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Abstract
Recently, post-processing networks (PPNs),
which modify the outputs of arbitrary mod-
ules including non-differentiable ones in task-
oriented dialogue systems, have been pro-
posed. PPNs have successfully improved the
dialogue performance by post-processing nat-
ural language understanding (NLU), dialogue
state tracking (DST), and dialogue policy (Pol-
icy) modules with a classification-based ap-
proach. However, they cannot be applied to
natural language generation (NLG) modules
because the post-processing of utterances out-
put by NLG modules requires a generative ap-
proach. In this study, we propose a new post-
processing component for NLG, generative
post-processing networks (GenPPNs). For op-
timizing GenPPNs via reinforcement learning,
the reward function incorporates dialogue act
contribution, a new measure to evaluate the con-
tribution of GenPPN-generated utterances with
regard to task completion in dialogue. Through
simulation and human evaluation experiments
based on the MultiWOZ dataset, we confirmed
that GenPPNs improve the task completion per-
formance of task-oriented dialogue systems1.

1 Introduction

A typical task-oriented dialogue system has
a pipelined structure consisting of four mod-
ules (Young et al., 2013; Zhang et al., 2020):
natural language understanding (NLU), dialogue
state tracking (DST), dialogue policy (Policy), and
natural language generation (NLG). Many stud-
ies have used reinforcement learning (RL) to im-
prove the task completion performance of an entire
pipelined dialogue system by fine-tuning modules
directly (Lee et al., 2021; Lin et al., 2021; Chen
et al., 2023).

Recently, Ohashi and Higashinaka (2022b) pro-
posed a novel method using Post-Processing Net-
works (PPNs) that can optimize pipelined dialogue

1Our code is publicly available at https://github.com/
nu-dialogue/GenPPN
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Figure 1: Diagrams of MLP-based PPN for NLU,
DST, and Policy modules proposed by Ohashi and Hi-
gashinaka (2022b) and PLM-based GenPPN for NLG
proposed in this study.

systems that consist of arbitrary modules including
non-differentiable ones (e.g., rule-based and Web
API-based). Their method uses RL to optimize
a neural-based component called a PPN, which
modifies the output of each module. PPNs have
been applied to three modules, namely NLU, DST,
and Policy, and have been shown to improve the
task completion performance of various pipelined
systems. In PPNs, the post-processing of module
outputs is treated as a binary classification task,
i.e., adding or removing slots in the output of each
module, and this classification task is modeled with
a multi-layer perceptron (MLP). This means that
the current PPNs could not be applied to NLGs,
where the unit of output is not slots but a sequence
of tokens, i.e., natural language.

To overcome this limitation, we propose a Pre-
trained Language Model (PLM)-based Generative
Post-processing Network (GenPPN) that can post-
process the output of NLGs in a manner similar
to conventional PPNs (Figure 1). To optimize
GenPPN via commonly used RL frameworks for
PLMs (Ziegler et al., 2019; Stiennon et al., 2020), a
reward for each utterance at each turn (an utterance-
level reward) is required. In a task-oriented di-
alogue, however, a reward indicating success or
failure is obtained only at the end of a multi-turn in-
teraction (a dialogue-level reward). Therefore, we
introduce a dialogue act (DA) contribution for dis-
tributing the dialogue-level reward to the utterance-

https://github.com/nu-dialogue/GenPPN
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level reward. Here, a DA is the meaning represen-
tation of the information that NLG converts into an
utterance, and DA contribution is a measure of how
much the DA of each utterance contributes to the
final task completion of the dialogue.

Experiments on the MultiWOZ dataset
(Budzianowski et al., 2018) confirm that GenPPNs
can improve the task performance of the entire
dialogue system, regardless of the architecture of
the NLG module. Furthermore, an ablation study
reveals that the introduction of DA contribution
is effective for learning GenPPNs to improve task
completion. The contributions of this study are
threefold:

• We propose the generative post-processing
network (GenPPN) to modify the output utter-
ances of the NLG module, which was impos-
sible with conventional PPNs.

• We introduce DA contribution to optimize the
GenPPN by evaluating the impact of each ut-
terance on dialogue task completion.

• Simulation experiments on the MultiWOZ
dataset confirm that the proposed GenPPN im-
proves the task completion performance of the
entire dialogue system, regardless of the archi-
tecture of the NLG module. We also validated
that a GenPPN optimized using simulation is
effective in human evaluation experiments.

2 Related Work

2.1 Optimization of Pipelined Task-oriented
Dialogue Systems

Methods have been proposed to optimize the task
completion performance of an entire pipelined sys-
tem using RL. Zhao and Eskenazi (2016) and Li
et al. (2017) optimized a Policy network imple-
mented in MLP using the Deep Q-Network algo-
rithm (Mnih et al., 2013) to achieve robustness
against errors that occur in real dialogues. Mehri
et al. (2019) proposed a method to add additional
parameters to NLU, Policy, and NLG and optimize
them using RL. By expressing a dialogue state out-
put by a DST as a probability distribution, Lee et al.
(2021) made the entire system differentiable and
jointly optimized it via RL. A method of fine-tuning
an NLU while optimizing a Policy in dialogue sim-
ulations was proposed (Lin et al., 2021). Tseng
et al. (2021) proposed a domain-adaptive learning

framework that simultaneously optimizes the Pol-
icy module of the dialogue system and the user
simulator. An RL framework for online DST op-
timization was also proposed to improve dialogue
management performance (Chen et al., 2023).

