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Abstract

Hamiltonian systems describe a broad class of dynamical systems governed by Hamiltonian
functions, which encode the total energy and dictate the evolution of the system. Data-
driven approaches, such as symbolic regression and neural network-based methods, provide
a means to learn the governing equations of dynamical systems directly from observational
data of Hamiltonian systems. However, these methods often struggle to accurately capture
complex Hamiltonian functions while preserving energy conservation. To overcome this
limitation, we propose the Finite Expression Method for learning Hamiltonian Systems
(H-FEX), a symbolic learning method that introduces novel interaction nodes designed to
capture intricate interaction terms effectively. Our experiments, including those on highly
stiff dynamical systems, demonstrate that H-FEX can recover Hamiltonian functions of
complex systems that accurately capture system dynamics and preserve energy over long
time horizons. These findings highlight the potential of H-FEX as a powerful framework for
discovering closed-form expressions of complex dynamical systems.

1 Introduction

Symbolic regression is a technique for discovering mathematical equations from data, making it a useful tool
for recovering the underlying laws of physical systems (Brunton et all [2016]). Unlike traditional regression,
which fits parameters to a predefined functional form, symbolic regression searches the space of mathematical
expressions to find the model that best fits the dataset. One important class of dynamical systems where
such methods are highly applicable is Hamiltonian systems (DiPietro et al., 2020; [DiPietro & Zhu, 2022),
which describe a wide range of physical phenomena, including celestial mechanics (Aarseth, 2003)), quantum
mechanics 2003)), and control systems (Khan & Storkey] 2022). These systems are governed by
Hamiltonian functions, which encode the total energy of the system and determine its evolution through
Hamilton’s equations. A key aspect of modeling Hamiltonian systems is energy conservation
, which is essential for ensuring physically meaningful behavior, especially over long time horizons.
Given their importance, Hamiltonian systems are a natural setting for symbolic regression methods, which
can discover Hamiltonian functions directly from data.

While there is a need for data-driven discovery of Hamiltonian functions, existing methods struggle to balance
interpretability with adherence to energy conservation laws, particularly when dealing with the complexities
of dynamical systems. General symbolic regression methods such as Al Feynman (Udrescu & Tegmark}[2020)),
physical symbolic optimization (®-SO) (Tenachi et al| [2023), and incontext symbolic regression (ICSR)
(Merler et al.|[2024) are not natively designed to learn dynamics directly from trajectory data, nor can they
enforce Hamiltonian constraints or jointly fit multiple coupled output equations. Even methods tailored
to ODE systems such as ODEFormer (d’Ascoli et al [2023]) can face other difficulties such as handling
multiple trajectory datasets. Another well-known symbolic regression method for discovering governing
equations from data is sparse-identification of nonlinear dynamics (SINDy) (Brunton et al. 2016]), which
recovers equations by selecting terms from a predefined set of basis functions. However, on its own, SINDy
does not enforce Hamiltonian dynamics, and its reliance on linear combinations of basis functions limits its
ability to represent complex Hamiltonian functions. If we move from symbolic methods to neural network
methods, Hamiltonian Neural Networks (HNNs) (Greydanus et all [2019) explicitly enforce Hamiltonian




Under review as submission to TMLR

dynamics by modeling a surrogate of the Hamiltonian function, ensuring energy conservation. Despite this
advantage, HNNs lack interpretability, as their learned representations are encoded in black-box neural
networks. More advanced variants, such as Symplectic Recurrent Neural Networks (SRNNs) (Chen et al.l
2019), which incorporate multi-step integration, and Stiffness-Aware Neural Networks (SANNs) (Liang et al.,
2021), which can identify stiff portions of training data, improve robustness and accuracy. However, they
still rely on neural networks, which makes it difficult to produce meaningful closed-form expressions and
to ensure accurate long-term predictions. These limitations highlight the need for a symbolic regression
method tailored for Hamiltonian systems, one that can learn complex Hamiltonian functions accurately
while respecting conservation laws.

Finite Expression Method (FEX) is a symbolic regression method that leverages reinforcement learning to
discover complex closed-form expressions from data (Jiang et all 2023} |Liang & Yang, 2022; Song et al.,
2024) using reinforcement learning. Unlike SINDy, which relies on linear combinations of predefined basis
functions, FEX represents expressions as trees of operators with associated weights. This structure enables
it to capture a broader class of mathematical expressions, including those involving function composition.
However, FEX is not designed to explicitly enforce Hamiltonian dynamics, making a direct application to
Hamiltonian systems challenging. Additionally, many Hamiltonian systems (Gowers, [2008; Makarov, 2018;
Wu et al.), |2025)) contain interaction terms that represent dependencies between multiple interacting objects.
FEX lacks a way to model these interaction terms, further limiting its ability to model complex Hamiltonian
systems.

To address the shortcomings, we introduce Finite Expression Method for Hamiltonian Systems (H-FEX), an
adaptation of FEX specifically designed for Hamiltonian systems. H-FEX modifies the search loop of FEX
to enforce Hamiltonian dynamics, similar to how HNNs impose Hamiltonian constraints to respect conserva-
tion laws. Moreover, we introduce interaction nodes, which enable the construction of interaction terms that
capture dependencies between interacting objects. Through numerical experiments, we demonstrate that
H-FEX accurately recovers interpretable, closed-form representations of the Hamiltonian function. Addi-
tionally, H-FEX outperforms other methods by generating trajectories that are highly accurate and preserve
energy over long time horizons. By bridging the gap between FEX and Hamiltonian systems, H-FEX is a
powerful tool for discovering closed-form representations of Hamiltonian systems directly from data.

The remainder of this paper is organized as follows. Section [2] introduces Hamiltonian systems and defines
the loss function used to train a Hamiltonian surrogate. Section [3] provides an overview of H-FEX, describes
the interaction nodes, and explains how integrators are used during training and evaluation. Section [4]
presents experiments benchmarking H-FEX against existing methods. Finally, Section [f] summarizes the
contributions and outlines directions for future research.

