whether there exists 6 belonging to the inverse feasible set for Problem (),
which is making wu; to satisfy all KKT conditions.

¢ KKT conditions for Problem

1. Stationary Conditions:

K
A+ 20l + X H+w{B=0, forteT,
k=1
l—zi—yre =0, fork=1..KandteT,
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2. Complementary Slackness:
2kt (The — OkTUt +uv,) =0, fork=1.KandteT.
YTt =0, fork=1,..KandteT,
A (Hue—h) =0, forteT.

3. Dual Feasibility and Primal Feasibility:

Zkts Ykts Ae >0, fork=1..KandteT,
Hu; <h, forteT,

Tht 2 ngt — Vg, Tkt >0, fork=1.KandteT,

There exist trivial feasible solutions to satisfy all KKT conditions:
We assume zj; = 1, yr; = 0 and A; = 0. Then the set of KKT conditions are transformed into

K

T T T
¢ + 0. +w, B=0, orteT,
; 4w f 03
Tht zﬂfut—uk, Tt >0, fork=1,.KandteT,
We must find {6 }5_, to satisfy ¢” + Y, 07 + wl B = 0 and let vy, = min’_, {67 u,} O

A.3 PROPOSITION 3

By appropriately enlarging the decision space with auxiliary variables in Problem (9)), any given set
of expert decisions can be made optimal in the lifted space.

Proof. Consider a collection of expert decisions {u;}~ ; with u; € R™. Problem @) can be refor-
mulated as a linear program by introducing auxiliary variables {¢; }#_,, which effectively enlarges
the decision space from R” to R"+¥ For clarity, let us focus on the case K = 1. By adding the
constraints

ty > Bl;rui — v, (14)

We can at least guarantee that all expert decisions {u;}_, lie on the same n-dimensional face of
the feasible polytope in the augmented space by making the new added constraint active. This face
can be made parallel to the hyperplane defined by the objective function by adjusting the new added
constraint.

This situation, however, represents an extreme case. In practice, the set {u;}2; may lie within a
face of dimension strictly smaller than n. To illustrate, suppose u; € R2. If all expert decisions lie
on a one-dimensional face (an edge) of the feasible polytope, then they remain on a corresponding
one-dimensional face in the lifted R® space. Assume that this edge arises as the intersection of two
adjacent facets, whose supporting hyperplanes have normal vectors 7i; and 75, respectively. The
direction vector of the edge is then given by

-

dedge = ﬁl X ﬁg, (15)
since it is simultaneously orthogonal to both 77; and 7is.

For the expert decisions to be optimal, it suffices that the objective hyperplane be parallel to this
edge. Equivalently, the edge direction deqe must be orthogonal to the objective normal 7ioy;, i.€.,

-

dedge . ﬁobj =0. (16)

This condition establishes the required relationship between the optimal geometry and the objective
orientation. Thus, we can solve the equation for feasible unknown parameters in the terminal cost.
O

13
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A.4 PROPOSITION 4
Problem yields optimal solutions w; satisfying | f(u}) — f(u¢)| < €0, s.t.

. €
i —well <4/ (17)

Proof. First, we show that the feasible region of Problem (11) is non-empty. Since the strong duality
constraint has been relaxed, the main task reduces to verifying the stationarity condition

AN H+w B+ zu0f +2lu, =0,  t=1,....T. (18)
k

For the i-th expert decision, suppose there are n; active inequality constraints. Each such active
constraint introduces one additional degree of freedom in the stationarity condition. Together with
the IV equality constraints, the total number of effective constraints across 7 time periods is

T
Zni + NT. (19)
=1

Since the decision variable ¢ lies in R, the stationarity condition can be satisfied provided that
the number of auxiliary terms is large enough to compensate for the remaining degrees of freedom.
More precisely, the required number of ReLU terms is bounded above by

T
Zi:l n; + NT} . 20)

T _
maX{O, i

This establishes the feasibility of the relaxed problem. Next, we derive the upper bound of distance.
Based on strong convexity of f(u), we have
flur) > f(u?f)+Vf(UZ‘)T(ut*’u?i)+%Iluru;“||2 21
where V2 f(u;) > ul > 0. By stationary conditioin V f(u}) = 0,
Flue) = f(up) 2 Gl = i 22)

The dual objective function g(A:, z¢,ys,w:) < f(u;) < f(u;) and we have f(u;) —
9(A¢, 24, ys, wy) < €g by constraining strong duality gap, s.t.

