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ABSTRACT

Assignment, a task to match a limited number of elements, is a fundamental prob-
lem in informatics. Traditionally, non-linear assignment is discussed as a combi-
natorial optimization problem with its calculation complexity. On the other hand,
it is often a sub-problem of image processing tasks, such as 3D point cloud match-
ing. This paper proposes WeaveNet, a differentiable solver for diverse non-linear
assignment problems. Traditional graph convolutional networks (GCNs) suffer
from an over-smoothing problem when characterizing nodes with their relation-
ship. WeaveNet overcomes this problem by forwarding edge-wise features at each
layer rather than aggregated node features. To deal with the exponentially large
input space of combinatorial optimization problems, we designed WeaveNet to be
highly parameter efficient while characterizing edges through stacked set-encoder
with cross-concatenation operations. Experimental results show that WeaveNet
approximates two strongly NP-hard variants of stable matching in a comparative
performance with the gold standard hand-crafted algorithms under the limited size
of problem instances. We have also confirmed that it can boost 3D point cloud
matching performance significantly.

1 INTRODUCTION

Assignment problems are defined on a bipartite graph KN1,N2
(V1,V2,A), where N1 = |V1|,

N2 = |V2| (N1 ≥ N2), and A = {{v, w}|v ∈ V1, w ∈ V2}. On the graph, non-linear assign-
ment is a problem to find M ⊂ A that satisfies non-linear conditions and objective functions. A
typical traditional example is stable matching (Gale & Shapley, 1962), which was firstly applied
to a hospital-student assignment problem and nowadays applied to wider social problems such as
kidney exchange (Roth et al., 2007). On the other hand, it is known that adding a certain kind of
objective functions make the stable matching problem strongly NP-hard (Kato, 1993; McDermid &
Irving, 2014).

Not limited to the family of stable matching problem, non-linear assignment problem is essentially
involved in many practical applications (Zeng et al., 2021; Fu et al., 2021; He et al., 2021; Gao et al.,
2021; El Banani et al., 2021; Wiles et al., 2021). A typical example is 3D point cloud matching
(Zeng et al., 2021; Fu et al., 2021), where V1 and V2 are point clouds observed in independent
frames. Each element in V1/2 is expressed by a latent feature extracted by a non-linear encoder.
Then, in the assignment part, weights on A are calculated as an adjacency matrix. The matrix is
binarized to M through some kinds of linear assignment operations. As a result, the latent space is
optimized to embed each feature into a linearly assignable position, which is hard since the encoder
does not refer V2 (V1) when embedding elements in V1 (V2).

This paper aims to develop a fully differentiable approximate solver for general non-linear assign-
ment problems. As such solver, we propose a novel network architecture, WeaveNet. The contribu-
tion of this paper is five-fold.

1. We propose a novel non-linear assignment solver, WeaveNet, which achieves high gener-
alization ability than the previous differentiable solvers.

2. Weavenet is the first fully-symmetric solver, which mathematically ensures fair treatment
between V1 and V2. We also provide its asymmetric variant for highly biased situations.
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3. We provide a scalable testing protocol with strongly NP-hard variants of stable matching.
We also propose an evaluation metric, pseudo fairness scores, that enables direct compari-
son with hand-crafted algorithms.

4. WeaveNet is the first differentiable solver that achieved a comparative performance with
the SoTA hand-crafted algorithm with no error correction process although the problem
size is limited to N1 ≤ 30.

5. We proposed to combine a differentiable solver to CorrNet3D (Zeng et al., 2021) and
demonstrated the impact of WeaveNet on 3D point cloud matching.

2 RELATED WORK

2.1 COMBINATORIAL OPTIMIZATION WITH LOSS MINIMIZATION

There have been attempts to search for a good solution by loss minimization for each problem in-
stance. Gold & Rangarajan (1996) proposed a method named SoftAssign, which relaxes loss for
the quadratic assignment problem. Later, its step-wise landscape of loss function was pointed by
Lozano & Escolano (2013) with a kernel-based approach that smoothens the landscape. Another
group of attempts is to search solutions with a pre-trained deep learning model and an error correc-
tion process (Wang et al., 2019; Selsam et al., 2019). The error correction requires complete input
information. However, such information is often unobservable in real applications (e.g., the latent
feature inputs or online assignment problems).

Our goal is to develop a deep learning model that reaches a good solution without error correction,
and there are two such previous studies. Li (2019) tried to approximate the stable matching problem
with multi-layer perceptrons (MLPs) in a fully unsupervised manner. Gibbons et al. (2019) tried
to approximate the weapon-target assignment (WTA) problem with their original architecture, deep
bipartite assignment (DBA). Both models have insufficient generalization ability and under-perform
to hand-crafted algorithms even when N ≤ 20.

