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ABSTRACT

The transformative capabilities of language models (LMs) have intensified the de-
mand for their deployment on everyday devices, necessitating efficient processing
for on-device language tasks. To address this, we propose Hymba, a new family of
small language models featuring a hybrid-head architecture that strategically in-
tegrates attention mechanisms with state space models (SSMs). This architecture
leverages the strengths of both systems: attention heads provide high-resolution
recall, akin to snapshot memories in the human brain, while SSM heads offer ef-
ficient context summarization, similar to fading memories. To further enhance
Hymba’s performance, we introduce learnable meta tokens that are prepended to
input sequences and jointly trained with model weights during pretraining. These
meta tokens act as a learned cache initialization during inference, modulating all
subsequent tokens within the hybrid heads and boosting the model’s focus on
salient information, similar to metamemory. Extensive experiments and abla-
tion studies demonstrate that Hymba sets new state-of-the-art results for small
LMs across various benchmarks and advances the accuracy-efficiency trade-offs
of small LMs. For instance, Hymba-1.5B achieves comparable commonsense rea-
soning accuracy to Llama 3.2 3B while being 3.49× faster and offering a 14.72×
reduction in cache size. All codes and models will be released upon acceptance.

1 INTRODUCTION

Transformers, with their attention-based architecture, have become the dominant architecture for
Language Models (LMs) due to their impressive language modeling capabilities, efficient paral-
lelization, and robust long-term recall enabled by token-level key-value (KV) caches (Vaswani,
2017). However, their quadratic computational cost and substantial memory requirements for stor-
ing KV caches pose significant efficiency challenges. In parallel, state space models (SSMs), e.g.,
Mamba (Gu & Dao, 2023) and Mamba-2 (Dao & Gu, 2024), have emerged as efficient alternatives,
offering constant computational and memory complexity during inference and training efficiency
with hardware-aware optimizations. Despite their advantages, SSMs often fall short in memory
recall tasks compared to their Transformer counterparts, impacting their performance on general
benchmarks and recall-intensive tasks (Waleffe et al., 2024; Arora et al., 2024a).

Recent hybrid models that combine attention and SSM layers have shown promising improvements
over standalone architectures by sequentially interleaving these layers to capitalize on their respec-
tive strengths (Lieber et al., 2024; Ren et al., 2024). However, these existing hybrid models can
lead to information bottlenecks when a layer type poorly suited for a specific task cannot effectively
process the information, necessitating compensation from subsequent layers.

To address these limitations, we propose Hymba, a novel LM architecture that integrates attention
heads and SSM heads within the same layer, offering parallel and complementary processing of
the same inputs. This hybrid-head approach allows each layer to simultaneously harness both the
high-resolution recall of attention and the efficient context summarization of SSMs, increasing the
model’s flexibility and expressiveness in handling various types of information flows and memory
access patterns. Furthermore, to enhance the achievable performance of Hymba, we introduce meta
tokens that are prepended to the input sequences and interact with all subsequent tokens. These meta
tokens act as learnable cache initialization, enhancing the capabilities of SSM heads by providing
a dynamic initial state that evolves with the model, and mitigating the “softmax attention cannot
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(a) (b)

3.49x Faster 14.72x Cache Reduction 

Figure 1: Visualize the trade-off between (a) commonsense reasoning accuracy (averaged over six
tasks: ARC-C, ARC-E, PIQA, Hellaswag, OBQA, and Winogrande using (Fourrier et al., 2023))
and throughput, with cache size represented by the point size of different models, and (b) MMLU
(cloze) accuracy and cache size, with throughput represented by the point size of different models.

attend to nothing” problem (Bondarenko et al., 2023; Miller; Xiao et al., 2023) for attention heads,
improving performance across both general and recall-intensive tasks.

Comprehensive evaluations and ablation studies validate that Hymba not only establishes new state-
of-the-art (SOTA) benchmarks across a wide range of representative tasks but also achieves greater
efficiency than Transformers, standalone SSMs, or previous hybrid models, as shown in Fig. 1. In
commonsense reasoning tasks, for example, Hymba-1.5B matches the performance on common-
sense reasoning of Llama-3.2-3B but is 3.49× faster and requires 14.72× smaller cache size.

To effectively leverage Hymba for on-device language tasks, we perform post-training on our base
model using supervised finetuning and direct preference optimization (Rafailov et al., 2024) to align
the model with downstream tasks. Our instruction-tuned model, Hymba-1.5B-Instruct, has achieved
best-in-class performance on GSM8K, GPQA, and the Berkeley function-calling leaderboard, sur-
passing the previous SOTA sub-2B instruct model Llama-3.2-1B. We also demonstrate that, with
parameter-efficient finetuning techniques, our model shows great potential for on-device tasks. For
example, with a specialized finetuned version, Dora (Liu et al., 2024c), Hymba-1.5B outperforms
Llama3.1-8B-Instruct by 2.4% on RoleBench (Wang et al., 2023).

2 HYMBA: THE PROPOSED HYBRID-HEAD ARCHITECTURE

In this section, we first outline the design roadmap in Sec. 2.1 and Tab. 1, followed by an in-depth
explanation of each component in Sec. 2.2 through Sec. 2.4.

2.1 HYMBA: DESIGN ROADMAP

SSMs like Mamba (Gu & Dao, 2023) were introduced to address the quadratic complexity and large
inference-time KV cache of Transformers. However, due to their low-resolution memory, SSMs
struggle with memory recall and performance (Waleffe et al., 2024; Jelassi et al., 2024; Arora et al.,
2024a). To overcome these limitations, our roadmap for developing efficient and high-performing
small LMs is summarized in Tab. 1 and outlined as follows:

Step ①: Develop fused hybrid modules. We explore different strategies for fusing attention and
SSM heads, aiming to combine the recall capabilities of attention with the processing efficiency of
SSMs. As shown in Sec. 2.2 and Tab. 1 (B), fusing attention and SSM heads in parallel within a
hybrid-head module outperforms sequential stacking (Tab. 1 (A)). This approach allows both types
of heads to process the same information simultaneously, leading to improved reasoning and recall
accuracy by leveraging the strengths of both components.

Step ②: Reduce compute and KV cache overhead from attention heads. While attention heads
improve task performance, they increase KV cache requirements and reduce throughput. To mitigate
this, we optimize the hybrid-head module by combining local and global attention and employing
cross-layer KV cache sharing, as shown in Tab. 1 (C) and (D). These strategies, detailed in Sec. 2.3,
effectively reduce memory costs while maintaining task performance.
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Table 1: Design roadmap of our Hymba model. We evaluate the models’ (1) commonsense reason-
ing accuracy, averaged over 8 tasks, which requires the ability to apply everyday knowledge and
logic to answer questions, and (2) recall accuracy, averaged over 2 tasks, which corresponds to the
ability to retrieve relevant information from past input. The task lists are the same as those in Tab. 3.
The throughput is measured with a 8k sequence length and a 128 batch size on an NVIDIA A100
GPU. The cache size is measured with a 16k sequence length, assuming the FP16 format.