fu) — f(uy) < e (23)

Thus, we have
o — w2 < eo ¢ % -2 24)
O

B DETAILS OF CASE STUDIES

‘We consider three simulation scenarios described as follows:

Autonomous Vehicle Rebalancing. Autonomous Mobility-on-Demand (AMoD) systems are an
evolving mode of transportation in which a centrally coordinated fleet of self-driving vehicles dy-
namically serves travel requests. In real-world systems, the effectiveness of rebalancing strategies
is central to the overall system performance, with sub-optimal strategies potentially exacerbating
congestion through unnecessary trips or increased passenger waiting time. The control of these sys-
tems is typically formulated as a large network optimization problem. This framework comprises
two stages: (1) determining the desired distribution of idle vehicles ¢, through the use of the learned
policy 74 (g¢|s¢) by reinforcement learning, (2) converting this distribution to a passenger flow ggj

and rebalancing flow fj by solving a linear control problem.

14
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Supply Chain Inventory Management. In the supply chain inventory management task, we aim
to determine the optimal ordering and distribution strategies across a network of interconnected
warehouses and retail stores to satisfy customer demand while minimizing storage, production and
transportation costs. We choose upper-level goals as (i) desired production in warehouse nodes w}
and (ii) desired inventory 1n store nodes ¢¢. And the lower-level optimization module determines the
amount of commodities w} to order in each warehouse, and the shipping flow f; ¢ from warehouses
to stores.

Mobile Robot Navigation. In the mobile robot navigation task, a ground robot moves from a start
location to a target destination while avoiding static obstacles. The control problem is typically
formulated in a hierarchical framework. At the high level, a learned policy mg(p: | s¢) outputs
intermediate waypoints, conditioned on the robot’s state, the goal position, and obstacle information.
At the low level, these actions are converted into executable control inputs (v¢, w;) for the unicycle
dynamics, ensuring feasibility under kinematic and dynamic constraints.

The detailed formulations of the lower-level optimization problems for these three environments are
given as follows.

B.1 AUTONOMOUS VEHICLES REBALANCING

The lower-level optimization policy is represented in a matrix form as follows.

mine’ f; —p g + Zmax{—egck) fi + 0§k) ge — p® 0}

s.t. A(fe+9:) > q 25)
0

(ft +g) >
ft 2 07gt 2 0
gt < N

where A is the instance matrix, A; is the travel requests in time slot ¢ and f;, g; denote rebalancing
flow and passenger flow respectively.

Proposition 5. The inverse feasible set for Problem 23]
B*inv(ft,gt) = {0 | ftagt S Xt*f)pt(g)} . (26)
is always non-empty, where X" (0) is defined by KKT optimality conditions of Problem

Next, we will prove this proposition and also show that the solved parameters have practical signifi-
cance which has not been discussed further in the general setting.

Proof. The inverse optimization solving for unknown parameters in Problem [25]is formulated as

follows
min Z 1(6%)]>

T4, Y1, We,V1¢,V2t,21¢,226,Tt,0
120 20 =0 k=1, K t=1,.T
T +alA+yl'G—w! — Zz(k)e(k)T+2llft =0,t=1,.T

' +xl A+ yl'G— vl +03, 4—z:z(’c H(k +2lg,=0,t=1,..T
27)
mtT(Qt —A(ft+9)—G)=0,t=1,..T
yl (g —G(fi+g+1t)=0,t=1,..T

wlf,=0t=1,.T
vhg =0,t=1,..T

of (g — M) =0,t=1,..T

(other feasiblity constraints)
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Given historical data { f;, g;, ¢:, Ai}fvzl, we consider the worst-case scenario where
Gfi+Ggi#aq, [i#0, ¢#0, g#XN Vi=1... N.
This implies that all corresponding dual variables
Y, =w; =vy; =v;, =0 Vi=1,...,N.
We proceed with the analysis under this assumption. Moreover, We further set
A9 =1, 2 =0

which simplifies inverse problem corresponding to Problem@ into the following form:
i (k)12
Ok s % 16|l

.
st. =00 f40® gy =Mk — 1K,

.
T el A=Y =, 28)
k
P T A}
k

(other feasibility constraints).

