Under review as a conference paper at ICLR 2026

WANT TO TRAIN KANS AT SCALE? Now UKAN!!

Anonymous authors
Paper under double-blind review

ABSTRACT

Kolmogorov—Arnold Networks (KANs) have recently emerged as a powerful al-
ternative to traditional multilayer perceptrons. However, their reliance on prede-
fined, bounded grids restricts their ability to approximate functions on unbounded
domains. To address this, we present Unbounded Kolmogorov—Arnold Networks
(UKANSs), a method that removes the need for bounded grids in traditional Kol-
mogorov—Arnold Networks (KANs). The key innovation of this method is a
coefficient-generator (CG) model that produces, on the fly, only the B-spline
coefficients required locally on an unbounded symmetric grid. UKANSs couple
multilayer perceptrons with KANs by feeding the positional encoding of grid
groups into the CG model, enabling function approximation on unbounded do-
mains without requiring data normalization. To reduce the computational cost
of both UKANs and KANs, we introduce a GPU-accelerated library that low-
ers B-spline evaluation complexity by a factor proportional to the grid size, en-
abling large-scale learning by leveraging efficient memory management, in line
with recent software advances such as FlashAttention and FlashFFTConv. Perfor-
mance benchmarking confirms the superior memory and computational efficiency
of our accelerated KAN (warpKAN), and UKANs, showing a 3 — 30x speed-
up and up to 1000 x memory reduction compared to vanilla KANs. Experiments
on regression, classification, and generative tasks demonstrate the effectiveness of
UKANS to match or surpass KAN accuracy. Finally, we use both accelerated KAN
and UKAN in a molecular property prediction task, establishing the feasibility of
large-scale end-to-end training with our optimized implementation.

1 BACKGROUND

Neural networks (MLPs) are the workhorse of the current Al and Deep Learning revolution, driv-
ing advances in computer vision, language models, computational science, and more recently bi-
ology and molecular science LeCun et al. (2015); |Goh et al.| (2017)); |Schiitt et al.| (2018)); Pandey
et al.| (2022); |Raissi et al.| (2017). The universal approximation theorem guarantees that MLPs with
enough parameters can fit any function. The widespread adoption of MLPs across various disci-
plines has led to the emergence of exciting applications such as ChatGPT in the large language
model (LLM) domain, and AlphaFold in protein structure prediction |Vaswani et al.[(2017); Jumper
et al.|(2021). However, MLPs suffer from a few drawbacks, particularly generalization for regression
tasks.

Recently, the Kolmogorov-Arnold networks (KANs) Liu et al.| (2024bja)) have gained attention as a
promising alternative to traditional MLPs, especially in scientific applications, with novel variants
currently under development [Bozorgasl & Chen| (2024); |Genet & Inzirillo| (2024); Abueidda et al.
(2024); [Kiamari et al.| (2024); [Somvanshi et al.| (2024). The KAN architecture is partially based
on the Kolmogorov-Arnold representation theorem [Kolmogorov| (1961); Braun & Griebel| (2009),
which states that any multivariate function on a bounded domain can be obtained by a finite com-
position of continuous univariate functions and summation. Mathematically, this can be represented
as:

2n+1 n
flx) = Z bq ((bq,p(xp)) (L
q=1 p=1

Under review as a conference paper at ICLR 2026

where ¢, , : [0,1] = R and ¢, : R — R. Eq. implies that we can approximate any function by
summation of univariate functions. A B-spline curve is one of the best methods to parameterize any
univariate function by learning the coefficients of the B-spline basis function.

To extend the KAN architecture beyond what is described by Eq. [T} [Liu et al| (2024b) proposes a
new way to build the KAN computational graph with L layers. They assume Eq. [1|is a 2-layer KAN
with n, 2n, and 1 nodes. The generalization for L layers starts by defining n; nodes VI = 0,1, ..., L,
where n; is the number of nodes in the I*" layer of the computational graph.

The activation function between node ¢ in layer [, (1,7) and node j in layer [+ 1, (I + 1, j) is denoted
by ¢ ;,:; the activation value of node (I + 1, j) is obtained by summing all incoming post-activation
values d)l,j,i («Tl,i),

ny
Ty = Y Gugile))
=1

In total, there are n;n;4 ;1 activation values and connections between layer [and layer [+ 1. For an
input x € R™, a general KAN network can be written as a composition of L layers,

KAN(x) = (®r_10® 50+ 0®; 0) x. (3)

where ®; is the matrix function of shape n;1 x n; with element (3, ¢) corresponding to ¢; ; ; activa-
tion function. In practice, ¢(z) is the sum of the basis function b(x) (MLP with activation function)
and the spline function,

¢(x) = wpb(x) + w; spline(x))
where spline(x) is parameterized as a linear combination of B-splines such that
spline(z) = Z ¢ Bi(x))

where c¢; are learned parameters. A B-spline of order k£ + 1 is a collection of piecewise polynomial
functions B; ;+1(t) of degree k. The locations where these piecewise polynomials connect to each
other are known as knots. Given m 41 knot values with a uniqueness constraint on B; ;,1, we have,

non-zero, ift; <t <tjyp41

Bipt1(t) = { 6)

0, otherwise

The Cox—de Boor formula recursively builds B-spline of order % using,

t—t;
T Bit1 k-1(1), @)
tivk — t;

where B; o(t) = 1[t1,,t7¢+1)(t)-

livk+1 — ¢

B;x(t) = B —1(t) +

tivks1 —tin

KANs are promising, but practical use is hampered by compute- and memory-inefficient implemen-
tations and reliance on periodic grid updates. In naive GPU code, evaluating B-spline bases via the
Cox—de Boor recursion redundantly recomputes along the entire knot vector (effectively repeating
work k£ + 1 times per evaluation) and inflates both memory traffic and FLOPs. Many implementa-
tions also materialize all intermediate basis states, which depresses batch sizes and GPU utilization.
Algorithmically, most public code evaluates B-spline bases in time O(k dg din dout), Where k is the
B-spline degree, d, the number of knots (we use “grid” for the sorted knot vector), and di, (=),
dout (= my41) the input and output dimensions. Training can also stall when inputs drift outside
the initialized knot support, where the B-spline basis vanishes; while [Liu et al.| (2024b) advocates
periodic grid updates, this procedure is numerically brittle and ill-suited to reliable, high-throughput
GPU execution.

This work removes these bottlenecks in the original KAN by enabling true batched evaluation and
eliminating unnecessary intermediates, substantially reducing both memory footprint and FLOPs.

Under review as a conference paper at ICLR 2026

Table 1: Compute complexity of Torch- and Warp-KAN for single layer B-spline evaluation.
Model Complexity
Torch KAN O(Kdydindout)
Warp KAN O(Kdindout)
Warp UKAN O(Kd;ndout) + Oca(d?, , + dempdout K)

emb

Because B-splines also underlie pre-KAN learnable activations, the same kernels accelerate those
methods as well.Bohra et al.|(2020) Our implementation facilitates a fair comparison between MLPs
and KANSs; correcting prior apples-to-oranges comparisons that pitted highly optimized MLPs
against vanilla implementation of KANgYu et al.[(2024). As recent ML systems work has shown
(e.g., FlashAttention/FlashFFTConv Dao et al.| (2022)); [Dao| (2023)); |Shah et al.| (2024); [Fu et al.
(2023))), careful software design unlocks scale; we follow the same philosophy for KAN-style ar-
chitectures. Finally, we introduce UKAN to eliminate grid updates during training and present
experiments comparing MLP, KAN, and UKAN across a range of settings.

2 ALGORITHM

Our remedy for KAN’s compute and memory overhead is to exploit the compact support of B-
splines rather than evaluating the Cox—de Boor recurrence over the entire knot vector. A degree-k
1D basis B; j is nonzero only on [t;,t;45+1). Leveraging this observation, we represent the 1D
B-spline function with basis matrices |Qin/(1998) as shown in Eq.

spline(u) = UMC. (8)

Here z € R is a scalar input, and we first locate its knot interval via ¢ = |(x — t9)/h|, where h is
the distance between two adjacent grid points (h := t;11 — t;). We then define the local normalized

coordinate
Tr — ti

u=———¢€|[0,1
e,
so u is a scalar. The vector U is (1,u,u?,...,u*), M is the B-spline basis matrix, and C is the
vector of the k + 1 local B-spline coefficients, e.g., (¢;, Cit1,- - ,ci+k)T. The basis matrices are

obtained by applying the recursive B-spline equations and depend only on the degree of the B-spline
function (see Appendix [A.T|for the cubic case).