Configuration Commonsense
Reasoning (%)

Recall
(%)

Throughput
(token/sec)

Cache Size
(MB) Design Reason

Ablations on 300M model size and 100B training tokens
Transformer (LLaMA) 44.08 39.98 721.1 829.4 Accurate recall while inefficient

State Space Models (Mamba) 42.98 19.23 4720.8 1.9 Efficient while inaccurate recall
A. + Attention heads (sequential) 44.07 45.16 776.3 311.9 Enhance recall capabilities
B. + Multi-head structure (parallel) 45.19 49.90 876.7 295.7 Better balance of two modules
C. + Local / global attention 44.56 48.79 2399.7 78.1 Boost compute/cache efficiency
D. + KV cache sharing 45.16 48.04 2756.5 76.3 Cache efficiency
E. + Meta tokens 45.59 51.79 2695.8 76.9 Learned memory initialization

Scaling to 1.5B model size and 1.3T training tokens
F. + Size / data 60.45 67.61 666.1 124.7 Further boost task performance

Step ③: Further boost task performance via integrating meta tokens. To better modulate the
attention mechanism and SSM updates for each token within our hybrid model, we introduce meta
tokens—pretrained learnable embeddings that are prepended to input sequences. These tokens serve
as a learned cache initialization, enhancing the subsequent tokens’ focus on relevant input, thereby
boosting recall and reasoning accuracy, as shown in Tab. 1 (E). More details are provided in Sec. 2.4.

Step ④: Scale up data and model sizes. Finally, we scale up the size of both pretraining data
(1.3T tokens) and model parameters (1.5B) and deliver our Hymba model family (see Tab. 1 (F))
in Sec. 2.5, which establishes new SOTA performance for small LMs across benchmarks, as exten-
sively demonstrated in Sec. 3.2.

2.2 HYMBA-STEP ①: DEVELOP A FUSED HYBRID-HEAD MODULE

Target problem of this step. SSM models are efficient but suffer from limited recall capabilities
and task performance (Waleffe et al., 2024; Jelassi et al., 2024; Arora et al., 2024a; Ben-Kish et al.,
2024). Given the high recall resolution of attention, in this step we aim to (1) combine the processing
efficiency and context summarization capabilities of SSMs with the high recall resolution of atten-
tion, and (2) develop a fused building block to achieve this goal, so it can serve as a fundamental
component for constructing future foundation models.

2.2.1 THE PROPOSED HYBRID-HEAD MODULE

Previous hybrid models (Ren et al., 2024; Glorioso et al., 2024; Lieber et al., 2024) often com-
bine attention and SSMs in a sequential manner. This strategy may lead to information bottlenecks
when a layer type that is poorly suited for a specific task cannot effectively process the informa-
tion. Motivated by the multi-head attention structure in the vanilla Transformer (Vaswani, 2017),
where different heads undertake different roles and focus on different contexts (Lv et al., 2024;
Merullo et al., 2024), we propose an alternative approach: fusing attention and SSMs in parallel
into a hybrid-head module, as shown in Fig. 2 (a). The advantage of this design is that different
attention and SSM heads can store, retrieve, and process the same piece of information in distinct
ways, thereby inheriting the strengths of both operators.

Design formulation. We show that the hybrid-head module can be represented by a unified and
symmetric formulation. As shown in Fig. 2 (a), given the input sequence X̃ , which is the original
input sequence X prepended with meta tokens introduced in Sec. 2.4, the input projection Win proj =

[WQ,WK ,WV ,WSSM ,WG] projects X̃ to the query, key, and value of the attention heads using
WQ, WK , and WV , respectively, as well as the input features and gates of the SSM heads using
WSSM and WG, respectively.

Following (Vaswani, 2017), the output of attention heads Yattn can be formulated as:

Yattn = softmax(QKT )WV X̃ = MattnX̃ (1)
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Figure 2: (a) Visualize the hybrid-head module in Hymba; (b) Interpret from the memory aspect.

where Mattn = softmax(QKT )WV and Q = WQX̃ , K = WKX̃ . Note that in this formulation
we omit the scaling factor in the attention mechanism for simplicity of illustration.

Similar to the attention heads, the SSM heads in our model, for which we adopt Mamba (Gu & Dao,
2023), can also be represented using a data-controlled linear operator Mssm, following (Ali et al.,
2024; Ben-Kish et al., 2024). Specifically, the SSM head output Yssm can be formulated as:

αi,j = Ci

 i∏
k=j+1

exp(A∆k)

Bj∆j ,

Yssm = G⊙ α(A,B,C,∆) WSSM X̃ = MssmX̃,

(2)

where Mssm = G ⊙ α(A,B,C,∆) WSSM , G = WGX̃ is an output gate, and A,B,C,∆ are the
SSM parameters following the definition in (Gu & Dao, 2023). More specifically, A is a learnable
matrix, B = WBXssm, C = WCXssm, and ∆ = Softplus(W∆Xssm) with Xssm = WSSM X̃ .

We observed that the output magnitudes of the SSM heads, Yssm, are consistently larger than those
of the attention heads, Yattn, as visualized in Fig. 7 in Append. B. To ensure effective fusion, we
normalize and re-scale them using learnable vectors to improve training stability, and then average
the outputs, followed by a final output projection. The overall formulation of our fused module can
be represented symmetrically:

Y = Wout proj

(
β1norm(MattnX̃) + β2norm(MssmX̃)

)
(3)

where β1 and β2 are learnable vectors that re-scale each channel of the outputs from the attention
and SSM heads, respectively. We further explore the optimal ratio of SSMs and attention in hybrid
heads, along with their fusion strategy, in Append. B.

Note that the key design principle of our hybrid-head module is to process the same piece of infor-
mation in parallel using hybrid operators, thereby benefiting from the complementary roles of both
operators. In this work, we adopt Mamba Gu & Dao (2023) as SSM heads, while more advanced
SSMs or linear attention Sun et al. (2023); Yang et al. (2023); Qin et al. (2024); Yang et al. (2024)
can be integrated into our hybrid-head structure to seek further performance improvements.

Interpretation from the memory aspect. The components in the hybrid-head module can be in-
terpreted as analogous to human brain functions. Specifically, as shown in Fig. 2 (b), the attention
heads provide high recall resolution and thus act like snapshot memories in the human brain, stor-
ing detailed recollections of a moment or event. In contrast, the SSM heads summarize the context
through a constant cache and thus function as fading memories, which gradually forget the details
of past events while retaining their core or gist. As shown in Tab. 9 in Append. B, in our Hymba, the
summarized global context from fading memories enables allocating more snapshot memories for
memorizing local information while maintaining recall capabilities. This is achieved by replacing
most global attention with local attention, thus improving memory efficiency.