Now assume z; < €l for some small ¢ > 0. Then we have
—el < x;r A < el.
Suppose ¢, p € R’} , . We can select € such that

min c¢; > e, min p; > e.
1<5<M 1<5<M

Then the constraints in[28 reduce to
T T
—0%) £+ 00 gi—p® >0, Vk=1,. K,

T T T _
¢ twA ;Hf 0 (29)

—p +a] A+ Zeg’“)T =0.
k

Assume further that K = 1 (for simplicity). Then the last two equalities yield:
Of:chAT:r,;, Og:p—ATzi.

In the context of autonomous vehicle rebalancing, it is reasonable to assume that the total revenue
exceeds the cost, i.e., p' g; > ¢! f;. Then we compute:
—G}Ffi + 9;—91- —p=—(c" 2] A + (" —z] A)g —p
= gi—c'fi) =2l A(fi+g:) — (30)
>(pTgi—c' i) — el (fi+gi) — p
Therefore, we can choose ¢ sufficiently small and w accordingly, such that the right-hand side of

[30]remains non-negative. This guarantees that the constraints in 29| are satisfied, hence the problem
admits a feasible solution. O

Problem [25]is constructed so that the historical expert decisions {f;,g;}}¥, are optimal solutions

to the forward problem. There exist model parameters {B;k), Gék), ) }le and desired next states

{(ji}f\il, which can be learned via reinforcement learning, such that the expert decisions become
approximately optimal.
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B.2 SupPPLY CHAIN INVENTORY MANAGEMENT

The lower-level policy is formulated as follows

K
min Y m@wl+ Y ml S g+ Y e+ > max{6] f — .0}
k=1

iyt

+ i€V (’i,j)eg i€Vg eV

(31a)

st > fhte =g ievs (31b)
JEN™ ()

g+ > fhi-di<dieVs (31c)

JEN-(3)

Yo o fh<diievw (31d)
JENT (i)

g+wl— Y fhi<dievw (3le)

JENT(4)
w) + € =},i € Viy (1)
5 >0,(i,§) € E,wi >0,i € Viy (31g)

where m°, m”, d, c are production cost, transportation cost, customer demand and capacity respec-
tively, w; denotes order quantity in warehouse 7 and f;; denotes the departing flow from warehouse
1 to store j, and g denotes the inventory level.

B.3 MOBILE ROBOT

K
min  cpllpirs — Pell® + cnllOr — Oi° + cullw|® + Y maxforu, — B, 0} (32a)

wy=(ve,we) 1

St. xyp1 = @y + Tsve cos By (32b)
Yir1 = Ye + Tsvg sin 0y (32¢)
0,11 =0 +Tow, (32d)
Umin < Ut < Umax (32e)
Wimin < Wi < Wimax (32f)
Ipesr — 05N = 7 + deate, Vi=1,...,M (32¢)

where v; and w; denote speed and angular speed of mobile robot. p; = (x¢,y;) represents its
position and p; is the reference waypoint generated by upper-level RL module. The objective is to
reach the final goal and avoid obstacles.

C FURTHER EXPERIMENTAL RESULTS AND DISCUSSIONS

C.1 MOTIVATIONS FOR INVERSE OPTIMIZATION APPROACH

We first show the evidences supporting to choose inverse optimization to infer cost structure. Un-
der the assumption that RL enable to offer optimal upper-level goals, we depart the learning of
cost structure from the bi-level framework training and explore which method mimics the expert
decisions best.

Based on Table [] inverse optimization outperforms the other two methods to large extent. First,
value function approximation method doesn’t perform well in both tasks since it cannot embed the
designed structure of lower-level policy explicitly. Second, cvxpylayers perform well on AV Rebal-
ancing task in certain scenario, but fail in some other tasks. It’s due to the following reasons. First,
such gradient-based optimization method is sensitive to the differentiation. When the derivative of
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Table 4: Similarity scores between expert decisions and decisions chosen by different methods.

AV Rebalancing Inventory Management
Method Reb. flow Pax. flow Commodity. flow
Value Approximation 0.522 0.943 0.461
cvxpylayers 0.541 0.946 0.445
Inverse Optimization 0.703 0.958 0.997

objective with respect to the unknown parameter is small, the algorithm will struggle to optimize the
parameters. Second, the optimal distribution of parameters may be complex, and thus challenging
to estimate within the scope of commonly distribution families.