2 Problem Statement

A Hamiltonian system is a dynamical system characterized by the Hamiltonian function H(p, q), which is
a real-valued function H : R?¢ — R that maps the momentum p € R? and the position q € R? to a scalar
energy. A Hamiltonian system is said to be separable if it can be written as H(p,q) = K(p) + U(q), where
K and U denote the kinectic and potential energy, respectively. The phase space R2? represents the space
of all possible states in the system. The time evolution of the system is governed by Hamilton’s equations:

dp OH dq OH (1)
dt  oq’ dt Ip’

Trajectories in a Hamiltonian system describe how a particle evolves over time, starting from an initial
condition.

Integrators are numerical methods that compute trajectories over a time interval, given an initial condition
(Hairer et al., 1993). Consider the discretization of an interval [0,7] using uniformly spaced time points
(tn)_o, where tg = 0 and ¢ty = T. Given a Hamiltonian function H and an initial condition (p,,qy,), an
integrator computes the trajectory evaluated at time points (¢,))_:

(Pt,.» A, )n=o = Integrator (H, (Pey, dto), (tn)no)- (2)
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Given observed trajectories (py,,qs, )2, from an unknown Hamiltonian system, where the initial condition
(Pto,qt, ) lies in a domain 2 C R24, the goal is to learn a parameterized surrogate Hamiltonian He that ap-
proximates the true, unknown Hamiltonian #, thereby recovering the corresponding Hamiltonian dynamics.
Using an integrator, predicted trajectories can be generated from the surrogate Heo starting from the initial
condition (p¢,, qr,) €

(B, e, ) = Integrator(He, (Pry, Ay, (tn) o). 3)

Ideally, the surrogate Hamiltonian function should produce predicted trajectories that closely match the
observed trajectories given the same initial conditions. To achieve this, we learn He by minimizing the loss
function:

N
@ = E |3 [Ipe. = pelP + e, —an ]|, (4)
(Ptg Aty )~Pa n—0

where (Py, , q:,))_, are generated by Ao using Equation and Pg is some probability distribution over
the domain  C R?? from which the initial conditions are sampled.

In practise, we have a dataset D of multiple observed trajectories, where each trajectory (p:,,q:, )N_, has
an initial condition sampled from a domain (p:,,qs,) ~ Po. We can learn a surrogate He by minimizing
the empirical loss function:

N
£(®) = ﬁ > [Z (11, = pe. * + e, — au, ﬂ, (5)

(Pt Aty )QI:O €D Ln=0

where |D| denotes the number of training trajectories and (P, , g, ) are generated by Heo using Equation .
By minimizing Equation , we learn a surrogate Hamiltonian function He which can be used to model an
unknown Hamiltonian system.

3 Methodology

3.1 Finite Expression Method for Hamiltonian Systems

H-FEX is a FEX method (Jiang et al., |2023; Liang & Yang), 2022; |Song et al.| [2024) to build a symbolic
approximation using mathematical expression with a finite number of operators, or more simply called finite
expressions. A finite expression is a combination of operators (e.g., x, exp, (-)%, (-)*) that form a valid
function (e.g., f(p,q) = exp(p2 X q4)). If we limit our operators to unary operators and binary operators, we
can represent a finite expression with a binary tree T consisting of unary and binary nodes. In summary,
H-FEX is a method that models the Hamiltonian function using a closed-form expression.

Given a tree 7, we can assign operators to the nodes by an operator sequence e, using inorder traversal.
In FEX, each element of the operator sequence e is either from a set of unary operators U (e.g., U =
{exp, sin, Id, (-)?}) or from a set of binary operators B (e.g., B = {x, 4, +}), where the operators are applied
element-wise to vectors. In addition, we parameterize the tree with weights 8, which can be either be scalars
of matrices, to expand the class of functions that can be represented by FEX. These weights can be applied
between nodes in the tree, influencing intermediate values at various points in the resulting expressions. This
enables H-FEX to learn specific constants in the governing equations. In summary, a FEX approximation
of the Hamiltonian function 7:l(p, q; T, e, 0) is a function of (p,q) with parameters T, e, 6.

When H-FEX learns the surrogate Hamiltonian function e in Equation , we let the trainable parameters
be ® = (e, ), where the binary tree structure 7 is fixed before training. Minimizing Equation over
both discrete and continuous parameters @ = (e, 0) is a difficult task (Koppe, |2012). The operator sequence
e consists of operators selected from some discrete space of U and B, and the weights @ are real-valued
weights from a continuous space. To solve this mixed optimization problem, we use a search loop, based
on reinforcement learning (RL), to identify effective operator sequences e while optimizing weights 6. The
search loop is summarized in the following steps.
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Figure 1: Generating operator sequences for an H-FEX tree. To parameterize an H-FEX tree with
an operator sequence e, the controller y¢ generates a PMF for each node. An operator is then sampled from
each PMF and assigned to its corresponding node. The resulting H-FEX tree becomes an expression with
trainable weights, which are optimized during the scoring process in Equation @

1. Operator sequence generation. We use RL techniques to identify good candidate operator
sequences e. In RL, a controller outputs a policy, a probability mass function (PMF), and an
action is sampled according to the probabilities (Kaelbling et al., [1996). In our context, an action
corresponds to an operator sequence € = (ey,...,eq), where () denotes the number of operator
nodes in tree 7.

The controller ¢ is a fully-connected neural network parameterized by weights ® and outputs PMFs
(p1,-..,pq). For the ith node, we sample an operator from the corresponding PMF; i.e., e; ~ p;,
where 1 < i < @, giving us a sampled operator sequence e. As shorthand for the above process, we
write € ~ x4 to denote an operator sequence being sampled from the controller. During a single
iteration of the search loop, we sample M operator sequences e from the controller.

To enhance the exploration of the operator sequence space, we sample using an e-greedy strategy
(Dann et al.l |2022)), where 0 < € < 1. With probability €, we sample e; from a uniform distribution,
and with probability 1—¢, we sample e; from PMF p;. A larger € increases the likelihood of exploring
new sequences.

