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ABSTRACT

Latent manifolds provide a compact characterization of neural population activity
and of shared co-variability across brain areas. Nonetheless, existing statistical
tools for extracting neural manifolds face limitations in terms of interpretability
of latents with respect to task variables, and can be hard to apply to datasets with
no trial repeats. Here we propose a novel probabilistic framework that allows for
interpretable partitioning of population variability within and across areas in the
context of naturalistic behavior. Our approach for task aligned manifold estimation
(TAME-GP) explicitly partitions variability into private and shared sources which
can themselves be subdivided in task-relevant and task irrelevant components,
uses a realistic Poisson noise model, and introduces temporal smoothing of latent
trajectories in the form of a Gaussian Process prior. This TAME-GP graphical
model allows for robust estimation of task-relevant variability in local population
responses, and of shared co-variability between brain areas. We demonstrate the
efficiency of our estimator on within model and biologically motivated simulated
data. We also apply it to several datasets of neural population recordings during
behavior. Overall, our results demonstrate the capacity of TAME-GP to capture
meaningful intra- and inter-area neural variability with single trial resolution.

1 INTRODUCTION

Systems neuroscience is gradually shifting from relatively simple and controlled tasks, to studying
naturalistic closed-loop behaviors where no two observations (i.e.,“trials”) are alike (Michaiel et al.,
2020; Noel et al., 2021). Concurrently, neurophysiological techniques are advancing rapidly (Steven-
son & Kording, 2011; Angotzi et al., 2019; Boi et al., 2020) to allow recording from an ever-increasing
number of simultaneous neurons (i.e., “neural populations”) and across multiple brain areas. These
trends lead to a pressing need for statistical tools that compactly characterize the statistics of neural
activity within and across brain regions. Dimensionality reduction techniques are a popular tool for
interrogating the structure of neural responses (Cunningham & Byron, 2014). However, as neural
responses are driven by increasingly complex task features, the main axes of variability extracted
using these techniques often intermix task and nuisance variables, making them hard to interpret.
Alternatively, dimensionality reduction techniques that do allow for estimating task-aligned axes of
variability (Brendel et al., 2011; Semedo et al., 2019; Keeley et al., 2020; Glaser et al., 2020; Hurwitz
et al., 2021), do not apply to communication between brain areas, and/or necessitate trial repeat
structure that does not occur in natural behavior.

Here, we introduce a probabilistic approach for learning interpretable task-relevant neural manifolds
that capture both intra- and inter-area neural variability with single trial resolution. Task Aligned
Manifold Estimation with Gaussian Process priors (TAME-GP) incorporates elements of demixed
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PCA (dPCA; Machens (2010); Kobak et al. (2016)) and probabilistic canonical correlation analysis
(pCCA; Bach & Jordan (2005))1 into a graphical model that additionally includes biologically relevant
Poisson noise. The model uses a Gaussian Process (GP) prior to enforce temporal smoothness, which
allows for robust reconstruction of single-trial latent dynamics (see Damianou et al. (2016) for a
similar approach using Gaussian observation noise). We demonstrate the robustness and flexibility
of TAME-GP in comparison to alternative approaches using synthetic data and neural recordings
from rodents and primates during naturalistic tasks. This reveals TAME-GP as a valuable tool for
dissecting sources of variability within and across brain areas during behavior.

Related work. Dimensionality reduction is usually achieved by unsupervised methods that identify
axes of maximal variability in the data, such as PCA. In neuroscience, this is often accompanied by
additional smoothing over time reflecting the underlying neural dynamics (e.g., Gaussian process
factor analysis (GPFA) (Yu et al., 2008); see GP-LVM (Ek & Lawrence, 2009) for similar approaches
outside of neuroscience). This low dimensional projection is followed by a post hoc interpretation of
latents in the context of behavioral variables, often by visualization. Alternative approaches such as
dPCA (Machens, 2010; Kobak et al., 2016) explicitly look for axes of neural variability that correlate
with task variables of interest (see also Zhou & Wei (2020) for a nonlinear version). However,
these require partitioning trials into relatively few categories, based on experimental conditions or
behavioral choices and averaging within conditions. This makes them unusable in naturalistic tasks
where a single trial treatment is needed. Similarly, SNP-GPFA (Keeley et al., 2020) can partition
(multi-region) neural activity into ‘shared signal’ and ‘private noise’ components, but only using data
with stimulus repeats. Under ‘no-repeat’ conditions, pCCA (Bach & Jordan, 2005) can find subspaces
of maximal cross-correlation between linear projections of task variables and neural responses (under
gaussian noise assumptions), without the need for a priori grouping of trials by experimental condition
or choice. This approach can also be applied for determining shared axes of co-variability across
areas, an analog for communication subspaces (Semedo et al., 2019). Nonetheless, its noise model
assumptions are mismatched to neural data. More fundamentally, pCCA only considers pairwise
relationships, preventing a joint multi-area and task variables analysis. Overall, existing approaches
come with practical limitations and do not directly address the routing of task-relevant information
across brain areas.

2 TASK-ALIGNED MANIFOLD ESTIMATION WITH GP PRIORS (TAME-GP)

In its most general form, the graphical model of TAME-GP models a set of spike-count population
responses x(j) from up to n different areas,2 together with task variable of interest y (Fig. 1A). The
neural responses are driven by a set of n+ 1 low-dimensional latent variables z(j). Specifically, the
responses of neuron i in area j arise as a linear combination of private latent variability z(j) and
shared latents z(0), which reflect task interpretable aspects of the underlying dynamics, with Poisson
noise and an exponential link function:

p
(
x
(j)
i |z(0:n)

)
= Poisson

(
exp

(
W

(0,j)
i z(0) +W

(j,j)
i z(j) + h

(j)
i

))
, (1)

with parameters W(0/j,j) and h(j).

To make latents interpretable with respect to task variables y, we adapt a probabilistic framing of
CCA (Bach & Jordan, 2005) to introduces dependencies between any of the latents z(k)), which
could be private or shared across areas, and y:

p
(
y|z(0)

)
= N

(
y;Cz(0) + d,Ψ

)
, with parameters C, d, Ψ. (2)

1See Appendix A.1 for background on probabilistic PCA, CCA and their relation to TAME-GP.
2Variables x(j), y are tensors with dimensions corresponding to 1) an area-specific number of neurons/ task

variable dimension, 2) time within trial, and 3) trial index. We make indices explicit only where strictly needed.
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Figure 1: A. TAME-GP generative model. z(0) denotes shared latent dimensions while z(i) denote
private latents of the corresponding area i; y denotes the task variables. B. Example draws of spiking
activity and a task variable from the TAME-GP graphical model. C. Model log-likelihood as a
function of the EM iteration (left) and cross-validated leave-one-neuron-out marginal likelihood as a
function of z(0) dimension (right). D-F. Latent variables estimation for within model simulated data:
ground truth latent factors and model posterior mean ± 95% CI for three latent dimensions.