Instead of training each module, Ohashi and Hi-
gashinaka (2022b) proposed a generalized method
that optimizes PPNs, classification-based models
that modify the outputs of NLU, DST, and Policy,
to enhance the task completion performance. In
this paper, we propose a new generative-based PPN
for post-processing NLG modules, which has not
been supported by conventional PPNs.

2.2 Natural Language Generation Module for
Task-oriented Dialogues

Conventional NLGs for task-oriented dialogues
used template-based or rule-based methods (Walker
et al., 2002; Stent et al., 2004). Later, data-
driven methods using machine learning were pro-
posed (Oh and Rudnicky, 2002; Angeli et al., 2010;
Mairesse and Young, 2014) that do not require the
cost of template and rule creation.

In recent years, many generative models based
on deep learning have been proposed (Wen et al.,
2016; Tran and Nguyen, 2017; Su et al., 2018).
Wen et al. (2015) proposed an SC-LSTM that con-
trols utterance generation using DA feature vectors
and reading gates. SC-GPT (Peng et al., 2020) is
the best NLG model of MultiWOZ. It achieves high
performance by fine-tuning GPT-2 (Radford et al.,
2019) on many task-oriented dialogue datasets such
as MultiWOZ (Budzianowski et al., 2018) and the
Schema-Guided Dialogue Dataset (Rastogi et al.,
2020).

For task-oriented dialogue, it is crucial not only
to generate natural utterances via maximum likeli-
hood estimation (MLE) but also to accurately re-
flect the input DA’s content. To achieve this, Bal-
akrishnan et al. (2019) introduced a conditional
decoding approach utilizing a tree-shaped semantic
representation, enhancing the slot content in gen-
erated utterances. Furthermore, Li et al. (2020)
offered a method to lower the slot error rate in ut-
terances using an iterative RL framework for slot
consistency. Ohashi and Higashinaka (2022a) pre-
sented a fine-tuning method for utterance genera-
tion that uses a user’s NLU model so that the NLU
can understand the DA accurately.

In all of the above studies, the optimization was
performed at the utterance level using a fixed cor-
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Figure 2: Schematic diagram of GenPPN and how it is optimized. GenPPNM rewrites utterance u generated by
NLG of dialogue system into u′. This rewriting ofM is optimized using reward r(u′) calculated on the basis of DA
contribution c(I,s), so system’s ability to complete task improves.

pus of utterances. In this study, we aim to optimize
post-processing not only on the utterance level but
also on the dialogue level to improve the task com-
pletion performance for multi-turn dialogues.

3 Method

3.1 Overview
Figure 2 shows a schematic diagram of GenPPN
and how it is optimized. At the beginning of each
interaction, the user is given a user goal consisting
of a list of constraints to be informed to the system
and information to be obtained from the system
through the dialogue. During the dialogue, from
the user’s utterance at a certain turn t, the NLU
and DST modules of the system first estimate the
current belief state of the user. Then, on the basis
of the belief state, the Policy module determines
the next actions to be taken by the system as DAs
at. The a takes a structure containing one or more
triples of intent I , slot s, and value v:

a = {(Ii, si, vi) | i = 1, ..., |a|} (1)

The NLG module maps at to the system’s utterance
ut. Here, GenPPNM post-processes, i.e., rewrites
ut. A prompt xt = Prompt(ht, at, ut) is created
from the previous dialogue context ht, at, and ut,
andM generates a new utterance u′t: u

′
t ∼M(xt)

(see Section 3.2 for details on GenPPN and the
prompt format). The user then receives u′t, esti-
mates the system DAs ât, and the user’s utterance
is output for the next turn t+1 on the basis of the ât
and current status of the user goal. This exchange
is repeated until the user goal is achieved or until
the maximum number of turns is reached.

Let T be the number of turns at the end of a dia-
logue. In addition, the dialogue result e ∈ {0, 1} of
whether the user goal was achieved is determined,

i.e., 0 means that the task failed, and 1 means that
the task succeeded. The objective is to obtain the
optimal parameters θ∗ for the GenPPNMθ such
that the expected value of e is maximized:

θ∗ = arg max
θ

E
U ′∼Mθ(X)

[e(U ′)] (2)

where U ′ = {u′1, u′2, ..., u′T } are the system ut-
terances sampled by M from prompts X =
{x1, x2, ..., xT } at each turn.

Since the component to be trained is not the
NLG itself but the GenPPN, our optimization is
independent of the architecture and differentiability
of NLG modules. In the following subsections, we
describe the GenPPN, reward design for optimizing
Eq. (2), and RL algorithm used.

3.2 Generative Post-processing with PLM

We assume that the modelM of GenPPN is a lan-
guage model based on the Transformer architec-
ture (Vaswani et al., 2017). At turn t, the input
prompt xt is created from the previous dialogue
context ht, DA at, and system utterances ut by
using a hand-crafted prompt (specific prompts are
shown in Section A.2 in the appendix).