In the network, Eq.[8]is instantiated for each connection from neuron ¢ in layer ¢ to neuron j in layer
¢+ 1, we evaluate a spline at a scalar argument uz(? derived from the activation at neuron ¢,

splineul?) = U(ul?) MCLD.
We provide efficient implementations of the above formula using NVIDIA Warp Macklin| (2022)
in a new library called warpKAN with evaluation complexity of O(kd;,d,.:) along with PyTorch
bindings [Paszke et al|(2019). This implementation offers both memory and computational effi-
ciency, as described in Table [I] However, the reduction in compute and memory cost of B-spline
components does not solve the issue of the bounded range of the grid in the original KAN.

We achieve an unbounded grid by generating B-spline coefficients with a coefficient-generator
(CG) MLP, akin to Hyena’s filter generation [Poli et al. (2023). For a degree-k spline, each
evaluation needs K = k + 1 coefficients (Eq. [8). A naive approach—calling the same MLP
K times for the K adjacent grid indices performed poorly in our experiments, likely due to
missing joint conditioning across those K coefficients. Instead, we partition the uniform grid
{t; =jh V5 € {.,-2,-1,0,1,2,...}} into groups of K consecutive cells. For any z, de-
fine the cell index i(z) = |x/h], the group index

o~) - 5]

and define the within-group offset » = i(x) mod K. The CG-MLP takes as input the concatenation
of (i) an embedding of the feature index and (ii) a sinusoidal positional encoding of the group index

Under review as a conference paper at ICLR 2026

g (as in Transformers |Vaswani et al.[(2017)), and outputs a vector C; € RE of coefficients for group
g. To ensure the correct sliding window across group boundaries, we concatenate the previous and
current outputs [Cy—1; Cy] € R?K and select the K coefficients

[Cy1; Cy] (10)

rir+K-—17
which are then used in the basis-matrix evaluation of Eq. [§] This grouping yields an unbounded,
index-conditioned parameterization with fewer MLP calls, while preserving the exact K -wide local
stencil required by B-splines. The general architecture of UKAN is shown in Figure|l} To obtain
an interpretable UKAN, one can further decouple the CG-MLP per-edge and add entropy and mag-
nitude regularization terms on the CG-MLP coefficients to the task loss, in the same spirit as the
original KAN paper |Liu et al.|(2024b). A representative pruned graph obtained in this way is shown
in Appendix [A.2] For inference purposes, one can materialize all coefficients on any finite interval
and store them as KAN parameters to avoid repetitive calls to the CG-MLP, since there is a one-to-
one mapping between KAN and UKAN (see Appendix [A.3). Since at current form MLP compute
makes UKAN 3-4x slower than KAN, there is feasibility of fusing CG-MLP and B-spline evalua-
tion into a single kernel but we leave it as a future extension of warpKAN and focus on introducing
UKAN and testing it in different tasks.

inputs

4)

Grid-Group Positional
Encoding

Feature Index
embedding

Shared Coefficient-
Generator MLP

l

Accumulate Basis
Spline Functions

- /

outputs

Figure 1: The UKAN model architecture including grid group positional encoding, coefficient-
generator MLP, and B-spline function.

3 EXPERIMENTS

In this section, we benchmark the performance of warpKAN for various B-spline orders and grid
sizes. Subsequently, we showcase the capabilities of UKAN across a wide-range of tasks commonly
encountered in machine learning: classification, regression, approximation, generation, and a real-
world application to drug discovery.

3.1 PERFORMANCE BENCHMARKING

In Figure[2] we benchmark warpKAN against torchKAN under two settings: (a) varying the B-spline
order and (b) varying the number of knots (“grid size”). We report the speedup for the forward and
backward passes, as well as their sum, for a single layer KAN(32 — 32). For panel (a), we use
a grid size of 64 and a batch size of 2'®; for panel (b), we fix the B-spline order to 3 and use a
batch size of 217. All warpKAN results are normalized to the PyTorch implementation from the
original paper. Across B-spline orders, warpKAN is 5.5x—15x faster, with speedup increasing with

Under review as a conference paper at ICLR 2026

the order. Across grid sizes, warpKAN averages about 12x and reaches up to 24x speedup for larger
grids. Moreover, torchKAN runs out of memory for grids > 256, while warpKAN scales to grid
sizes up to 2'%; over 1000x larger. Notation: Layer(a— b) denotes input and output dimensions.

(a) (b)
304

B Forward warpKAN 1 29.0%
I Backward warpKAN
I Total warpKAN

N
ui

15.9%

Speedup vs torch KAN

16 32 64
Order (k) Grid size (# knots)

Figure 2: warpKAN vs. torchKAN. (a) Increasing B-spline order yields larger speedups (5.5x—15x).
(b) Increasing grid size shows average ~ 12x and up to 24x speedup; torchKAN hits OOM > 256
knots while warpKAN scales to 2'8. All values are normalized to the public PyTorch implementa-
tion.

From Figure [2] the naive PyTorch implementation clearly under-utilizes the GPU. Further gains
are expected by (i) exploiting Tensor Cores, (ii) fusing kernels to cut launch overhead and off-chip
traffic, and (iii) other common techniques in CUDA programming. These optimizations should
shift the workload toward the roofline limits and substantially increase throughput, mirroring the

trajectory of the FlashAttention family [Dao et al.| (2022)); Dao| (2023)); Shah et al.| (2024).

We quantify how close our implementation is to the hardware limits using a roofline model. The
Speed-of-Light (SoL) time, ¢s,1,, corresponds to the limiting factor between compute (FLOP/s) and
memory bandwidth (B/s), and thus represents the best achievable runtime on the hardware. Based
on this definition, we construct compute and memory models of the B-spline below.

Table 2: B-spline forward SoL and runtime vs. grid size on A6000 (FP32). t,,cqs iS OUr em-
pirical runtime, the remaining columns are theoretical upper and lower bounds. Setup: N=217,
din=doun=32, order k=3 (K=4), Pr1,op=38.7 TFLOP/s, Pgw =768 GB/s.

G lmeas (ms) 351 (mS) {307 (MS) Leompuie (MS) fpy, (ms) Eens (ms)

32 4.9489 0.1387 2.8399 0.1387 0.0439 2.8399
64 5.1764 0.1387 2.8399 0.1387 0.0441 2.8399
128 5.3669 0.1387 2.8399 0.1387 0.0444 2.8399
256 5.5305 0.1387 2.8399 0.1387 0.0451 2.8399
512 5.7400 0.1387 2.8399 0.1387 0.0464 2.8399
1024 5.9188 0.1387 2.8399 0.1387 0.0492 2.8399

Compute model Let N be the batch size, di, and do,t the input/output dims, k the B-spline
order, K = k+1, and G the number of grid positions (knots) per (i, 0) pairEl We write the per-
(input,output) multiply—add count as a k-dependent constant cy; in our implementation we use cj, ~
2K (K+1) (the factor 2 accounts for fused multiply—adds counted as two FLOPs). Then the total
work is

Ffwd ~ N'din’dout * Ck- (11)

Memory models We separate optimistic (best-case) and pessimistic (worst-case) coefficient reuse
(no-cache and cached). We assume contiguous reads of inputs and writes of outputs; coefficients are
indexed locally (K per sample) but stored globally ((G+K) per (i, 0), including padding).

'Our kernels use a local matrix form; G denotes the global grid size before local selection.