Finally, we regularize all latents to be smooth over time, through the introduction of a Gaussian
Process prior, as in GPFA (Yu et al., 2008),

z(j) ∼ GP (0, kj(·, ·)) , , (3)

kj

(
z
(j)
t,i , z

(j)
t′,i′

)
= δii′ exp

(
− (t− t′)2

2τ
(j)
i

)
, (4)

with area and dimension specific hyperparameters τ , z(j)t,i is the i-th component of the j-th latent at
time t, and δii′ is the Kronecker delta.

Putting these elements together results in a factorization of the joint distribution of the form,
p
(
x(1:n),y, z(0:n)

)
=
∏n

j=0 p
(
z(j)
)
p
(
y|z(0)

)∏
i,j p

(
x
(j)
i |z(0), z(j)

)
.This general form allows

for a unified mathematical treatment of several estimation tasks of interest. We will detail key
instances of this class that have practical relevance for neuroscience when presenting our numerical
results below.

3 EM-BASED PARAMETER LEARNING

E-step Since a closed form solution of the posterior is not available (due to the Poisson
noise), we construct a Laplace approximation of the posterior 3, p (z|x,y,θ) ≈ q (z|x,y,θ) =
N
(
z; ẑ,−H−1

)
, where ẑ is the MAP of the joint log-likelihood and H is its corresponding Hessian.

Both of these quantities are estimated numerically.

The MAP estimate is obtained by gradient descent on the joint log likelihood. The gradient of the
joint log likelihood w.r.t. the latents can be written as

∇z(j) log p (z,x,y) =
∑
l

(∑
j≥0

∇z(j) log p
(
z(j)
)
+
∑
t>0

∇z(j) log p
(
yt|z(0)t

)
+
∑
t>0

∑
j>0

∇z(j) log p
(
x
(j)
t |z(0)t , z

(j)
t

))
,

3We group latents in z, spike counts in x and θ =
{
W(0/j,j),h(j),C,d,Ψ, τ (j)

}
, to simplify notation.
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where l ∈ (1 : M) refers to the trial number, explicit index omitted for brevity. For a given trial,
expanding one term at the time we have

∇z(j) log p
(
z(j)
)
= −K(j)z(j)

∇
z
(0)
t

log p
(
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)
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)
∇
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log p
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x
(j)
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(j)
t

)
= W(k,j)⊤

(
xt − exp
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(0)
t +W(j,j)z

(j)
t + h(j)

))
,

where j > 0, k ∈ {0, j} and K(j) the GP-prior covariance matrix (Eq. 3). The corresponding
second moments are

∇2
z(j) log p

(
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)
= −K(j) j ∈ (0 : n)
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(j)
t + h(j)

))
W(h,j).

with h, k ∈ {0, j}. Inverting the D×D dimensional Hessian matrix is cubic in D = T
∑

j dj , where
T is the trial length and dj denotes the dimensionality of latent z(j), which restricts the number and
dimensionality of latents in practice. The Hessian of the log likelihood is sparse but does not have a
factorized structure. Nonetheless, we can take advantage of the block matrix inversion theorem, to
speed up the computation to O(T 3

∑
j d

3
j ) (see Appendix A.2), with additional improvements based

on sparse GP methods (Wilson & Nickisch, 2015) left for future work.

M-step Given the approximate posterior q found in the E-step, the parameters updates can be
derived analytically for a few parameters, and numerically for the rest (see Suppl. Info. A.3 for
details). The other observation model parameters are computed numerically by optimizing the
expected log-likelihood under the posterior. In particular, for neuron i in population j we have

L
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=
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])
. (5)

For each neural population, we jointly optimized the projection weights and the intercept of all
neurons with a full Newton scheme by storing the inverse Hessian in compressed sparse row (CSR)
format (see Appendix A.4 for the gradient and Hessian of L).

The GP-prior parameters were also learned from data by gradient based optimization (using the
limited-memory Broyden–Fletcher–Goldfarb–Shanno scheme (Virtanen et al., 2020)). First, we
set λ(j)

i = − log(2τ
(j)
i ), and optimize for λ

(j)
i to enforce a positive time constant. We define

K
(j)
i ∈ RT×T , such that

[
K

(j)
i

]
ts

= exp
(
−eλ

(j)
i (t− s)2

)
. The resulting objective function will

take the form, L
(
λ
(j)
i

)
= −trace

(
K

(j)−1
i Eq[z

(j)
i z

(j)⊤
i ]

)
− log |K(j)

i |. Gradients are provided in
Appendix A.5, together with the procedure for parameter initialization (Appendix A.6).

4 RESULTS

Latent reconstruction for within model data. To validate the estimation procedure, we first used a
simulated dataset sampled from the TAME-GP graphical model, with predefined parameters. Specifi-
cally, we simulated two neural populations x(1) and x(2), each with 50 units and a one-dimensional
task relevant variable y. We fixed the private latent factors z(1) and z(2) to two dimensions, and
that of the shared factor z(0) to one. The projection weights W(j) and C, the intercept terms d and
h(j), the observation variance matrix Φ, and the GP time constants of the factors were randomly
assigned. The parameters were chosen such that the overall mean firing rate was about 20Hz in both
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areas. We simulated spike counts at 50ms resolution for 200 draws from the process (which we will
refer to as ‘trials’ in analogy to experiments), each lasting 2.5 seconds (see example trial in Fig. 1B).
Given this data, we assessed the ability of our EM-based estimator to recover its true latent structure.4
The marginal log likelihood saturated after a relatively small number of EM iterations (Fig. 1C).
As a basic test of our ability to determine the dimensionality of latents, we systematically varied
the dimensionality of the shared latent, while fixing the dimensions of z(1) and z(2) to their ground
truth value of 2. We found that the best model fit was achieved at the ground truth task dimension 1,
demonstrating that we are able to infer true latent dimensionality from data (Fig.1D-F).

Finally, we assessed the quality of the recovered latents in individual test trials. Due to known
degeneracies, originally documented in linear gaussian latent models (Roweis & Ghahramani, 1999),
the latent factors in TAME-GP are identifiable up to an affine transformation of the latent space. To
address this, we used Procustes (Schönemann, 1966) to realign the latent axes back to the original
space. The resulting posterior mean estimate of the latents show an excellent agreement with the
ground truth factors (cross-validated linear regression R2 of 0.99 between the MAP estimate of
latents and ground truth, Fig. 1 D-F), while the model predicted rates explained 98% of the ground
truth firing rate variance. The ability to reconstruct ground truth structure for within model data
persists when considering more than two areas with shared covariability (Suppl. Fig. S1). Overall,
these numerical tests confirm that EM provides a veridical estimation of ground truth latent structure
for within distribution data.