2.2.2 HYBRID MODULE DESIGN: PARALLEL VS. SEQUENTIAL

We compare the hybrid-head module with a sequential counterpart, which interleaves local attention
and Mamba layers as adopted by (Ren et al., 2024), by calculating the models’ effective receptive

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

E
m

b
ed

d
in

g

In
p
u
t 

to
k
en

N
ex

t 
to

k
en

KV sharing 

every 2 layers

Repeat (N-3)/2

L
ay

e
r 

n
o

rm

L
ay

e
r 

n
o

rmHybrid-
head 

module F
F

N

Full Attn

Hymba 
Block

Hymba 
Block

SWA

Hymba 
Block

KV sharing 

every 2 layers

Repeat (N-3)/2

Hymba 
Block

SWA

Hymba 
Block

L
M

 H
e
ad

Full Attn Full Attn

(a) (b)

Figure 4: (a) The overall architecture of our Hymba model; (b) The building block of Hymba.

field (ERF) and their overall cache size. All the compared models have the same parameter size and
are training from scratch using exactly the same training recipe. ERF is an empirical measure of
the averaged distance among tokens that allows effective information propagation (Ben-Kish et al.,
2024; Dosovitskiy, 2020) defined as the following,

ERF ≈
∑

n≤N

∑
h≤H

∑
s≤S

2Mh(S,s)·(S−s)·(N−n+1)
HN(N+1) ,

where S is index of the last token in the sequence, N is index of the last layer in the model, and
Mh(S, s) is the normalized attention score between token s and the last token in head h.

As shown in Fig. 3, we observe that (1) in line with common intuitions, Llama3 exhibits a notably
larger ERF compared to Mamba due to its higher recall resolution, albeit at the cost of a larger cache
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Figure 3: Visualize the ERF and
cache size trade-off.

size; (2) our multi-head structure demonstrates the best ERF
across the four designs, with an order of magnitude larger ERF
while maintaining a cache size comparable to the sequential
structure. This suggests that the parallel structure can bet-
ter leverage the limited cache size to capture longer and more
complex relationships among tokens compared to the sequen-
tial one. The differences in ERF are also reflected in task ac-
curacy: According to Tab. 1, the multi-head design (Tab. 1
(B)) improves commonsense reasoning and recall accuracy by
+1.08% and 4.74%, respectively, over the sequential design
(Tab. 1 (A)). Based on this benchmarking and analysis, we
adopt the hybrid-head module as our basic building block.

2.3 HYMBA-STEP ②: FURTHER KV CACHE OPTIMIZATION

Target problem of this step. Our hybrid-head module improves recall and reasoning capabilities
but reduces memory and throughput efficiency due to the KV cache of the attention heads. To
address this, we aim to reduce the KV cache while maintaining comparable task performance.

Combine global and local attention. Local attention, also known as Sliding Window Attention
(SWA) (Beltagy et al., 2020), offers a more efficient alternative to global full attention, though it
risks losing global context. However, with the presence of SSM heads in our hybrid-head module,
which already summarize global context, we can more aggressively replace global full attention with
local attention, achieving a better balance between efficiency and performance.

Exploring the ratio of local attention and global attention. As shown in Tab. 9 in Append. B, we ini-
tially replace global attention in all layers with SWA, which results in a significant degradation in
recall capabilities, with accuracy dropping by over 20% on recall-intensive tasks. In response, we
progressively reinstate global attention in some layers. Interestingly, as shown in Tab. 1 (C), we find
that using global attention in just three layers (i.e., the first, middle, and last layers) is sufficient to
recover recall-intensive accuracy while maintaining comparable commonsense reasoning accuracy.
In turn, this strategy achieves 2.74× throughput and 3.79× cache reduction. This configuration is
employed in all our delivered models.

Interpretation from the memory aspect. From the memory perspective, after introducing local atten-
tion, our hybrid-head module utilizes three types of memory systems that complement each other
with varying costs and access patterns: (1) a limited number of expensive global memories from the
full attention heads, (2) lower-cost local memories from the SWA heads, and (3) cheap but fading
recurrent memories from the SSM heads.

Cross-layer KV sharing. Recent works (Liu et al., 2024a) observe that KV cache shares a high
similarity between adjacent layers, suggesting that using separate KV caches for each layer leads to
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both cache and parameter redundancy. In light this, we employ cross-layer KV sharing (Brandon
et al., 2024), where keys and values are shared between consecutive layers (e.g., every two layers
share the same KV cache). This strategy reduces both KV memory usage and model parameters,
allowing the saved parameters to be reallocated to other model components. As shown in Tab. 1
(D), cross-layer KV sharing improves throughput by 1.15× while maintaining comparable recall
accuracy and boosting commonsense accuracy by +0.60%.

After the above optimization, Hymba’s overall architecture is visualized in Fig. 4.

2.4 HYMBA-STEP ③: INTEGRATION OF META TOKENS

Target problem of this step. We observed that the initial tokens, though not semantically important,
often receive significant attention scores from subsequent token, similar to observations by prior
work (Xiao et al., 2023; Han et al., 2024). We hypothesize that drawing excessive attention to these
semantically unimportant tokens does not benefit attention mechanisms. Therefore, in this step, we
aim to guide the attention to focus more on tokens that meaningfully contribute to task performance.

Introducing meta tokens. Our key insight is that, rather than drawing excessive attention to seman-
tically unimportant initial tokens, learning these critical tokens jointly with model weights could
better shape the attention distribution. Specifically, we introduce a set of learnable meta tokens
R = [r1, r2, . . . , rm] to serve as the initial tokens. Given the input sequence X = [x1, x2, . . . , xn],
these meta tokens are prepended to the input sequence, forming the modified input sequence:

X̃ = [R,X] = [r1, r2, . . . , rm, x1, x2, . . . , xn] (4)

where X̃ represents the new input sequence for our model. At inference time, since the meta tokens
are fixed and appear at the beginning of any input sequences, their computation can be performed of-
fline. Thus, the role of meta tokens at inference can also be viewed as learned cache initialization to
modulate the subsequent tokens, allowing subsequent tokens to focus more on those that contribute
meaningfully to task performance.

Interpretation from the memory aspect. Similar to the analogy in Sec. 2.2, the meta tokens par-
ticipate in the attention and SSM calculations of all subsequent tokens, analogous to metamemory in
the human brain, which helps recognize where to locate needed information in other memories. We
further analyze others roles of meta tokens and their connections with related works in Append. D.

Meta tokens boost recall capabilities and commonsense reasoning accuracy. To analyze the
impact of meta tokens on the attention mechanism, we visualize the entropy of the attention map
for both the attention and SSM heads (Ali et al., 2024; Ben-Kish et al., 2024) before and after
introducing meta tokens. Specifically, the attention map entropy reflects the distribution of attention
scores across tokens, where lower entropy indicates stronger retrieval effects (Ren et al., 2024), as
the attention scores are concentrated around a smaller subset of tokens, and vice versa.

We provide the visualization in Fig. 9 in Append. D, where we observe that, after introducing meta
tokens, both the attention and SSM heads exhibit an overall reduction in entropy. Combined with the
improved reasoning and recall capabilities shown in Tab. 1 (E), this suggests that meta tokens may
help both the attention and SSM heads focus more on a subset of important tokens that contribute
most to task performance.

2.5 HYMBA-STEP ④: DELIVER THE MODEL FAMILY WITH SCALED MODEL AND DATA SIZE

Building on the design insights explored above, we scale up the model sizes and training tokens to
deliver the Hymba model family, which includes a 125M model, a 350M model, and a 1.5B model.