2.2 NON-LINEAR ASSIGNMENT PROBLEMS IN MACHINE LEARNING APPLICATIONS

Since visual observation contains multiple elements of interest in each frame, many computer vision
applications involve bipartite matching as a sub-problem. A representative task is 3D point cloud
matching (Zeng et al., 2021; Fu et al., 2021), but also structure-from-motion (El Banani et al., 2021),
co-attention calculation (Wiles et al., 2021), graph matching (Gao et al., 2021), and multiple object
tracking (He et al., 2021) are all potential applications of non-linear assignment solver.

Due to the lack of solvers that work with latent feature inputs, any of the above recent methods
once summarize the latent features into an affinity matrix M , which is binarized into a set of edges
M; however, M cannot be a good one-to-one matching when we independently select the argmax
element for each row or column. Hence, we need to make M be doubly stochastic. Sinkhorn
operation (Mena et al., 2018), de-smoothing (Zeng et al., 2021), and the Hungarian algorithm (Kuhn,
1955) are the representative tools for maintaining the doubly stochastic property. Here, the elements
in V1 and V2 do not communicate with each other before the affinity matrix calculation, and there
are no trainable parameters after that. Therefore, such models request their feature extractor to
project elements in linearly-assignable locations without any communications between V1 and V2,
which is almost impossible. Our study aims to develop a differentiable solver that finds a better
assignment through communications instead of calculations with affinity matrix.

3 WEAVENET

3.1 DIFFERENTIABLE NON-LINEAR ASSIGNMENT SOLVERS

We define a differentiable non-linear assignment solver as a trainable function f : P,Q → M ,
where inputs P and Q are tensors of size N1 × N2 × Dinput and N2 × N1 × Dinput. The output
M is a N1 × N2 matrix. P’s vw-th element Pv,w represents the Dinput-dimensional attribute of
the directed edge from v ∈ V1 to w ∈ V2, and Qw,v from w to v. We can obtain M, the discrete
assignment solution, by binarizing M .
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Figure 1: Two stream architecture of WeaveNet. It embeds inputs P and Q into two bands of latent
features Z1 and Z2 through L FW layers with the residual structure. The two streams communicate
through the cross-concatenation in every FW layer. Z1 and Z2 are further processed through a
convolution layer with 1× 1 kernel size, which yields the output M .
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Figure 2: Architecture of feature weaving
layer. It orthogonally concatenates the weft-
wise and warpwize components (Z1

` and Z2
` ) in

a symmetric way (cross-concatenation). Then,
the concatenated tensors Z12

` (Z21
` ) is sliced

into z12`,v (z21`,w), which represents a set of di-
rected edges from v ∈ V1 (w ∈ V2) to V2

(V1), and woven by E` one-by-one.
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Figure 3: Architecutre of set encoder E`. It
first embed z12`,v (white) into D′ dimensional
features (pale blue) by ϕ1, then max-pooled
to obtain the group characteristics of the cor-
responding (directed) edges (blue). It is com-
bined to z12`,v and further processed by ϕ2,
batch normalization, and an activation to yield
the output z1`+1,v .

To model this calculation, previous model, DBA (Gibbons et al., 2019), firstly concatenates Pv,w
and Qw,v for each {v, w}(∈ A) and obtain an input tensor with the size of N1 × N2 × 2Dinput,
then encodes its row and column alternately through multiple layers. DBA realizes two important
properties, size-independence and permutantion-equivalence for V1 and V2 by appropriately design
its layer-level encoders. On the other hand, a swap of P and Q yields different solutions because each
encoder is trained with each direction. This is not desirable because many problems are symmetric.
Even with asymmetric problems, the structure is sub-optimal since the encoder shares the common
functionality, selecting a partner of an element.

Furthermore, DBA’s encoder is not efficient for assignment problems. They proposed two options
for the encoder: self-attention and max-pool-concat. Self-attention works under the assumption that
we can solve the problem without seeing entire elements, which is not the case for many complex
assignment problems. The max-pool-concat sees entire elements but it unnecessarily restricts the
function shape (see the next subsection).

3.2 THE ARCHITECTURE OF WEAVENET

WeaveNet overcomes above two problems by cross-concatenation and set-encoder. Fig. 1 illustrates
the entire model. It consists of L feature weaving (FW) layers, which have two streams that models
the process for V1 to select V2 (P→M1) and vice versa (Q→M2).

Figure 2 illustrates the feature weaving layer and the operation of cross-concatenation. Let Z1
` and

Z2
` be inputs for the first and second stream at `-th layer (0 ≤ ` < L), where Z1

0 = P and Z2
0 = Q.