Task-aligned latent reconstruction for simulated latent dynamical systems models. The simple
graphical model of TAME-GP captures axes of neural variability of scientific interest, but is far from
an accurate generative model for neural dynamics during behavior. To assess the ability of TAME-GP
to extract underlying structure from complex and out-of-distribution neural data, we used latent
dynamical systems models in which we can explicitly define the flow of information from external
stimuli and between areas, in several scenarios of practical interest.

The first in silico experiment focuses on identifying axes of task-relevant variability in neural
responses. As a simple test case, we modeled a single neural population with a 6d latent structure
(Fig. 2A). Two of the latent dimensions were task-relevant, driven by an observed temporally smooth
external input yt, while the other four dimensions were intrinsic to the circuit. The key distinction
between this process and the TAME-GP model assumptions is that the observed task variable acts
as an input drive to the underlying latent dynamics rather than mapping to the latents directly. The
latent dynamics take the form of a multivariate AR(1),{

zpr,t+1 = Apr (zpr,t − µt)∆t+
√
2∆t dw(0)

t

ztr,t+1 = Atr (ztr,t − yt)∆t+
√
2∆t dw(1)

t ,
(6)

where Apr ∈ R4×4 and Atr ∈ R2×2 the private and task relevant dynamics, yt ∈ R2 and µt ∈ R4

inputs drawn from a factorized RBF kernel, and w
(i)
t is independent white noise for i = 0, 1. Given

these latent dynamics, spikes are generated as described by the TAME-GP observation model with
W ∈ R100×6, and d ∈ R100. We adjusted the parameters as to cover several average population
firing rates by regulating d, for a fixed number of trials (200) and a fixed trial duration (5 seconds).
For simplicity, we circumvent the hyperparameter selection step by assuming that all estimators have
access to the ground truth latent dimensionality: TAME-GP assumed 2 shared and 4 private latents.
Unsupervised methods (pPCA, P-GPFA) were tasked with extracting the main two axes of neural
variability in the data, while the supervised methods (pCCA) estimated 2d latents that correlate with
task variable y; the same alignment procedure was used in all cases.

Fig. 2B illustrates the latent dynamics as estimated by TAME-GP, pPCA (Tipping & Bishop, 1999),
P-GPFA (Hooram, 2015), and pCCA (Bach & Jordan, 2005) . We quantify the latent space estimation
accuracy by mean squared error, demonstrating that TAME-GP captured the stimulus driven dynamics
better than other methods (Fig. 2C and Suppl. Fig. S2). P-GPFA showed a tendency to over-smooth,
which obscured most of the underlying fine timescale latent structure. PCA failed by focusing
on main axes of variability irrespective of task relevance, while CCA estimates were visually less
interpretable. Only pCCA and TAME-GP found projections that selectively encoded for ztr with
TAME-GP outperforming pCCA across conditions. Finally, TAME-GP maintained its ability to

4Here and in all subsequent analyses 90% of the data is used for training the model and 10% for testing.
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Figure 2: Methods comparison for single area task manifold alignment. A. TAME-GP graphical
model for single area (top) and schematic for data generating process (bottom). ztr denotes task
relevant shared latent dimensions while zpr denotes private task-irrelevant variability. B. Ground truth
task relevant dynamics (green) and estimated low dimensional projection for TAME-GP (purple), P-
GPFA (blue), pPCA (dark gray) and pCCA (light gray).C Mean squared error between the true shared
dynamics and the model reconstruction, mean ± s.d. over 10-fold cross-validation. D. Example
single trial firing rate reconstruction. E. Mean squared error between the true and reconstructed firing
rate across conditions, mean ± s.d. over 10 folds of the data.

recover the underlying structure even when the model assumptions do not match the data exactly, in
particular when the effect of the latents were modeled to be approximately additive (Suppl. Fig. S3).

We also compared these methods in terms of their ability to predict the ground truth firing rate
generating the observed spiking responses (total dimensions matching the ground truth of 6). Both
TAME-GP and P-GPFA showed a stable and accurate firing rate reconstruction error across conditions
(Fig. 2D,E), while the factorized linear gaussian methods (pPCA, pCCA) performed poorly. This
may be due to the larger model mismatch, while additionally suffering from the lack of temporal
smoothing, especially for low firing rates. Overall, TAME-GP was the only procedure that both
captured the overall data statistics well and extracted accurate task-interpretable latents.

Assessing inter-area communication in simulated latent dynamical systems. In the second set of
numerical experiments, we focused on estimating low-dimensional communication sub-spaces across
neural populations (Fig. 3A). The ground truth data was again constructed using latent dynamical
systems models, which now included two populations (Fig. 3B), where a low dimensional projection
of the dynamics in one area, the sender, drive the dynamics of the other area, the receiver:

zS,t+1 = AS (zS,t − yt)∆t+
√
2∆tw

(0)
t

zsh = P · zS

zR,t+1 = AR (zR,t − λt − zsh,t)∆t+
√
2∆tw

(1)
t ,

(7)

where AS ∈ R4×4 and AR ∈ R4×4 are the sender and receiver dynamics, yt and λt are temporally
smooth inputs drawn from independent GPs with factorized RBF kernels, P ∈ R2×4 defines the
shared submanifold projection, and w

(i)
t is independent white noise. These latents map into spikes

as above. We simulated three average firing rate conditions and varied the ground truth number of
shared dimensions, from one to three. We compared our method with the two most commonly used
approaches to communication manifold: pCCA and Semedo’s reduced-rank regression procedure for
communication manifold estimation (Semedo et al., 2019) (Fig. 3C), as well as SNP-GPFA (Keeley
et al., 2020) (both with and without trial repeats, see Appendix A.7 and Suppl. Fig. S4).

TAME-GP (without task alignment) outperformed alternative approaches in terms of the recon-
struction error of both ground truth firing rates (Fig. 3D, F) and shared latent dynamics (Fig. 3E).
Furthermore, when testing the ability of different approaches to infer the dimensionality of the
shared manifold through model comparison, the leave-one-out likelihood saturated at the ground truth
dimension for all simulations (Fig. 3I), and peaked at the correct dimension 75% of the times (Fig. 3G,
H). In contrast, the Semedo estimator tends to systematically overestimate the dimensionality of the
shared manifold in this dataset.

Finally, we tested the general case in which we search for a communication subspace that aligns to
task variable y. To do so, we fit TAME-GP to the same dataset but assuming that yt is observed.
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We found again that TAME-GP has the best reconstruction accuracy, which saturates at the ground
truth dimensionality (d=2). These observations are consistent across firing rate levels (see Suppl.
Fig. S5). When fitting SNP-GPFA to simulated data in the case of precise stimulus repetitions and
comparing it to TAME-GP, we find that both models are able to capture the latent space factorization.
However, only TAME-GP works well in the case when latent dynamics vary across episodes, as
would be the case during natural behavior (i.e. without stimulus repeats, see Suppl. Fig. S4, Table S1
and Appendix A.7 for details). Overall, these results suggest that TAME-GP can robustly recover
meaningful sources of co-variability across areas in a range of experimentally relevant setups.