2. Score computation. Given an operator sequence e, we compute a score S(e) to quantify the
performance of e:
1

S(e) = T L)

(6)
where L(e) := ming £((e, 8)) is the minimum loss optimizing over weights 6 given a fixed operator
sequence e, and L is defined in Equation .

As L(e) approaches 0, the score S(e) approaches 1, meaning a larger score indicates a better per-
forming operator sequence e. Defining the score this way prevents excessively large updates to the
controller x¢, keeping the output PMFs stable even when losses L(e) vary wildly across different
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operator sequences. In practice, we approximate L(e) with the empirical minimum loss attained
when optimizing for a fixed number of steps.

From the previous step, we sampled M operator sequences from the controller: eq,...,eyn ~ o,
and compute the corresponding scores S(ey), ..., S(enr) for each sequence individually. During score
computation, we typically trade off accuracy for speed when approximating L(e) to expedite the
exploration of operator sequences (Song et al., |2024). As a result, the weights 0 learned during this
process may not be optimal. We address this issue in the next step.

3. Candidate Pool. We maintain a candidate pool to keep track of the highest-scoring operator
sequences. The candidate pool stores the parameters @ = (e, 6), obtained after score computation,
for the top K scoring operator sequences e across all iterations of the search loop. Once the search
loop concludes, we fine-tune the models in the candidate pool K by further minimizing £((e, 0))
with respect to 0, if necessary.

4. Controller update. We use a risk-seeking policy gradient (Petersen et al., |2021) to update the
controller y¢. Standard RL techniques update the weights ® of the controller x4 by maximizing
the objective:

Js(®) = E [S(e)]. (7)
e~Xe
This objective function corresponds to maximizing the average score of operator sequences sampled
by the controller xo. However, in symbolic regression, our interest lies in the best-forming operator
sequences rather than the average. Therefore, we instead maximize the expected score of the top
(1 —v) x 100% scores of operator sequences sampled from the controller yg:

J (@)= _E [S(e)[S(e) = 5,(P)], (8)
where S, (®) is the (1 — v) x 100% quantile of the score distribution of operator sequences sampled
from xo.

We estimate the gradient of Equation using the risk-seeking policy gradient in (Petersen et al.,
2021)):

M Q
1 . . . - )
~ Gy _ . (9) . ().
VoJ(®)~ Z;[S(e D)= 5,(®)]-1{S(e)) > 5,(®)} - Vo ;logpz(ei ; ), (9)
j= i=
where p;(-; ®) is the PMF of the ith node generated by the controller x4, and S, (®) is the empirical
(1 — v) x 100% quantile of the M sampled operator sequences eV, ... e(™) ~ yg. At the end of
each iteration of the search loop, we compute the gradient in Equation @ and update the weights
® of the controller x¢ accordingly.

3.2 Interaction Nodes

Hamiltonian systems involving multiple objects (e.g., particles, oscillators) typically have Hamiltonian func-
tions that include interaction terms among position coordinates q;, and the functional forms of momentum p
and position q often differ. For example, in the N-body problem (Aarseth, 2003)), the Hamiltonian function
is given by H(p1,...,PN,Q1,s---,AN) = Zfil collpill® =224 m, and in coupled harmonic oscillators
(Makarovy, [2018), it is H(p1, P2, d1,d2) = cop% + clp§ + czq% + c;:,q% + c4q192, where ¢; are constants. Many
Hamiltonian functions exhibit these structures, so we design the H-FEX tree to treat p and q separately
and introduce a dedicated interaction node to effectively represent interaction terms.

The interaction node enables an H-FEX tree to represent pairwise interaction terms. Similar to unary and
binary nodes, the interaction node is assigned an operator sampled from a set 1. Each operator in I maps a
pairwise combination of elements to a scalar value, with exception of a "no interaction" operator (Id) that
is functionally equivalent to a unary operator with the identity operator Id. If the interaction node takes
a vector input x € R?, then the set I may include operators such as (z; — x;), (z; — x;)?, x;2;, where ;
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Figure 2: H-FEX tree with an interaction node. This example H-FEX tree includes an interaction
node that operates on the position coordinates (qi,qs2,qs). The interaction node is parameterized by an
operator sampled from a PMF over the set of interaction operators I. The set I contains operators that
maps pairwise combinations of elements to a scalar value. In this instance, the sampled interaction operator
is ||g; — q;|| for ¢ # j, and the node outputs all pairwise interactions between position coordinates.

and z; are distinct elements of x (i.e., i # j). More generally, if input is a matrix X € R™ ¢, then the set
[ may include operators such as ||x; — x|, [x; — x;||%, |x; ® x;||, where [|-|| denotes the Euclidean norm
and ©® denotes elementwise multiplication. These interaction operators map each pairwise combination of
the r column vectors in X to a scalar. In essence, the interaction node enables the H-FEX tree to model
interaction terms, allowing it to capture complex Hamiltonian functions that involve pairwise interactions.
Figure [2] shows an example of an H-FEX tree with an interaction node to represent interaction terms among
the position coordinates.

3.3 Training and evaluation for H-FEX

Integrators enable the simulation of trajectories of candidate H-FEX trees during both training and evalua-
tion. Once an operator sequence e parameterizes an H-FEX tree, the resulting expression yields a Hamilto-
nian surrogate He, which can then be integrated into the predicted trajectories generated. During training,
these trajectories are compared to observed data to calculate the empirical loss in Equation , which is
also used to calculate a score of the operator sequence e in Equation @ During the evaluation, a trained
Hamiltonian surrogate He is used to simulate the trajectories of a given initial condition. At a high level, the
prediction of the trajectory is summarized in Equation , but in this section, we provide a more detailed
explanation in the following.