Cross-concatenation is an operation to yields Z12
` = cat(Z1

` ,Z
2
`

tr
) and Z21

` = cat(Z2
` ,Z

1
`

tr
), where

tr is an operation to transpose the first and second axes, and cat is the concatenation operation on
the third axis. Here, Z12

` and Z21
` are organized by 2D dimensional features. Swapping the first and
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last D dimensions of Z12
` ’s vw-th feature corresponds to its opposite, Z21

` ’s wv-th feature. Since the
first and last half components are both outputs of the same encoder E`−1, features in Z12

` and Z21
`

are always in the same latent space. Therefore, the single encoder E` can process them identically.

More formally, let z12`,v ∈ RN2×D be a row of Z12
` , which is a set ofN2 feature vectors corresponding

to edges from v ∈ V1 to theN2 elements in V2, and z21`,w ∈ RN1×D is a row of Z21
` (w to V1). Then,

the layer-level encoder is applied for each row as z1`+1,v = E`(z12`,v) and z2`+1,w = E`(z21`,w). From
this formulation, we can see that a L-layered WeaveNet has the same encoding frequency with a
2L-layered DBA and thus is twice parameter-efficient.

On the layer-level encoder, the DBA’s max-pool-concat outputs cat(ϕ(z),maxz′∈zv ϕ(z
′)) for each

z ∈ zv , where ϕ is a trainable function for the D-dimensional feature z. This calculation unnec-
essarily requests ϕ(z) and its max-pooled vector to be informative simultaneously. We decompose
them with two trainable functions ϕ1 and ϕ2 inspired by DeepSet (Zaheer et al., 2017) and PointNet
(Qi et al., 2017). Figure 3 shows our layer-level encoder, set encoder, which we can formulate as

E(zv) = (ϕ2(cat(z,max
z′∈zv

ϕ1(z
′)))|z ∈ zv), (1)

where ϕ1 is a linear operation and ϕ2 consists of another linear operation followed by batch-
normalization and PReLU activation.

The output of the stacked FW layers Z1
L and Z2

L are further converted into M1 ∈ RN1×N2×1 and
M2 ∈ RN2×N1×1. Then, they are averaged into a single matrix M , which is the final output of the
WeaveNet.

3.3 ASYMMETRIC VARIANT WITH SPLIT BATCH NORMALIZATION

Owing to the above cross-concatenation strategy, WeaveNet is fully symmetric for inputs P and Q
in the sense it satisfies the equation f(P,Q) = f(Q,P)tr. This condition ensures that the model ar-
chitecture cannot distinguish the two sides V1 and V2 innately. This property is beneficial when we
need to treat V1 and V2 completely fair. However, when the distributions of P and Q are differently
biased, or biased output is desirable (e.g., an asymmetric objective function purposing affirmative
action), this symmetric property may be undesirable. To deal with such biased situations with-
out losing the parameter-efficiency, we further propose to apply batch normalization independently
for each stream (split batch normalization), and adding a side-identifiable code (i.e., concatenate
1N1×N2 to P and 0N2×N1 to Q). We call this model the asymmetric variant.

4 EXPERIMENTS

To evaluate differentiable solvers, we have conducted two experiments: a systematic test with the
stable matching problem and a more practical test with 3D point cloud matching.

4.1 TEST PROTOCOL WITH STABLE MATCHING

As most vision-based applications suffer from the limitation in dataset size, it is hard to analyze
the solver’s ability from multiple points of view with such real applications. To evaluate solvers
systematically, we propose a test protocol with stable matching.

Stable matching, also known as the stable marriage problem, is one of the most popular non-linear
assignment problems that models the two-sided market. Let P ∈ ZN1×N2

+ be a matrix representing
a set of preference list. Namely, Pv,w is the preference rank of v-th agent1 in V1 forw-th agent in V2

(Pv,w = 1 represents the highest preference and Pv,w = N2 the lowest). Qw,v is the preference rank
in the opposite direction. In a standard definition, Pv,: (v-th row in P ) includes no ties (Pv,w1 =
Pv,w2

only if w1 = w2) and N1 = N2 is assumed without loss of generality2. We say that an
unmatched pair {v, w} ∈ A\M blocks M when v prefers w more than v’s partner in M and w
prefers v more than w’s partner in M. Matching M is stable when there is no blocking pair in A\M.