Mouse neural recordings during open-field exploration. As a first validation of the method,
we estimated the manifold formed by simultaneously recorded head direction cells (n = 33) in the
anterodorsal thalamic nuclei (ADN) (Taube, 1995) of a mouse exploring a circular open field. 5

These neurons are known to form a circular manifold representing heading direction (Chaudhuri
et al., 2019). Thus, they provide the opportunity to examine the ability of TAME-GP to recover the
underlying structure of data for which we know the biological ground truth. Recorded responses were
segmented in 10sec time series, discretized in 20ms bins, and fit with a either a head-direction aligned
2d latent manifold (Fig.4A); private noise dimension d=5), or with two unsupervised methods pPCA
and PGPFA, each with latent dimensionality d=2. All methods recovered the underlying circular
structure of the heading representation to some degree (Fig.4B). We decoded head direction from
the extracted 2d latents6 and confirmed that TAME-GP preserved more information than pPCA, and
comparable to P-GPFA (Fig.4C), with an overall superior data fit quality relative to pPCA (Fig.4D),
as assessed by the R2 between model leave-one-neuron-out firing rate predictions and the raw spike

5Surgeries and procedures were approved by the Institutional Animal Care and Use Committee at Baylor
College of Medicine and New York University and were in accordance with National Institute of Health
guidelines, protocol number 18-1502.

6Decoding was performed using Lasso regression, with hyperparameter selection by 5-fold cross-validation.
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Figure 4: Fitting TAME-GP to neural data. A. Graphical model for heading aligned mouse
population responses in area ADN. ztr denotes heading related shared latent dimensions while zpr
denotes private task-irrelevant variability. B. Latent population dynamics, colored by time-varying
heading, for various manifold estimators. C. Head direction decoding from 2d latents extracted
with each method (by Lasso regression). Mean ± standard deviation over 5folds. D. Scatter plot
of leave-one-neuron-out spike count variance explained for dimension matched TAME-GP and
pPCA. Dots represent individual neurons. E. Schematic of the firefly task. Initial target location
is randomized and remains visible for 300ms. The monkey has to use the joystick to navigate to
the internally maintained target position. F. Top view of example monkey trajectories; increasing
contrast marks initial location of the target (right, center, left). G. Within-area TAME-GP estimation
aligned a latent task variable: the distance travelled. H. Scatter plot of leave-one-neuron-out spike
count variance explained for dimension-matched TAME-GP and pPCA. Dots represent individual
neurons. I. Single trial TAME-GP estimates of the task relevant dynamics, compared to J. those
of P-GPFA. Trajectories are color-graded according to the initial angular target location (as in B).
Lasso regression decoding of K. and L. linear distance travelled. TAME-GP decoding R2 (purple) is
based on a 2d task relevant latent. P-GPFA R2 (blue) estimates were obtained for a range of latent
dimensions (1-10). M. Communication subspace estimation between MSTd and dlPFC. N. As H, for
shared latent space. O. Lasso regression decoding of task relevant variables (sorted by their shared
subspace information content) from the shared (orange) and private latents (green, red) estimated by
TAME-GP. Mean R2 ± s.e.m. estimated across 10 folds of the data.

counts (Yu et al., 2008). Overall, these results confirm that the TAME-GP estimator can extract
sensible coding structure from real data that does not exactly match the assumptions of the model.

Multi-area neural recordings in monkeys during VR spatial navigation Finally, we tested the
ability of TAME-GP to find task aligned neural manifolds in a challenging dataset characterized by
a high-dimensional task space and lack of trial repeats. Specifically, monkeys navigate in virtual
reality by using a joystick controlling their linear and angular velocity to “catch fireflies” (Fig.4E, F)
(Lakshminarasimhan et al., 2018). Spiking activity was measured (binned in 6ms windows, sessions
lasting over 90min) and neurons in the two recorded brain areas (MSTd and dlPFC) showed mixed
selectivity, encoding a multitude of task relevant variables (Noel et al., 2021). As a result, responses
are high dimensional and unsupervised dimensionality reduction methods capture an hard to interpret
mixture of task relevant signals in their first few latent dimensions.

We used TAME-GP to extract latent projections that align with the ongoing distance from the origin,
decomposed in an angular and a radial component (Fig. 4G). We set the task relevant latent z(0)
dimensions to two, matching the number of task variables. We verified the accuracy of the model
by computing leave-one-neuron-out firing rate predictions and calculating the R2 between model
predictions and raw spike counts. The TAME-GP estimator systematically outperformed pPCA
with matched number of latents by this metric (Fig. 4H). We also compared the latent factors found
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by TAME-GP to those obtained by P-GPFA (Fig. 4I, J). For both variables, we found that the task
variables were better accounted for by a two-dimensional TAME-GP estimated latent than by up
to 10 dimensional latent spaces extracted with P-GPFA (Fig. 4K, L). A similar compression of the
manifold was achieved in a separate dataset of monkey (pre-)motor responses during sequential
reaches (see A.9 and Suppl. Fig. S7). This confirms that TAME-GP provides a compact low
dimensional account of neural variability with respect of task variables of interest.

Lastly, we probed the model’s ability to learn a communication subspace (Fig. 4M) between MSTd
and dlPFC, brain areas that are known to interact during this task (Noel et al., 2021). In this instance,
we selected the number of shared and private latent dimensions by maximizing the leave-one-neuron-
out spike counts variance explained over a grid of candidate values (see Suppl. Fig. S6 and A.8). As
before, we find that the TAME-GP reconstruction accuracy surpasses that of dimensionality-matched
pPCA, for both MSTd and dlPFC (Fig. 4N). Since the shared manifold estimation was agnostic
to task variables in this case, we used decoding from latent spaces to ask if the shared variability
between these areas carried information about task variables known to drive single neuron responses
in these areas. We found that the monkey’s horizontal eye position, as well as latent task variables
such as the travelled distance or the distance still remaining to target were mostly accounted for in
shared, as opposed to private, axes of variability (Fig. 4O). This recapitulates prior observations
made at the single-cell level (Noel et al., 2021). Overall, the results demonstrate that TAME-GP
can extract interpretable low-dimensional latents and shared neural subspaces from complex and
high-dimensional datasets.

5 DISCUSSION

Technological advances in systems neuroscience place an ever-increasing premium on the ability to
concisely describe high-dimensional task-relevant neural responses. While sophisticated methods
based on recurrent neural networks are increasingly used for fitting neural responses Pandarinath
et al. (2018), the extracted dynamics are also not necessarily easy to interpret. Here we introduce
TAME-GP, a flexible statistical framework for partitioning neural variability in terms of private or
shared (i.e., inter-area) sources, aligned to task variables of interest, and with single trial resolution.
We show that our method provides compact latent manifold descriptions that better capture neural
variability than any of the standard approaches we compared it against.