Under review as a conference paper at ICLR 2026

Best-case reuse (stream all unique coefficients once across the batch):

Bhest ~ S[N (din + dows) + dindou (G+K)}, s = 4 bytes (FP32). (12)

Worst-case reuse (fetch local K coefficients per sample):

Bworst ~ S|:N (din + dout) + Ndindout Ki| . (13)

The SoL times are then

Ff d Bbest Ffwd Bworst
tbest _ Wi , , tworst _ ,) 14
Sol, = THAX (Prrop Pew Sol e Prrop’ Pew (14)

We perform experiments for different configurations on the A6000 GPU in FP32, and report results
in Table?] We time forward calls with CUDA synchronization before and after, discarding warm-
up. We use fixed shapes (N, diy, dout, k) = (217,32,32, 3), report the average per-call time, and
compute Fryq via equation |11| with ¢, =2K (K+1). We report both tlS’ffIf and ¢3°r" using equa-
tion [[2}-equation [I3] As shown in Table 2] there are still opportunities to improve runtime of B-
spline used in KANs and many other workloads. The future work will try to close the gap between
runtime and SoL. timeE] The runtime of vanilla KAN implementations can be estimated by multi-
plying the speedup values reported in Figure 2] with the measured ¢cas from Table 2] provided the
configuration does not run out of memory.

We also study the memory and compute cost of UKAN relative to KAN, where both implementa-
tions use the accelerated warpKAN backend rather than the naive torch implementation. For a single
layer with identical input/output dimension, B-spline order 3, and grid size 32, UKAN incurs ap-
proximately 3.7 x higher runtime and about 210x larger GPU memory footprint than KAN, because
UKAN must generate and store per-edge coefficients via the CG-MLP whereas KAN reuses a fixed
table of B-spline coefficients. The resulting comparison is summarized in Figure[3] We also provide
possible solution to the memory and compute in Appendix ??, where we provide prototype experi-
mental code for UKAN with better performance and memory fingerprints, where UKAN consumes
less memory compared to the KAN as B-spline coefficients are not materialized.

UKAN vs KAN: Execution Time and Memory Usage (Grid num = 32)

1024

—— Time ratio (UKAN / KAN)
Memory ratio (UKAN / KAN)

Ratio (UKAN / KAN)

10t

2 2 2 2 2 2 2 2
Input and Output dimension

Figure 3: Compute and memory comparison of KAN vs. UKAN, both implemented with warp-
KAN. We report wall-clock time and peak GPU memory for a single layer with order-3 B-splines and
grid size 32 on an NVIDIA A6000 (batch size 1024). All points are normalized so that KAN= 1.0;
in this setting UKAN is roughly 3.7x slower and 210X more memory hungry due to the cost of
generating and materializing per-edge coefficients from the CG-MLP.

2We do not provide a full roofline breakdown for UKAN, as its cost is dominated by the CG network.
Our ongoing work explores a fused implementation that co-schedules the CG MLP with spline evaluation and
accumulation in a single kernel; so that coefficients are produced and consumed without intermediate HBM
round-trips. These experiments are in progress.

Under review as a conference paper at ICLR 2026

3.2 TASKS
3.2.1 REGRESSION

To evaluate the accuracy of our UKAN and KAN in regression, we conducted three experiments.

L f(z,y) = exp(Jo(20z) + y?), where J is the Bessel function of order 0.
II. f(x,y) = exp(sinmx + y?)

I f(x) = exp(sx > sin((4£ + 1)m;)) , where i = 0,1, ..., 15 and is a high dimensional
function compared with functions I and II.

We compare the results of UKAN, KAN and MLP (2 — 5 — 1) for 2D functions (functions I
and II). For function III, we use UKAN, KAN, and MLP (16 — 32 — 1). For the CG model, we
used a two-layer MLP with 8- and 16-dimensional positional encodings and feature embeddings
for 2D and 16D functions, respectively. The first layer of the CG MLP uses SiLU nonlinearity and
generated coefficients are scaled by another learnable parameter to improve learning, analogous to
the original KAN paper. An Adam optimizer Kingma & Bal (2014) with a learning rate of 0.01
and weight decay of 1e~> for 200,000 epochs is used to minimize the MSE loss. The learning
rate is decayed exponentially with the rate of 1 — le~* and minimum learning rate of le~*. The
results are shown in Figure [d, where UKAN and KAN perform much better than MLP, and KAN
performs better than UKAN. In theory, KAN and UKAN have the same learning capacity, but the
MLP component of UKAN might slightly hurt generalization and performance compared to KAN.
We also note that although the compute cost of a KAN is greater than that of an MLP by a factor of
K, KAN convergence often compensates for this factor. We also performed a regression task on the
n-body problem based on [Satorras et al| (2022)), the results are available in Appendix [A-4]

a. exp(fo(x) +y?) b. exp(sin(nx) + y?)

10-14

T

10724

10-34

] — MLPtrain —— MLP train

—— KAN train 1044 — KAN train
—— UKAN train —— UKAN train
10744 === MLP validation 10-5] === MLP validation
—-=- KAN validation —n —-=- KAN validation
lo-5] =7 UKANvalidation ST 10-6] == UKAN validation [——
102 10° 10t 105 102 10° 10t 105
epochs epochs
15
c exp(Y sin((4i/15 + 1)mx;)/15)
i=0

10° %

10-14

10-24

=<
—— MLP train
—— KAN train
—— UKAN train
=== MLP validation
=== KANvalidation N\ TT====o_
=== UKAN validation

1073 4

10-4 4

102 103 104 10°
epochs

Figure 4: Regression task results. (a) RMSE vs. training epochs for Function I using KAN, UKAN,
and MLP(2 — 5 — 1). (b) RMSE vs. training epochs for Function II using KAN, UKAN, and
MLP(2 — 5 — 1). (c) RMSE vs. training epochs for Function III using KAN, UKAN, and
MLP(16 —+32—1).

Under review as a conference paper at ICLR 2026

3.2.2 CLASSIFICATION

We devised four experiments to evaluate KAN and UKAN on classification tasks. Two of these
use an MLPMixer architecture with KAN and UKAN backbones on CIFAR-10 and ImageNet-1K
Tolstikhin et al.| (2021)); Krizhevsky et al.|(2009); Deng et al.| (2009)); their details are provided in
Appendix [El Here, we focus on the remaining two experiments on smaller datasets, where we train
UKAN and KAN on the Moon and MNIST datasets. The training and validation accuracies on the
Moon dataset are reported in Table [3] We observe that both models achieve close to 100% accuracy
on this 2D task, with UKAN showing slightly higher accuracy than KAN in this setup. For this
experiment, both UKAN and KAN (2—4 — 2) are trained using stochastic gradient descent (SGD)
with a learning rate of 0.01 for 10,000 epochs, and results are averaged over three different random
initializations.

Table 3: Moon dataset classification accuracy.
Model Training Validation
KAN 98.46 £1.3 98.53£0.4
UKAN 100.0+0. 99.83+0.17

The final classification task was performed on the MNIST dataset, where we trained both the UKAN
and KAN models with configurations (784 — 32 — 10) and a degree-3 B-spline. Both models were
optimized using the Adam optimizer combined with an Exponential scheduler, having a learning
rate of 2 x 10~* and a decay rate of 1 — 10~*. The KAN network incorporated 51 grid points across
the interval [—10, 10], whereas UKAN utilized a grid delta of 3.0 and a 48-dimensional positional
encoding. Notably, both models employed only the B-spline component without any MLP compo-
nents. Training was halted upon detection of overfitting in the training dataset. Furthermore, three
rounds of independent training with different initializations were conducted to compare the perfor-
mance of UKAN and KAN. The results, as presented in Table 4} indicate that UKAN outperforms
KAN on the validation dataset while slightly underperforming on the training dataset.