To reduce numerical error during integration, we adopt a multi-step integration scheme similar to that used
in (Chen et all 2019). Rather than integrating from ¢,_; to t, in a single step, each interval [t,_1,¢,] is
subdivided into uniform K substeps (tnk)f:o. During evaluation, trajectories are recursively generated by
integrating forward from the previously predicted state:

(Ptrsr> Atnyr) = Integrator(”;‘:t@, (Dt,,,qt, ), (tnk)kK:O) forn=0,1,...,N —1, (10)
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where (Py,, Qt, ) is set to the initial condition. In contrast, training uses the previous state from the observed
trajectory at each step:

(Ptrsr> Utnyr) = Integrator(?flg, (pt,,qt, ), (tnk)kK:O) forn=0,1,...,N —1, (11)

which prevents the propogation of integration errors during optimization, leading to more stable training. In
Equation and Equation (11}, we use the Leapfrog integrator in Algorithm [1] for separable systems and
the second-order Runge-Kutta (RK2) method in Algorithm [2| for non-separable systems. Additional details
on integrators are provided in Appendix [A]l

4 Numerical results

In this section, we evaluate the performance of H-FEX by comparing it with existing methods on two
problems: a nonseparable Hamiltonian system (Wu et al., 2020) and the three-body problem (Gowers,
2008). In both cases, the objective is to learn the underlying Hamiltonian function directly from trajectory
data, thereby recovering the corresponding Hamiltonian system.

The experiments are conducted as follows. We begin by generating trajectores from the true system and use
them as training data for each method. After training, the learned models are evaluated on a separate test
set consisting of trajectories not seen during training. Using the initial states of the test data, we simulate
predicted trajectories from the learned surrogate of each method and compare them to the corresponding true
test trajectories. The test trajectories span significantly longer time intervals than those used for training,
allowing us to assess each model’s ability to generalize and remain stable over extended predictions. We
evaluate the methods based on the accuracy of the predicted trajectories over time and the degree to which
they conserve energy.

We assess the accuracy of a predicted trajectory (py,, qti)fv:tff“ by calculating the mean squared error (MSE)

at each time step:
1 R .
MSE() = 5 (I1pe = o | + llde - aull’) (12)

where p¢, Pr, qr, G: € RY. For each test trajectory, we compute MSE(#) at each time point to analyze how
the prediction error evolves over time. Additionally, we assess the ability of each method to conserve energy
by computing the relative error, denoted by Eyci(t) in the energy over time:

|H(pta qt) - H(f’%a‘ito)'

FELo(t) = ~ ~ ,
1t P (Bres )|

(13)

where | - | denotes absolute value and H is the true Hamiltonian function and (P, qt,) is the initial state.
If the predictions (P¢,§q:) conserve energy well, the Hamiltonian H(p¢, §:) should remain approximately
constant over time. Consequently, the relative error in Equation should remain close to zero.

4.1 Non-Separable Hamiltonian System

We compare H-FEX with SINDy (Brunton et al., |2016|) on a non-separable system from (Wu et al.l 2020).
The Hamiltonian system is characterized by the non-separable Hamiltonian function # : R? — R defined
by:

H(p,q) = exp(—a1p® — aaq?), (14)

where a; = 1 and as = 1.1. By Equation , this Hamiltonian function yields the following dynamical
system:

dp
i dasg® exp(—arp® — aag?),
(15)
dq -9 2 4
pri aipexp(—a1p” — azq”).
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For the data, the initial states (ps,,q:,) are uniformly sampled from the domain = [—1,1]%. For the
training data, we discretize the time interval [0, 3] using 30 points with a uniform timestep of 0.1. Using
the adaptive step integrator RK45 (Fehlberg) [1969)), we generate 120 trajectories on the interval [0, 3] from
different initial states using the true dynamical system Equation . For the testing data, we use the same
data generating process, but instead use a longer time interval of [0, 60], discretized with the same timestep
of 0.1.

We state all the details regarding the structure and operator search loop of H-FEX for this non-separable
system. The H-FEX binary tree consists of three unary nodes and one binary node, with 4 weights to scale
the output of each node (see Figure (7). We use the following unary and binary operator dictionaries:

U= {Id’ (')Qa (')37 (-)4,exp,sin, (')_1}, B = {+, X, —, +},

where “Id" denotes the identity operator. We run the search loop for 100 iterations, and each iteration,
we generate 15 FEX trees. For operator sequence generation, we use an e-greedy strategy (Dann et al.)
2022)) with € = 0.2 to sample 15 operator sequences from the PMFs given by the controller. During score
computation, we minimize the loss function Equation , for each FEX tree, using the Adam optimizer with
its default moment parameters $; = 0.9, B2 = 0.999 (Kingma & Bal, 2014) and a learning rate of 0.1 for 150
steps. The default values of f; and 5 are used in all our experiments. Since the system is non-separable, we
generate trajectories during training with Equation using RK2 (Butcher, [1987)), a traditional integrator,
with K = 20 substeps. The controller is a small fully-connected neural network deterministically mapping
the zero vector to PMFs for each node, and the weights of the controller are updated using the risk-seeking
policy gradient (Petersen et al.| |2021)) with v = 0.25. During the search loop, we maintain a candidate pool
to save the 15 top-scoring FEX models, and after the search loop, we fine-tune each of the models using
Adam with a learning rate of 0.001 for 300 steps. After the fine-tuning, we select the H-FEX tree with the
highest score to compare with SINDy.

The resulting H-FEX tree has an operator sequence e = ((-)2,+, (-)*,exp) (inorder traversal) and weights
6 = (0.9236,1.0159, —1.0830, 1.0000), yielding the closed form approximation of the Hamiltonian function:

A

He(p, q) = 1.0000 exp(—1.0830(0.9236p> + 1.0159¢))
= exp(—1.0003p? — 1.1002¢*).

Comparing the approximation with Equation , H-FEX correctly identifies the true operators and learns
weights that simplify to values close to the true values of a; and as. Using Equation on the 30 test
trajectories, we generate predicted trajectories on the interval [0,60] given the initial states of the testing
set. We then use these predicted trajectories to compute the MSE and relative energy change over time and
compare with SINDy in Figure f] H-FEX maintains low trajectory error even at time points far beyond
the training interval, whereas SINDY’s trajectory error steadily increases over time. Additionally, H-FEX
preserves the initial energy throughout all time points, while SINDy quickly deviates from the initial energy.