An important nuance that distinguishes various neural dimensionality reduction methods is whether
the covariability being modeled is that of trial-averaged responses (i.e. stimulus correlations), residual
fluctuations around mean responses (i.e. noise correlations) or a combination of the two (total
correlations). Since isolating either the signal or the noise correlations alone would require across
trial averages, our approach models total correlations, time resolved within individual trials. This
differentiates our shared variability estimates from the traditional definition of a communication
subspace (Semedo et al., 2019), which uses noise correlations alone, while keeping some of its spirit.
It also makes it applicable to datasets without trial repeats.

The model adapts the approach of pCCA as a way of ensuring that the extracted latents reflect axes of
neural variability that carry specific task relevant information. This choice has appealing mathematical
properties in terms of unifying the problems of finding interpretable axes and communication
subspaces, but is not the most natural one in terms of the true generative process of the data. While
behavioral outputs can be thought of as outcomes of neural activity —as described by the TAME-GP
graphical model, sensory variables act as drivers for the neural responses and should affect the latent
dynamics, not the other way around. Hence a natural next step will be to incorporate in the framework
explicit stimulus responses, perhaps by taking advantage of recent advances in estimating complex
tuning functions during naturalistic behavior (Balzani et al., 2020).

It would be interesting to explore the use temporal priors with more interesting structure, for instance
spectral mixture kernels (Wilson & Adams, 2013), introducing prior dependencies across latent
dimensions (de Wolff et al., 2021), or using non-reversible GP priors that better capture the causal
structure of neural dynamics (Rutten et al., 2020). More generally, the probabilistic formulation
allows the ideas formalized by TAME-GP to be combined with other probabilistic approaches for
describing stimulus tuning and explicit latent neural dynamics (Duncker et al., 2019; Glaser et al.,
2020; Duncker & Sahani, 2021). Hence, this work adds yet another building block in our statistical
arsenal for tackling questions about neural population activity as substrate for brain computation.

9



Published as a conference paper at ICLR 2023

Broader impact We do not foresee any negative consequences to society from our work.
Task aligned manifold extraction may prove useful in clinical applications, specifically for in-
creasing robustness of BMI decoders by exploiting the intrinsic structure of the neural re-
sponses. Code implementing the TAME-GP estimator and associated demos is available at
https://github.com/BalzaniEdoardo/TAME-GP

Acknowledgements. This work was supported by the National Institute of Health under the U19
research program (grant agreement number NIH U19NS118246).
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Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

11

https://crcns.org/


Published as a conference paper at ICLR 2023

Andrew Wilson and Ryan Adams. Gaussian process kernels for pattern discovery and extrapolation.
In International conference on machine learning, pp. 1067–1075. PMLR, 2013.

Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In International conference on machine learning, pp. 1775–1784. PMLR, 2015.

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V Shenoy, and Maneesh
Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity. Advances in neural information processing systems, 21, 2008.

Ding Zhou and Xue-Xin Wei. Learning identifiable and interpretable latent models of high-
dimensional neural activity using pi-vae. Advances in Neural Information Processing Systems, 33:
7234–7247, 2020.

A APPENDIX

A.1 BACKGROUND ON PPCA, PCCA, AND THEIR RELATION TO TAME-GP

A.1.1 CANONICAL CORRELATION ANALYSIS

Given a random vector x, PCA aims to find a linear transformation such that the components of
the transformed vector are uncorrelated. In other words, it tries to find a linear transformation
that diagonalizes the co-variance matrix of the random vectors. Similarly, CCA starts from two
random vectors x1 and x2 of dimensions m1 and m2, and tries to find two linear transformations
U ∈ Rm1×m1 and V ∈ Rm2×m2 such that each component of U · x1 is correlated with a single
component of V · x2. In terms of correlation matrix, this corresponds to,

corr (U · x1, V · x2)ij =

{
ρi if i = j

0 otherwise
(8)

where ρi are called canonical correlations.

Letting the joint empirical co-variance be Σ̂ =

[
Σ̂11 Σ̂12

Σ̂21 Σ̂22

]
,

it turns out that CCA projections are the singular vectors of the correlation matrix re-scaled
by the inverse square-root of the individual co-variances. Namely, if ũi, ṽi are the i-th singular
vectors of the correlation matrix corr (x1,x2) = Σ̂

−1/2
11 Σ̂12Σ̂

−1/2
22 , then the canonical vectors are

(Ui, Vi) = (Σ̂
−1/2
11 ũi, Σ̂

−1/2
22 ṽi). The two projection matrices U and V are obtained by stacking

the canonical vectors; it is immediate to verify that Im1
= U⊤Σ̂11U , Im2

= V ⊤Σ̂22V and
P = U⊤Σ̂12V , where P is an m1 × m2 diagonal matrix with diagonal entries the canonical
correlations.

Again, making the parallel with PCA, we know that the first PCA vector is the eigenvector of the em-
pirical co-variance corresponding to the largest eigenvalue and satisfies w1 = argmax

∥w∥=1

w⊤cov(x)w.

Similarly, it can be shown that the canonical vector corresponding to the largest singular value of the
correlation matrix satisfies,

(U1, V1) = argmax
∥u∥=1,∥v∥=1

corr(u⊤ · x1,v
⊤ · x2). (9)

Finally the n-th canonical vector satisfies,

(Un, Vn) = argmax
u∈U⊥,v∈V⊥

corr(u⊤ · x1,v
⊤ · x2). (10)

with U⊥ = {u : ∥u∥ = 1, u ∈ ⟨U1, · · ·Un−1⟩⊥} and V⊥ = {v : ∥v∥ = 1, v ∈
⟨V1, · · ·Vn−1⟩⊥}.
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A.1.2 THE PROBABILISTIC INTERPRETATION OF PCA AND CCA

As first shown by Tipping and Bishop Tipping & Bishop (1999), PCA can be expressed in terms of
the maximum likelihood solution of the following probabilistic latent variable model,

p(z) ∼ N (0, I) (11)

p(x|z) ∼ N (Wz + µ, I, σ2I), (12)

where I is the D ×D identity matrix, W is a N ×D projection matrix, µ ∈ RN is an intercept term
and σ2 a positive constant.

Similarly, Bach and Jordan Bach & Jordan (2005) showed that the canonical directions emerge from
the maximum likelihood estimates of a simple probabilistic model,

z ∼ N (0, ID) D = min(m1,m2) (13)
x1|z ∼ N (W1z + µ1,Ψ1) Ψ1 ⪰ 0 (14)
x2|z ∼ N (W2z + µ2,Ψ2) Ψ2 ⪰ 0. (15)

where we use a notation similar to that of equations (11, 12) for the projection weights, the intercept
and the identity matrix, while Ψ1 and Ψ2 are generic positive semi-definite N ×N matrices.

We will refer to these models as the probabilistic PCA and probabilistic CCA, or pPCA and pCCA.