Through RL,M learns to generate a rewritten
system utterance u′ such that the dialogue result e
is maximized. However, even in the early stages
of learning, if the system cannot produce at least
reasonable system utterances, the dialogue always
breaks down, and the training does not progress
properly. For this reason, we adopt an instruction-
tuned PLM (Wei et al., 2022; Chung et al., 2022;
Taori et al., 2023), which has shown high perfor-
mance on many NLP benchmarks including task-
oriented dialogue modeling in few- and zero-shot
settings (Pan et al., 2023; Hudeček and Dusek,



2023). Since the general PLM has a massive num-
ber of parameters, we use Low-Rank Adaptation
(LoRA) (Hu et al., 2022), which has good parame-
ter efficiency. That is, a small number of parame-
ters θ is added to each self-attention module in the
PLM, and only θ is optimized during training.

3.3 Reward with DA Contribution
Eq. (2) implies that only e or a dialogue-level
reward at the end of a multi-turn dialogue should
be used to evaluate the generated utterances U ′

for all T turns. However, since this reward is too
sparse and it is not feasible to optimize M, we
approximate Eq. (2) by using the utterance-level
reward r, which evaluates how much of an effect
each utterance has on the final task completion:

θ∗ = arg max
θ

E
U ′∼Mθ(X)

 T∑
u′t∈U ′

r(u′t)

 (3)

The role of NLG is to accurately convey DAs
to the user, i.e., to generate utterances such that
at = ât, but this kind of evaluation based on the
consistency of at and ât does not take into account
e, so it cannot be used for r directly.

With this in mind, we design r by combining
e with the consistency evaluation for at and ât.
Specifically, we statistically measure the contribu-
tion of correctly conveying (I, s, v) ∈ at to the
user in terms of the impact on e on the basis of
the dialogues we have sampled. Then, we give a
contribution-weighted reward to the utterance u′t
that succeeds in conveying (I, s, v).

To realize this, first, at the end of each dialogue,
triples {(at, ât, e)|t ∈ T} consisting of at and ât
at each turn together with e are added to the DA
history D. Here, e is determined retrospectively
on the basis of the outcome at the end of the dia-
logue; e of all turns in a successful dialogue is 1,
{(at, ât, 1)|t ∈ T}, and e of all turns in a failed
dialogue is 0, {(at, ât, 0)|t ∈ T}. Here, all (a, â)
pairs in D sampled so far are split into S and F
depending on whether the task was successful:

S = {(a, â) | (a, â, e) ∈ D, e = 1}
F = {(a, â) | (a, â, e) ∈ D, e = 0}

Then, for each (I, s, v) ∈ at, the contribution c(I,s)
of (I, s) is calculated as follows:

c(I,s) =
nRec,S
(I,s) + nUnr,F

(I,s)

nRec,S
(I,s) + nRec,F

(I,s) + nUnr,S
(I,s) + nUnr,F

(I,s)

(4)

where nRec,S
(I,s) is the number of times that (I, s) has

been correctly recognized by the user (subscript
“Rec” for “recognized”) in a successful dialogue S:

nRec,S
(I,s) =

∑
(a,â)∈S

∑
(I′,s′,v′)∈a∩â

[(I, s) = (I ′, s′)]

Similarly, nUnr,S
(I,s) indicates the number of times in

S that (I, s) was not recognized by the user (sub-
script “Unr” for “unrecognized”), nRec,F

(I,s) indicates
the number of times in F that (I, s) was recog-
nized by the user, and nUnr,F

(I,s) indicates the number
of times in F that (I, s) was not recognized by the
user.

Since c(I,s) is the co-occurrence probability of
(I, s) being recognized (or unrecognized) and the
task being a success (or a failure), this quantifies
how accurately conveying (I, s) leads to task suc-
cess. Also, c(I,s) is a value that is updated as the
number of dialogue samples increases during train-
ing. That is, c(I,s) can be computed adaptively to
the current performance of the GenPPN at each
learning step. Note that v is not taken into account
for each count because the possible values of v are
so large (e.g., instances of phone number, address,
etc.) that counting them separately would yield
unreliable statistics.

Finally, the reward r(u′t) for the utterance gener-
ated by GenPPN at turn t is calculated using this
DA contribution c(I,s) as follows:

r(u′t) = Aggregate(w(at, ât)) (5)

w(at, ât) = {τ · c(I,s) | (I, s, v) ∈ at ∩ ât}
∪ {−τ · c(I,s) | (I, s, v) ∈ at ∩ ¯̂at}

(6)

Here, the DAs correctly recognized by the user
(at∩ ât) are given a default score τ , and conversely,
the DAs not recognized by the user (a ∩ ¯̂at) are
given a negative score −τ , and w(at, ât) is the set
of these scores weighted by each DA contribution
c(I,s). The constant τ is a hyperparameter, and
“Aggregate” is a function for aggregating w(at, ât)
into a scalar value for the reward. We design the
following two types of Aggregate functions and
empirically determine which one is better:

mean Output the mean of w(at, ât)

absmax Output the value with the highest absolute
value among w(at, ât). This is to emphasize
the weighted score of (I, s, v) with the highest
contribution.



At the beginning of learning, the number of DAs
recorded in D is small, so it is expected that an
appropriate c(I,s) cannot be calculated. Therefore,
prior to learning, (a, â) is sampled and recorded
in D by conducting multiple dialogues between
the dialogue system and the user simulator without
using GenPPN.