On the other hand, SINDy yields a closed-form expression for (%, %) directly:
d
dit’ =0.1517q — 0.6835p2q + 4.0850¢> + 0.2606p* ¢ — 0.8336p%¢> — 2.7519¢°,
d
d{f = —1.9010p + 1.5567p> + 0.7090pg> — 0.3652p° — 0.5934p>¢> + 0.4568pg™.

This learned expression differs significantly from the true dynamical system in Equation . The source of
this discrepancy becomes clear upon brief examination of the SINDy algorithm (Brunton et al., [2016). SINDy
constructs expressions by using a predefined library of candidate functions (e.g., polynomials, trigonometric
terms) and selecting a sparse linear combination that best fits the observed data (pi,,q:,))_y. In this
experiment, the library includes polynomial terms up to degree 6. Because SINDy can only produce linear
combinations of these candidate functions, it struggles to capture complex nonlinear structures such as those

present in Equation (15)).
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Figure 3: Non-separable results. FEX and SINDy are trained using trajectories on [0, 3] and evaluated
using 30 test trajectories on [0, 60]. Left: MSE over time, defined in Equation . Right: Relative energy
change over time, defined in Equation . FEX exhibits virtually no MSE and energy drift over longer
time horizons, in stark contrast to SINDy, which accumulates error over time and deviates from the initial
energy almost immediately.

4.2 Three-Body Problem

The three-body problem (Gowers, [2008) is a classical problem in physics and celestial mechanics that involves
predicting the motion of three bodies interacting under their mutual gravitational forces. In our experiments,
we consider three point masses interacting in two-dimensional space. For 1 < ¢ < 3, the ith body has its
momentum denoted by p; € R? and position denoted by q; € R2, so the system can be represented by
coordinates (p1, p2, P3,d1,d2, q3) € R2. The corresponding Hamiltonian function is H : R*? — R defined
by:

||2 ||p2||2 ||p3||2 Gmimg Gmims Gmams

_ el - - - - :

2my 2mo 2my  |lan—aef|  flar —asl|  [laz —as|
where ||-|| denotes the Euclidean norm, m; € R denotes the mass of the ith body, and G € R denotes the
gravitational constant. In our experiments, we set m; = 1 for each ¢ and G = 1. To generate initial states,
we place the three point masses on a randomly chosen circle (with radius uniformly drawn from [0.9,1.2])
by selecting a random point for the first point mass and then rotating it by 120° for the other two. Each
point mass is given a momumtum perpendicular to its position vector to produce a perfect circular orbit.
Finally, we perturb these momenta by multiplying them by a random factor uniformly drawn from [0.8, 1.2].
For testing, we generate 30 trajectories on the time interval [0, 30] with a timestep of 0.1 using the integrator
RK45 (Fehlberg), [1969) until a relative error less than 1079 is attained.

H(p1,P2; P3,d1,d2, d3) (16)

We consider two different training datasets: the first with trajectories on a smaller time interval [0, 3], and
the second with trajectories on a larger time interval [0,7], each with the same timestep of 0.1. As the
trajectories are being generated, collisions between two or more point masses will inevitibly occur, with
more potential for collisions on larger time intervals. Therefore, trajectories on the interval [0, 3] tend to
have less collisions than trajectories on the interval [0, 7]. When collisions occur, two or more position vectors
become very close, leading to a singularity in Equation . In other words, collisions create stiff regions
in a trajectory, where integration becomes more challenging. To quantify the stiffness of the two training
datasets, we calculate the stiffness-aware index (SAI) from (Liang et al., [2021; Huang et al.| [2023]) defined
by:

_ 1 . ||(pti+17qti+l)—r B (ptwqtz‘)TH

[(Pe;s ar,) | liv1 — U

where |||| is the Euclidean norm and (pi,,qs;)" € R?? is the state of the trajectory at time ¢;. Higher SAI
values correspond to trajectory segments that exhibit greater stiffness. In Figure[d we compute the densities

SAI(ptI s qtl) : 5 (17)



Under review as submission to TMLR

of SAT for both datasets and then plot on log scale to emphasize the differences. The dataset on [0, 7] has
regions with larger SAT compared to the dataset on [0, 3], supporting our intuition that trajectories on the
interval [0,7] are more challenging to integrate due to increased presence of collisions. For both training
datasets, we use the same H-FEX structure and training hyperparameters.

357 [ Training data on [0, 3]

Training data on [0, 7]
3.0 4

2.5

2.0 1

Density

1.5

1.0

0.5

0.0 LIS B B B B | T LIS B B B B | T T T T T TTT T
107! 10° 10!
SAl

Figure 4: SAI Density Plot. The stiffness-aware index (SAI), defined in Equation , is used to empiri-
cally quantify the stiffness of training trajectories under two different scenarios in the three-body problem.
We compute densities of SAI and then plot on log scale for two datasets: one containing trajectories from
[0, 3], the second from [0, 7]. Higher SAT values correspond to stiffer regions of the trajectory. As shown in
the density plots, trajectories on [0, 7] exhibit stiff regions not present in [0, 3], primarily due to collisions
occurring over the longer interval.

The structure of an H-FEX tree consists of three unary nodes, one binary node, and one interaction node to
produce interaction terms among the coordinate terms (qi, q2, q3), with weights after each binary and unary
node (see Figure @ For the unary, binary, and interaction nodes, we use the following operator dictionaries:

U= {Id, ()% (-)*,exp,sin, ()7},
B= {+’ Xv_}7

2 2 . .
I={lla; —q;lI”; [lai —aq;ll, la: © q; |, [lai © q;|}  for i # j.