Too better highlight the link between CCA and pCCA we report the ML estimates of the pCCA
model parameters,

Ŵ1 = Σ̂11UM1 (16)

Ŵ2 = Σ̂22VM1 (17)

Ψ̂1 = Σ̂11 − Ŵ1Ŵ
⊤
1 (18)

Ψ̂2 = Σ̂22 − Ŵ2Ŵ
⊤
2 (19)

µ̂1 =
1

N

∑
j

x1j (20)

µ̂2 =
1

N

∑
j

x2j , (21)

where Mi are arbitrary D ×D matrices such that M1M
⊤
2 = P , the diagonal matrix of the canonical

correlations, U and V are the canonical directions.

The posterior means and co-variances are given by,

E[z|x1] = M⊤
1 U⊤(x1 − µ̂1) (22)

E[z|x2] = M⊤
2 V ⊤(x2 − µ̂2) (23)

cov (z|x1) = I −M1M
⊤
1 (24)

cov (z|x2) = I −M2M
⊤
2 (25)

E[z|x1,x2] =

[
M1

M2

] [
(I − P 2)−1 (I − P 2)−1P
(I − P 2)−1P (I − P 2)−1

] [
U⊤(x1 − µ̂1)
V ⊤(x2 − µ̂2)

]
(26)

cov (z|x1,x2) = I −
[
M1

M2

] [
(I − P 2)−1 (I − P 2)−1P
(I − P 2)−1P (I − P 2)−1

] [
M1

M2

]⊤
. (27)
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It is important to notice that, independently of the M1 and M2 matrices, the observation gets projected
into the D-dimensional subspace of the canonical directions. See Bishop & Nasrabadi (2006) for a
similar argument bridging PCA and pPCA.

A.1.3 TAME-GP COMBINES AND EXTENDS THE PPCA AND PCCA GENERATIVE MODELS

The probabilistic interpretation of PCA and CCA, Eqs. (11-15) - allows (1) extending the model
to non-Gaussian observation noise, (2) replacing the normal prior over the latent with a smoothing
GP-prior, and (3) combining the two graphical models in a more general framework.

In particular, TAME-GP assumes a shared latent factor z(0) with a GP prior that captures fine time
scale correlations between some continuous task variables of interest (modelled as conditionally
Gaussian) and the spike counts from multiple brain regions (modelled as conditionally Poisson).
This approach extends the ideas of pCCA to the analysis of spike trains driven by smooth temporal
dynamics. Further, we extended our graphical model by including additional area-specific latent
factors z(j) (GP-distributed). The projection associated with those factors aim specifically to capture
the residual inter-area co-fluctuations, in close resemblance to the role of the pPCA projection
weights.

The general formulation of the TAME-GP generative model is given by Eqs.1-3 in the main text.

A.2 INVERTING THE HESSIAN OF THE JOINT LOG-LIKELIHOOD

The dimensionality of the individual latents and trial duration pose computational challenges for
TAME-GP approximate inference. For each trial, evaluating the posterior covariance requires
inverting the Hessian of the joint log-likelihood, of dimensionality D ×D, where D = T

∑
j dj , dj

is the dimension of z(j) and T is the number of time points of the trial (for simplicity, we assume all
trials are the same length here, but the implementation allows for variability in trial duration). Hence,
a naive implementation of the posterior estimation would require O

(
D3
)

operations (the cost of
inverting a D-dimensional matrix). Nonetheless, the specific conditional independence assumptions
of our model allow us to speed up this computation by using the block matrix inversion theorem. In
particular, if we define

∇z(h)∇z(k) log p(z,x,y) ≡ Hhk,

H has the following structure,

H =


H00 H01 H02 · · · H0n

H⊤
01 H11 0 · · · 0

H⊤
02 0 H22 · · · 0

. . .
H⊤

0n 0 0 · · · Hnn

 ,

therefore, it can be inverted according to,

[
A C⊤

C B

]−1

=

[
(A− C⊤B−1C)−1 −(A− C⊤B−1C)−1C⊤B−1

−CB−1(A− C⊤B−1C)−1 B−1 +B−1C(A− C⊤B−1C)C⊤B−1

]
,

by setting A = H00 and B =


H11 0 · · · 0
0 H22 · · · 0

. . .
0 0 · · · Hnn

, and C =

H
⊤
01
...

H⊤
0n

; computing B−1

requires only inverting the block-diagonal elements, while (A − C⊤B−1C) has the same size as
H00, achieving an inversion of H in O(T 3

∑
j d

3
j ) operations.
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A.3 PARAMETER UPDATE DETAILS

Introducing the notation µ
(k)
t = Eq[z

k
t ] and Σ

(k,h)
t = Eq[z

(k)
t z

(h)⊤
t ]− µ

(k)
t µ

(h)⊤
t , we have

C̄ =

∑
l,t

ytµ
(0)⊤
t − 1

TM

∑
l,t

yt

∑
l,t

µ
(0)⊤
t

∑
l,t

Σ
(0,0)
t +

∑
l,t

µ
(0)
t µ

(0)⊤
t − 1

TM

∑
l,t

µ
(0)
t

∑
l,t

µ
(0)⊤
t

−1

d̄ =
1

TM

∑
l,t

yt − C̄
∑
l,t

µ
(0)
t


Ψ̄ =

1

TM

∑
l,t

yty
⊤
t −

∑
l,t

ytµ
(0)⊤
t C̄⊤ + C̄

∑
l,t

µ
(0)
t y⊤

t

−

∑
l,t

ytd̄
⊤ + d̄

∑
l,t

y⊤
t


+C̄

∑
l,t

(Σ
(0,0)
t + µtµ

(0)
t )

 C̄⊤ +

C̄
∑
l,t

µ
(0)
t d̄⊤ + d̄

∑
l,t

µ
(0)⊤
t C̄⊤

+ TM d̄d̄⊤


where l = 1 : M and t = 1 : T are trial and time within trial indices.

A.4 LEARNING THE POISSON OBSERVATION PARAMETERS

In order to learn the Poisson observation parameters we numerically maximize Eq [log(p(x,y, z|θ)]
as a function of W (0,j), W (j,j) and h(j) 7. Our implementation follows a Newton scheme which
requires both the gradient and the Hessian of the optimization objective.