3.4 Optimization via RL

Following Stiennon et al. (2020), the RL algo-
rithm used in this method is Proximal Policy Op-
timization (PPO) (Schulman et al., 2017). As a
value network, a linear layer that outputs a scalar
value randomly initialized with the parameter ϕ is
added, and the overall trainable parameters are set
to ψ = [θ;ϕ]. Also, following (Ziegler et al., 2019),
to prevent the probability distribution ofMψ from
deviating too far from that of the originalM due to
parameter updates and thus losing its naturalness, a
Kullback-Leibler (KL) divergence penalty is added
to r(u′t) as the final reward Rt for utterance u′t at
turn t:

Rt = r(u′t)− β log
Mψ(u

′
t|xt)

M(u′t|xt)
(7)

The clipped surrogate objective L(ψ) (Schulman
et al., 2017) is used to optimize ψ with the advan-
tage estimated from the reward and value network.
Since we need the user’s subjective understand-
ing results â, this study uses a user simulator to
optimize the GenPPN. The learning algorithm is
summarized in Algorithm 1 in the appendix.

4 Experiments

In our experiments, we first evaluated the effec-
tiveness of GenPPNs using a user simulator. Then,
using the optimized GenPPN, we conducted a dia-
logue evaluation experiment using human subjects.

4.1 Dataset and Platform

We evaluated the effectiveness of our GenPPN
using a dialogue system and a user simulator
implemented on the basis of the MultiWOZ
dataset (Budzianowski et al., 2018). MultiWOZ
is a task-oriented dialogue dataset between a clerk
and a customer at a travel information center, col-
lected in Wizard-of-OZ style. It contains a variety
of tasks across a total of seven domains (attraction,
hotel, hospital, restaurant, taxi, train, and police).

We used ConvLab-2 (Zhu et al., 2020), a plat-
form for evaluating task-oriented dialogue systems

that provide various modules for dialogue systems,
a user simulator, and an evaluation tool. The follow-
ing describes the dialogue system, user simulator,
and user goals used in this experiment.

Dialogue System To make it easier to assess
changes in the performance of utterance genera-
tion, the other modules (that is, NLU, DST, and
Policy) should have stable performance. Therefore,
we used the best-performing BERT (Devlin et al.,
2019)-based NLU (Chen et al., 2019), rule-based
DST, and rule-based Policy available in ConvLab-2.
BERT-based NLU is a model that uses representa-
tions embedded by BERT to classify user intentions
in user utterances and extract slots by sequence la-
beling. Rule-based DST and Policy are modules
implemented using hand-crafted rules. Three mod-
els were selected as NLG modules (see Section
4.2 for the NLG models used), and GenPPN was
applied to each of them to verify its generality.

User Simulator For the user simulator, we used
a combination of BERT-based NLU, agenda-based
Policy (Schatzmann et al., 2007), and template-
based NLG. The agenda-based Policy models a
user’s behavior in MultiWOZ by using a stack-like
agenda created using hand-crafted rules.

User Goal A user goal for each dialogue is ran-
domly generated; the domains are randomly se-
lected from one to three domains (out of all seven
domains). The slots are also randomly selected on
the basis of the slots’ frequency in MultiWOZ.

4.2 NLG Baselines

We applied GenPPN to each of the three NLGs
available in ConvLab-2 with different architectures
in order to demonstrate that it works for a variety
of NLGs. In addition, one NLG optimized with
only utterance-level rewards, without considering
task success, was also evaluated for comparison.

Template NLG An NLG model that uses the
template utterances representing each DA.
Because each utterance is carefully de-
signed by hand, this model has significantly
higher performance than other NLG base-
lines (Takanobu et al., 2020).

SC-LSTM (Wen et al., 2015) An LSTM-based
model with a reading gate mechanism. This
model takes binary feature vectors represent-
ing DAs as context and decodes utterances.



NLG Task Success Inform Book Rate Turn ↓ DA F1
F1 Precision Recall

Template NLG 77.25 78.44 74.19 89.13 83.91 7.67 71.73
+ GenPPNmean 77.93 79.75 75.62 89.41 84.33 7.63 76.98
+ GenPPNabsmax 78.91∗ 79.86 75.58 89.93 85.19 7.02 78.23

SC-LSTM 54.00 67.45 68.07 72.48 67.69 11.65 60.56
+ GenPPNmean 60.64∗∗ 75.40 75.42 81.01 78.74 9.42 79.80
+ GenPPNabsmax 72.95∗∗ 79.46 77.38 86.16 78.46 7.21 79.08

SC-GPT 64.94 78.06 73.60 88.51 56.94 7.80 71.53
+ GenPPNmean 73.63∗∗ 76.54 71.81 87.79 82.08 8.03 73.07
+ GenPPNabsmax 73.34∗∗ 77.34 72.29 89.03 80.79 7.50 73.72

GPT-2 + RL 72.36 76.70 73.50 85.99 76.81 7.47 81.17
+ GenPPNmean 74.02 77.10 73.87 86.82 79.19 7.54 80.98
+ GenPPNabsmax 75.20∗∗ 78.79 75.58 88.02 79.80 7.15 80.08

Table 1: Performance of dialogue system with each NLG and with GenPPN applied to them. Subscripts in GenPPN
indicate Aggregate function used in reward calculation. Highest score for each NLG is in bold. ∗ and ∗∗ indicate
Task Success for GenPPN and were significantly better than original NLGs at p < 0.05 and < 0.01, respectively, in
McNemar test with Bonferroni correction.