We run the search loop for 100 iterations, and for each iteration, we sample 10 operator sequences from
the controller using an e-strategy (Dann et al.| 2022) with e = 0.2. We compute the score by minimizing
Equation (5)) using Adam (Kingma & Bal 2014]) with a learning rate of 0.1 for 150 steps. Predicted trajectories
are generated during training using Equation with K = 20 substeps using leapfrog (Birdsall & Langdon),
2018), a symplectic integrator. The weights of the controller are updated using the risk-seeking policy
gradient in Equation @ with v = 0.25. The candidate pool saves the top 15 highest-scoring H-FEX trees,
and after the search loop, we fine-tune each of the trees using Adam with a learning rate of 0.001 for 300
steps. After fine-tuning, we select the highest scoring H-FEX tree to compare with other models.

We show only the results of H-FEX when trained with trajectories on [0, 7], as the results of H-FEX when
trained with trajectories on [0, 3] are similar for H-FEX. The highest-scoring H-FEX tree has an operator

10
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sequence of e = ((*)%,+,[la; — q;||, ()7, Id), where (-)%,(:)",1d € U, + € B, and ||q; — q;| € I. This
yields the closed form approximation of the Hamiltonian function:

He(P1,P2,P3, 41,92, 93) = (0.5005p7 , + 0.4981p7 ,, + 0.4996p3 , + 0.4985p3 , + 0.4976p3 , + 0.5024p3 )
< —0.9985 —0.9970 —0.9949 )
+ + :
llar — qz|| lar — qsl| laz — as]|

where for each body, p; = (;1)1-796,1)1-4,)T is the momentum on the xy plane. The equation learned by H-
FEX closely matches Equation , as we let G = 1 and m; = 1 for each body in our experiments.
With Equation , we use 30 intial conditions from the test dataset to generate predicted trajectories on
the interval [0,30] using the highest-scoring H-FEX tree and compare to other models for both training

scenarios.

50 10020 5
—e— H-FEX 0.03 —e— H-FEX
0.015 SRNN SRNN
40 —+— HNN g 400 —+— HNN
0.010 2
4 @ | o001
3070.005 f %3 "
w 5 | 000 - i
c o
=, Jo.000 4 g 0 1 2 yrai
0 2 2 g2 7
; //j, / ,g /,/ﬁ
10/ S Ty / Z
/ / // ]
i . | ol A i
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t

Figure 5: Three-body problem results with training on [0,3]. H-FEX, SRNN, and HNN are trained
using trajectories on [0, 3] and evaluated using 30 test trajectories on [0, 30]. Left: MSE over time, defined
in Equation . Right: Relative energy change over time, defined in Equation . H-FEX shows slower
growth in both MSE and enery drift over time compared to SRNN and HNN.

In Figure 5] we plot the MSE and relative energy change over time for models trained with trajectories on the
interval [0, 3]. We compare H-FEX with SRNN (Chen et al., 2019) and HNN (Greydanus et al.| |2019)), which
are both methods that use a neural network as a surrogate for the Hamiltonian function so an interpretable
closed-form expression is not attainable. H-FEX maintains accurate trajectories even at large time points,
and it preserves the initial energy for long periods of time with deviations in the energy only occuring at
later time points.

11



Under review as submission to TMLR

120 25
b | —e— H-FEX —e— H-FEX
1004 SRNN J0[02 ] SRNN
0.3 —— HNN 5 o L e —— HNN
S ;
8055 i —— SANN 5 loa /e —o— SANN
y S151
% 601 J g o
= N a A A (9]
w0 0.0 o d v s ® / .g 10 2 4 6 .
2 4 6 - B ‘ W/J/
| ' // & s r JV»-/J.
20 /4/ r/»/w
0 — . = 0 ‘/;w’-rr-"“’/‘ e i ="
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t

Figure 6: Three-body problem results with training on [0, 7]. H-FEX, SRNN, HNN, and SANN
are trained using trajectories on [0, 7], which are more stiff due to collisions, and evaluated using 30 test
trajectories on [0,30]. Left: MSE over time, defined in Equation . Right: Relative energy change over
time, defined in Equation . Despite the increased difficult of the training data, H-FEX maintains the
lowest MSE and energy drift among all methods.

In Figure [6] we plot the MSE and relative energy change over time for models trained with trajectories on
the interval [0, 7]. Here, we compare H-FEX with SRNN, HNN, and SANN (Liang et al.,[2021]), where SANN
is a neural network surrogate for the Hamiltonian function that can more accurately learn stiff regions of the
training trajectories. Since the dataset on [0, 7] contains more collisions, the MSE and the relative energy
change of HNN and SRNN diverge faster than when trained using the dataset on [0, 3]. H-FEX still produces
the most accurate trajectories and preserves energy the best, while providing a closed-form approximation
of the Hamiltonian function.

5 Discussion and Limitations

In this work, we only consider H-FEX with fixed tree structures, making its performance dependent on the
choice of tree structure. If the tree structure cannot represent the form of the true expression, then H-FEX
will not be able to recover it. However, by incorporating identity operators into the unary and interaction
nodes, as show in fig. m (b) and fig. EI, larger trees can produce expressions functionally equivalent to those
of smaller trees. Consequently, the tree structure does not need to exactly match the true expression; it only
needs to contain a subtree that contains the true expression. While larger trees increase expressivity, they
also enlarge the operator search space, requiring more iterations of the search loop to realiably identify good
operator sequences. Parallelizing tree scoring can help mitigate this cost, but only up to moderate tree sizes,
as the operator search space would grow faster.

6 Conclusion

This paper introduces H-FEX, an adaptation of FEX for Hamiltonian systems. H-FEX represents the Hamil-
tonian function as a tree of operators, enabling it to learn complex mathematical expressions. We modify the
FEX search loop for Hamiltonian systems and introduce interaction nodes to better capture interaction terms
common in coupled systems. Numerical experiments show that H-FEX accurately identifies the operators
and weights needed to construct a tree that closely approximates the true Hamiltonian function. Moreover,
the predicted trajectories are highly accurate and preserve energy over long time horizons, demonstrating
H-FEX’s capability in accurately modeling complex Hamiltonian systems.

