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ABSTRACT

Text-to-3D generation has made remarkable progress recently, particularly with
methods based on Score Distillation Sampling (SDS) that leverages pre-trained
2D diffusion models. While the usage of classifier-free guidance is well acknowl-
edged to be crucial for successful optimization, it is considered an auxiliary trick
rather than the most essential component. In this paper, we re-evaluate the role of
classifier-free guidance in score distillation and discover a surprising finding: the
guidance alone is enough for effective text-to-3D generation tasks. We name this
method Classifier Score Distillation (CSD), which can be interpreted as using an
implicit classification model for generation. This new perspective reveals new in-
sights for understanding existing techniques. We validate the effectiveness of CSD
across a variety of text-to-3D tasks including shape generation, texture synthesis,
and shape editing, achieving results superior to those of state-of-the-art methods.
Our project page is https://xinyu-andy.github.io/Classifier-Score-Distillation

1 INTRODUCTION

3D content creation is important for many applications, such as interactive gaming, cinematic arts,
AR/VR, and simulation. However, it is still challenging and expensive to create a high-quality 3D
asset as it requires a high level of expertise. Therefore, automating this process with generative
models has become an important problem, which remains challenging due to the scarcity of data
and the complexity of 3D representations.

Recently, techniques based on Score Distillation Sampling (SDS) (Poole et al., 2022; Lin et al.,
2023; Chen et al., 2023; Wang et al., 2023b), also known as Score Jacobian Chaining (SJC) (Wang
et al., 2023a), have emerged as a major research direction for text-to-3D generation, as they can
produce high-quality and intricate 3D results from diverse text prompts without requiring 3D data
for training. The core principle behind SDS is to optimize 3D representations by encouraging their
rendered images to move towards high probability density regions conditioned on the text, where
the supervision is provided by a pre-trained 2D diffusion model (Ho et al., 2020; Sohl-Dickstein
et al., 2015; Rombach et al., 2022; Saharia et al., 2022; Balaji et al., 2022). DreamFusion (Poole
et al., 2022) advocates the use of SDS for the optimization of Neural Radiance Fields (NeRF).
(Barron et al., 2022; Mildenhall et al., 2021). Subsequent research improve the visual quality by
introducing coarse-to-fine optimization strategies (Lin et al., 2023; Chen et al., 2023; Wang et al.,
2023b), efficient 3D representations (Lin et al., 2023; Chen et al., 2023), multi-view-consistent
diffusion models (Shi et al., 2023; Zhao et al., 2023), or new perspectives on modeling the 3D
distribution (Wang et al., 2023b). Despite these advancements, all these works fundamentally rely
on score distillation for optimization.

Although score distillation is theoretically designed to optimize 3D representations through proba-
bility density distillation (Poole et al., 2022; Oord et al., 2018), as guided by pre-trained 2D diffusion
models (i.e., Eq. (4)), a practical gap emerges in its implementation due to the widespread reliance
on classifier-free guidance (CFG) (Ho & Salimans, 2022). When using CFG, the gradient that drives
the optimization actually comprises two terms. The primary one is the gradient of the log data den-
sity, i.e., log pϕ (xt|y), estimated by the diffusion models to help move the synthesized images x
to high-density data regions conditioned on a text prompt y, which is the original optimization ob-
jective (see Eqs. (4) and (5)). The second term is the gradient of the log function of the posterior,

*This work is in collaboration with VAST.
†Corresponding author.

1

https://xinyu-andy.github.io/Classifier-Score-Distillation


Published as a conference paper at ICLR 2024

“Rugged, vintage-inspired hiking boots 
with a weathered leather finish”

“Uniform jacket of the captain” “Humanoid warrior with a tiger head, 
adorned in Chinese-style armor, 
wielding traditional weapons”

“Cirilha lives in the forest”

“a DSLR photo of an orc forging a hammer on an anvil” “a zoomed out DSLR photo of an astronaut chopping vegetables in a sunlit kitchen”

“a wide angle DSLR photo of a humanoid banana sitting at a desk doing homework” “a zoomed out DSLR photo of a panda wearing a chef's hat and 
kneading bread dough on a countertop”

(b) Textured mesh generation from text-prompts

(c) Synthesize texture for given meshes from text-prompts

(a) NeRF generation from text-prompts

“a DSLR photo of a red pickup truck 
driving across a stream”

“a DSLR photo of a chimpanzee 
dressed like Henry VIII king of 
England”

“a DSLR photo of a koala wearing a 
party hat and blowing out birthday 
candles on a cake”

“a DSLR photo of a pig playing a 
drum set”

“a DSLR photo of cat wearing virtual 
reality headset in renaissance oil 
painting high detail Caravaggio”

“a zoomed out DSLR photo of a 
chimpanzee wearing headphones”

“a zoomed out DSLR photo of a toad 
catching a fly with its tongue”

“a nest with a few white eggs and 
one golden egg”

“a DSLR photo of a barbecue grill 
cooking sausages and burger patties”

“a DSLR photo of a robot and dinosaur 
playing chess, high resolution”

“a DSLR photo of a drum set made of 
cheese”