Table 4: MNIST dataset classification accuracy.
Model Training Validation
KAN 98.93£0.78 95.35£0.04
UKAN 98404+0.24 96.29+0.08

3.2.3 APPROXIMATION

We explore the effectiveness of UKAN and KAN in physics-informed neural networks |Karniadakis
et al.| (2021)) to solve the logistic growth model, which is used to model population dynamics in
biological and ecological systems. For this experiment, we use both UKAN and KAN (1 — 5 — 1)
without MLP component to solve the differential equation below,

df

= RI(- 1) (s)

where R is the growth rate set to 1.0 and the function f(t) represents the growth rate of the popu-
lation over time (t). We impose boundary condition of f(0) = 0.5 to uniquely specify the solution

and compare the results with the analytical solution of f(t) = m. We use domain of [—5, 5]

to sample data and Adam optimizer with the learning of rate of 1e~2 and weight decay of 1e~° and
follow the standard procedure for PINN minimization, i.e. minimizing MSE of the differential equa-
tion residual over collocation points and boundary conditions. The results are shown in Figure|5| for
and KAN (1 —5 — 1) without the MLP component. UKAN and KAN achieve MSE of 1le~° and
1e~%, respectively on the sample dataset, indicating both models are applicable to physics-informed
neural networks scenarios.

3.2.4 GENERATION

As an example in generative model learning, we evaluated the performance of three different archi-
tectures for Denoising Diffusion Probabilistic Models (DDPM) [Ho et al.| (2020) on a synthetic 2D

Under review as a conference paper at ICLR 2026

1.01 ® Sample training points

—— KAN PINN Solution
----- UKAN PINN Solution
— = Analytic solution

0.8 1

0.6 -

ft)

0.4

0.2

0.0 -

-4 -2 0 2 4

Figure 5: KAN and UKAN used in PINNs. Solving logistic growth model with both KAN and
UKAN (1—5 —1) over domain of -5 and 5.

circle dataset with added noise. The first architecture is only composed of MLPs, while other archi-
tectures use KAN and UKAN in the input of temporal layers and output layer (see Appendix [A.3]for
full architecture). We used Adam optimizer with a learning rate of 5e~° for 500 epochs with a batch
size of 800. Our results demonstrated that both KAN and UKAN significantly outperformed MLP
in terms of the Wasserstein distance shown in Table[5|and sample quality as shown in Figure[f] Data
samples from original distribution and generated from DDPM with KAN, UKAN, and MLP archi-
tectures indicates superior performance of KAN and UKAN compared to MLP and slightly superior
performance of UKAN over KAN. This result indicates possible applications of KAN and UKAN
in generative tasks, where MLP alone might fail to learn underlying data distribution especially in
sample quality as we observed loss values of MLP, KAN and UKAN were very small.

Table 5: DDPM with KAN, UKAN, and MLP

Model Wasserstein distance
KAN 0.693
UKAN 0.655
MLP 1.058
a KAN b. UKAN C MLP

« Sample Data « Sample Data « Sample Data
KAN-generated UKAN-genes MLP-generated ...

0.5

Figure 6: DDPM with KAN, UKAN, and MLP.

3.2.5 REAL-WORLD APPLICATION: DRUG DISCOVERY

Accurate in silico prediction of molecular properties is key to accelerating drug discovery by early
identification of compounds with favorable ADME (Absorption, Distribution, Metabolism, and Ex-
cretion) profiles. [Ferreira & Andricopulo| (2019); [Beckers et al.| (2023); Seal et al.| (2025) Machine
learning methods have shown strong performance in predicting these properties from chemical struc-

Under review as a conference paper at ICLR 2026

ture or computed features. The usage of KANSs in predicting molecular properties was originally
introduced by |Li et al.| (2025). Due to implementation discrepancies and known issues within the
MoleculeNet datasets,Walters we reimplemented the original model using the warpKAN package
and incorporated the necessary corrections. A comprehensive analysis of these results is presented

in the Appendix

Here, we further demonstrate the ability of UKANs to predict ADME properties, and used a fixed
molecular representation to isolate the impact of the KAN and UKAN addition. We choose Morgan
fingerprints and RDKit 2D descriptors as our two computed molecular features. In order to overcome
the limitations of the MoleculeNet dataset, we use four datasets released by|Fang et al.|(2023). These
models were trained for 200 epochs using Adam optimizer with a learning rate of le-4. As shown
in Table [6] UKANSs show superior or comparable performance with respect to KANs for predicting
molecular properties from computed features using mean absolute error metric while containing two
orders of magnitude fewer parameters. UKANs outperform KANs on the permeability and solubility
dataset using Morgan fingerprint features while their performance is statistically equivalent (using
T-test for means) on the other two datasets. Using RDKit 2D descriptors, a set of 200 molecular
descriptors describing the 2D structure of the molecule, UKAN shows better performance than KAN
on the Microsomal stability (rat) dataset. These results show that UKANs are superior to KANs in
accurately predicting molecular properties relevant to the pharmaceutical industry. Details about
model architecture and data preprocessing can be found in the Appendix [A.6] and [B.T| respectively.
More details on the robustness of predictions as a function of distance from the training set are
discussed in

Table 6: Performance of KAN and UKAN on Biogen ADME datasets using Morgan fingerprint (la-
beled Morgan) and RDKit 2D descriptors (labeled RDKit-2D) as molecule featurizers. Performance
is assessed using mean absolute error on test split as the metric. ({ is better)

Descriptor Microsomal Microsomal Permeability Solubility
stability (human) stability(rat)
KAN Morgan 0.479 +0.010 0.559 + 0.012 0.424 + 0.005 0.476 + 0.006
UKAN Morgan 0.476 + 0.003 0.551+0.020 0.403 +0.006 0.435+ 0.009

KAN RDK:it-2D 0.373 = 0.003 0.492 £0.010 0.349 £ 0.005 0.386 £ 0.002
UKAN RDKit-2D 0.368 + 0.008 0.467 £ 0.006 0.348 £ 0.003 0.397 £ 0.013

4 CONCLUSION

In this work, we presented the Unbound Kolmogorov-Arnold Network (UKAN), which unifies mul-
tilayer perceptron networks (MLPs) with KANs along with an efficient GPU implementation of the
underlying components of KANs. GPU acceleration decouples the computational cost and memory
fingerprint of KANs from the grid size by using local matrix representations of B-spline functions. In
addition, our proposed UKAN architecture allows the use of KANs without any fixed grid range lim-
itation by generating coefficients from a coefficient-generator MLP. We evaluated UKAN model for
regression, classification, and generative tasks. Our accompanying GPU library alleviates the core
bottlenecks that have limited the practical scale of spline-based networks and serves as a reusable
building block for future models. We expect UKAN and its variants to enable accelerated large-scale
learning in domains such as molecular property prediction, protein docking, language, and vision,
and we see promising directions in multi-GPU training, adaptive knot policies, and a deeper theory
of approximation on unbounded domains.

REFERENCES
Descriptastorus. URL https://github.com/bp-kelley/descriptastorusl

Diab W. Abueidda, Panos Pantidis, and Mostafa E. Mobasher. Deepokan: Deep operator network
based on kolmogorov arnold networks for mechanics problems, 2024. URL https://arxiv.
org/abs/2405.19143.

10

https://github.com/bp-kelley/descriptastorus
https://arxiv.org/abs/2405.19143
https://arxiv.org/abs/2405.19143

Under review as a conference paper at ICLR 2026

Maximilian Beckers, Noé Sturm, Finton Sirockin, Nikolas Fechner, and Nikolaus Stiefl. Prediction
of small-molecule developability using large-scale in silico admet models. Journal of medicinal
chemistry, 66(20):14047-14060, 2023.

Pakshal Bohra, Joaquim Campos, Harshit Gupta, Shayan Aziznejad, and Michael Unser. Learning
activation functions in deep (spline) neural networks. IEEE Open Journal of Signal Processing,
1:295-309, 2020.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024.

Jiirgen Braun and Michael Griebel. On a constructive proof of kolmogorov’s superposition theorem.
Constructive approximation, 30:653—675, 2009.

Roman Bresson, Giannis Nikolentzos, George Panagopoulos, Michail Chatzianastasis, Jun Pang,
and Michalis Vazirgiannis. Kagnns: Kolmogorov-arnold networks meet graph learning, 2025.
URLhttps://arxiv.org/abs/2406.18380.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
https://arxiv.org/abs/2307.08691.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database, 2009.

Cheng Fang, Ye Wang, Richard Grater, Sudarshan Kapadnis, Cheryl Black, Patrick Trapa, and Si-
mone Sciabola. Prospective validation of machine learning algorithms for absorption, distribution,
metabolism, and excretion prediction: An industrial perspective. Journal of Chemical Information
and Modeling, 63(11):3263-3274, 2023.