SC-GPT (Peng et al., 2020) A GPT-2 based
model that generates utterances from DA text
sequences. This has been trained on seven
task-oriented dialogue corpora including
MultiWOZ and the Schema-Guided Dialogue
Dataset (Rastogi et al., 2020), and it is a
SOTA on the MultiWOZ NLG benchmark.

GPT-2 + RL (Ohashi and Higashinaka, 2022a)
A GPT-2-based NLG model optimized with
an utterance-level reward. This model was
trained to maximize the accuracy of a and â
(as measured by F1) using the DA-system
utterance pairs in the MultiWOZ corpus in an
offline fashion.

Note that, since the purpose of our experiment
is to verify whether GenPPN can enhance the per-
formance of NLG irrespective of its architecture
or base performance, the verification of methods
that fine-tune NLG models themselves is outside
the scope of this study.

4.3 Evaluation Metrics

In the evaluation of the dialogue system, we used
common metrics for task-oriented dialogues: Turn,
Inform F1/Precision/Recall, Book Rate, Task Suc-
cess. Turn indicates the number of turns required
for each dialogue; the smaller it is, the more ef-
ficiently the dialogue can be conducted. Inform
F1/Precision/Recall indicate whether the system re-
sponded appropriately to the user’s requests. Book
Rate indicates whether the entity booked by the
system correctly matched that of the user’s goal.

Task Success is evaluated by calculating whether
Inform Recall and Match Rate both became one
within the maximum number of turns. To evaluate
the utterance-level performance of NLG, we addi-
tionally used DA F1, which measures the match
rate of a and â at each turn by F1 (Ohashi and
Higashinaka, 2022a; Guo et al., 2023).

4.4 Training GenPPN
Stanford Alpaca 7B (Taori et al., 2023) was used as
the instruction-tuned PLM for the GenPPN. This
model is a fine-tuned version of LLaMA-7B (Tou-
vron et al., 2023) with a 52K instruction dataset.
The input prompts include the dialogue history, the
previous DA, the system utterances generated by
NLG from that DA, and the instructions for rewrit-
ing that system utterance (specific prompts are
shown in Section A.2 in the appendix). Throughout
the experiment, we first sampled 1K dialogues to
initialize the DA history and then trained 200 itera-
tions. See Section A.3 for further training details.

For the evaluation, the GenPPN at the highest-
reward iteration was used, and dialogue simulations
were performed using 1,024 user goals prepared
specifically for the test. We report the average
scores in this paper.

4.5 Main Results
Table 1 shows the evaluation results2. For Tem-
plate and SC-LSTM, GenPPN improved all evalua-

2We used the latest version of ConvLab-2 as of June 2023;
we could not reproduce the scores reported on the leaderboard
for some baseline systems. The main reason is probably due
to the difference in the random seed and BERT NLU weights.



NLG Success Inf. F1 Book DA F1

SC-LSTM + GenPPN 72.95 79.46 78.46 79.08

w/o adaptive c(I,s) 62.11 74.80 78.15 70.12
w/o e 59.47 77.02 71.06 76.00
w/o r(u′) 63.67 77.58 80.83 62.69
w/o context 68.46 76.25 74.17 80.28
w/o response 47.36 68.96 74.67 65.21

Table 2: Ablation results when applying GenPPN to
SC-LSTM. “absmax” Aggregate function is used in cal-
culation of rewards using DA contributions.

tion metrics. The absmax aggregation function im-
proved the final performance more than the mean.
For SC-LSTM, Task Success was nearly 19 points
better than the original SC-LSTM, especially when
using absmax. These results indicate that a better
strategy for evaluating each utterance is to prior-
itize learning to convey the DA with the highest
contribution rather than to take the average. Con-
sidering that the improvement in Template NLG
was only about 1.7%, the lower the performance
of the original NLG, the more room there is for
improvement by GenPPN.

For SC-GPT, Task Success, Book Rate, and
Turn steadily improved. However, Inform Preci-
sion slightly decreased, unlike other cases where
GenPPN was applied to other NLG modules. This
suggests that GenPPN learned that improving Book
Rate is more important for improving Task Success,
even at the expense of Inform Precision.

GPT-2 + RL has a higher DA F1 than any of the
GenPPNs. This is reasonable, given that GPT-2 +
RL is optimized using DA F1 as a reward. GenPPN
was able to further improve GPT-2 + RL’s Task Suc-
cess while the utterance-level metric DA F1 slightly
decreased from the original score. This suggests
that not only utterance-level rewards but dialogue-
level rewards must be introduced to improve the
task completion performance of the entire system.

Note that the performance of SC-LSTM +
GenPPN and SC-GPT + GenPPN is lower than that
of Template NLG baseline. However, the primary
goal of our study is not to obtain an NLG model
with SOTA performance but rather to enhance the
performance of NLG irrespective of its architec-
ture or its base performance. In our experiments,
the dialogue performance of NLG models like SC-
LSTM and SC-GPT, in addition to Template NLG,
were improved using GenPPN, showing that our
primary goal has been achieved.

NLG N Success Turns Und. App. Sat.