We train Hymba-125M/350M/1.5B models using a mix of DCLM-Baseline-1.0 (Li et al., 2024),
SmoLM-Corpus (Ben Allal et al., 2024), and a proprietary high-quality dataset, with 1T, 250B,
and 50B tokens, respectively. We combine the Warmup-Stable-Decay (WSD) learning rate sched-
uler (Hu et al., 2024), with maximum and minimum learning rates of 3e-3 and 1e-5, and the data
annealing technique (Dubey et al., 2024; Shen et al., 2024) to ensure stable pretraining. Throughout
the training process, we use a sequence length of 2k and a batch size of 2M tokens. More pretraining
details are provided in Append. F.
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Table 2: Benchmark Hymba with SOTA small LMs. All models have less than 2B parame-
ters. MMLU close and all other results are obtained through HUGGINGFACE/LIGHTEVAL (Allal
et al., 2024) and LM-EVALUATION-HARNESS (Gao et al., 2023), respectively. SQuAD-C (SQuAD-
Completion) indicates a variant of the SQuAD question answering task proposed by Arora et al.
(2024b). The throughput is measured with a 8k sequence length and a 128 batch size on an NVIDIA
A100 GPU. For models encountering out-of-memory (OOM) issues during throughput measure-
ment, we halve the batch size until the OOM is resolved. This approach is used to measure the
maximum achievable throughput for efficient batch generation without OOM.

Model MMLU ARC-E ARC-C PIQA WinoGrnde HellaSwag SQuAD-C Avg.
#Params. Throughput cloze / 5-shot 25-shot 1-shot

OpenELM-1 1.1B - - / 27.06 62.37 33.87 74.76 61.80 48.37 - 51.37
Llama-3.2 1.2B 534.99 36.63 / 32.12 65.49 32.8 74.48 60.69 47.72 49.20 49.89
Rene-v0.1 1.3B 800.15 34.41 / 32.94 67.05 36.95 76.49 62.75 51.16 48.36 51.26
Phi-1.5 1.3B 241.03 33.55 / 42.56 76.18 49.40 76.56 72.85 48.00 30.09 53.65
RWKV6 1.6B 1498.91 32.10 / 25.92 60.69 34.13 73.61 60.62 46.45 45.01 47.32
SmolLM 1.7B 237.67 39.96 / 27.06 76.47 46.67 75.79 60.93 49.58 45.81 52.78
Cosmo 1.8B 244.21 32.39 / 26.10 62.42 34.81 71.76 55.80 42.90 38.51 45.59
h2o-danube2 1.8B 271.27 34.57 / 40.05 70.66 40.61 76.01 66.93 53.70 49.03 53.95
LLaMA 3.2 1B 1.2B 534.99 36.63 / 32.12 65.53 36.43 74.43 60.69 47.72 40.18 49.22
LLaMA 3.2 3B 3.0B 190.94 42.53 / 56.03 74.54 46.50 76.66 69.85 55.29 43.46 58.11

Hymba 1.5B 666.13 41.53 / 52.78 76.18 51.96 77.53 65.59 53.95 55.46 59.37

3 EXTENSIVE EVALUATION OF OUR HYMBA MODEL FAMILY

3.1 EXPERIMENT SETTINGS

Baselines. Our baselines include popular (small) LMs with quadratic attention (e.g., Llama 3.2 (AI,
2024c), SmolLM (Allal et al., 2024), StableLM (Bellagente et al., 2024), Olmo (Groeneveld et al.,
2024), and Cosmo (Huggingface, 2024)), linear recurrence models (e.g., Mamba2 (Dao & Gu,
2024)), and hybrid models (e.g., Rene (AI, 2024a)).

Benchmark settings. We adopt two benchmark settings: (1) In Sec. 3.2, we directly benchmark our
delivered Hymba against SOTA public small LMs, and (2) in Sec. 3.3, we train different architectures
from scratch with the same dataset, number of layers, model size, and training recipes.

Benchmark tasks. In addition to evaluating language modeling, commonsense reasoning, and
recall-intensive tasks on our base models, we also evaluate our instruction-tuned models on down-
stream tasks such as math, function calling, and role-playing in Sec. 3.4.

3.2 BENCHMARK WITH SOTA SMALL LMS

We present the benchmark results of our Hymba models with parameter sizes of 125M, 350M, and
1.5B, compared to SOTA small language models within the same size range. In addition to the
commonly adopted 5-shot MMLU, we further follow the evaluation setup in (Allal et al., 2024;
Cosmopedia/evaluation) to report MMLU cloze. Specifically, the default leaderboard MMLU task
uses “A”, “B”, “C”, “D”, etc., as answer targets, which generally yields random results on small
and non-instructed models. In contrast, MMLU cloze uses the full MMLU answer as the target,
resulting in more stable and less biased outcomes (Alzahrani et al., 2024).

As highlighted in Tab. 2, Hymba-1.5B models perform the best on seven out of eight tasks using
only 1.3T pretraining tokens. At the same time, Hymba-1.5B maintains high throughput, being
about 1.2× to 2.8× faster than other Transformer-based models at an 8K sequence length. This
speedup becomes even more pronounced as the sequence length increases.

Our delivered tiny LMs, Hymba-125M/350M, consistently outperform all LMs of comparable
model size, as summarized in Tab. 6 and Tab. 7 in Append. A.

3.3 BENCHMARK DIFFERENT ARCHITECTURES UNDER THE SAME SETTING

General and recall-intensive tasks performance comparison. We do a comprehensive compar-
ison between Hymba and other model architectures, including standard Transformer (Llama3 (AI,
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Table 3: Apple-to-apple comparison of our Hymba, pure Mamba2 (Dao & Gu, 2024), Mamba2 with
FFN, Llama3 (Dubey et al., 2024) style, and Samba- (Ren et al., 2024) style (Mamba-FFN-Attn-
FFN) architectures. All models have 1B parameters and are trained from scratch for 100B tokens
from SmolLM-Corpus (Ben Allal et al., 2024) with exactly the same training recipe. All results are
obtained through LM-EVALUATION-HARNESS (Gao et al., 2023). The best and second best results
are highlighted in bold and underline, respectively.

Task Type
Arch. Style

(1B) Mamba2 Mamba2
w/ FFN Llama3 Samba Hymba

Language Wiki. ppl. ↓ 19.17 20.42 19.28 19.91 18.62
LMB. ppl. ↓ 12.59 14.43 13.09 12.65 10.38

Recall
Intensive

SWDE ↑ 50.24 26.43 75.95 30.00 60.71
SQuAD-C ↑ 36.43 31.40 18.70 42.33 44.93
Avg. ↑ 43.34 28.92 47.33 36.17 52.82

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 47.51 44.54 47.95 49.08 52.84
PIQA ↑ 73.94 73.07 73.45 73.23 74.97
ARC-C ↑ 38.91 37.03 39.68 39.59 41.72
ARC-E ↑ 70.96 71.00 73.74 73.36 74.12
Hella. ↑ 57.73 55.83 57.64 58.49 60.05
Wino. ↑ 58.48 55.56 56.20 57.54 57.85
TruthfulQA ↑ 30.75 29.86 31.64 28.84 31.76
SIQA ↑ 41.86 42.22 42.22 42.48 43.24
Avg. ↑ 52.52 51.14 52.82 52.83 54.57

2024b)), pure Mamba (Gu & Dao, 2023; Dao & Gu, 2024), Mamba with FFN and hybrid archi-
tecture with sequential layer stacking (Samba (Ren et al., 2024)) on several downstream tasks. All
models have the same number of layers and total parameters to facilitate equal comparison. Models
are trained on the same data with the same hyperparameters under the same codebase. To ensure
the results are generalizable, we run comparison experiments at different scales (1B and 300M) and
different training datasets (SmolLM-corpus (Ben Allal et al., 2024) and FineWeb (Penedo et al.,
2024)) in Tab. 3 and Tab. 8, respectively. We evaluate the models on language modeling, real-world
recall-intensive, and general common-sense reasoning, and question-answering tasks.