1An element in V1 and V2 is called agent in the context of stable matching.
2We can add (N1 −N2) dummy agents to V2 without disturbing original solutions.
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Note that the Gale-Shapley (GS) algorithm can find it in O(N2) (Gale & Shapley, 1962). However,
the GS algorithm has a biased nature, where one side is prioritized and the other side only gets
the least preferable result among all the possibilities of stable matching. To compensate for the
unfairness, we can introduce diverse objectives to maintain a stable matching fair. Among them, the
following two fairness objectives make the stable matching problem strongly NP-hard. The first one
is Sex equality cost (SEq) (Gusfield & Irving, 1989). It focuses on the unfairness brought by the
gap between the two sides’ satisfaction and defined by

SEq(M;P ,Q) = |ρ(M;P )− ρ(M;Q)|, ρ(M;P ) =
∑

{v,w}∈M

Pv,w, ρ(M;Q) =
∑

{v,w}∈M

Qw,v. (2)

The other is Balance cost (Bal) (Feder, 1995; Gupta et al., 2021), which is a compromise between
side-equality and overall satisfaction. It is defined by

Bal(M;P ,Q)=max(ρ(M;P ), ρ(M;Q)) (3)

We optimize differentiable solvers based on these objective with the no-blocking-pair constraint,
based on the continuous relaxation originally proposed in (Li, 2019), which requires no super-
vision from inaccessible ground truth. In that optimization process, we converts P and Q into
P ∈ RN×N×1 and Q ∈ RN×N×1, respectively, while binarizing M into M by argmax operations.
See A.1 in the appendix for more details, including the continuously relaxed loss functions.

4.1.1 DATASET

To evaluate the robustness of the model in diverse input distributions, we generated the following
five datasets by the protocol developed in Tziavelis et al. (2019).

Uniform (U) Each agent’s preference towards any matching candidate is totally random, defined
by a uniform distribution U(0, 1) (larger value means prior in the preference list).

Discrete (D) Each agent has a preference of U(0.5, 1) towards a certain group of b0.4Nc popular
candidates, while U(0, 0.5) towards the rest.

Gauss (G) Each agent’s preference towards i-th candidate is defined by a Gaussian distribution
N (i/N, 0.4).

Biased (UD) P and Q are generated by the distribution for U and D, respectively.
LibimSeTi (Lib) Simulate real rating activity on the online dating service LibimSeTi (Brožovský

& Petřı́ček, 2007) based on the 2D distribution of frequency of each rating pair (Pvw, Qwv).

4.1.2 ADVANTAGES OF THE PROPOSED TEST PROTOCOL

The test protocol with stable matching provides us the following advantages.

Scalability We can easily generate a large-size dataset while changing N . Although this paper test
the model with small N , we can continuously enhance the technology with this test protocol.

Generalizability check On stable matching, the total number of problem instances isN !2N−2 (e.g.,
4.3× 1016 at N = 5, 2.7× 1044 at N = 7, and 3.73× 101880 at N = 30), while a small change
in an instance results in totally different output. Thus, an overfit model cannot work well.

Gold standards The code for strong baselines of hand-crafted algorithms are implemented by Tzi-
avelis et al. (2019)3. We can use them as a gold standard instead of inaccessible optimal solutions
of the strongly NP-hard settings.

Input distribution shift We can evaluate the model with a shifted test set. For example, changing
N or the type of distribution at training and test is a good simulation of real situations.

4.1.3 TRAINING AND EVALUATION PROTOCOLS

We trained learning-based models 50k total iterations at N ≤ 10, 200k at N ≤ 30, and 300k at
N = 100, with a batch size of 8. Thus, 400k, 1.6M, and 2.4M randomly generated samples are
involved in training, which dominates only a tiny percentage of the input space when N ≥ 5, but

3They only provides the code of algorithms. Thus, we newly publish the code for data generation.
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can involve all possible problem instances at N = 3. We used Adam optimizer with an initial
learning rate of 0.0001 unless otherwise stated.

We have sampled 1,000 validation and 1,000 test samples for each distribution and each N . Note
that the training set can overlap with them, but its chance rate is negligible when N ≥ 5. We will
publish these validation/test sets to ensure reproducibility.

A solution that violates the no-blocking-pair constraint can achieve a fairness cost (SEq or Bal)
even lower than the ideal value. Hence, a direct comparison in SEq (Bal) is unfair. To enable a fair
comparison with hand-crafted algorithms, we propose pseudo fairness costs, pSEq and pBal, which
is calculated by replacing a fairness cost of violation cases with the highest one4, which maximally
penalizes the violation.

We also propose average error per agent, which is defined as (pSEq−SEqideal)/N where SEqideal
is the optimal solution. This error indicates how much additional cost (against the optimal solution)
each agent must pay. Note that we can calculate this score only when the optimal solution is acces-
sible by a brute-force search (N ≤ 10).