Like symbolic regression methods such as SINDy, H-FEX depends on the choice of operators in its dictionar-
ies, which significantly impacts the accuracy of the learned closed-form solution. If essential operators are

12
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missing, H-FEX’s accuracy will suffer. Additionally, H-FEX requires a predefined tree structure with opera-
tor nodes and weights, shaping the resulting equations. When prior knowledge of the Hamiltonian system is
available, it can guide the selection of operators and tree structure to improve modeling. However, without
prior knowledge, one must experiment with various operators and structures. In future work, we believe it is
fruitful to develop adaptive methods that dynamically adjust node and weight placement, allowing H-FEX
to learn complex physics without a predefined tree structure.
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A Additional Integrator Details

This section provides further information on the integrators used during both evaluation (see Equation )
and training (see Equation ) To reduce notational clutter, we use the shorthand (p,,q,) to denote
(pt,»4d:, ). The notation ﬁp(pk, qr) denotes the derivative of the surrogate Hamiltonian #H with respect to
p, evaluated at the point (pk,qx). This derivative can be computed exactly and quickly using automatic
differentiation.

The multi-step integration algorithms for advancing a single time step using the Leapfrog and RK2 inte-
grators are shown in Algorlthm [[] and Algorithm [2] respectively. These algorithms take the surrogate of the
Hamiltonian function 7 and the current state (Dn, Qn), integrates for K substeps, and outputs the predicted
next state (Pp+1,n+1). During evaluation, the current state (P, @) is set to the previous predicted state
(Dn,qQn), while during training, the current state (Pn,q,) is set to the previous observed state (pn,q,). It
should be noted that the integration for each time step is parallelizable during training, greatly reducing the
runtime for computing a score of an H-FEX tree.

The Leapfrog and RK2 integrators have different properties and assumptions. The Leapfrog integrator
belongs to the class of symplectic integrators, which simulate trajectories with less energy drift, but assumes
the Hamiltonian function is separable, i.e., H(p,q) = K(p) + U(q). On the other hand, the RK2 integrator
does not rely on the separability of the Hamiltonian but lacks the energy drift reduction properties of Leapfrog
integration. Consequently, we first attempt to use Leapfrog during training, but if many H-FEX trees have
trouble optimizing, we switch to RK2 as a fallback.

Algorithm 1 Multi-step Leapfrog integrator for Hamiltonian systems

function LEAPFROGINTEGRATOR(H, (Pn,@n), (tn,)E_,)
At by, — tp, > (tn, )5, are uniform substeps

(p07q0) — (f)nv(in)
fork:zOtoK—ldo

Piil < Pk — —H 7Pk dk) > Leapfrog update adapted for Hamiltonian systems
dk+1 < dx + At,Hp(PkJ,_%,Qk)
Pk+1 < Pryl — %Hq(PH%,%H)

(Pn+1,Gn+1) < (Pr,dK)
return (Pr41,Gnt1)

Algorithm 2 Multi-step RK2 integrator for Hamiltonian systems

function RK2INTEGRATOR(H, (Pn,@n); (tn, ) ,)
At + ty, — ty, b (tn,)E_, are uniform substeps

(p07q0) — (f)m(ln)
for k=0to K —1do

(p ) A «(Pk, Ak) > RK2 update adapted for Hamiltonian systems

(q) — Hy(Pr, ak)
(p)<_ Y (pk grgp)’q +At (q))

(q)<—7-l (pk“r 2 ()’q +At (Q))
pk+1<—pk—|—At7“
Qrr1 < qr + Atry

(pn+17 anrl) (pKv qK)
return (P,y1,Gny1)

(9)
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B H-FEX Search Loop

In Algorithm[3] we show a detailed pseudocode of the H-FEX search loop. The search loop seeks the optimal
operator sequence in F iterations. Each iteration, PMFs are generated by the controller x4, and B H-FEX
trees are constructed from sampled operator sequences. After constructing an H-FEX tree, the weights are
optimized for L iterations. The score of each of the B operator sequences can then be used to compute the
risk seeking policy gradient in Equation @D

Algorithm 3 H-FEX search loop high-level pseudocode

procedure SEARCHLOOP(T) > Assume a fixed tree T
for 1 to F do

PMFs < x4(0)

for 1 to B do > Constructing multiple trees with sampled operator sequences
e ~ PMFs
0 ~ UniformDistribution > Initializing network weights
Construct H-FEX tree H(-,; T, e, 6)
for 1 to L do > Optimizing weights

A

(P, q) < Integrator(H, (Po, qo), )
Compute loss £(O)

Update tree weights @
Compute score S(e)
if S(e) among top K scoring models in the pool then
Add #H to the pool
Compute risk-seeking policy gradient Vg7 (P)
Update controller weights ®

At a high-level, the computational complexity of algorithm is O(FE x B x L x F), where E is the number
of search iterations, B is the number of trees constructed per iteration, L is the number of loss-minimization
steps, and F' is the cost of a single forward pass of a tree. The B trees are optimized independently, allowing
straightforward parallelization to reduce runtime. The cost F depends mainly on the number of weight
parameters 6, not on the number of operators e in the tree. Looking at fig. [7] we see that adding extra
nodes has a minor impact on computational cost, as it merely requires additional inexpensive evaluations of
the unary, binary, or interation operators.

C Additional Experiment Results

We show the H-FEX tree structures in Figure [7] used for each of the numerical experiments in Section [4]
The tree structure is fixed before training, and the operators are the final learned operators. Weights are
added after each of the unary and binary nodes.

We report the average runtimes of H-FEX and other methods across 10 independent runs for the non-
separable system and the three-body problem in table [[] SINDy is notably fast, as its core computation is
solving a single linear regression. H-FEX runs slower on the three-body problem than in the non-separable
system, due to larger weight matrices shown in fig. [] Currently, the score calculation in H-FEX is im-
plemented in serial, but several components are naturally parallelizable. In particular, score estimation for
operator sequences within a batch and the fine-tuning of candidate models can be parallelized to improve
efficiency in larger-scale settings.