“a DSLR photo of edible typewriter 
made out of vegetables”

Figure 1: Illustrative overview of our method’s capabilities. (a) Generation of a Neural Radiance
Field (NeRF) from text inputs, trained using a 64×64 diffusion guidance model. (b) Subsequent
refinement leads to high-quality textured meshes using a 512×512 diffusion guidance model. (c)
Texture synthesis on user-specified meshes, resulting in highly realistic and high-resolution detail.
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i.e., log pϕ (y|xt), which can be empirically interpreted as an implicit classification model (Ho &
Salimans, 2022). We elaborate more on this in Sec. 3. The combination of these two components
determines the final effect of optimizing the 3D representation. Notably, although the use of CFG
(i.e., the second term) is widely recognized as vital for text-to-3D generation, it is considered an
auxiliary trick to help the optimization, rather than as the primary driving force.

In this paper, we show that the classifier component of Score Distillation Sampling (SDS) is not
just auxiliary but essential for text-to-3D generation, and using only this component is sufficient.
We call this paradigm Classifier Score Distillation (CSD). This insight fundamentally shifts our
understanding of the mechanisms underlying the success of text-to-3D generation based on score
distillation. Specifically, the efficacy stems from distilling knowledge from an implicit classifier
pϕ (y|xt) rather than from reliance on the generative prior pϕ (xt|y). This finding further enables
us to uncover fresh insights into existing design choices: 1) We demonstrate that utilizing negative
prompts can be viewed as a form of joint optimization with dual classifier scores. This realization
enables us to formulate an annealed negative classifier score optimization strategy, which enhances
generation quality while maintaining the result faithfulness according to prompts. 2) Building on
our understanding, we illustrate the utilization of classifier scores for efficient text-driven 3D editing.
3) The Variational Score Distillation technique (Wang et al., 2023b) can be viewed as an adaptive
form of negative classifier score optimization, where the negative direction is supplied by a diffusion
model trained concurrently.

CSD can be seamlessly integrated into existing SDS-based 3D generation pipelines and applica-
tions, such as text-driven NeRF generation, textured mesh generation, and texture synthesis. As
demonstrated in Fig. 1, our method produces high-quality generation results, featuring extremely
photo-realistic appearances and the capability to generate scenes corresponding to complex textual
descriptions. We conduct extensive experiments to evaluate the robustness of our approach and
compare our method against existing methods, achieving state-of-the-art results.

2 DIFFUSION MODELS

The diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021; Song & Er-
mon, 2020) is a type of likelihood-based generative model used for learning data distributions.
Given an underlying data distribution q(x), the model initiates a forward process that progres-
sively adds noise to the data x sampled from q(x). This produces a sequence of latent variables
{x0 = x,x1, . . . ,xT }. The process is defined as a Markov Chain q(x1:T |x) :=

∏T
t=1 q(xt|xt−1)

with Gaussian transition kernels. The marginal distribution of latent variables at time t is given by
q(xt|x) = N (αtx, σ

2
t I). This is equivalent to generating a noise sample xt using the equation

xt = αtx+ σtϵ, where ϵ ∼ N (0, I). Parameters αt and σt are chosen such that σ2
t + α2

t = 1, and
σt gradually increases from 0 to 1. Thus, q(xt) converges to a Gaussian prior distribution N (0, I).

Next, a reverse process (i.e., the generative process) is executed to reconstruct the original signal
from xT . This is described by a Markov process pϕ(x0:T ) := p(xT )

∏T
t=1 pϕ(xt−1|xt), with the

transition kernel pϕ (xt−1 | xt) := N
(
µϕ (xt, t) , σ

2
t I
)
. The training objective is to optimize µϕ by

maximizing a variational lower bound of the log data likelihood. In practice, µϕ is re-parameterized
as a denoising network ϵϕ (Ho et al., 2020) and the loss can be further simplified to a Mean Squared
Error (MSE) criterion (Ho et al., 2020; Kingma et al., 2021):

LDiff (ϕ) := Ex∼q(x),t∼U(0,1),ϵ∼N (0,I)

[
ω(t) ∥ϵϕ (αtx+ σtϵ; t)− ϵ∥22

]
, (1)

where w(t) is time-dependent weights.

The objective function can be interpreted as predicting the noise ϵ that corrupts the data x. Besides,
it is correlated to NCSN denoising score matching model (Ho et al., 2020; Song & Ermon, 2020),
and thus the predicted noise is also related to the score function of the perturbed data distribution
q(xt), which is defined as the gradient of the log-density with respect to the data point:

∇xt
log q (xt) ≈ −ϵϕ (xt; t) /σt. (2)