In order to simplify notation, we fix a unit i from population j and we set

µt =

[
µ

(0)
t

µ
(j)
t

]

Σt =

[
Σ

(0,0)
t Σ

(0,j)
t

Σ
(0,j)⊤
t Σ

(j,j)
t

]

W =

[
W

(0,j) ⊤
i

W
(j,j) ⊤
i

]
xt = x

(j)
it

h = h
(j)
i ,

where W ∈ Rd0+dj , and h ∈ R. The corresponding gradient and derivative will be,

∂Eq [log(p(x,y, z|θ)]
∂W

=
∑
l,t

xtµt − eh+W⊤µt+
1
2W

⊤ΣtW (µt +ΣtW ) (28)

∂Eq [log(p(x,y, z|θ)]
∂h

=
∑
l,t

xt − eh+W⊤µt+
1
2W

⊤ΣtW (29)

∂2
Eq [log(p(x,y, z|θ)]

∂W 2
= −eh+W⊤µt+

1
2W

⊤ΣtW
[
(µt +ΣtW ) (µt +ΣtW )

⊤
+Σt

]
(30)

∂2
Eq [log(p(x,y, z|θ)]

∂h∂W
= −eh+W⊤µt+

1
2W

⊤ΣtW (µt +ΣtW ) (31)

∂2
Eq [log(p(x,y, z|θ)]

∂h2
= −eh+W⊤µt+

1
2W

⊤ΣtW (32)

where l = 1, . . . ,M and t = 1, . . . , T are the trial and time indexes respectively.

7θ = {W(0/j,j),h(j),C,d,Ψ, τ (j)}
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A.5 LEARNING THE GP TIME CONSTANTS

GP hyperparameters (time constant) are learned by gradient based numerical optimization of the joint
log-likelihood. Following the notation of the main text we set, λ(j)

i = − log(2τ
(j)
i ), and we define a

kernel K(j)
i : R −→ RT×T such that,

[
K

(j)
i (λ)

]
ts

= exp
(
−eλ(t− s)2

)
.

The objective function takes the form,

Eq [log(p(x,y, z|θ)] =
∑
l,j,i

−trace
(
K

(j)−1
i (λ

(j)
i )Eq[z

(j)
i z

(j)⊤
i ]

)
− log |K(j)

i (λ
(j)
i )|+ const,

where j = 0, ..., n is the latent factor, l = 1, ...,M is the trial number and i = 1, ..., dj is the
component of z(j). Using the chain rule we obtain,

∂Eq [log(p(x,y, z|θ)]
∂λ

(j)
i

= trace

(
∂Eq [log(p(x,y, z|θ)]

∂K
(j)
i

⊤
· ∂K

(j)
i

∂λ
(j)
i

)
,

with
∂Eq [log(p(x,y, z|θ)]

∂K
(j)
i

=
1

2

∑
l

(
−K

(j)−1
i +K

(j)−1
i Eq[z

(j)
i z

(j)⊤
i ]K

(j)−1
i

)
∂
[
K

(j)
i

]
ts

∂λ
= −eλ(t− h)2 exp

(
−eλ(t− s)2

)
.

A.6 PARAMETER INITIALIZATION

Factorized TAME. Before running EM on the full TAME, we obtain initial condition for the model
parameters (all except the GP kernel hyperparameters) by means of running five iterations of EM for
the temporally factorized version of the model. In particular, we replace the GP-prior over the latents
with a product of a Gaussian normal distributions, i.e. p(z(j)

i ) =
∏

t p(z
(j)
it ), and p(z

(j)
it ) ∼ N (0, 1).

Under this prior assumption the joint likelihood as a whole factorizes over the temporal axis (i.e. the
observations are temporally independent given the latents). As a consequence, the Hessian matrix of
the joint pdf is sparse, and can be stored and inverted efficiently, allowing for the implementation of a
full Newton scheme to numerically optimize for the MAP estimate of the posterior ever latents z.

The EM-based optimization of the factorized TAME also needs an initial choice for parameters. We
found empirically that a CCA-based heuristic works well for this purpose. Specifically, we set:

• W (0,j) to the first d0 canonical directions V between the square-rooted, mean-centered
spike counts of population j, s(j) =

√
x(j)−µj and the task variables y (µj is the empirical

mean of the square-rooted spikes).

• W (j,j) as the first dj principal direction for the orthogonal complement of the counts w.r.t
the canonical directions, s(j)ort t = s

(j)
t − V ⊤V s

(j)
t . This will initially enforce orthogonality

in the task relevant and private latent subspaces.

• h(j) was set to the log of the empirical mean of the counts.
• C was set to the first d0 canonical directions U between s and the square-rooted counts

from all the neural populations, Y = [y(1); . . . ;y(m)].
• d was set to the empirical mean of s, and Ψ to the empirical covariance.

GP time constants. The initial GP time constants were drawn from a uniform random distribution
τ
(j)
i ∼ U[0, 0.5].

A.7 COMPARISON OF TAME-GP AND SNP-GPFA

We compared our framework to that of SNP-GPFA Keeley et al. (2020), which identifies shared
fluctuation between two neural populations, under the assumption of trial repeats with a common
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stimulus-driven mean (corresponding to a dimensionality reduced peristimulus time histogram, or
PSTH).

Briefly, the multi-area SNP-GPFA assumes that the spike counts of two areas, area A and area B, are
generated according to

[
Y A
j

Y B
j

]
= Poisson

f

WsX
s +

[
WAA 0

0 WBB

]XA,n
j

XB,n
j

 , (33)

with Y
A/B
j the spike counts of population A and B for trial j, f the soft-max non-linearity; XA/B,n

j
are drawn from a GP with factorized RBF covariance, which captures within area co-fluctuations for
trial j; Xs corresponds to draws from another GP, which is shared across trials and populations, thus
capturing the shared across area co-fluctuations.

We generated spike counts from the graphical model in figure S4A assuming a fixed trial duration
(necessary for the SNP-GPFA), in different conditions: 1) fixing the shared dynamics across trials (as
in SNP-GPFA, figure S4B, top), or 2) varying the shared dynamics across trial (figure S4B, bottom).

Specifically, for the first condition the counts followed (33), but replacing the non-linearity with an
exponential. For the second case, the counts follow Poisson statistics of the form

[
Y A
j

Y B
j

]
= Poisson

exp

WsX
s
j +

[
WAA 0

0 WBB

]XA,n
j

XB,n
j

 , (34)

where we added a trial dependency to the shared Gaussian process factor.

We set the dimensionality of the shared factor to 2, and of each private factors to 3. We simulated
spike counts from two populations of 30 neurons for 50 trials, each having 100 time points with a 0.05
second resolution. The average firing rate of both population was set to 10Hz. We fit the simulated
spike counts with TAME-GP and SNP-GPFA for both conditions. The results show that TAME-GP
captures the between area co-fluctuation in both scenarios while SNP-GPFA fails when the shared
dynamics vary between trials, as expected by the model assumptions (Fig. S4C,E). We assessed the
accuracy of the factorization of the spike-count variance by means of Lasso regression. In particular,
we regressed the ground truth latents from the estimated latents of the different models, and quantified
regression goodness-of-fit in terms of cross-validated R2 (Fig. S4D,F). We quantified the contribution
of each latent factor to the regression in terms of the magnitude the associated coefficients. Results
(reported in Table S1) show that 1) both models can factorize the variance when the shared dynamics
are fixed across trials, with SNP-GPFA achieving a cleaner decomposition (expected given that it is a
closer model of the true data generating process in this case); 2) TAME-GP achieves a near optimal
factorization when the shared latents vary across trials (as assumed by its generative model), while
SNP-GPFA is unable to find the appropriate decomposition. Overall, TAME-GP estimator proves
more robust to deviations from its underlying model assumptions.