SC-LSTM 54 33.33 17.72 4.09 4.17 4.04
+ GenPPN 50 52.00∗ 15.08∗∗ 4.04 4.14 3.98

Table 3: Human evaluation results. N is number of sub-
jects who interacted with each system. “Und.,” “App.,”
and “Sat.” represent user’s subjective evaluation of
system’s understanding, appropriateness of system ut-
terance, and satisfaction with dialogue, respectively.
Scores of SC-LSTM and our GenPPN were compared
using the McNemar test; significant differences are indi-
cated with ∗ (p < 0.05) and ∗∗ (p < 0.01).

4.6 Ablation Study
We analyzed the impact of each factor in the
GenPPN optimization on the final performance.
For the NLG model in this ablation study, we used
SC-LSTM, which showed the greatest improve-
ment in performance over the other NLGs in Table
1. Table 2 shows the results.

Adaptive DA Contribution “w/o adaptive c(I,s)”
is a reward design that does not update the DA
history, and in all steps, uses the DA contribution
calculated only from the 1,000 dialogues sampled
prior to training. This resulted in a 10 points de-
crease in Task Success. Therefore, we found that it
is important to constantly update the DA contribu-
tions as the GenPPN changes.

Dialogue-level Reward “w/o e” does not use DA
contribution, and only an utterance-level reward
based on the accuracy (F1) between a and â is
used. That is, the reward design does not take into
account the dialogue-level reward e related to task
completion. As a result, Task Success decreased
significantly, while DA F1 did not decrease much.
Therefore, it was shown that the DA contribution is
a useful factor in improving the task success rate.

Utterance-level Reward “w/o r(u′)” does not
use the utterance-level reward r(u′) but only the
last dialogue evaluation result as a reward. That
is, all utterances were given the dialogue result
e ∈ {0, 1} equally. Although Book Rate improved,
Inform F1 did not, indicating that it is difficult to
optimize GenPPN with only a sparse e reward, as
described in Section 3.3.

Dialogue Context “w/o context” indicates that
the input of GenPPN does not include the dialogue
history. The slight decrease in Task Success, In-
form F1, and Book Rate indicates that GenPPN
should make use of the previous history to improve



User: Hello, can you help me find a restaurant for my upcoming trip to Cambridge? Hmm, I 'll try Asian oriental 
food. I'm looking for an expensive restaurant. I also would like information on a place to eat in the centre.
System: kymmoy serves asian oriental food.
User: May I have the address? I would like their phone number.

Context

{(Inform, Attraction-Addr, pool way, whitehill road), (Inform, Attraction-Phone, 01223902088), 
(Inform, Restaurant-Addr, 52 Mill Road City Centre), (Inform, Restaurant-Phone, 01223311911)}

System DA

+ GenPPN:
Their address is 52 Mill Road City Centre and phone number is 01223311911.

SC-LSTM: 
Their address is

System Response

{(Inform, Restaurant-Addr, 52 Mill Road City Centre), 
(Inform, Restaurant-Phone, 01223311911)}

{}DA predicted by 
user

Table 4: Response examples of systems using SC-LSTM and SC-LSTM + GenPPN in same context.

dialogue performance. Meanwhile, the improve-
ment in DA F1 suggests that dialogue history is
not necessary if we only want to optimize at the
utterance level.

System Response “w/o response” does not
rewrite the system utterance, but GenPPN gener-
ates it directly from the dialogue history and DA. It
can be seen that the performance of all the methods
significantly degraded. The reason for this is that
the untrained GenPPN, i.e., Alpaca-7B, has never
seen the mapping from DA to system utterance in
MultiWOZ and thus has difficulty generating sys-
tem utterances in a zero-shot setting. Therefore, it
is considered more reasonable to learn to rewrite ut-
terances rather than to generate them from scratch.

4.7 Human Evaluation

We tested whether GenPPN optimized by dialogue
simulation is also effective for humans. In this ex-
periment, we also used the system using SC-LSTM,
which showed the best performance improvement
over the other NLGs in Table 1. Over 50 crowd
workers were recruited via Amazon Mechanical
Turk, and each worker interacted once with one
of the systems using SC-LSTM or SC-LSTM +
GenPPN for up to 20 turns after being instructed
about their user goal. Each worker had 20 turns
to judge whether or not the task was successful;
after 20 turns, the task was forced to fail. Af-
ter the dialogue was completed, each worker was
asked to rate the system’s ability to understand the
language (Und.), the accuracy of the system’s re-
sponses (App.), and overall satisfaction with the
dialogue (Sat.) on a 5-point Likert scale. See Sec-
tion A.5 in the appendix for more details on the
human evaluation settings.

Table 3 shows the results of the evaluations of
each system. GenPPN significantly improved in
terms of both Task Success and Turn, which are

measures of task completion. However, the user’s
subjective ratings of understanding, appropriate-
ness, and dialogue satisfaction showed no improve-
ment, which is reasonable given that GenPPN is op-
timized for task completion only. This also means
that GenPPN did not generate unnatural utterances
to improve Task Success and Turn, which is consid-
ered a positive result. We would like to evaluate the
effectiveness of GenPPN for other NLG baselines
than SC-LSTM by humans in the future.