As shown in Tab. 3, our Hymba model consistently outperforms other 1B architectures across most
tasks, e.g., achieving an average score 1.45% higher than the second-best model at the 300M scale
and 1.74% higher at the 1B scale. The ablation study for the 300M scale is in Append. A.

In addition, considering that Mamba models suffer from limited recall capabilities due to their
constant-size cache and recurrent nature (Ben-Kish et al., 2024; Arora et al., 2024a; Jelassi et al.,
2024), we test the models on two real-world recall-intensive tasks, SWDE (Arora et al., 2024a;
Lockard et al., 2019) and SQuAD (Arora et al., 2024a; Rajpurkar et al., 2018), where the former
is to to extract semi-structured relations from given raw HTML websites and the latter is to extract
answers from a given context passages. Echoing the previous findings, Mamba2 and Mamba2 with
FFN architectures under-perform the Transformer model (i.e., Llama3) on these tasks (see Tab. 3).
Our Hymba model augments the Mamba heads with attention heads, which allows the model to have
a large ERF to establish long-range dependencies and high-resolution memory to store and retrieve
key information in all layers. As a result, our Hymba model outperforms the Transformer model
and Samba architecture (that stacks Mamba and attention layers sequentially).

Needle-in-the-Haystack performance comparison. We further do an apple-to-apple comparison
between Hymba, Mamba2 and Llama3 on the synthetic retrieval task, needle-in-the-haystack. A
random and informative sentence (i.e., needle) is inserted into a long document (i.e., haystack) and
the model is required to retrieve the needle from the haystack to answer the questions. All models
are of size 1B and trained with the same setting: i. pretrain is done with 1k sequence length; ii.
finetune with 4k sequence length; iii. test with up to 16k sequence length. If models have ROPE,
we adjust the ROPE base on (Liu et al., 2023) during finetuning. As shown in Fig. 5, Hymba
model significantly outperforms the Mamba2 and Llama3 models. While the Mamba2 model has

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: The comparison between lightweight instruction-tuned models. The best and second-
best results are highlighted in bold and underlined, respectively. ∗ OpenELM and SmolLM cannot
understand function calling, leading to 0 accuracy in most categories. We also included the results
of the Llama3.2-3B model as a reference, but since it is larger than 3B, it has been marked in gray.

Model #Params MMLU ↑ IFEval ↑ GSM8K ↑ GPQA ↑ BFCLv2 ↑ Avg. ↑
SmolLM 1.7B 27.80 25.16 1.36 25.67 -∗ 20.00
OpenELM 1.1B 25.65 6.25 56.03 21.62 -∗ 27.39
Llama-3.2 1.2B 44.41 58.92 42.99 24.11 20.27 38.14
Gemma-2 2.6B 56.87 28.47 52.16 25.89 12.49 35.18
Llama-3.2-3B 3.2B 61.22 77.40 77.26 29.69 45.65 58.24

Hymba 1.5B 53.36 64.61 57.62 27.90 48.07 50.31

good extrapolation capabilities when the needle is inserted in the end of the haystack, it struggles
to retrieve the needle when the needle is in the beginning or middle of the haystack. In contrast,
Llama3 model has limited extrapolation capabilities (Peng et al., 2023b; Liu et al., 2023; Zhang
et al., 2024) and struggles to the “lost in the middle” (Liu et al., 2024b) scenario.

Figure 5: Needle-in-the-haystack performance comparison across different architecture under apple-
to-apple setting. The white vertical line represents the finetuning sequence length (4K).

3.4 EVALUATION ON INSTRUCTION-TUNED BENCHMARKS

Implementation details of post-training. We post-trained Hymba-1.5B base model with a two-
stage strategy: the first full-finetuning (FFT) stage and another direct preference optimization
(DPO) (Rafailov et al., 2024) training. The learning rates are 5e-5, and 3e-6 for FFT and DPO,
respectively. To accelerate training, we follow the training recipe (Tunstall et al., 2023; Diao
et al., 2024; Dong et al., 2024) to pack the samples and use a block size of 2048. We compare
Hymba-1.5B-Instruct with competitive lightweight instruction-tuned models, i.e., Llama-3.2-1B-
Instruct (AI, 2024c), Gemma-2-2B-Instruct (Team et al., 2024), OpenELM-1-1B-Instruct (Mehta
et al., 2024), and SmolLM-1.7B-Instruct (Allal et al., 2024). We test the instruction-tuned mod-
els on MMLU (5-shot), IFEval, GSM8K (5-shot), GPQA (0-shot), and Berkeley Function-Calling
Leaderboard v2 (BFCLv2) (Yan et al., 2024). More details about the experimental settings, baseline
models, and evaluation tasks are shown in Append. F.

Model #Params Instruction Role
Generalization Generalization

Llama-7B 7B 19.2 19.3
Aplaca-7B 7B 25.6 24.5
Vicuna-13B 13B 25.0 24.3

Llama2-7B-chat 7B 18.8 20.5
RoleLlama-7B 7B 35.5 33.5

Hymba-DoRA 1.5B 40.0 37.9

Table 5: The comparison between DoRA-finetuned
Hymba and baselines on RoleBench. All baseline results
are from Wang et al. (2023).

Evaluation results. The evaluation
results are shown in Tab. 4. In gen-
eral, Hymba-1.5B-Instruct achieves
the highest performance on an aver-
age of all tasks, outperforming the
previous SoTA model, Llama-3.2-
1B-Instruct, by around 12%. It
demonstrates a great ability on math,
reasoning, and function calling, with
the best-in-class performance.

Evaluation on role-play tasks. In
addition to full-finetuning, we con-
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duct experiments to evaluate whether Hymba is compatible with DoRA (Liu et al., 2024c), a
parameter-efficient finetuning method that updates pretrained models using a minimal set of parame-
ters. This approach is especially well-suited for on-device finetuning scenarios where computational
resources are constrained. Additionally, DoRA significantly reduces storage requirements for sav-
ing multiple downstream models, as it only requires storing the finetuned DoRA parameters, which
constitute less than 10% of the original model’s total parameters. Specifically, we further finetune
the post-trained Hymba on RoleBench (Wang et al., 2023) using DoRA to enhance its role-playing
capabilities. The training set of RoleBench is used for training, and the model is evaluated on two
sub-tasks: instruction generalization (Inst. Gene.) and role generalization (Role. Gene.). As shown
in the Tab. 5, our Hymba-DoRA significantly outperforms larger models. For instance, DoRA fine-
tuned Hymba achieves scores of 40.0% / 37.9% on instruction generalization/role generalization,
outperforming RoleLlama-7B (Wang et al., 2023) by 4.5%, and 4.4% respectively. This indicates
the strong generalization of our model and the effectiveness of using parameter-efficient finetuning
techniques to further enhance its performance.