4.1.4 COMPARISON WITH DIFFERENTIABLE SOLVERS (N = 3, 5, 7, 9)

In this experiment, we show results obtained by following baselines and WeaveNet variants. MLP
is the model proposed in Li (2019). GIN is the state-of-the-art GCN model proposed in Xu et al.
(2019), which will, however, suffer from over-smoothing problem (Li et al., 2018; Oono & Suzuki,
2020) when applied to distinguish agent’s characteristics. DBA-P/DBA-A are DBA (Gibbons et al.,
2019) with max-pool-concat and self-attention, respectively. They are re-implemented by us due to
the absence of the author’s original code. Since the training process of these models tends to corrupt
after a convergence, we have always applied early stopping, but only for these methods. SSWN is the
single-stream WeaveNet, which is equivalent to a DBA adopting WeaveNet’ set-encoder. WN is the
WeaveNet. Note that we adjusted the number of parameters of all the models for a fair comparison.
See A.4 in the appendix for the further details.

This experiment restarted the training process five times with different random seeds. To accelerate
each training, we have used RAdam optimizer (Liu et al., 2020) with an initial learning rate of
0.0001.
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Fig. 4 shows the accuracy in finding a stable matching, where we trained models to minimize losses
other than those related to fairness objectives (see A.1 in the appendix for details). Since MLP
and GIN have size-dependency, we trained the models independently for N = 3, 5, 7, 9. The
other models were trained with N = 10 and tested on N = 3, 5, 7, 9. As a result, MLP, GIN,
and DBA A could hardly find stable matching when N ≥ 5. DBA P performs better but is quite
unstable. WN and SSWN could stably approximate the problem with a good performance.

Figs. 5 and 6 show the accuracy in finding the optimal solution with the two fairness objectives SEq
and Bal, respectively, with the average error per agent. We omitted MLP, GIN, and DBA A since
they cannot solve these advanced problems without finding any stable matching. WN, SSWN, and
DBA P are trained to maximize fairness objectives SEq (for Fig. 5) and Bal (for Fig. 6). In the

4We obtained the highest cost by the GS algorithm (prioritizing each side once and adopting the worse one).
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results, both SSWN and WN largely outperformed DBA P, which proved the advantage of the set-
encoder. The performance gain of WN from SSWN shows the effect of the two-stream architecture,
which is small in the range of N < 10.

4.1.5 COMPARISON WITH HAND-CRAFTED ALGORITHMS (N = 20, 30)

We prepared three hand-crafted algorithm baselines as gold standards. GS is the better result of
applying the GS algorithm to prioritize each side once, which runs in O(N2). DACC by Dworczak
(2016) is an approximate algorithm that runs in O(N4). PowerBalance by Tziavelis et al. (2019) is
the state-of-the-art method that runs in O(N2).

In addition, we added WN-asym, the asymmetric variant of WeaveNet, which is applied to non-
symmetric distributions. We implemented all the differentiable solvers with L = 60 layers. This
time, we used the identical N at training and test.

Table 1: Average fairness scores (↓) and the success rate of stable matching (↑) at N = 20. Bold
and underlined scores shows the best and second best ones, respectively. The success rates in stable
matching are colored in red if it is less than 95%.

SEq (pSEq) Bal (pBal)
U D G UD Lib U D G UD Lib

GS 41.89 18.81 19.52 70.97 19.66 89.14 146.16 108.36 140.53 68.62
DACC 24.34 20.13 23.07 101.75 20.40 78.49 146.71 110.06 151.34 68.75
Power Balance 16.28 8.93 17.07 71.09 15.40 73.28 140.12 106.92 140.55 65.89

WN 12.16 6.53 15.56 82.48 14.59 72.33 138.75 106.65 142.37 65.82
Stably Matched (%) 99.10 99.40 99.40 96.00 99.50 98.00 99.10 98.60 97.30 98.90

WN-asym - - - 71.34 14.53 - - - 140.79 65.84
Stably Matched (%) - - - 99.50 99.80 - - - 99.80 99.10

SSWN 15.06 7.74 17.65 74.50 16.02 79.06 139.59 107.90 141.48 67.22
Stably Matched (%) 95.80 99.20 96.50 92.40 97.90 92.60 98.50 98.40 99.60 98.60

DBA P 19.34 8.62 17.98 75.00 18.36 76.39 140.78 108.57 142.06 67.18
Stably Matched (%) 94.20 98.50 96.50 95.70 95.00 93.50 99.30 94.50 99.10 97.30

Table 2: Average fairness scores (↓) and success rate of stable matching (↑) at N = 30.