This means that the diffusion model can estimate a direction that guides xt towards a high-density
region of q(xt), which is the key idea of SDS for optimizing the 3D scene. Since samples in high-
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density regions of q(xt) are assumed to reside in the high-density regions of q(xt−1) (Song &
Ermon, 2020), repeating the process can finally obtain samples of good quality from q(x).
Classifier-Free Guidance Text-conditioned diffusion models (Balaji et al., 2022; Saharia et al.,
2022; Rombach et al., 2022; Ramesh et al., 2022) generate samples x based on a text prompt y,
which is also fed into the network as an input, denoted as ϵϕ (xt; y, t). A common technique to
improve the quality of these models is classifier-free guidance (CFG) (Ho & Salimans, 2022). This
method trains the diffusion model in both conditioned and unconditioned modes, enabling it to
estimate both ∇xt

log q (xt|y) and ∇xt
log q (xt), where the network are denoted as ϵϕ (xt; y, t)

and ϵϕ (xt; t). During sampling, the original score is modified by adding a guidance term, i.e.,
ϵϕ(xt; y, t) → ϵϕ(xt; y, t) + ω · [ϵϕ(xt; y, t)− ϵϕ(xt; t)], where ω is the guidance scale that con-
trols the trade-off between fidelity and diversity. Using Eq. (2) and Bayes’ rule, we can derive the
following relation:

− 1

σt
[ϵϕ(xt; y, t)− ϵϕ(xt; t)] = ∇xt

log q (xt|y)−∇xt
log q (xt) ∝ ∇xt

log q (y|xt) . (3)

Thus, the guidance can be interpreted as the gradient of an implicit classifier (Ho & Salimans, 2022).

3 WHAT MAKES SDS WORK?

Score Distillation Sampling (SDS) (Poole et al., 2022) is a novel technique that leverages pretrained
2D diffusion models for text-to-3D generation. SDS introduces a loss function, denoted as LSDS,
whose gradient is defined as follows:

∇θLSDS (g(θ)) = Et,ϵ,c

[
w(t)

σt

αt
∇θ KL (q (xt|x = g(θ; c)) ∥pϕ (xt|y))

]
, (4)

where θ is the learnable parameter of a 3D representation (e.g., NeRF), and g is a differentiable
rendering function that enables obtaining the rendered image from the 3D scene θ and camera c.
The optimization aims to find modes of the score functions that are present across all noise levels
throughout the diffusion process which is inspired by work on probability density distillation (Poole
et al., 2022; Oord et al., 2018).

Eq. (4) can be simplified into: Et,ϵ,c

[
w(t)(ϵϕ(xt; y, t))

∂x
∂θ

]
. This formulation is more intuitive

than Eq. (4): The conditional score function ϵϕ(xt; y, t) indicates the gradient for updating xt to be
closer to high data density regions (see Eq. (2)), allowing the parameter θ to be trained using the
chain rule. However, in practice, DreamFusion recommends adjusting the gradient ϵϕ(xt; y, t) to
ϵϕ(xt; y, t) − ϵ since this modification has been found to improve convergence. This change does
not alter the overall objective because Et,ϵ,c

[
w(t)(−ϵ)∂x∂θ

]
= 0. Consequently, the final gradient to

update θ is expressed as:

∇θLSDS = Et,ϵ,c

[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
. (5)

What Makes SDS Work? A crucial aspect of score distillation involves computing the gradient
to be applied to the rendered image x during optimization, which we denote as δx(xt; y, t) :=
ϵϕ(xt; y, t)− ϵ. This encourages the rendered images to reside in high-density areas conditioned on
the text prompt y. From Eq. (4), in principle, ϵϕ(xt; y, t) should represent the pure text-conditioned
score function. However, in practice, classifier-free guidance is employed in diffusion models with a
large guidance weight ω (e.g., ω = 100 in DreamFusion (Poole et al., 2022)) to achieve high-quality
results, causing the final gradient applied to the rendered image to deviate from Eq. (5). Specifically,
δx with CFG is expressed as:

δx(xt; y, t) = [ϵϕ(xt; y, t)− ϵ]︸ ︷︷ ︸
δgen
x

+ω · [ϵϕ(xt; y, t)− ϵϕ(xt; t)]︸ ︷︷ ︸
δcls
x

. (6)

The gradient can be decomposed into two parts, i.e., δx := δgen
x + ω · δcls

x . According to Eq. (2)
and Eq. (3), the first term δgen

x is associated with ∇xt
log q (xt|y). This term signifies the gradient

direction in which the image should move to become more realistic conditioned on the text, which
we refer to as the generative prior. δcls

x is related to ∇xt
log q (y|xt), representing the update direction

required for the image to align with the text evaluated by an implicit classifier model, which emerges
from the diffusion model (Ho & Salimans, 2022). We refer to this part as the classifier score.
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Optimization steps

𝜔 = 20

𝜔 = 40

𝜔 = 10 𝜔 = 5 𝜔 = 0 (𝛿!"#)

(a) The gradient norm of two terms during optimization (𝜔 = 40)

(b) Different results with difference guidance weights
𝛿$%& 𝜔 = 50

Norm of 𝛿!"#$
Norm of 𝛿!

%&'

𝜔 = 100

Figure 2: (a) The gradient norm during op-
timization. (b) Optimization results through
different guidance weights.