5 Case Study

Table 4 compares the behavior of two systems us-
ing SC-LSTM and using SC-LSTM + GenPPN in
a dialogue. As a context, the user requested the
address and phone number of the restaurant, but
the Policy module of the dialogue system mistak-
enly decided to answer with the address and phone
number of an attraction as well. Here, SC-LSTM
was not able to generate sentences because there
was no example in its training data, in which DAs
in different domains occur at the same time. As
a result, SC-LSTM failed to convey any informa-
tion to the user. In contrast, GenPPN reflected the
address and phone number of the restaurant in the
post-processed utterance, and as a result, the infor-
mation was correctly conveyed as requested by the
user, and the task was successful.

It is worth noting that the utterance generated
by post-processing does not contain any informa-
tion about the attraction. This is probably because
GenPPN judged from the dialogue context that the
information about the attraction was not what the
user requested, and that conveying this piece of in-
formation would interfere with the task completion.
These results indicate that GenPPN can correct er-
rors propagated from preceding modules beyond
the realm of NLG so that the entire system’s per-
formance improves.



6 Summary and Future Work

Post-Processing Networks (PPNs), which modify
the outputs of arbitrary modules including non-
differentiable ones in task-oriented dialogue sys-
tems, have been applied to NLU, DST, and Pol-
icy modules. In this paper, we proposed Genera-
tive Post-processing Networks (GenPPNs) for NLG
modules. We optimized GenPPN toward the task
completion performance of the entire system by us-
ing DA contribution-based rewards. Experiments
on the MultiWOZ dataset and dialogue simulations
confirmed that our GenPPN could improve the task
success rate of various dialogue systems, regardless
of the NLG architecture. It was also confirmed that
a GenPPN optimized with a dialogue simulation
was effective in a human evaluation experiment.

In the future, we would like to integrate our
GenPPN with the existing PPNs of NLU, DST, and
Policy to realize the post-processing of all mod-
ules and further improve the systems performance.
Since GenPPN is a generative model, we would
like to extend it not only to text but also to the
post-processing of speech recognition and speech
synthesis modules in spoken dialogue systems.

Limitations

Our work has several limitations, which we aim to
address in our future work.

First, this study implemented, trained, and evalu-
ated the GenPPN using only the MultiWOZ dataset.
Therefore, the applicability of the GenPPN to task-
oriented dialogues other than MultiWOZ has not
been verified. In particular, the DA-dependent re-
ward design in this study needs to be improved for
application to dialogues such as open-domain chats,
where ontologies such as intent, slot, and value are
not defined.

Second, this study used a user simulator for train-
ing the GenPPN. When applied to a new domain,
the cost of implementing a user simulator is likely
to be high. Therefore, a user simulator-free learn-
ing method is needed in this respect. In addition, a
GenPPN optimized by a user simulator learns user-
simulator-specific utterances, which may not be the
best utterances for humans. To learn the optimal
GenPPN for humans, it is essential to design a re-
ward model that takes humans into account, using
a human-in-the-loop approach.

Third, this study required running a PLM with a
relatively large parameter size. During inference,
in addition to the system’s response generation, the

GenPPN is required to rewrite utterances, which
is expected to increase the operation cost and gen-
eration time. In addition, more computational re-
sources are required during learning. Therefore, it
is necessary to study ways to reduce learning and
inference costs.
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A Appendix

A.1 GenPPN Optimization Algorithm

Algorithm 1 Optimization of GenPPN via PPO

Require: Dialogue system A, User simulator U
Require: GenPPNM

1: Initialize DA history D by sampling several
dialogues using A and U

2: PrepareMψold with randomly initialized LoRA
parameters θ and value network parameters ϕ

3: for each training iteration do
4: while #turns does not reach batch size do
5: Sample a dialogue and (at, ât) for each

turn t using A,Mψold , and U
6: Obtain final evaluation result e
7: Add (at, ât, e) of each t to D
8: end while
9: Calculate reward Rt using Eq. (7)

10: Compute advantage estimates
11: Optimize L(ψ) with a certain epoch and

mini-batch size
12: Update ψold ← ψ
13: end for

A.2 Prompt for GenPPN
At a given turn t, the input prompts to GenPPN
include the DA at output by the system’s Policy
module and the original system utterance ut gener-
ated by the NLG from at. As the dialogue context,
we also included user utterances at t−1, DAs at−1,
system utterances u′t−1 generated by GenPPN, and
user utterances at t. The format of the instructional
text in the prompts was adapted from the phrases in
the Alpaca dataset (Taori et al., 2023). Examples of
prompts are shown in Figure 3. In our experiments,
due to the maximum input length of the model, the
dialogue history was limited to the past one turn.

A.3 Details of GenPPN Training
As the model for GenPPN, we used Stanford
Alpaca-7B trained weights for the prompts, which
are publicly available on HuggingFace Hub3. The
maximum number of input tokens for a prompt was
set to 512, and the maximum number of generated
tokens was set to 128. When generating utterances,
sampling was performed with the beam size set to
1, temperature to 1.0, and top-p to 1.0. The τ used
in the reward calculation (Eq. (6)) was set to 1.