Leonardo LG Ferreira and Adriano D Andricopulo. Admet modeling approaches in drug discovery.
Drug discovery today, 24(5):1157-1165, 2019.

Denis Fourches, Eugene Muratov, and Alexander Tropsha. Trust, but verify: on the importance of
chemical structure curation in cheminformatics and gsar modeling research. Journal of chemical
information and modeling, 50(7):1189, 2010.

Daniel Y. Fu, Hermann Kumbong, Eric Nguyen, and Christopher Ré. Flashfftconv: Efficient convo-
lutions for long sequences with tensor cores, 2023. URL https://arxiv.org/abs/2311.
05908.

Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. arXiv preprint
arXiv:2405.07344, 2024.

Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. Deep learning for computational chemistry.
Journal of computational chemistry, 38(16):1291-1307, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583-589, 2021.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422—-440, 2021.

Mehrdad Kiamari, Mohammad Kiamari, and Bhaskar Krishnamachari. Gkan: Graph kolmogorov-
arnold networks, 2024. URL https://arxiv.org/abs/2406.06470.

11

https://arxiv.org/abs/2406.18380
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2311.05908
https://arxiv.org/abs/2311.05908
https://arxiv.org/abs/2406.06470

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of several variables
by superpositions of continuous functions of a smaller number of variables. American Mathemat-
ical Society, 1961.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 and cifar-10 (canadian institute for
advanced research). http://www.cs.toronto.edu/~-kriz/cifar.html, 2009. MIT
License.

Greg Landrum et al. RDKit: Open-source cheminformatics software, 2016. URL http://www.
rdkit.org/, https://github.com/rdkit/rdkit.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436-444,
2015.

Longlong Li, Yipeng Zhang, Guanghui Wang, and Kelin Xia. Ka-gnn implementation. https:
//github.com/LongLee220/KA-GNN/tree/main. Accessed: 2025-09-13.

Longlong Li, Yipeng Zhang, Guanghui Wang, and Kelin Xia. Kolmogorov—arnold graph neural
networks for molecular property prediction. Nature Machine Intelligence, pp. 1-9, 2025.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science, 2024a. URL https://arxiv.org/abs/
2408.10205l

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Confer-
ence (GTC).

Mohit Pandey, Michael Fernandez, Francesco Gentile, Olexandr Isayev, Alexander Tropsha, Abra-
ham C Stern, and Artem Cherkasov. The transformational role of gpu computing and deep learn-
ing in drug discovery. Nature Machine Intelligence, 4(3):211-221, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher R€. Hyena hierarchy: Towards larger convolutional
language models, 2023. URL https://arxiv.org/abs/2302.10866,

Kaihuai Qin. General matrix representations for b-splines. In Proceedings Pacific Graphics’ 98.
Sixth Pacific Conference on Computer Graphics and Applications (Cat. No. 98EX208), pp. 37—
43. 1IEEE, 1998.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learn-
ing (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural net-
works, 2022. URL https://arxiv.org/abs/2102.09844.

Kristof T Schiitt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Miiller.

Schnet-a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24), 2018.

12

http://www.cs.toronto.edu/~kriz/cifar.html
http://www. rdkit. org/, https://github. com/rdkit/rdkit
http://www. rdkit. org/, https://github. com/rdkit/rdkit
https://github.com/LongLee220/KA-GNN/tree/main
https://github.com/LongLee220/KA-GNN/tree/main
https://arxiv.org/abs/2408.10205
https://arxiv.org/abs/2408.10205
https://github.com/nvidia/warp
https://arxiv.org/abs/2302.10866
https://arxiv.org/abs/2102.09844

Under review as a conference paper at ICLR 2026

Srijit Seal, Manas Mahale, Miguel Garcia-Ortegén, Chaitanya K Joshi, Layla Hosseini-Gerami,
Alex Beatson, Matthew Greenig, Mrinal Shekhar, Arijit Patra, Caroline Weis, et al. Machine
learning for toxicity prediction using chemical structures: Pillars for success in the real world.
Chemical research in toxicology, 38(5):759-807, 2025.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024. URL
https://arxiv.org/abs/2407.08608.

Shriyank Somvanshi, Syed Aaqib Javed, Md Monzurul Islam, Diwas Pandit, and Subasish Das. A
survey on kolmogorov-arnold network. ACM Computing Surveys, 2024.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.orqg/abs/2105.01601.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Patrick Walters. We need better benchmarks for machine learning in drug discov-
ery. https://practicalcheminformatics.blogspot.com/2023/08/
we—-need-better—-benchmarks—for-machine.html. Accessed: 2025-05-30.

Yuyang Wang, Zijie Li, and Amir Barati Farimani. Graph Neural Networks for Molecules,
pp. 21-66. Springer International Publishing, 2023. ISBN 9783031371967. doi: 10.1007/
978-3-031-37196-72. URL http://dx.doi.org/10.1007/978-3-031-37196-7_
2.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine learn-
ing, 2018. URL https://arxiv.org/abs/1703.00564,

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison, 2024. URL
https://arxiv.org/abs/2407.16674.

Fan Zhang and Xin Zhang. Graphkan: Enhancing feature extraction with graph kolmogorov arnold
networks, 2024. URL https://arxiv.org/abs/2406.13597.

A APPENDIX
You may include other additional sections here.

A.1 CUBIC B-SPLINE BASIS MATRIX REPRESENTATION

For a B-spline of order 3, the basis matrix representation can be written as,

1 4 1 0
1=
spline(u) = [1 u u? us]g 33 —06 g 8 @
-1 3 -3 1

A.2 INTERPRETABLE UKAN

A key motivation behind KANSs is that they expose an interpretable computation graph in which
each edge carries a low-dimensional spline whose coefficients can be inspected, pruned, or even
symbolically regressed. Although UKAN replaces the fixed spline table with a coefficient-generator
MLP (CG-MLP), we can recover a similarly interpretable representation by slightly modifying the
training procedure. Here, we describe how to recover an interpretable representation in UKAN by

13

https://arxiv.org/abs/2407.08608
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://practicalcheminformatics.blogspot.com/2023/08/we-need-better-benchmarks-for-machine.html
https://practicalcheminformatics.blogspot.com/2023/08/we-need-better-benchmarks-for-machine.html
http://dx.doi.org/10.1007/978-3-031-37196-7_2
http://dx.doi.org/10.1007/978-3-031-37196-7_2
https://arxiv.org/abs/1703.00564
https://arxiv.org/abs/2407.16674
https://arxiv.org/abs/2406.13597

Under review as a conference paper at ICLR 2026

(1) decoupling the coefficient-generator MLP (CG-MLP) on a per-edge basis and (ii) adding L1
(magnitude) and entropy regularization terms on the generated B-spline coefficients, analogously to
the original KAN formulation |Liu et al.|(2024b).

For each edge (¢ — j) in a given layer /, the associated CG-MLP outputs a vector of B-spline
coefficients .

c;]) e R,
where K is the number of spline basis functions on that edge. These coefficients replace the fixed
KAN table entries and are used in the basis-matrix evaluation described in Eq.[8]

L1 (magnitude) regularization. Following Liu et al.| (2024b), we define an L1 magnitude for

each edge as
il = ZI . (16)

and the L1 magnitude of layer ¢ as the sum over all edges in that layer,

n®

nul

||, = ZZHC“)Hp (17)

=1 j=1

where I'; denotes the collection of all CG-MLP coefficients in layer ¢.

Entropy regularization. To encourage each edge to concentrate its mass on a small subset of
spline segments, we normalize the absolute coefficients on edge (¢ — j):

() |C1 g,k
A T T k=1,...,K, (18)
J5k H (0) | +e
with a small € > 0 added for numerical stability. The entropy of that edge is then
S(cf) pr} plogpl) (19)

k=1

and the entropy of layer / is
n®

Z Z S(e (20)

=1 j=1

Total loss. Let {;q denote the task (prediction) loss. The total training objective for UKAN with
interpretability regularization is

L—-1 L—-1
Lol = gpred +A (,ul ZHF[HI + p2 Z S(F€)>) (21)

=0 £=0

where) is a global regularization weight and (u1, p2) balance the relative strength of the L1 and
entropy terms, respectively. This is a direct analog of the KAN objective (Egs. (2.17)—(2.20) in Liu
et al.|(2024b))), with activation functions replaced by CG-MLP-generated coefficient vectors.