Thus, there is a gap between the theoretical formu-
lation in Eq. (4) and the practical implementation in
Eq. (6). To better understand the roles of different
terms, we validate their contribution by visualizing
the gradient norm throughout the training of a NeRF
via SDS with guidance scale ω = 40. As shown
in Fig. 2 (a), the gradient norm of the generative
prior is several times larger than that of the classi-
fier score. However, to generate high-quality results,
a large guidance weight must be set, as shown in
Fig. 2 (b). When incorporating both components, the
large guidance weight actually causes the gradient
from the classifier score to dominate the optimiza-
tion direction. Moreover, the optimization process
fails when relying solely on the generative compo-
nent, as indicated by setting ω = 0 in Eq. (6). This
observation leads us to question whether the clas-
sifier score is the true essential component that
drives the optimization. To explore this, we intro-
duce Classifier Score Distillation (CSD), which em-
ploys only the classifier score for optimization.

4 CLASSIFIER SCORE DISTILLATION (CSD)

Consider a text prompt y and a parameterized image generator g(θ). We introduce a loss function
denoted as Classifier Score Distillation LCSD, the gradient of which is expressed as follows:

∇θLCSD = Et,ϵ,c

[
w(t)(ϵϕ(xt; y, t)− ϵϕ(xt; t))

∂x

∂θ

]
. (7)

Our loss is fundamentally different from the previous principle presented in Eq. (4). According to
Eq. (3), we use an implicit classification model that is derived from the generative diffusion models
to update the 3D scene. Specifically, text-to-image diffusion models with CFG can generate both
conditioned and unconditioned outputs, and we can derive a series of implicit noise-aware classifiers
(Ho & Salimans, 2022) for different time steps t, based on Eq. (3). These classifiers can evaluate
the alignment between the noisy image and the text y. Thus, the overall optimization objective
in Eq. (7) seeks to refine the 3D scene in such a manner that rendered images at any noise level
t align closely with their respective noise-aware implicit classifiers. We will use δcls

x (xt; y, t) :=
ϵϕ[(xt; y, t)− ϵϕ(xt; t)] to denote the classifier score for further discussions.

We note that some previous works have also used text and image matching losses for 3D generation,
rather than relying on a generative prior, such as the CLIP loss (Jain et al., 2022; Michel et al.,
2022). However, these methods are still less effective than score distillation methods based on
the generative diffusion model. In the next section, we show that our loss function can produce
high-quality results that surpass those using the SDS loss. Moreover, our formulation enables more
flexible optimization strategies and reveals new insights into existing techniques. In the following,
we first introduce improved training strategies based on CSD, then we develop the application for
3D editing and discuss the connections between CSD and Variational Score Distillation (VSD).
CSD with Annealed Negative Prompts We observe that employing negative prompts yneg, text
queries describing undesired images, can accelerate the training process and enhance the quality of
the generated results. We provide an interpretation from the perspective of CSD. Specifically, with
negative prompts, the SDS loss can be rewritten as:

δsds
x = [ϵϕ(xt; y, t)− ϵ] + ω · [ϵϕ(xt; y, t)− ϵϕ(xt; yneg, t)] (8)

Recall that δcls
x (xt; y, t) := ϵϕ[(xt; y, t)− ϵϕ(xt; t)], we arrive at the following expression:

ϵϕ(xt; y, t)− ϵϕ(xt; yneg, t) =[ϵϕ(xt; y, t)− ϵϕ(xt; t)]− [ϵϕ(xt; yneg, t)− ϵϕ(xt; t)]

=δcls
x (xt; y, t)− δcls

x (xt; yneg, t)
(9)

Therefore, the use of negative prompts can be seen as a dual-objective Classifier Score Distillation:
It not only pushes the model toward the desired prompt but also pulls it away from the unwanted
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states, evaluated by two classifier scores. However, this may also cause a trade-off between quality
and fidelity, as the negative prompts may make the optimization diverge from the target text prompt
y, resulting in mismatched text and 3D outputs, as shown in Fig. 5.

Given CSD and our novel insights into the effects of negative prompts, we introduce an extended
CSD formulation that redefines δcls

x as follows:

δcls
x =ω1 · δcls

x (xt; y, t)− ω2 · δcls
x (xt; yneg, t)

=ω1 · [(ϵϕ(xt; y, t)− ϵϕ(xt; t))]− ω2 · [(ϵϕ(xt; yneg, t)− ϵϕ(xt; t))]

=ω1 · ϵϕ(xt; y, t) + (ω2 − ω1) · ϵϕ(xt; t)− ω2 · ϵϕ(xt; yneg, t)

(10)

We use different weights ω1 and ω2 for the positive and negative prompts, respectively, to mitigate
the negative effects of the latter. By gradually decreasing ω2, we observe that our modified loss
function enhances both the quality and the fidelity of the texture results, as well as the alignment
with the target prompt (refer to Fig. 5). Note that this simple formulation is based on our new
interpretation of negative prompts from the perspective of Classifier Score Distillation, and it is not
part of the original SDS framework.
CSD for Text-Guided Editing The CSD method also enables us to perform text-guided 3D edit-
ing. Suppose we have a text prompt ytarget that describes the desired object and another text prompt
yedit that specifies an attribute that we want to change in the original object. We can modify the loss
function in Eq. (10) by replacing y and yneg with ytarget and yedit, respectively:

δedit
x =ω1 · δcls

x (xt; ytarget, t)− ω2 · δcls
x (xt; yedit, t)