SEq (pSEq) Bal (pBal)
U D G UD Lib U D G UD Lib

GS 94.03 43.46 36.56 163.77 39.78 184.05 322.05 225.49 312.12 137.59
DACC 40.87 34.35 40.59 240.48 33.88 150.71 316.18 227.52 337.43 133.59
Power Balance 18.45 11.05 27.22 163.90 21.57 138.04 302.30 220.26 312.12 126.96

WN 18.30 10.52 27.39 210.06 22.14 140.40 301.59 223.02 322.98 127.79
Stably Matched (%) 98.10 99.00 98.00 81.50 98.80 97.90 98.60 93.70 80.30 98.10

WN-asym - - - 170.35 22.17 - - - 313.59 127.93
Stably Matched (%) - - - 93.90 98.6 - - - 98.80 98.00

SSWN 34.34 14.57 33.91 197.04 27.25 169.22 304.52 225.06 317.31 132.19
Stably Matched (%) 90.00 97.50 89.00 69.20 92.30 79.80 96.70 93.90 94.00 92.80

DBA P 52.93 16.21 37.27 189.07 36.63 167.26 308.45 227.45 320.45 133.82
Stably Matched (%) 84.60 96.00 85.20 82.70 79.20 74.10 92.20 82.80 89.30 87.20

Tables 1 and 2 show the results for N = 20 and 30, respectively. At N = 20, WN or WN-asym
constantly performed better than any hand-crafted algorithms for both SEq and Bal except for UD.
When N = 30, they are comparative with PowerBalance, but still outperform DACC. SSWN has a
performance drop in the stable matching rate at N = 30, which shows the importance of parameter
efficiency for larger N . For UD, GS performed even better than PowerBalance, which indicates
that the ideal solution constantly prioritizes one side, and the input distribution is highly biased.
In this situation, the symmetric WN suffers from finding good solutions. In contrast, WN-asym
achieved similar performance to GS and PowerBalance, which proves the effectiveness of the split
batch normalization and side-identifiable code for a biased situation.
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4.1.6 ROBUSTNESS AGAINST INPUT DISTRIBUTION SHIFT

We performed two additional experiments to prove the robustness of WeaveNet against the input
distribution shift in N and the distribution type.

First, Table 3 shows fairness scores obtained by WN trained with N = 20 and 30 samples, which
we refer to WN(20) and WN(30), respectively. From the result, we confirmed that WN(30) works
comparatively with WN(20) at N = 20, but WN(20) is slightly worse than WN(30) at N = 30.
Even though, it is remarkable that WN(20) outperformed the DACC’s scores (shown in Tables 1 and
2), that proves WeaveNet’s robustness against the shift in N .

Table 3: Comparison of the models trained with different size of instances.

20× 20 30× 30

pSEq pBal pSEq pBal
U D G U D G U D G U D G

WN(20) 12.23 6.37 15.50 71.89 138.79 106.20 25.21 11.38 29.36 141.49 302.73 221.92
WN(30) 12.16 6.53 15.56 72.33 138.75 106.65 18.30 10.52 27.39 140.40 301.59 223.02

Second, we evaluated the performance of models against the shift in distribution type. We prepared
three models, WN(U), WN(D), and WN(G), that are trained with U, D, and G, respectively. Table
4 shows the evaluation in combination of distribution types. Interestingly,WN(D) could hardly find
stable matching in U and G, which resulted in poor pSEq scores. In contrast, WN(G) achieved
satisfying pSEq scores on U and D. Since G always generates preference lists based on a common
reference score (i/N for i-th agent) with random noise, preference lists in the training set are always
similar and hard to assign appropriately. Hence, these results revealed that WeaveNet works well
even under the shift in distribution type but only when trained with hard samples.

Table 4: Generalizability of WeaveNet against difference
in distribution type (N = 30).

U D G Avg.

WN(U) pSEq 18.30 25.81 29.09 21.10
Stably Matched (%) 98.10 94.90 93.60 95.53

WN(D) pSEq 171.27 10.52 77.36 86.38
Stably Matched (%) 2.80 99.00 0.10 33.97

WN(G) pSEq 21.38 12.85 27.39 20.54
Stably Matched (%) 97.30 98.10 98.00 97.80

Table 5: Demonstration at N = 100.

100× 100, U SEq Bal

GS 1259.39 1709.53
DACC 194.65 988.02
Power Balance 49.41 909.73

WN+Hungarian
Fairness costs 68.36 919.75
Pseudo fairness costs 257.99 1145.36
Stably Matched (%) 89.40 80.80

4.1.7 DEMONSTRATION WITH N = 100

We further demonstrate the capability of WeaveNet under a larger size of problem instances, N =
100. We set L = 80 for this experiment to fully deepen the network as long as the GPU memory
allows. In this case, we found that WeaveNet fails even in one-to-one matching for 13.4% and
19.8%, respectively. To cover these failures, we applied the Hungarian algorithm (Kuhn, 1955) to
ensure M to be one-to-one matching (see B in the appendix for an additional analysis on this option).
Table 5 shows that WeaveNet works even worse than DACC in this setting. Seeing SEq and Bal
scores, the poor pSEq and pBal scores mostly derive from the poor stable matching rate (and large
penalties for each violation due to the larger N ). It may fix this problem to sample such violating
data actively at training, for example, but such further explorations are beyond the scope of this
paper.