Pruning and visualization. After training, we compute the effective contribution of each edge

by combining its learned scalar weight (if present) and the magnitude of its coefficient vector c()
Edges and spline segments whose contribution falls below a fixed threshold are pruned. The result-
ing sparse computation graph is then visualized in the same manner as in the original KAN paper.

For the regression task

y = exp(sin(mz1) + 23),
The pruned UKAN graph obtained in this setting (Figure [/|in the appendix) recovers the expected
quadratic dependence on x5 and sinusoidal dependence on z 1, and matches the original KAN pruned
graph up to a permutation of hidden nodes.

14

Under review as a conference paper at ICLR 2026

e
I

N

X1 X2

)

Figure 7: Pruned UKAN model for the regression task y = exp(sin(mz1) + x3).

A.3 UKAN MAPPING TO KAN IN INFERENCE

Proposition (UKAN — KAN at inference). Fix B—spline degree k£ and uniform grid spacing h,
and set K := k + 1. Consider a UKAN whose coefficient—generator (CG) produces a group vector
G, € R¥ for each group index g € Z. Evaluation uses the same local stencil as KAN,

spline(z) = U (u) My, (-), Uu) = (1,u,...,u¥), u= =Lt e [0,1),

with t; = ¢ h the knot at cell index ¢. Let X C R be the (finite) set of inputs on which inference is
performed; more generally, let 7 be any compact interval containing &X'. Then there exists a KAN
with coefficients {C;} defined only for cells intersecting Z such that the KAN exactly matches the
UKAN on X (indeed, on all of 7).

Proof. For each cell index ¢ whose cell [t;,t; 1) intersects Z, write i = gK + r with
g:{%J, r=imod K €{0,..., K —1}.

Query the CG once (in inference mode; parameters fixed) to obtain the adjacent group vectors
Gyg-1,G4 € RX, and materialize the KAN’s local coefficients by the sliding window

C; = slice([Gy_1; Gy, r: 7+ K) € R¥,

15

Under review as a conference paper at ICLR 2026

where [- ; -] denotes concatenation and slice(+, a:b) extracts entries a, . . ., b— 1. By construction, for
any x in cell ¢ the UKAN evaluation applies the same linear stencil U (u) M}, to the same length-K
window drawn from [G,_1; G4]. Hence

Uu)My C; = U(u)Myslice([Gg—1;Gyl, rir + K),

which is exactly the UKAN output in that cell. Because Z intersects finitely many cells, the above
defines finitely many C; and therefore a finite—parameter KAN that agrees with the UKAN on all
x € Z, in particular on the finite inference set X.

A.4 N-BODY PROBLEM

KANSs promise better generalization compared to MLPs for regression tasks, similar to equivari-
ant models allowing for the exploitation of symmetries for improved generalization. In particular,
E(n)-Equivariant Graph Neural Networks (EGNNs) are equivariant with respect to the translations,
rotations, and permutations [Satorras et al.| (2022). Here, we explore how combining equivariance
with KAN leads to improved performance in the study of n-body systems as described in the EGNN
paper [Satorras et al.| (2022). To evaluate this, we replace the final scalar predicting MLPs in EGNN
with UKAN and KAN layers. Specifically, the scalar outputs of ¢, and ¢, in equations below are
predicted with UKAN and KAN.

Vf-H = ¢v (hf) vt C Z(Xf - Xﬁ) gbw(mf;'l), Xf+1 = Xf + Vf-H'
[ET

Where x!* and v{*) are the position and velocity of i*" particle in the 1" layer of EGNN. We keep
the rest of parameters and datasets identical to the original paper and their code on Github. We
also train the SE(3) Transformer model as another reference point. The results are shown in Table|/}
where we observe that UKAN and KAN improve the accuracy compared to the original architecture,

and the improvement of UKAN is better than the KAN model.

Table 7: Mean Squared Error for the future position prediction in the N-body system.

Method MSE
EGNN 0.00638
EGNN+KAN 0.00609

EGNN+UKAN 0.00591
SE(3) Transformer 0.02469

A.5 ARCHITECTURE DETAILS OF DDPM

The Decoder network is designed to transform input features through a series of linear and temporal
layers. Here we explain architecture without KAN or UKAN layers, i.e. with only linear layer and
SiLU nonlinearity, and mention the differences at the end. The architecture consists of an input
linear layer, three temporal layers, and an output linear layer.

The Decoder is constructed with the following layers:
* Input Linear Layer: The initial fully connected layer transforms the input features from
the input dimension to an intermediate dimension.

* Temporal Layers: A series of temporal layers; specifically designed for the handling of
time-dependent data. In our implementation, we use three temporal layers.

* Output Linear Layer: The final fully connected layer transforms the intermediate features
back to the original input dimension.

* Nonlinearity: The intermediate features passed through SiLU non-linear activation func-
tion before being processed by the temporal layers.

16

Under review as a conference paper at ICLR 2026

The Temporal Layer is designed to integrate temporal information into the feature transformation
process. This layer receives the input features and a temporal embedding, processes them through a
series of linear transformations, and combines the outputs with a skip connection to ensure that the
temporal information is effectively incorporated.

The Temporal Layer consists of the following components:

* Fully Connected Layers: These layers perform linear transformations on the input fea-
tures.

* Temporal Encoding: This layer projects the temporal embedding to the same dimensional
space as the output features.

» Skip Connection: If the input and output features have the same dimension, an identity
mapping is used. Otherwise, a linear transformation is applied to match the dimensions.

* QOutput Linear Layer: This layer produces the final output by combining the transformed
features with the skip connection.

Within KAN and UKAN architectures, we only replaced the output linear layers of the Decoder
network and Temporal layers with UKAN and KAN layers. We used UKAN with grid delta of 0.4
and 24 dimensional positional encoding and KAN with 11 grid between -2 and 2. Both KAN and
UKAN were order 3 B-spline functions without MLP component.

A.6 ARCHITECTURE DETAILS OF MOLECULAR PROPERTY PREDICTION

The model architecture consists of 3 layers of KAN/UKAN with hidden dimension equal to 2X
the dimension of the input computed molecular features. The Morgan fingerprint was computed
using RDKit packagelLandrum et al.| (2016)) with a radius of 2 and a bit length of 1024, yielding a
molecular features of dimension 1024. RDKit 2D descriptors were computed using RDKit package
and normalized using descriptastorus packagedes| resulting in a vector of size 200. Both KAN and
UKANSs were used with order 3 B-spline functions and a grid delta of 1.0. KANSs usually contains
far higher number of parameters in comparison to UKANS. In this setting, UKAN models contain 2
orders of magnitude fewer parameters but still show superior accuracy in comparison to KANSs.

Table 8: Number of parameters of KAN and UKAN models with computed molecular features
Descriptor KAN UKAN
Morgan fingerprint ~ 2.56B 6.66M
RDKit descriptors ~ 97.84M 312K

A.7 ARCHITECTURE DETAILS OF GCN

KAN/UKAN/FKAN-GCN We build three GCN variants by replacing MLP block (node embed-
ding, message passing, and readouts) with a KAN, UKAN, or FKAN layer, respectively.

Node embedding. Given initial node features f, € R~ and neighbor set NV'(v), we form an
embedding by concatenating f,, with a degree-normalized neighbor average and passing it through
a basis layer ® i (-) implemented by KAN/UKAN/FKAN:

hq(jo) =&p [fv; W Z fu}

u€eN (v)
Message passing.