4 RELATED WORKS

Large language models. Prior to the rise of LLMs, transformer-based models (Vaswani, 2017;
Devlin et al., 2018; Raffel et al., 2020; Roberts et al., 2022) proved highly effective at captur-
ing relationships between tokens in complex sequences through the use of the attention mecha-
nism (Vaswani, 2017). These models also demonstrated considerable scalability (Qin et al., 2023;
Kaplan et al., 2020; Biderman et al., 2023) in terms of both model size and the volume of pretraining
data. This scalability paved the way for the development of LLMs, such Mistral (Jiang et al., 2023),
the Llama (Touvron et al., 2023; AI, 2024b), Gemma (Team et al., 2024), and GPT-4 (Achiam et al.,
2023), which showcase remarkable zero-shot and few-shot in-context learning abilities.

Efficient language models. Despite the promise of transformer-based LMs, the quadratic com-
putational complexity and the linearly increasing KV cache size of attention modules with longer
sequences limit their processing efficiency. To address this, efficient LMs featuring sub-quadratic
complexity in sequence length and strong scaling properties have emerged (Peng et al., 2023a; Sun
et al., 2023; Gu & Dao, 2023; Dao & Gu, 2024; Yang et al., 2023; Katharopoulos et al., 2020).
As pointed out by (Gu & Dao, 2023), popular efficient LM architectures such as RWKV (Peng
et al., 2023a) and RetNet (Sun et al., 2023) can be viewed as variants of SSMs (Gu et al., 2021a;b).
Mamba(Gu & Dao, 2023), one of the most widely used SSMs, improves upon previous SSMs by
selectively propagating or forgetting information along the sequence length in an input-dependent
manner. Follow-up works such as Mamba2 (Dao & Gu, 2024) and GLA (Yang et al., 2023) introduce
more hardware-friendly gating mechanisms to enhance training throughput over Mamba.

Hybrid language models. To combine the processing efficiency of SSMs with the recall capabili-
ties of transformers, an emerging trend is the creation of hybrid models that incorporate both types
of operators. Specifically, (Park et al., 2024) proposes a hybrid model called MambaFormer, which
interleaves Mamba and attention modules to improve in-context learning capabilities. Jamba (Lieber
et al., 2024) and Zamba (Glorioso et al., 2024) also develop sequentially stacked Mamba-Attention
hybrid models. Samba (Ren et al., 2024) introduces a structure that sequentially stacks Mamba,
SWA, and MLP layers by repeating the Mamba-MLP-SWA-MLP structure, achieving constant
throughput as sequence lengths increase. Other recent work has also explored hybrid models that
mix either linear RNNs or convolutions with attention (De et al., 2024; Pilault et al., 2024; Saon
et al., 2023; Yang et al., 2024).

5 CONCLUSION

In this work, we present Hymba, a new family of small LMs featuring a hybrid-head architecture
that combines the high-resolution recall capabilities of attention heads with the efficient context
summarization of SSM heads. To further optimize the performance of Hymba, we introduce learn-
able meta tokens, which act as a learned cache for both attention and SSM heads, enhancing the
model’s focus on salient information. Through the roadmap of Hymba, comprehensive evaluations,
and ablation studies, we demonstrate that Hymba sets new SOTA performance across a wide range
of tasks, achieving superior results in both accuracy and efficiency. Additionally, our work provides
valuable insights into the advantages of hybrid-head architectures, offering a promising direction for
future research in efficient LMs.
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A EXTENSIVE BENCHMARK FOR MORE HYMBA MODEL VARIANTS

A.1 COMPARISON WITH SOTA TINY LMS AT 350M AND 125M SCALES

Besides our 1.5B model, we also evaluate the 350M and 125M Hymba models on a diverse set
of benchmarks in Tab. 6 and Tab. 7, respectively. Consistent with the results of our 1.5B model,
Hymba-350M/125M models outperform the SOTA tiny LMs across most of tasks and achieve the
best average score. This indicates that our Hymba scales effectively across different model sizes.

Table 6: Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 200M parameters.
All results are obtained through HUGGINGFACE/LIGHTEVAL, following Allal et al. (2024).

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑ Wino. ↑ Avg. ↑

Mamba-130m-hf 130M 27.41 33.01 63.33 33.86 30.40 51.54 42.43
Cerebras-GPT 111M 25.56 27.75 58.16 26.32 25.40 50.28 37.58
GPT-neo 125M 27.25 31.30 62.35 29.68 29.20 51.54 40.81
LaMini-GPT 124M 26.47 33.26 62.89 30.05 27.80 50.75 40.95
Opt 125M 25.67 31.25 61.97 31.04 29.00 53.20 41.29
GPT2 137M 26.29 31.09 62.51 29.76 29.40 49.72 40.50
Pythia 160M 26.68 31.92 61.64 29.55 27.80 49.49 40.08
MobileLM 125M - 35.51 65.30 38.90 39.50 53.10 46.46
SmolLM 135M 30.23 43.99 69.60 42.30 33.60 52.70 48.44

Hymba 125M 31.12 44.95 68.50 45.54 35.52 52.25 49.35

Table 7: Benchmark Hymba with SOTA tiny LMs, all of which have fewer than 400M parameters.
All results are obtained through HUGGINGFACE/LIGHTEVAL, following Allal et al. (2024).

Model #Params. MMLU
(cloze) ↑

ARC
(c+e) ↑ PIQA ↑ Hella. ↑ OBQA ↑Wino. ↑ Avg. ↑

Bloom 560M 27.49 32.86 65.13 35.98 28.80 51.70 42.89
Cerebras-GPT-256M 256M 25.91 29.69 61.37 28.44 28.00 51.62 39.82
Cerebras-GPT-590M 590M 26.93 32.40 62.84 31.99 28.40 50.12 41.15
Opt 350M 26.57 31.94 64.36 36.09 27.80 52.57 42.55
Pythia 410M 28.94 35.05 66.92 39.21 28.40 52.80 44.48
GPT2-medium 380M 27.77 34.30 66.38 37.06 31.20 49.49 43.69
MobileLM 350M - 43.65 68.60 49.60 40.00 57.60 51.89
SmolLM 360M 34.17 51.10 72.00 53.80 37.20 53.70 53.56

Hymba 350M 34.54 52.46 72.91 55.08 38.40 57.85 55.34

A.2 APPLE-TO-APPLE COMPARISON WITH OTHER ARCHITECTURES AT 300M AND 1B
SCALE

In Sec. 3.3 of our main paper, we show the apple-to-apple architecture comparison under the same
settings with a 1B model size. In addition to superior performance on both general and recall-
intensive benchmarks, Hymba also has lower validation loss and more stable gradient norm during
pre-training as shown in Fig. 6

We further validate the superiority of our architecture at the 300M size with a different training
dataset to ensure the generalization of our findings. Specifically, we train different 300M model
architectures on 100B tokens from FineWeb (Penedo et al., 2024). We set peak learning rates to
5e-4 and use warmup and cosine decay scheduler. The training sequence length is set to 1024. As
shown in Tab. 8, Hymba achieves the best performance in almost all tasks (with a second-best result
in one task), yielding an average accuracy boost of +1.45% compared to the strongest baseline.
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Figure 6: LM validation loss and gradient norm during pre-training. All models have the same scale
(1B) and exactly the same training receipt.