=ω1 · ϵϕ(xt; ytarget, t) + (ω2 − ω1) · ϵϕ(xt; t)− ω2 · ϵϕ(xt; yedit, t).
(11)

As shown in Fig. 6, this method allows us to edit the rendered image according to the target descrip-
tion ytarget while modifying or removing the attribute in yedit. Text-to-3D generation can be seen as
a special case of this method, where we set ω2 = 0 and no specific attribute in the original scene is
given to be edited. Our method shares a similar formulation as Delta Denoising Score (Hertz et al.,
2023) for image editing, which we discuss in the Appendix. Furthermore, we can adjust the weights
ω1 and ω2 to balance the alignment with the text prompt and the fidelity to the original scene.
Discussions and Connection to Variational Score Distillation (VSD) With CSD, the new varia-
tional score distillation (VSD) (Wang et al., 2023b) can be interpreted from the perspective of using
a negative classifier score. VSD enhances SDS by replacing the noise term ϵ with the output of
another text-conditioned diffusion model, denoted as ϵϕ∗ , which is simultaneously trained using the
rendered images from the current scene states. When optimizing the 3D scene, the gradient direction
applied to the rendered image is:

δvsd
x = [ϵϕ(xt; y, t)− ϵϕ∗(xt; y, t)] + ω · [ϵϕ(xt; y, t)− ϵϕ(xt; t)]

=(ω + 1) · [ϵϕ(xt; y, t)− ϵϕ(xt; t)]− [ϵϕ∗(xt; y, t)− ϵϕ(xt; t)] .
(12)

Since ϵϕ∗ is obtained by fine-tuning the conditional branch of a pre-trained diffusion model us-
ing LoRA (Hu et al., 2021), we can assume that ϵϕ(xt; t) ≈ ϵϕ∗(xt; t) and then the term
[ϵϕ∗(xt; y, t)− ϵϕ(xt; t)] corresponds to predicting ∇xt log pϕ∗(y|xt), where pϕ∗ is a shifted distri-
bution that adapts to the images rendered from the current 3D object. Thus, Eq. (12) encourages the
optimization direction to escape from pϕ∗ which can be interpreted as an ability to adaptively learn
negative classifier scores instead of relying on a predefined negative prompt. However, this also
introduces training inefficiency and instabilities. In our experiments, we find that CSD combined
with general negative prompts can achieve high-quality texture quality comparable to VSD.

5 EXPERIMENTS

We evaluate the efficacy of our proposed Classifier Score Distillation method across three tasks:
text-guided 3D generation, text-guided texture synthesis, and text-guided 3D editing. We present
qualitative and quantitative analysis for text-guided 3D generation in Sec. 5.2 and text-guided texture
synthesis in Sec. 5.3. To further substantiate the superiority of our approach, we conduct user
studies for these two tasks. To showcase the capabilities of our formulation in 3D editing, illustrative
examples are provided in Sec. 5.4.
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“a wide angle zoomed out DSLR photo of a skiing penguin wearing a puffy jacket”

“a zoomed out DSLR photo of a bulldozer made out of toy bricks”

“a zoomed out DSLR photo of a 3D model of an adorable cottage with a thatched roof”

DreamFusion Magic3D Fantasia3D ProlificDreamer Ours
Figure 3: Qualitative comparisons to baselines for text-to-3D generation. Our method can generate
3D scenes that align well with input text prompts with realistic and detailed appearances.

“Elf with ethereal, 
butterfly-like wings, 
radiating an aura of 
mystical elegance”

“Ding censer with an 
openwork cover and 
handles in the shape 
of stylized dragons”

Input mesh&prompt Fantasia3D Magic3D ProlificDreamer TEXTure Ours
Figure 4: Qualitative comparisons to baselines for text-guided texture synthesis on 3D meshes. Our
method generates more detailed and photo-realistic textures.

5.1 IMPLEMENTATION DETAILS

Text-Guided 3D Generation We follow Magic3D (Lin et al., 2023) to initially generate a scene
represented by Neural Radiance Fields (NeRF) using low-resolution renderings. Subsequently, the
scene is converted into a triangular mesh via differentiable surface extraction (Shen et al., 2021) and
further refined using high-resolution mesh renderings by differentiable rasterization (Laine et al.,
2020). For the NeRF generation, we utilize the DeepFloyd-IF stage-I model (StabilityAI, 2023),
and for the mesh refinement, we use the Stable Diffusion 2.1 model (Rombach et al., 2022) to
enable high-resolution supervision. For both stages, CSD is used instead of SDS.

Text-Guided Texture Synthesis Given a mesh geometry and a text prompt, we apply CSD to ob-
tain a texture field represented by Instant-NGP (Müller et al., 2022). We employ ControlNets (Zhang
& Agrawala, 2023) based on the Stable Diffusion 1.5 as our diffusion guidance since it can improve
alignment between the generated textures and the underlying geometric structures. Specifically, we
apply Canny edge ControlNet where the edge is extracted from the rendered normal maps, and depth
ControlNet on rendered depth maps.
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Table 1: User study on two tasks. In both tasks, more
users prefer our results.