At layer /, the neighbor is first transformed by the basis layer <I>§M () and aggregated over the neigh-
bor with summation.

m(zg _ <I>§f)(h§f)), U+ Z me+D)

u v vu
ueN (v)

17

Under review as a conference paper at ICLR 2026

Readout. After L layers (four layers in our experiments), node features are pooled with AVG
(any permutation-invariant P € {AVG,SUM,MAX} is supported) and mapped to outputs by a
KAN/UKAN/FKAN readout:

h=PH{hP :veVv}), § = oxr(h).

Here, each @z 5/, R}(-) denotes the same structural layer instantiated with a different basis: KAN
uses fixed, bounded B-spline grids; UKAN uses a coefficient-generator to produce local B-spline
coefficients on an unbounded symmetric grid; FKAN replaces the spline basis with a Fourier basis.
All variants are drop-in compatible.

B DATA PREPREPROCESSING

B.1 MOLECULAR PROPERTY PREDICTION

The molecular property prediction dataset was curated using standard practices in cheminformatics
like removal of invalid SMILES, molecule standardization, removal salts, charge neutralization, and
mean aggregation of any duplicate labels. This curation practice roughly following the guidelines
outlined in [Fourches et al.| (2010). The molecules were split into train, validation, and test set using
Bemis-Murcko scaffold split for each of the tasks in the dataset. In order to make statistically
significant comparisons, only tasks containing a more than 500 labels were used. This resulted in
selecting 4 out of the 6 tasks presented in the original paper/Fang et al.| (2023)

C RESULTS

C.1 ANALYSES OF DRUG DISCOVERY SECTION

The mean absolute error of the prediction of KAN and UKAN on test set molecules binned by the
distance to their nearest neighbor in the training set is shown in Figure[8] Results of Morgan finger-
print fixed descriptor are used as it is straightforward to compute distance between two molecules.
The distance between two molecules m; and m; with Morgan fingerprint f; and f; is computed as
d(m;,m;) = 1 — TanimotoSimilarity(f;, f;). Both KAN and UKAN show similar performance
characteristics with error increasing as test set molecules become more dissimilar to the training
set. UKAN shows slightly lower error at larger distances to training set indicating more robust
generalization to out-of-distribution datasets.

C.2 KAN/UKAN/FKAN-GCN RESULTS ON MOLECULENET

Li et al.| (2025)) introduced a graph neural network with multi-layer perceptron layers replaced
with KANs. The authors demonstrate that such an architectures shows strong performance on the
MoleculeNet datasets. However, we identified two issues with the KAN-GCN implementation by
Li et al.f (1) Best model selection is performed on test loss instead of validation loss, which is a de-
viation from the best practices in machine learning. (2) MoleculeNet consists of multi-task datasets
with missing labels. The missing labels were assigned a value of 0.0 instead of being treated as a
missing label. Train and test metrics were computed based on this artificial label. We have fixed
these issues in our reimplementation using warpKAN library.

To assess scalability of our implementation, we evaluate KAN, UKAN, and Fourier-based KAN
(FKAN) graph convolutional neural network (GCN) on seven MoleculeNet datasets|Wu et al.|(2018).
The total number of components in the dataset is over 148,000 molecules, where each molecule is
composed of several heavy atoms, e.g., BACE and Tox21 have on average 65 and 36 atoms. While
the MoleculeNet datasets have many issues as noted in [Walters, we have run this experiments in
order to compare directly with the results of KAN-GCN. Additionally, some of the MoleculeNet
datasets are also significantly larger than the Biogen ADME datasets. For example, the MUV
dataset from MoleculeNet is 30X larger than the largest dataset in Biogen ADME. The number
of parameters also varies significantly among the models with UKAN-GNN and FKAN-GCN con-
taining ~75K parameters and ~45K parameters respectively. KAN-GCN models are much larger
with ~2.3M parameters.

18

Under review as a conference paper at ICLR 2026

972
973

974
975 Microsomal stability (human) Microsomal stability (rat)

14
o

976
977
978
979
980
981
982
983
984
985

e
n

MAE by distance bin
° o
" a
MAE by distance bin

e
[N

e
b

o
5}

00 01 02 03 04 05 06 07 08 09

00 01 02 03 04 05 06 07 08 09
986 Minimum distance to training set Minimum distance to training set

Permeability Solubility

——- KAN overall MAE
0.74 ——- UKAN overall MAE

988 e
089 P i — — | = s
990
991
992
993
994
995 o1
996 N o o

997 00 01 02 03 04 05 06 07 08 09 00 01 02 03 04 05 06 07 08 09
998 Minimum distance to training set Minimum distance to training set

999
1000
1001

0.3 4

o
s
L

0.2 4

MAE by distance bin
MAE by distance bin

Figure 8: A figures showing the performance of UKAN and KAN using Morgan fingerprint fixed
1002 descriptor as a function of distance of test set molecules to their nearest molecule in training set.
1003 The number of test set molecules in each bin is shown at the bottom of the bars.

1004

1005
1005 We modify a standard GCN [Wang et al.| (2023) by replacing its MLP blocks with KAN or UKAN

layers (see Appendix [A.7). To the best of our knowledge, our training is one of the large-scale

1007
1228 training that incorporates KAN in all parts of GCN. Note while works like[Zhang & Zhang| (2024);
o0 Bresson et al.| (2025)) claim KAN usage it is usually limited to initial node embedding or readouts,

as without efficient implementations like ours it is infeasible to investigate KAN in large scale. We
1010 train three models, where we divide data into training, validation, and testing datasets and select the
1011 best model based on the validation loss. We report the area under the curve (AUC) for models in
1012 Table[] Each model is trained for 500 epochs using Adam optimizer with learning rate of 2e-4 and a
1013 step scheduler with a decay rate of 0.9 every 20 steps. Unlike values reported in[Li et al.| (2025), we
1014 see the accuracy of B-Spline- and Fourier-based models are very close to each other, when model
1015 selection is done correctly. The statistically best performing model(s) (using T-test for means) are
1015 reported in bold.

1017

:g:g Table 9: Performance of KAN-GCN, UKAN-GCN, and FKAN-GCN on MoleculeNet datasets (1 is
better).

1020 "Dataset BBBP BACE ClinTox _ Tox2l SIDER HIV MUV
1021 Tasks 1 I 2 27 2 I 17
1022 #molecules 2,039 1,513 1,477 7,831 1,427 41,127 93,087
1022 TKAN 65.6(22) 80.0(24) 96.5(0.2) 79.4(0.7) 83.5(0.2) 76.5(1.3) 71.8(5.7)
1024 UKAN 64.5(2.2) 74.9(6.3) 94.7(0.9) 77.4(0.5) 83.7(0.2) 75.2(1.0) 69.6(2.1)
1025 FKAN 67.0(2.0) 80.5(3.0) 96.5(0.1) 79.4(0.8) 82.2(0.1) 74.1(2.2) 76.5(1.2)

19

Under review as a conference paper at ICLR 2026

D FuUseD UKAN

Here, we provide a code snippet in warp where we fused CG-MLP with B-spline evaluation in order
to reduce memory and runtime of UKAN compared to KAN.