C.2 INTERPRETABILITY

Interpretations of Optimal Parameters. The optimal parameters inferred by inverse optimization
are visualized in the following figures, which show that different weights are assigned to different
edges. For example, the district 0" of higher value motivates the repositioning of idle vehicles
towards this area, particularly along paths with low travel costs. Thus, a significant penalty is applied
to insufficient rebalancing flows on the corresponding routes. The yellow line in the figure, which
denotes high inferred penalty weights, achieves this motivation. In scenario 2, the situation becomes
more complex, but we can still notice some “important” routes and the ’not important” ones are not
penalized.

Optimal Edge Penalty Weights o Optimal Edge Penalty Weights o

08

Y ;‘:"&&\\o
R S
7 S, S
/ B ",/ X2 Y "
eV ?
o 7K -
© (AR MKAL
)0 %
() \:‘\li!ém; 28
02 \\\‘k',' y
" N\

0.0 0.0

Edge Weight
Edge Weight

Figure 2: Optimal Weights in Scenario 1 Figure 3: Optimal Weights in Scenario 2

Interpretations of Outputs. To gain deeper insights into the effectiveness of the inverse method and
explain model interpretability, we analyze how decisions made by two bi-level frameworks deviate
from trajectories made by MPC. Table [35] shows that Bi-level-learned framework make decisions
much closer to MPC trajectories, which indicates that the learned lower-level policy based on expert
demonstrations extracts information efficiently compared with the original policy with short-sighted
cost functions.

Table 5: Comparison of the cosine similarity and Manhattan distance between the rebalancing flow
f obtained from different bi-level models and the flow generated by the MPC.

Formulation Cosine Similarity | Manhattan Distance
Bi-level-unchanged 0.477 44
Bi-level-learned 0.976 7
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Model Performance versus Number of ReLU Terms
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Figure 4: Sensitivity to the Number of ReLU Terms
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Figure 5: Sensitivity to Noise in Offline Data

C.3 SENSITIVITY ANALYSIS

In this subsection, we analyze how the number of ReLU terms included in the cost function and
the noise in expert data influence the performance of inverse optimization. We use cosine similarity
and Manbhattan distance between the noise-free expert decisions and decisions made by solving the
lower-level optimization problem with different settings.

* Sensitivity to Number of ReLU Terms

Based on Figure[d] we notice that the quality of solutions doesn’t vary a lot as number of ReLU terms
varies. We can infer well-performed parameters via inverse optimization utilizing only a handful of
expert decisions and very few ReLU terms.

* Sensitivity to Data Noise

Sometimes given demonstrations are not optimal, thus we figure out how the noise affect inverse op-
timization. As figure[5|shows, the solution is much closer to optimal expert demonstrations although
some noise exists in offline data. Moreover, when we utilize noisy expert demonstrations to derive
lower-level problem formulation and apply it in the bi-level framework, the framework improves the
reward compared to the one achieved by original noisy expert demonstrations by 1.7%. Although
the improvement is not so significant, it suggests a promising direction that we can employ our in-
verse optimization-guided bi-level framework to extract insights from sub-optimal offline data and
make better decisions.
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C.4 DISCUSSIONS

In this section, we talk about the motivation utilizing inverse optimization to infer the terminal
cost. We implement the method proposed by |Abdufattokhov et al.[(2021) which assumes quadratic
structure of terminal cost and estimates the value function directly. We compare the performance
on autonomous vehicle rebalancing task. As table [6] suggests, there exists a large optimality gap.
A key limitation of value function approximation method is that the formulation of the lower-level
optimization problem cannot be explicitly incorporated. More experiments even suggest that this
class of methods fails in some tasks where the terminal cost cannot alleviate myopic issues in the
bi-level RL-OC framework.

Table 6: Performance Comparison on Autonomous Vehicle (AV) Rebalancing Task.

Scenario  Method Performance Metrics
Reward Served Demand
MPC 35725 (+£41.6) 3203 (4+3.07)
Scenario 1  Bi-level-learned (Ours) 35019 (£53.0) 3141 (£6.14)
Value Approximation 24774 2395
MPC 68637 (£194) 7540 (£14.1)
Scenario 2 Bi-level-learned (Ours) 61880 (4370.3) 6619 (£22.3)
Value Approximation 29905 3160

D USE oF LLMS

We utilized a large language model (LLM) to assist with improving the clarity, grammar, and overall
readability of the text. The use of the LLM was strictly limited to language editing and refinement.
All scientific contributions, including the core ideas, the methodological framework, the experimen-
tal design, and the mathematical derivations, are the original work of the authors.
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