4.2 EVALUATION WITH 3D POINT CLOUD MATCHING

To demonstrate the versatility of a differentiable solver, we applied WeaveNet and DBAs to 3D
point cloud matching. As a SoTA base model, we adopted CorrNet3D (Zeng et al., 2021). We have
replaced the affinity matrix calculation to WeaveNet (CN3D+WN). We prepared CN3D+DBA P
and CN3D+DBA A in the same manner.
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We have conducted the experiments for rigid shape correspondence with Surreal dataset (Groueix
et al., 2018) with an unsupervised setting5. Due to the large memory consumption in constructing a
full-connected bipartite graph for two point clouds, we sub-sampled 64 among 1024 points after the
feature embedding module and evaluated their accuracy.

Figure 7 shows the result, where the accuracy (the vertical axis) is defined as the ratio of the samples
whose error is in the error margin (the horizontal axis). In addition to the original model (CN3D),
we prepared CN3D-Deep, a model with an additional feature embedding layer for a fair comparison
(See C in the appendix for more details).
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Figure 7: Comparison in 3D point cloud matching.

The results show that WeaveNet boosted the performance by 12.6 percentage points from the original
CorrNet3D at zero error margin. It has also achieved a gain of 7.88 percentage points against the
deeper model. These advantages were significant at a small error margin (< 0.06), indicating that
WeaveNet could refine the last-one-mile errors of the assignment that are hard to solve only by
training the feature extractor.

DBA P has also boosted the performance, but its gain was smaller than WeaveNet. The accuracy of
DBA A was better than DBA P at a small error margin but performed unstable at a large error mar-
gin, which indicates some negative effect by self-attention. Notably, the difference in performance
does not contradict the test on stable matching. In other words, these results support the validity of
the test protocol proposed in the previous subsection. At the same time, this experiment revealed
a limitation by its GPU memory consumption. We expect that edge pruning can enable a full-size
assignment, for example. Exploring the best practice for it is beyond the scope of this paper.

5 CONCLUSION

This paper proposed a novel differentiable assignment solver, WeaveNet, with an evaluation proto-
col on stable matching and its strongly NP-hard variants. In the experiments, we demonstrated the
advantage of set encoder and the two-stream architecture by cross-concatenation against the other
possible differentiable solvers. These techniques also achieved a better performance than the gold
standard of the state-of-the-art hand-crafted algorithm at N = 20 and a comparative performance at
N = 30. Furthermore, the asymmetric variants, split batch normalization with the side-identifiable
code, enabled WeaveNet to work even with the strongly biased dataset of UD despite the architec-
ture’s symmetric nature.

We have also confirmed that our method can collaborate with a contemporary method for computer
vision, CorrNet3D. The result shows that WeaveNet can significantly boost the performance of
3D point cloud matching through a joint optimization with the feature extractor. We hope this
study opens a new vista for various machine learning applications that potentially involve non-linear
assignment problems.

5We could not bring out supervised setting and non-rigid cases because the provided code does not support
them.
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ETHICS STATEMENT

This paper uses two existing datasets; LibimSeTi dataset (Brožovský & Petřı́ček, 2007) and Surreal
dataset (Groueix et al., 2018). The former is obtained by hiring participants for dataset creation,
which does not contain any private information and has no ethical problems. The latter is a synthetic
human dataset, which also has no ethical issues.

As discussed in 3.3, the proposed method mathematically ensures completely fair treatment in a
non-linear assignment, which is a highly ethical tool contributing to human well-being. On the
other hand, we can intentionally (or accidentally) train its asymmetric variant (or any other baseline
differential solvers in this paper) to yield an unfair assignment. Hence, we must carefully check the
training protocol to avoid undesirable bias when using asymmetric differential solvers in any social
application.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility, we attached the code for all the experiments as the supplementary
material, which will be published with the paper. There is also general description to reproduce the
results in 4.1.3, A.2, A.4, and C. Furthermore, we restart the training five times to obtain the results
with error bars in Figures 4, 5, 6, and 7 in the main text and Figures 8, 9, 10, 11 in the appendix.
These data prove the low variance of the WeaveNet performance. We generated some datasets in this
paper. Due to the size limitation, we could not include the datasets in the supplementary material.
Instead, we included random seeds for generating the same validation and test sets in the attached
code. We will make both the code and the generated datasets publicly available.
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WEAVENET: A DIFFERENTIABLE SOLVER FOR NON-LINEAR ASSIGNMENT
PROBLEMS: APPENDIX

A ADDITIONAL DETAILS FOR THE TEST PROTOCOL WITH STABLE MATCHING

This appendix section explains further details of the test protocol to enhance reproducibility and
show how we designed the experiments fairly.