Table 8: Apple-to-apple comparison of our Hymba, pure Mamba (Gu & Dao, 2023), Mamba with
FFN, Llama3 (Dubey et al., 2024) style, and Samba- (Ren et al., 2024) style (Mamba-FFN-Attn-
FFN) architectures. All models have 300M parameters and are trained for 100B tokens from
FineWeb dataset (Penedo et al., 2024) with exactly the same training recipes. All results are ob-
tained through LM-EVALUATION-HARNESS (Gao et al., 2023). The best and second best results are
highlighted in bold and underline, respectively.

Task Type
Arch. Style

(300M) Mamba Mamba
w/ FFN Llama3 Samba Hymba

Language Wiki. ppl. ↓ 30.78 33.41 30.04 31.41 28.53
LMB. ppl. ↓ 19.95 23.64 20.53 19.75 15.45

Recall
Intensive

SQuAD-C ↑ 21.31 17.56 22.10 39.88 45.24
SWDE ↑ 17.14 13.10 57.86 22.14 58.33
Avg. ↑ 19.23 15.33 39.98 31.01 51.79

Common-
sense

Reasoning
and

Question-
answering

Lambda ↑ 38.95 36.37 40.15 40.59 44.67
PIQA ↑ 69.64 69.26 70.29 69.86 70.73
ARC-C ↑ 24.91 25.00 24.83 25.76 26.28
ARC-E ↑ 50.67 50.34 50.24 49.79 53.20
Hella. ↑ 44.95 44.08 45.69 46.45 48.23
Wino. ↑ 51.70 51.78 52.64 52.49 53.35
TruthfulQA ↑ 23.86 26.23 28.97 27.27 27.87
SIQA ↑ 39.20 39.53 39.66 39.92 39.92
Avg. 42.98 42.82 44.08 44.02 45.53

B ABLATION STUDIES OF OUR HYMBA ARCHITECTURE

We perform further ablation studies and analyses of the design factors in our Hymba.

The ratio of SSMs and attention in hybrid heads. To determine the proper number of attention
heads, we start with a Mamba model and gradually replace Mamba’s hidden dimensions with atten-
tion heads, maintaining the same overall model size. As shown in Tab. 9 (1)∼(4), we observe that
model performance improves as the ratio of attention parameters increases and gradually saturates
when the parameter ratio of attention to Mamba reaches 1:2.12. We stop introducing more attention
heads, considering that adding more would bring increased memory overhead.
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Table 9: Ablation study of the design choices of Hymba. The design finally adopted by Hymba is
highlighted in bold. Specifically, the task lists are the same as those in Tab. 3. The throughput is
measured with a 8k sequence length and a 128 batch size on an NVIDIA A100 GPU. The cache size
is measured with a 16k sequence length, assuming the FP16 format.

Design
Factor Configuration Param. Ratio

Attn:Mamba
Avg.

(General) ↑
Avg.

(Recall) ↑
Throughput
(Token/s) ↑

Cache
(MB) ↓

Attn/Mamba
Ratio

1) Mamba Heads Only 0:1 42.98 19.23 4720.8 1.87
2) Mamba + 4 Attn Heads 1:8.48 44.20 44.65 3278.1 197.39
3) Mamba + 8 Attn Heads 1:4.24 44.95 52.53 1816.5 394.00
4) Mamba + 16 Attn Heads 1:2.12 45.08 56.46 656.6 787.22
5) 4) + GQA 1:3.64 45.19 49.90 876.7 295.69
6) Attn Heads Only (LLaMA) 1:0 44.08 39.98 721.1 829.44

Sliding
Window

7) 5) + All SWA’s 1:3.64 44.42 29.78 4485.09 5.51
8) 5) + SWA’s + Full Attn 1:3.64 44.56 48.79 2399.7 76.28
9) 8) + Cross-layer KV sharing 1:5.23 45.16 48.04 2756.5 76.30

10) 6) + Same KV compression 1:0 43.60 28.18 3710.0 56.62

Fusion 11) 9) Replace Mean by Concat 1: 5.82 44.56 48.94 1413.9 76.30

Meta
Tokens

12) 1) + Meta Tokens 0:1 44.01 19.34 4712.8 1.87
13) 9) + Meta Tokens 1:5.23 45.53 51.79 2695.8 76.87

Figure 7: Left: visualization of output magnitudes of attention and SSM heads. SSM heads consis-
tently have higher output magnitude than attention heads due to their structure. Right: visualization
of attention and SSM heads’ gate magnitudes. Through model learning, the relative magnitudes of
attention and SSM gates vary across different layers.

There are two interesting observations: (1) Although the attention-only model outperforms the
Mamba-only model, the hybrid model with both attention and Mamba heads achieves the best per-
formance; (2) with further KV cache optimization, the ratio of attention heads decreases further.
In our final model, attention heads occupy no more than 1/5 of the Mamba heads, yet significantly
boost both recall and commonsense reasoning compared to the vanilla Mamba. This suggests that
the hybrid model leverages the strengths and diversity of both attention and SSM heads, achieving a
better trade-off between efficiency and performance.

The hybrid-head fusion strategy. We have explored two straightforward methods to fuse the out-
puts of attention and SSM heads: concatenation and mean. For concatenation, we combine the
outputs of all heads and use a linear layer to project the concatenated output to the final output di-
mension. However, the parameter size of the linear layer increases with both the number of heads
and the head dimensions. Additionally, based on the empirical comparison between Tab. 9 (9) and
(11), the performance of concatenation fusion is not better than the simple mean fusion. Therefore,
we adopt the mean fusion strategy in our final design.

Impact of KV cache optimization. After applying a series of KV cache optimization techniques,
moving from Tab. 9 (5) to Tab. 9 (9), we observe that our Hymba maintains comparable recall and
commonsense reasoning accuracy while being 2.74× faster. In contrast, applying the same KV
cache optimization to a pure Transformer, as seen in the comparison between Tab. 9 (6) and (10),
results in a recall accuracy drop of 10% or more and degraded commonsense reasoning accuracy.
This supports our analysis in Sec. 2.3, showing that the presence of SSM heads in our hybrid-head
module has already summarized the global context, allowing us to more aggressively replace global
full attention with local attention in our hybrid model.
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Figure 8: Sum of attention score from different categories (i.e., ‘Meta’, ‘BOS’, ‘Self’, ‘Cross’)
in Llama-3.2-3B and Hymba-1.5B. Note that the parallel SSM and attention structure in the latter
disentangles the attention map.

C VISUALIZATION AND ANALYSIS OF ATTENTION MAPS

To better analyze the attention distributions, we categorize elements in the attention map into four
types: (1) ‘Meta’: attention scores from all real tokens to meta tokens. This category reflects the
model’s preference for attending to meta tokens. In attention map, they are usually located in the first
few columns (e.g., 128 for Hymba) if a model has meta tokens. (2) ‘BOS’: attention scores from
all real tokens to the beginning-of-sequence token. In the attention map, they are usually located
in the first column right after the meta tokens. (3) ‘Self’: attention scores from all real tokens to
themselves. In the attention map, they are usually located in the diagonal line. (4) ‘Cross’: attention
scores from all real tokens to other real tokens. In the attention map, they are usually located in the
off-diagonal area.