Listing 1: Fused UKAN order-1 forward kernel in Warp

EMBED_DIM = 16
K =1

DIM_IN = 32
DIM_OUT = 32

@wp. func
def silu(x: float) —-> float:
return x / (x.dtype(l1.0) + wp.exp(-x))

@wp.kernel
def fused_ukan_kernel_order_1_fwd(x: wp.array2d(dtype=float),
wl: wp.array2d(dtype=float),
w2: wp.array2d(dtype=float),
TODO: add local embeds
y: wp.array2d(dtype=float)) :

b, tid wp.tid ()
x_tile = wp.tile_load(x[b], shape=(DIM_IN), offset=(0))

grid_embeds_cur = wp.tile_zeros (shape=(DIM_IN, EMBED_DIM), dtype=float
)

grid_embeds_prev = wp.tile_zeros (shape=(DIM_IN, EMBED_DIM), dtype=
float)

for ij in range(tid, wp.static(DIM_IN * EMBED_DIM), 256):
i = 1ij // EMBED_DIM
j = ij % EMBED_DIM
id_group = wp.float32 (wp.int32 (wp.floordiv(x_tile[i], wp.float32
(0.2))) / (wp.static(K) + 1))

grid_embeds_cur[i, j] = wp.sin(id_group * wp.float32(2 * 7 /
EMBED_DIM))
grid_embeds_prev([i, j] = wp.sin((id_group - wp.float32(1.0)) * wp.

float32(2 * j / EMBED_DIM))

w_tile = wp.tile_load(wl, shape=(EMBED_DIM, EMBED_DIM), offset=(0,0))
y_tile = wp.tile_matmul (grid_embeds_cur, w_tile) # (DIM_IN, EMBED_DIM)
@ (EMBED_DIM, EMBED_DIM) -> (DIM_IN, EMBED_DIM)
y_tile_prev = wp.tile_matmul (grid_embeds_prev, w_tile) # (DIM_IN,
EMBED_DIM) @ (EMBED_DIM, EMBED_DIM) -> (DIM_IN, EMBED_DIM)

y_tile = wp.tile_map(silu, y_tile) # (DIM_IN, EMBED_DIM)

y_tile_prev = wp.tile_map(silu, y_tile_prev) # (DIM_IN, EMBED_DIM)

w2_tile = wp.tile_load (w2, shape=(EMBED_DIM, wp.static(DIM_OUT % K)),
offset=(0,0))

y2_tile = wp.tile_matmul (y_tile, w2_tile) # (DIM_IN, EMBED_DIM) @ (
EMBED_DIM, DIM_OUT % K) -> (DIM_IN, DIM_OUT =* K)

yv2_tile_prev = wp.tile_matmul (y_tile_prev, w2_tile) # (DIM IN,
EMBED_DIM) @ (EMBED_DIM, DIM_OUT = K) —-> (DIM_IN, DIM_OUT =* K)

tvec = wp.vec2 (wp.float32(1.0))

mat20 = wp.vec2 (wp.float32(-1.), wp.float32(1.))
mat2l = wp.vec2(wp.float32(1.0), wp.float32(0.))

if tid < DIM_IN:
res = wp.float32(0.0)

20

Under review as a conference paper at ICLR 2026

for 3 in range (DIM_OUT) :
id_grid = wp.int32 (wp.floordiv(x_tile[i], wp.float32(0.2)))
cvec = wp.vec2 (wp.float32(0.0))

t = x_tile[i] / wp.float32(0.2) - wp.float32(id_grid)
start = id_grid %
start = wp.where (
elem = int (1)
for cnt in range(start+2, start, -1):

cvecelem] = wp.where(cnt < wp.static(K), y2_tile_prev([tid, j

* K + cnt], y2_tile[tid, j * K + cnt])
elem = elem - int (1)

2
start < 0, start + 2, start)

for w in range (0, -1, -1):
tvec[w] = tvec[w+l] * t

res_right = wp.vec2 (wp.dot (tvec, mat20),
wp.dot (tvec, mat2l))

res += wp.dot (res_right, cvec)

y[b, tid] = res

E CLASSIFICATION OVER CIFAR AND IMAGENET

MLP-Mixer is a vision model that replaces both convolutions and self-attention with a simple yet
expressive stack of MLPs. An input image is first split into non-overlapping patches, each patch
is linearly projected to a fixed-dimensional embedding, and the resulting patch embeddings are ar-
ranged as a matrix of shape (number of patches) x (channels). Each Mixer layer then alternates
two MLP blocks: a token-mixing MLP that operates across the patch dimension independently for
each channel (thereby enabling spatial interaction), and a channel-mixing MLP that operates across
channels independently for each patch (enabling feature mixing at each location). Both blocks are
implemented with standard fully connected layers, non-linearities, layer normalization, and residual
connections, so the entire architecture can be realized using only dense matrix multiplications. De-
spite its lack of convolutional or attention-based inductive biases beyond patching, MLP-Mixer has
been shown to achieve competitive performance with strong CNN and ViT baselines on large-scale
image classification benchmarks, making it a natural convolution-free baseline in our experiments.

In this section, we use MLP-Mixer as a convolution-free baseline and replace its token-mixing MLP
backbone with KAN and UKAN layers. These experiments mainly demonstrate the large-scale
training capabilities of warpKAN on a standard vision architecture by directly swapping in KAN
and UKAN layers into existing architectures, and they are not meant to be SOTA models in im-
age classifications. These experiments also act as a design study for future versions of warpKAN,
informing our roadmap toward TensorCore—accelerated and tile-based implementations of KAN in
warpKAN that further improve efficiency at scale.

We start by training a family of MLP-Mixer baselines on CIFAR-10 and then systematically replac-
ing the token-mixing MLP with KAN or UKAN layers to study their behavior in a standard vision
setting. For all models, we fix the backbone and training hyperparameters: the hidden dimension is
set to 256, patch size 16x16, and depth 16, the token-mixing expansion factor to 4, channel-mixing
expansion factor to 0.5. On top of this fixed backbone, we perform an ablation over KAN/UKAN-
specific design choices, in particular the spline grid size and spline order, and measure their impact
on training accuracy. This setup isolates the effect of the spline parameters and allows us to directly
compare standard MLP-Mixer token mixing with its KAN and UKAN counterparts under matched
model capacity. In Table[I0} we compare top-1 accuracy of different models.

We observe that in classification tasks KAN slightly outperforms MLP and has better compute/mem-
ory fingerprints than UKAN, therefore, on ImageNet-1K (composed of 1.2+M images), we only
train MLP and KAN backbone (KAN with order 2 and 3) for 45 epochs. For all models, we choose
identical backbone and training hyperparameters as CIFAR-10 model except for the hidden dimen-
sion of 512 and patch size of 32x32. The results are shown for Top5 accuracy in Table We

21

Under review as a conference paper at ICLR 2026

Table 10: Accuracy of different models and configurations on CIFAR-10.
Model order h Iteration/s Params (M) Top-1 Accuracy (%)

KAN 3 1.0 7.86 5.5 74.0
KAN 3 0.0625 6.83 1.6 72.6
KAN 2 1.0 8.71 1.5 73.7
KAN 4 1.0 5.45 1.6 73.6
MLP - - 26.46 1.2 73.1
UKAN 3 1.0 1.55 1.3 73.4

observe slight improvement in accuracy and motivates development of tiled and TensorCore-based
implementations in warpKAN for small grid size. There is also opportunity to fuse CG-MLP into
B-Spline component of UKAN, therefore improving its memory and compute fingerprints.

Table 11: Accuracy of different models and configurations on ImageNet-1K.
Model order h Iteration/s Params (M) Top-5 Accuracy (%)

KAN 3 1.0 1.50 10.6 65.6
KAN 2 1.0 1.97 10.2 66.0
MLP - - 8.48 6.6 64.9

F LLM USAGE

We used large-language models (LLMs) as general-purpose assistive tools during the preparation of
this paper. Specifically:

* Writing support: LLMs were used to improve grammar, clarity, and text flow. All techni-
cal content, methodology, experimental design, and conclusions were conceived and veri-
fied by the authors.

» Editing and formatting: LLM:s assisted in rephrasing sentences for readability, generating
LaTeX table and figure formatting, and ensuring consistency in notation.

* Brainstorming: LLMs were used to explore alternative phrasings, organizational struc-
tures, and to verify the completeness of the literature-related sections.

No LLM-generated text or ideas were included without careful review and verification by the au-
thors. The models did not contribute to scientific novelty, research ideation, or experimental results.
The authors assume full responsibility for all content in this manuscript.

22

	Background
	Algorithm
	Experiments
	Performance Benchmarking
	Tasks
	Regression
	Classification
	Approximation
	Generation
	Real-world Application: Drug Discovery

	conclusion
	Appendix
	Cubic B-Spline Basis Matrix Representation
	Interpretable UKAN
	UKAN mapping to KAN in Inference
	N-body Problem
	Architecture Details of DDPM
	Architecture details of molecular property prediction
	Architecture Details of GCN

	Data prepreprocessing
	Molecular property prediction

	Results
	Analyses of drug discovery section
	KAN/UKAN/FKAN-GCN results on MoleculeNet

	Fused UKAN
	Classification over CIFAR and IMAGENET
	LLM Usage