3https://huggingface.co/tatsu-lab/
alpaca-7b-wdiff

Hyperparameter Name Value

LoRA

Target projection matrix of
self-attention module

query, key
value, output

Rank 16
Scaling factor α 16

PPO

Total iterations 200
Total batch size 512
Epoch 4
Total mini-batch size 32
Learning rate 1e-5
Optimizer Adam
Discount factor γ 1.0
GAE factor λ 0.95
Clipping ϵ 0.2
Coef. of KL penalty β 0.01

Table 5: Hyperparameter settings

Table 5 shows the hyperparameters of LoRA and
PPO during training. Throughout the experiment,
we first sampled 1,000 dialogues to initialize the
DA history and then trained 200 iterations, with a
batch size of 512 turns per iteration (corresponding
to about 50 dialogues) and a fixed learning rate
of 1e-5 with Adam Optimizer (Kingma and Ba,
2014). We used 16 × V100 32-GB computational
resources. Training of 200 iterations took about
seven hours to complete.

Figure 4 shows the training curves when
GenPPN is applied to Template NLG, SC-LSTM,
SC-GPT, and GPT-2 + RL respectively. The figure
shows that both the reward and Task Success are
low at the start of training (i.e., before RL is ap-
plied) and improve as RL progresses, which means
that fine-tuning LLMs with RL is important for
our GenPPN. We have yet to investigate the effects
of instruction tuning. We plan to validate this by
comparing the performance of instruction-tuned
models other than Alpaca (e.g., Flan-T5 (Chung
et al., 2022)) and non-instruction-tuned models
(e.g., LLaMA (Touvron et al., 2023)).

A.4 Additional Ablations

In addition to the study on SC-LSTM in Section
4.6, we conducted the same ablation study on two
higher-performing NLGs: Template NLG and GPT-
2 + RL. Table 6 shows the results. In Template
NLG, the improvement with GenPPN was the great-
est when no context was used. Nevertheless, for
both Template NLG and GPT-2 w/ RL, there was a
trend showing that adaptive DA contribution was
important for performance improvement.

https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://huggingface.co/tatsu-lab/alpaca-7b-wdiff


Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Begin by reading a conversation between a customer and a chatbot about travel information.

Customer: I am looking for a hotel call kirkwood house . I need a hotel as well .
Chatbot Action: Inform-Hotel(Price=moderate; Area=north; Type=guesthouse; Parking=yes; Stars=4; 
Name=kirkwood house; Internet=yes)
Chatbot: kirkwood house is a moderate 4 star guesthouse in the north.
Customer: Do they have free parking ?
Chatbot Action: Inform-Hotel(Name=kirkwood house; Parking=yes)
Chatbot: kirkwood house is available.
Your task is to rephrase the chatbot’s last utterance so the customer can understand it. Make sure to include the 
content of `Chatbot Action:` in the utterance. If no rephrasing is necessary, repeat the original utterance.

### Response:
Chatbot:

Figure 3: Examples of prompts entered into GenPPN. “Customer:”, “Chatbot Action:”, and “Chatbot:” denote user
utterance, system DA, and system utterance at each turn, respectively.

NLG Success Inf. F1 Book DA F1

Template NLG + GenPPN 78.91 79.86 85.19 78.23

w/o adaptive c(I,s) 76.27 78.07 83.00 75.05
w/o e 77.15 79.29 83.30 76.89
w/o r(u′) 71.09 78.14 80.89 63.68
w/o context 79.00 79.92 85.29 78.58

(a) Template NLG

NLG Success Inf. F1 Book DA F1

GPT-2 + RL + GenPPN 75.20 78.79 79.80 80.08

w/o adaptive c(I,s) 67.68 76.75 79.31 81.04
w/o e 72.56 76.57 77.36 80.63
w/o r(u′) 72.85 78.52 81.82 71.15
w/o context 73.24 77.18 77.14 85.11

(b) GPT-2 + RL

Table 6: Ablation results when applying GenPPN to Template NLG and GPT-2 + RL. “absmax” Aggregate function
is used in calculation of rewards using DA contributions. Bold and underlined scores indicate top and second top,
respectively.

A.5 Details of Human Evaluation

In collecting participants for the human evaluation
via Amazon Mechanical Turk (AMT), we recruited
workers who met the following four conditions:
(1) had residence in an English-speaking county,
(2) had at least 100 completed Human-Intelligence
Tasks (HIT) on AMT, (3) had an acceptance rate
of 95% or higher on the HIT on AMT, and (4) an-
swered all five common sense questions correctly.

In the experimental procedure, each worker was
first instructed about a certain user goal. The user
goal was randomly generated by a program as in the
dialogue simulation. Considering the high compre-
hension ability of humans, the number of domains
included in the user goal was set to 3, which is a
higher difficulty level than in the simulation. After
reading the user goal, the workers interacted with
either the system using SC-LSTM or the system us-
ing SC-LSTM + GenPPN. The maximum number
of turns in the dialogue was 20, and each worker
judged whether the task was completed within the

maximum number of turns. After 20 turns, the
task was forced to fail. After the dialogue, the
workers answered the three-question questionnaire
described in Section 4.7.

Considering that each HIT should take about
10 minutes to complete, the reward was set at $2,
and the time limit was 30 minutes. The number
of subjects was not equal because the system was
randomly selected each time, resulting in 54 evalua-
tors for SC-LSTM and 50 evaluators for SC-LSTM
+ GenPPN.
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(a) Template NLG
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(b) SC-LSTM
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(c) SC-GPT
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(d) GPT-2 + RL

Figure 4: Training curves when GenPPN is applied to each NLG. Either “mean” or “absmax” is used as aggregation
function. “Reward” indicates value calculated by Eq. (5).