Methods Text-to-3D (%) ↑ Texture Synthesis (%) ↑
DreamFusion (Poole et al., 2022) 30.3 -
Magic3D (Lin et al., 2023) 10.3 12.4
Fantasia3D (Chen et al., 2023) - 11.0
ProlificDreamer (Wang et al., 2023b) - 7.9
TEXTure (Richardson et al., 2023) - 11.0
Ours 59.4 57.7

Table 2: Quantitative comparisons to base-
lines for text-to-3D generation, evaluated by
CLIP Score and CLIP R-Precision.

Methods CLIP CLIP R-Precision (%) ↑
Score (↑) R@1 R@5 R@10

DreamFusion (Poole et al., 2022) 67.5 73.1 90.7 97.2
Magic3D (Lin et al., 2023) 74.9 74.1 91.7 96.6
Ours 78.6 81.8 94.8 96.3

5.2 TEXT-GUIDED 3D GENERATION

Qualitative Comparisons. We present some representative results using CSD in Fig. 1, includ-
ing both NeRF generation (a) and mesh refinement (b) results. In general, CSD can generate 3D
scenes that align well with input text prompts with realistic and detailed appearances. Even only
trained with low-resolution renderings (a), our results do not suffer from over-smoothness or over-
saturation. We also find that our approach excels in grasping complex concepts in the input prompt,
which is a missing property for many previous methods. In Fig. 3, we compare our generation re-
sults with DreamFusion (Poole et al., 2022), Magic3D (Lin et al., 2023), Fantasia3D (Chen et al.,
2023), and ProlificDreamer (Wang et al., 2023b). For DreamFusion, we directly take the results
provided on its official website. For the other methods, we obtain their results using the implemen-
tations from threestudio (Guo et al., 2023). Compared with SDS-based methods like DreamFusion,
Magic3D, and Fantasia3D, our results have significantly more realistic appearances. Compared with
ProlificDreamer which uses VSD, our approach can achieve competitive visual quality while being
much faster, i.e., 1 hour on a single A800 GPU as opposed to 8 hours required by ProlificDreamer.
Quantitative Evaluations. We follow previous work (Jain et al., 2022; Poole et al., 2022; Luo
et al., 2023) to quantitatively evaluate the generation quality using CLIP Score (Hessel et al., 2022;
Radford et al., 2021) and CLIP R-Precision (Park et al., 2021). Specifically, the CLIP Score mea-
sures the semantic similarity between the renderings of the generated 3D object and the input text
prompt. CLIP R-Precision measures the top-N accuracy of retrieving the input text prompt from
a set of candidate text prompts using CLIP Score. We generate 3D objects using 81 diverse text
prompts from the website of DreamFusion. Each generated 3D object is rendered from 4 different
views (front, back, left, right), and the CLIP Score is calculated by averaging the similarity between
each rendered view and a text prompt. We use the CLIP ViT-B/32 (Radford et al., 2021) model
to extract text and image features, and the results are shown in Tab. 2. Our approach significantly
outperforms DreamFusion and Magic3D in terms of CLIP Score and CLIP R-Precision, indicating
better alignment between the generated results and input text prompts.
User Studies. We conduct a user study for a more comprehensive evaluation. We enlist 30 par-
ticipants and ask them to compare multiple outputs, selecting the one they find most aligned with
criteria such as visual quality and text alignment. In total, we collect 2289 responses. The results,
presented in Tab. 1 (Text-to-3D), reveal that 59.4% of the responses prefer our results, demonstrating
the superior quality of our approach.

5.3 TEXT-GUIDED TEXTURE SYNTHESIS

We select 20 diverse meshes from Objaverse (Deitke et al., 2022) for the texture generation task. We
compare our generation results with those from Magic3D (Lin et al., 2023), Fantasia3D (Chen et al.,
2023), ProlificDreamer (Wang et al., 2023b), and TEXTure (Richardson et al., 2023). We obtain
the results of TEXTure using the official implementation and others using the implementations in
threestudio. As illustrated in the Fig. 4, our method excels in generating photo-realistic texture
details. Moreover, owing to our optimization based on implicit functions, the results we produce
do not exhibit the seam artifacts commonly observed in TEXTure (Richardson et al., 2023). Our
approach ensures both local and global consistency in the generated textures. We also conducted
the user study, where 30 participants were asked and we got a total of 537 responses. The result is
presented in Tab. 1 (Texture Synthesis), where 57.7% of the responses prefer our results.

Here, we examine how different uses of the negative prompt can impact visual quality. As shown in
Fig. 5, incorporating negative prompts can indeed enhance the visual quality. However, we observe
that it may compromise the alignment with the original text prompt, i.e., the original text prompt
describes the color of the clothes as blue, but the generated clothes turn out to be white. As we have
illustrated, since the negative prompt serves as an additional classifier score to guide the direction
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Input mesh&prompt CSD, w/ negative prompt CSD, w/ annealed negative classifier scoreCSD, w/o negative prompt

“Blue cotton 
hoodie with red 
flower patterns”

Figure 5: Ablation study on negative prompts and annealed negative classifier scores.