We plot in fig. [§] the empirical probability of H-FEX having the correct expression in the pool as a function of
the number of search loop iterations. As the number of iterations increase, H-FEX’s success rate increases.
In both experiments, we run for 100 iterations. H-FEX finds the correct expression in 9 out of 10 runs for
the nonseparable system and in 8 out of 10 runs for the three-body problem.
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Figure 7: Tree structure of H-FEX for numerical experiments. (a) shows the tree structure and final
learned operator sequence of H-FEX for the nonseparable experiment in Section (b) shows the tree and
final learned operators, where the weights 61, ..., 60, are optimizable parameters of the form Reus*din

Method Non-separable system Three-body problem

H-FEX 1.62 hrs
SINDy <5 secs
SRNN -
HNN -
SANN -

4.54 hrs

3.86 hrs
1.14 hrs
15.01 hrs

Table 1: Average runtime of each method on two benchmark problems, computed over 10 independent
runs. For the three-body problem, runtimes are based on training with trajectories from the interval [0, 7].
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Figure 8: Empirical probability of H-FEX adding the correct expression to the pool for two
benchmark problems. For each problem, we conducted 10 independent runs, recording whether H-FEX
successfully identified the correct expression and the iteration in which it was first added to the pool.
Shaded regions indicate +1 standard error of the probability estimate.

Additionally, we demonstrate that H-FEX can still recover the true Hamiltonian expression when using an
alternative tree structure. By including the identity operator in the dictionaries of interaction nodes, the
H-FEX tree can effectively reduce to an equation represented by a subtree. As shown in fig. [0] and fig. [7]
(b), two distinct tree structures yield the same final expression. In general, larger H-FEX trees can produce
expressions functionally equivalent to smaller trees by leveraging identity operators or by learning weights
that are close to zero.

D Ablation Studies

We test H-FEX with and without interaction nodes on the three-body problem in fig. [[0] While both variants
had similar scores, the version without interaction nodes generalizes poorly, as it fails to find an expression
capable of modeling the multi-body coordinates in eq. .

We also conduct an ablation study to understand the effect of the integration method used in the H-FEX
search loop in table All experiments use the integrator in eq. during training. Replacing it with
eq. results in a substantial drop in the average loss and score of H-FEX trees in the pool.

E H-FEX on Real-World Astronomical Data

We apply the proposed H-FEX method to real-world astronomical data from the Jupiter—-Sun system, which
can be approximated as a two-body problem. While the governing equations for this system are well-
understood, this experiment illustrates how H-FEX can verify a proposed symbolic form and assess whether
alternative forms provide a better fit, an approach that can also be applied to systems with unknown
dynamics. The dataset is obtained from the JPL Horizons OnLine Ephemeris System(https://ssd.jpl.
nasa.gov/horizons/|), an online service provided by NASA’s Jet Propulsion Laboratory that generates
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H-FEX hyperparameters are the same as those mentioned in section [I.2] This tree reduces to the same

expression in fig. El (b).
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Figure 10: Comparing MSE over time for H-FEX with and without interaction nodes on the
three-body problem trained on trajectories from [0,7]. Without interaction nodes, predicted trajectories
diverge rapidly from the ground truth.
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Integration method Loss Score

Integrating with eq. (10) 0.8800 £ 0.1115 0.5338 £ 0.0335
Integrating with eq. (11) 0.0046 +0.0015 0.9954 4+ 0.0015

Table 2: Ablation study comparing integration methods on the three-body problem trained on tra-
jectories from [0, 7]. The table reports the mean with one standard deviation for the loss and score of final
expressions in the pool after the H-FEX search loop. The integration method in eq. leads to better loss
and score by using the data to prevent the propogation of integration errors.

accurate ephemerides for solar system bodies. We set the target body to be the Jupiter Barycenter, the
coordinate center to be the Solar System Barycenter, and the time span from 2021-01-01 to 2025-01-01 with
a time step of 1 day, yielding a total of 1462 samples. The original data is provided in kilometers (for
position) and kilometers per second (for velocity). The momentum data is computed as p = m v, where
my is the mass of Jupiter.

Roughly, the Newtonian two-body Hamiltonian for the Sun—Jupiter system in the center-of-mass frame is

2 Gmgm
H(p,r) _ HpH o S J7 (18)

where r € R? is the relative position (Jupiter relative to Sun), p € R? is momentum, and G € R is the
gravitational constant. For numerical stability and interpretability we nondimensionalize using the canonical
solar-system scales

Lo=1AU=1.496 x 10" m, My=mg, To=1 yr=2365.25x 86400 s.

We define dimensionless variables

Under these choices, the gravitational constant rescales to

GMyT?

5 o 42
G = T% ~ 47T 5
and the dimensionless reduced Hamiltonian becomes
S o |IBIIP Gy
H , ) = ~ - ~ . 19
0.5 = 2~ Tl "
The sampling interval Aty = 1 day corresponds to
1 day 1
At = = ~ 0.00273785.
1yr 365.25
Substituting m; = 1.90 x 10%7 kg, mg = 1.99 x 10%° kg in Eqn. ([19), we have
~ 3.77 x 1072
H(p,T) = 523.56]|p[* — T (20)

We use an H-FEX tree structure similar to (b) of fig. Iﬂ but with two bodies instead of three. The relative
coordinates of the dimensionless dataset can be converted into absolute coordinates by fixing one body at
the origin. For training, we use the same hyperparameters as those reported in for the three-body problem
in section and after the H-FEX search loop has concluded, we fine-tuned models in the pool for 5,000
iterations using Adam (31 = 0.9, B2 = 0.999 with a constant learning rate of 1071).
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After fine-tuning, we obtained a model with a loss of 1.1657 x 10~% which yielded the expression:

N —0.0412
H(p,7) = 523.5652p7 + 523.5655p,, + 468.8063p2 + A
where p = (P, Py, p-) ' is the momentum on the xyz axis. Comparing with eq. 7 our results show
that the learned coefficients are in close agreement with the true values with exception of the z-component,
demonstrating that H-FEX is capable of verifying that the two-body model is a good fit while testing for

potentially better alternative forms.
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