A.8 SELECTING THE NUMBER OF PRIVATE AND SHARED DIMENSIONS IN REAL DATA

We select the number of private and shared dimensions to fit in real data by optimizing these
hyperparameters via a grid search. A priori we set the maximum number of dimensions to be
evaluated as the number of PCs needed to account for 80% of the population variance (in this case, 5
dimensions). Fig.S6 shows estimates of model fit quality as a function of the number of dimensions
included in private and shared latents for the multi-area TAME-GP presented in Fig.4I-K. The results
show a well-behaved cross-validated R2 landscape, with optimal dimensionalities (5, 5).

A.9 FITTING TAME-GP TO MONKEY PREMOTOR AND MOTOR RESPONSES DURING REACHES

We also tested our estimator on a publicly available dataset Perich et al. (2018) that records neural
activity in premotor cortex (PMd) and primary motor cortex (M1) of macaques during sequential
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reaches (binned at 10ms resolution). Specifically, the monkey controls an on-screen cursor and is
rewarded for moving that cursor to an indicated reach target, with multiple targets presented in a trial.
Since there are minimal kinematic requirements for the reaching movements (e.g., very brief hold
times), the monkey typically makes relatively smooth series of reaches. As pPCA latent structure
was very poor quality in this dataset, we restricted our comparison between TAME-GP, with task
manifold aligned to screen position, and PGPFA, with latent dimensionality d=2 (Fig.S7). Visually,
the latent structure extracted by TAME-GP seems to better capture the animal behavior, so we asked
(in R2 terms)8 how much information about the task variables can be linearly decoded from their
respective latents for TAME-GP and PGPFA with variable latent dimensionality (Fig. S7C, F). These
results confirms that in this dataset as well, the TAME-GP task aligned manifold provides a compact
account of neural variability with respect of task variables of interest, which does not align with the
overall axes of neural variability of the data. PGPFA needs substantially higher dimensional latent
spaces (10d vs. 2d) to capture the same amount of task-relevant neural variability.

A.10 SUPPLEMENTARY FIGURES

z2 z3

x2 x3

z1zsh

x1

A B

LD
  [
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u.

]

zsh z1 z2 z2

Figure S1: Multi-area parameter reconstruction. A. TAME-GP generative model for three brain areas
with shared interactions. B. D- Latent variables estimation for within model simulated data: ground
truth latent factors and model posterior mean ± 95% CI for all latent dimensions.
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Figure S2: Task-aligned latent dynamics reconstruction (extends Fig. 2C). Mean squared error
between the true task relevant dynamics and the model reconstruction based on the 2 dimensional task
relevant latent factor for CCA and TAME-GP, and the full 6 dimensional latent space for P-GPFA
and PCA. In contrast, figure 2C shows the MSE based only on the first 2 principal latents for pCCA
and P-GPFA; Error bars represent the mean ± s.d. over 10-fold cross-validation.

8All decoding used Lasso regression, with 5-fold cross-folding for hyperparameter estimation.
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Figure S3: Effects of model mismatch on latent structure estimation. A. TAME-GP graphical model
for single area (top) and schematic for data generating process (bottom). LDS dynamics where
transformed into firing rates through a ReLu non linearity (replacing the exponential used in Fig.
2), so that the latents have now an additive instead of multipliative effects on the observed neural
activity. B. Ground truth task relevant dynamics (green) and estimated low dimensional projection
for TAME-GP (purple), pPCA (dark gray) and pCCA (light gray).C Mean squared error between
the true shared dynamics and the model reconstruction, mean ± s.d. over 10-fold cross-folding. D.
Example single trial firing rate reconstruction.
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Figure S4: Communication subspace estimation with SNP-GPFA and TAME-GP (extends Fig. 3). A.
Scheme of the spike count generative model for trial repeated (top right) and trial varying (bottom
right) shared dynamics. B,C. Ground truth shared dynamics (black lines) and model reconstructions
(colored lines) for the trial repeated (B) and trial varying (C) conditions. D,E. Ground truth shared
and private dynamics variance explained by model predictions for the trial repeated (D) and trial
varying (E) conditions.; error bars represent mean ± standard deviation over a 5-fold cross validation.
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Figure S5: Model fit of shared and task aligned dynamics. R2 of the linear regression between the
ground truth task aligned latent dynamics and the model MAP estimate for TAME (purple), PCCA
(light grey) and reduced rank regression (dark grey). Extends fig. 3I in the main text to multiple
average firing rates.

Figure S6: Latent dimensionality selection, for the MSTd and dlPFC communication manifold
analysis (extends fig. 4I-K). Heat-map of the leave-one-neuron-out R2 of the spike count variance
explained by a TAME-GP for different combination of shared and private latent dimensions. The
upper bound on dimensionality was set to the number of principal components needed to explain
80% of the population spike count variance.
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Figure S7: TAME-GP manifold estimation for monkey premotor (PMd) and motor (M1) neural
responses during reaching. A. Graphical model for PMd neural manifold aligned to 2d coordinates of
hand on screen. B. Behavior and corresponding PMd latent population trajectories for four example
individual reaches (colors), extracted with TAME-GP and P-GPFA. C. Lasso regression decoding of
position; TAME-GP R2 (purple) is based on a 2d task relevant latent. P-GPFA R2 (blue) estimates
were obtained for a range of latent dimensions (1-10). D, E, F. Same as A, B, C for M1.
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A.11 SUPPLEMENTARY TABLE

Lasso results
model sim type ground truth latent model latent ∥β∥
SNP-GPFA fixed private A private A 0.252458

private B 0.008377
shared 0.065025

private B private A 0.001043
private B 0.373415
shared 0.012722

shared private A 0.014438
private B 0.026413
shared 0.665547

variable private A private A 0.128838
private B 0.256987
shared 0.044492

private B private A 0.046482
private B 0.332019
shared 0.114382

shared private A 0.058657
private B 0.386729
shared 0.010308

TAME-GP fixed private A private A 0.222231
private B 0.00472
shared 0.16166

private B private A 0.016308
private B 0.419728
shared 0.02365

shared private A 0.1016
private B 0.006841
shared 0.476519

variable private A private A 0.268177
private B 0.011153
shared 0.032323

private B private A 0.003969
private B 0.411102
shared 0.020695

shared private A 0.019493
private B 0.005826
shared 0.658865

Table S1: Lasso regression coefficients, related to session A.7. Norm of the coefficients of the Lasso
regression between the ground truth latent dynamics and the SNP-GPFA/ TAME-GP predicted latents.
Lasso hyperparameters are set by grid search with a 5-fold cross-folding procedure.
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