“a wide angle DSLR photo of a humanoid 
banana sitting at a desk doing homework”

“a wide angle DSLR photo of a humanoid
cucumber sitting at a desk doing homework”

“a zoomed out DSLR photo of a beautiful 
suit made out of moss, on a mannequin. 
Studio lighting, high quality, high resolution”

“a zoomed out DSLR photo of a beautiful suit 
made out of flower, on a mannequin. Studio 
lighting, high quality, high resolution”

“a plush toy of a corgi nurse” “a plush toy of a corgi policeman” “a DSLR photo of a shiba inu playing 
golf wearing tartan golf clothes and hat”

“a DSLR photo of a cat playing golf 
wearing tartan golf clothes and hat”

Figure 6: Demonstration of CSD in text-guided 3D editing Tasks. Our method effectively modifies
attributes based on the given prompt while faithfully preserving the remaining features.

of the update, it has the effect of weakening the influence of the original prompt. Fortunately, our
formulation allows for dynamic adjustment of weights to balance these forces. As shown in Fig. 5,
we set ω1 = 1 and reduce the weight ω2 assigned to the negative classifier score, resulting in
improved visual quality that remains aligned with the text prompt.

5.4 TEXT-GUIDED 3D EDITING

In Fig. 6, we demonstrate that CSD can be further applied to edit the existing NeRF scenes. For
each scene, based on Eq. (11), we employ the portion that requires editing as the negative prompt
(e.g., “nurse”), while modifying the original prompt to reflect the desired scene (e.g., “a plush toy
of a corgi policeman”). We empirically set ω1 = 1 and ω2 = 0.5. Our approach yields satisfactory
results, aligning edited objects with new prompts while maintaining other attributes.

6 CONCLUSION, DISCUSSION, AND LIMITATION

In this paper, we introduce Classifier Score Distillation (CSD), a novel framework for text-to-3D
generation that achieves state-of-the-art results across multiple tasks. Our primary objective is to
demonstrate that the classifier score, often undervalued in the practical implementations of SDS,
may actually serve as the most essential component driving the optimization. The most significant
implication of our results is to prompt a rethinking of what truly works in text-to-3D generation in
practice. Building on the framework of CSD, we further establish connections with and provide new
insights into existing techniques.

However, our work has certain limitations and opens up questions that constitute important direc-
tions for future study. First, while our empirical results show that using CSD leads to superior
generation quality compared to SDS, we have not yet been able to formulate a distribution-based
objective that guides this optimization. Second, despite achieving photo-realistic results in 3D tasks,
we find that the application of CSD to 2D image optimization results in artifacts. We hypothesize
that this discrepancy may arise from the use of implicit fields and multi-view optimization strategies
in 3D tasks. Investigating the underlying reasons is of significant interest in the future. Despite
these limitations, we believe our findings play a significant role in advancing the understanding of
text-to-3D generation and offer a novel perspective for this field.
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A APPENDIX

A.1 RELATED WORKS

Text-Guided 3D Generation Using 2D Diffusion Models. In recent years, after witnessing the
success of text-to-image generation, text-to-3D content generation has also made stunning progress.
Early work utilizes CLIP (Radford et al., 2021) to guide text-to-3D generation (Jain et al., 2022; Mo-
hammad Khalid et al., 2022) or texture synthesize (Chen et al., 2022; Michel et al., 2022). Recently,
utilizing 2D diffusion models pre-trained on massive text-image pairs (Schuhmann et al., 2022) for
text-guided 3D generation has become mainstream. As the pioneering work of this field, Dream-
Fusion (Poole et al., 2022) proposes the Score Distillation Sampling (SDS) technique (also known
as Score Jacobian Chaining (SJC) (Wang et al., 2023a)), which is able to “distill” 3D information
from 2D diffusion models. SDS has been widely used and discussed in the following works (Lin
et al., 2023; Metzer et al., 2023; Chen et al., 2023; Wang et al., 2023b; Huang et al., 2023; Zhu &
Zhuang, 2023; Shi et al., 2023), which attempt to improve DreamFusion in many different ways.
Magic3D (Lin et al., 2023) and Fantasia3D (Chen et al., 2023) investigate the possibility of opti-
mizing the mesh topology instead of NeRF for efficient optimization on high-resolution renderings.
They operate on 512 × 512 renderings and achieve much more realistic appearance modeling than
DreamFusion which is optimized on 64× 64 NeRF renderings. MVDream Shi et al. (2023) allevi-
ates the Janus problem of this line of methods by training and distilling a multi-view text-to-image
diffusion model using renderings from synthetic 3D data. DreamTime (Huang et al., 2023) demon-
strates the importance of diffusion timestep t in score distillation and proposes a timestep annealing
strategy to improve the generation quality. HiFA (Zhu & Zhuang, 2023) re-formulates the SDS loss
and points out that it is equivalent to the MSE loss between the rendered image and the 1-step de-
noised image of the diffusion model. ProlificDreamer (Wang et al., 2023b) formulates the problem
as sampling from a 3D distribution and proposes Variational Score Distillation (VSD). VSD treats
the 3D scene as a random variable instead of a single point as in SDS, greatly improving the genera-
tion quality and diversity. However, VSD requires concurrently training another 2D diffusion model,
making it suffer from long training time. 2D diffusion models can also be used for text-guided 3D
editing tasks (Haque et al., 2023; Shao et al., 2023; Zhuang et al., 2023; Kim et al., 2023), and
texture synthesis for 3D models (Richardson et al., 2023). In this paper, we provide a new perspec-
tive on understanding the SDS optimization process and derive a new optimization strategy named
Classifier Score Distillation (CSD). CSD is a plug-and-play replacement for SDS, which achieves
better text alignment and produces more realistic appearance in 3D generation. We also show the
astonishing performance of CSD in texture synthesis and its potential to perform 3D editing.