In Fig. 8, we visualize the real attention maps from Llama-3.2-3B and Hymba-1.5B on texts from
Oliver Twist Chapter 29 (Dickens, 1868) and sum up the attention scores from different categories.
The summed scores are normalized by the context length. For SSM heads, we follow Ben-Kish et
al. (Ben-Kish et al., 2024) and Zimerman et al. (Zimerman et al., 2024) to calculate their attention
maps and normalize the attention maps to ensure each row sums to 1.

We observe that the attention pattern of Hymba is significantly different from the vanilla Transform-
ers. In vanilla Transformers, attention scores are more concentrated on ‘BOS’, which is consistent
with the findings in (Xiao et al., 2023). In addition, vanilla Transformers also have a higher pro-
portion of ‘Self’ attention scores. In Hymba, meta tokens, attention heads and SSM heads work
complimentary to each other, leading to a more balanced distribution of attention scores across dif-
ferent types of tokens. Specifically, meta tokens offload the attention scores from ‘BOS’, allowing
the model to focus more on the real tokens. SSM heads summarize the global context, which fo-
cus more on current tokens (i.e., ‘Self’ attention scores). Attention heads, on the other hand, pay
less attention to ‘Self’ and ‘BOS’ tokens, and more attention to other tokens (i.e., ‘Cross’ attention
scores). This suggests that the hybrid-head design of Hymba can effectively balance the attention
distribution across different types of tokens, potentially leading to better performance.

D META TOKENS: MORE ANALYSIS AND VISUALIZATION

Relationship with prior works. Learnable tokens have also been leveraged in previous transformer-
based models. Previous prompt tuning works (Lester et al., 2021; Gu et al., 2021c) prepend learn-
able prompts while keeping the model weights frozen during the task-specific tuning stage, aiming
to adapt a pretrained LM to downstream tasks in a parameter-efficient manner. (Burtsev et al.,
2020) introduces both learnable tokens and corresponding memory update modules to augment the
memory mechanism in transformers. (Darcet et al., 2023) appends a set of learnable tokens called
registers to the image patches of vision transformers (Dosovitskiy, 2020) to store global information
and improve visual recognition. Our method combines ideas from all of these works in a more flex-
ible manner. It optimizes the meta tokens jointly with model weights during the pretraining stage,
is compatible with sliding window attention heads and other attention types or SSMs, and converts
the meta tokens into KV-cache initialization during inference, without modifying the architecture.

Meta tokens reduce attention map entropy. We visualize the entropy of the attention map for
both the attention and SSM heads (Ali et al., 2024; Ben-Kish et al., 2024) before and after intro-
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(a) (b)

Figure 9: Visualize the layer-wise attention map entropy of (a) attention heads, and (b) SSM heads
with and without meta tokens.

ducing meta tokens. As introduced in Sec. 2.4 of our main paper, the attention map entropy reflects
the distribution of attention scores across tokens, where lower entropy indicates stronger retrieval
effects (Ren et al., 2024), as the attention scores are concentrated around a smaller subset of tokens.

As shown in Fig. 9, we observe that after introducing meta tokens, both the attention and SSM
heads exhibit an overall reduction in entropy. Specifically, entropy is significantly reduced in all
attention heads and in 10 out of 12 layers of the SSM heads. This suggests that meta tokens can
reduce attention map entropy, potentially helping both the attention and SSM heads focus more on
a subset of important tokens that contribute most to task performance, as indicated by the boosted
performance in Tab. 9.

E ILLUSTRATION OF HYMBA’S ATTENTION MASK

As illustrated in Sec. 2 of our main paper, one Hymba layer is composed of SSM heads and global
or local attention heads, augmented by meta tokens. To better understand the design, we visualize
the attention mask of a Hymba layer with sliding window attention heads in Fig. 10. Specifically,
since the meta tokens are visible to all subsequent tokens to modulate their attention mechanism,
the first columns of the attention mask are set to ones; In addition, only nearby tokens falling within
a sliding window are visible to the sliding window attention heads and SSM heads follow standard
autoregressive attention patterns. As such, when applying all three attention masks together, the
overall attention pattern is shown in the rightmost subfigure in Fig. 10.

F PRETRAINING AND POST-TRAINING IMPLEMENTATION DETAILS

Pretraining settings. We train Hymba-125M/350M/1.5B models on 1.3T tokens, using a mix of
DCLM-Baseline-1.0 (Li et al., 2024), SmolLM-Corpus (Ben Allal et al., 2024), and an internal
high-quality dataset for 1T, 250B, and 50B tokens, respectively. We adopt the WSD learning rate
scheduler (Hu et al., 2024) with three phases: (1) warmup steps set to 1% of the total steps, (2) a
stable phase maintaining the peak learning rate of 3e-3, and (3) a decay phase reducing the learning
rate to 1e-5 over 20% of the total steps, while gradually annealing to smaller, higher-quality datasets

Figure 10: Visualize the attention mask of a Hymba layer with sliding window attention heads and
SSM heads.
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like SmolLM-Corpus and the internal dataset. We use a sequence length of 2048 and a batch size of
2M tokens throughout the training process, which is conducted on 128 NVIDIA A100 GPUs.

Implementation details of post-training. We post-trained our 1.5B base model with a two-
stage strategy: the first full-finetuning (FFT) stage and another direct preference optimization
(DPO) (Rafailov et al., 2024) training. The learning rates are 5e-5, and 3e-6 for FFT and DPO,
respectively. Both FFT and DPO training are carried out for one epoch with a cosine scheduler. The
global batch size is set to 1024. To accelerate training, we follow the training recipe (Tunstall et al.,
2023; Diao et al., 2024; Dong et al., 2024) to pack the samples and use a block size of 2048. We
implement the finetuning and DPO training with the LMFlow toolkit (Diao et al., 2024). In addition
to full-finetuning, we also leverage Dora (Liu et al., 2024c) to do parameter-efficient finetuning.

Baselines and downstream tasks. We compare Hymba with competitive lightweight instruction-
tuned models, i.e., Llama-3.2-1B-Instruct (AI, 2024c), Gemma-2-2B-Instruct (Team et al., 2024),
OpenELM-1-1B-Instruct (Mehta et al., 2024), and SmolLM-1.7B-Instruct (Allal et al., 2024). We
test the instruction-tuned models on MMLU (5-shot), IFEval, GSM8K (5-shot), GPQA (0-shot),
and Berkeley Function-Calling Leaderboard v2 (BFCLv2) (Yan et al., 2024). For BFCLv2, we
use the official code from Gorilla project (Yan et al., 2024) and evaluate the BFCLv2-live cate-
gory, including live simple, live multiple, live parallel, live parallel multiple, live relevance. We
exclude live irrelevance, since we found some baseline models without function calling abilities,
could achieve high in the live irrelevance category (where the model is not required to call function)
and very low in other tasks, but still got high overall accuracy although these models are not helpful
at all. For the remaining tasks, we directly use the lm-evaluation-harness (Gao et al., 2024).
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