A.2 CSD FOR EDITING

Our method enables text-guided 3D editing. We observe that our formulation bears some resem-
blance to the Delta Denoising Score (DDS) (Hertz et al., 2023). Here, we demonstrate that these are
two fundamentally different formulations and discuss their relations.

Specifically, DDS is proposed for 2D image editing. Given an initial image x̂, an initial prompt ŷ,
and a target prompt y, assume that the target image to be optimized is x. It utilizes SDS to estimate
two scores. The first score is calculated using ∇θLSDS(xt, y, t), while the second is determined
by ∇θLSDS(x̂t, ŷ, t). They observed that relying solely on the first score would lead to blurred
outputs and a loss of detail. Therefore, they decompose it into two implicit components: one is
a desired direction guiding the image toward the closest match with the text, and another is an
undesired component that interferes with the optimization process, causing some parts of the image
to become smooth and blurry (Hertz et al., 2023). Their key insight is the belief that the score from
∇θLSDS(x̂t, ŷ, t) can describe the undesired component. Thus, they perform editing by subtracting
this score during optimization. Using our notions, their editing objective is expressed as:

δdds
x = δsds

x (xt; y, t)− δsds
x (x̂t; ŷ, t) (13)

Since the classifier-free guidance is still used here for both two SDS terms, we can look closer and
formulate it as:
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Figure 7: Comparisons between DDS variants and CSD on 2D image editing tasks, where the panda
is edited to be a squirrel.

δdds
x = [ϵϕ(xt; y, t)− ϵϕ(x̂t; ŷ, t)]+ω · [ϵϕ(xt; y, t)− ϵϕ(xt; t)]︸ ︷︷ ︸

δcls
x

−ω · [ϵϕ(x̂t; ŷ, t)− ϵϕ(x̂t; t)] (14)

Note that the above gradient update rule actually consists of our classifier score δcls
x , so it is interest-

ing to see if the essential part to drive the optimization is still this component. To demonstrate this,
we do several modifications to ablate the effect of δcls

x on 2D image editing. As shown in Fig. 7,
without a guidance weight, DDS cannot do effective optimization. Besides, we ablate the effect of
only removing δcls

x and find the optimization yet cannot be successful. Instead, solely relying on δcls
x

can achieve superior results. Thus, we hypothesize the essential part of driving the optimization is
δcls
x . The insight here is also more straightforward than that of DDS and we do not need the reference

image to provide a score that is considered an undesired component.

A.3 ADDITIONAL RESULTS

We provide an extensive gallery of video results in the supplementary material. The gallary
features a comprehensive comparison between our method and existing approaches. Specifically,
the supplementary files include 81 results for the text-guided 3D generation task and 20 results for
the text-guided texture synthesis task, along with comparisons with baseline methods. Please refer
to geometry.html for comparisons on 3D generation and texture.html for comparisons on
texture synthesis.

A.4 IMPLEMENTATION DETAILS

For the generation of NeRF in the first stage, we utilize sparsity loss and orientation loss (Verbin
et al., 2022) to constrain the geometry. The weight of the orientation loss linearly increases from 1
to 100 in the first 5000 steps, while the sparsity loss linearly decreases from 10 to 1 during the same
period. After 5,000 iterations, we replace the RGB outputs as normal images with a probability of
0.5 for surface refinement. The weight of the negative classifier score is gradually annealed from
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0 to 1 as the shape progressively takes form. To mitigate the Janus problem, we employ Perp-Neg
(Armandpour et al., 2023) with a loss weight set to 3 and additionally constrain the camera view
to focus only on the front and back views in the first 1,000 iterations. For prompts without clear
directional objects, we omit Perp-Neg and use a larger batch size of 4. This extends training time by
approximately 40 minutes. For the second stage of mesh refinement, we use a normal consistency
loss with a weight of 10,000 and replace the RGB outputs as normal images with a probability of
0.5 for surface refinement. The weight of the negative classifier score is annealed from 1 to 0.5.
For both stages, we use negative prompts “oversaturated color, ugly, tiling, low quality, noisy”. For
texture generation, we optimize over 30,000 iterations. To achieve better alignment of geometry and
texture, we use ControlNets as guidance. Specifically, we employ canny-control and depth-control,
where canny-control applies canny edge detection to the rendered normal image and uses the edge
map as a condition. For both conditions, we start with a weight of 0.5 for the first 1000 steps, then
reduce it to 0.2.
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