A.1 UNSUPERVISED LEARNING FOR STABLE MATCHING

The preference list P and Q ranges [1, N ], depending on the size of the problem instance. Such
inputs are not preferable since any machine learning method can poorly perform with an unseen
value range and harm robustness against the shift in N . Hence, we normalize them to have (0, 1]
regardless of N by composing P,Q ∈ RN×N×1 as

Pv,w,: = ((1− Cmin)(N − Pv,w)/N + Cmin)

Qw,v,: = ((1− Cmin)(N −Qw,v)/N + Cmin),
(4)

where Cmin is a constant value in range (0, 1) and is set to 0.1 in our experiments. The above
normalization inverts the rank into a preference score (higher is preferred more). This inversion is
introduced to follow the loss formulation in Li (2019).

The constraint of stable matching is originally defined as a non-differentiable discrete function.
To optimize the model fully differentiable without accessing ground truth, we relax such discrete
functions into continuous ones. For example, we can realize the loss function for a stable matching
solver that minimizes SEq as a linear sum of the following three losses.

Lm conditions the binarization of M to be doubly stochastic.

Ls conditions the matching to be stable.

Lf minimizing the fairness cost SEq of the matching

Considering the symmetricity of the bipartite graph, we merge the three losses as

Lfsm(M) = λmLm(M) +
1

2

∑
M̂∈{σ(M),σ(Mtr)}

(
λsLs(M̂) + λfLf (M̂)

)
, (5)

where σ is a function that applies the softmax operation in the horizontal direction (row by row),
and λ∗ is the weight for each loss function.

An essential advantage of a differentiable solver is its flexibility; we can optimize a model for
different problems only by modifying the loss functions. For example, removing Lf in Eq.(5) leads
to the standard stable matching, or replacing Lf with Lb leads to the balanced stable matching,
which we can formulate as

Lsm(M) = λmLm(M) +
1

2

∑
M̂∈{σ(M),σ(Mtr)}

λsLs(M̂), (6)

Lbsm(M) = λmLm(M) +
1

2

∑
M̂∈{σ(M),σ(Mtr)}

(
λsLs(M̂) + λbLb(M̂)

)
. (7)

One-to-one matching constraint We can safely binarize M by column-wise or row-wise argmax
operation when M is a doubly stochastic matrix. To reach such a solution, Li (2019) proposed to
constrain M to be doubly stochastic by minimizing divergence between by mean absolute error
(MAE) between σ(M) and σ(M tr). We follow this strategy but with a small modification; we
apply cosine distance to exp(M) to allow M smoothly rotate to search for a better solution while
keeping Lm = 0 during training. This modification achieved slightly better performance than MAE
in our preliminary experiment with an MLP model.
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Overall, Lm is formulated as

Lm(M) = 1− 1

N

N∑
v=0

N∑
w=0

exp(Mv,w)

‖ exp(Mv,:)‖2
· exp(Mv,w)

‖ exp(M:,w)‖2
, (8)

where Mv,: and M:,w means the v-th row and w-th column of M . Thus, the second term on the
right side calculates an average of exp(M)’s row-wise and column-wise cosine similarity for the
exponential of M .

Lm(M) is zero typically for a uniform matrix, a permutation matrix, or linear sum of these two
types of matrice (but not limited to them). By suppressing blocking pairs, it goes apart from the
uniform matrix and thus reaches a permutation matrix, which results in a one-to-one matching.

Blocking pair suppression As for Ls, we used the function proposed in Li (2019) as it is. The
function is defined as

Ls(M ;P,Q) =
∑

(v,w)∈A

g(v;w,M)g(w; v,M)

g(v;w,M) =
∑
w′ 6=w

Mv,w′ ·max(Pv,w − Pv,w′ , 0)

g(w; v,M) =
∑
v′ 6=v

Mv′,w ·max(Qw,v −Qw,v′ , 0),

(9)

where g(v;w,M) is a criterion known as ex-ante justified envy, which has a positive value if and
only if there is any w′ that satisfies Mv,w′ > 0 and is preferred more than w. This is the same for
g(w; v,M). Therefore, we can penalize a (soft) blocking pair {v, w} that makes both g(v;w,M)
and g(w; v,M) more than zero.

Fairness measurements Lf and Lb minimize SEq(M ;P ,Q) and Bal(M ;P ,Q), respectively,
and are defined as

Lf (M ;P ,Q) =
1

N
|ρ(M ;P )− ρ(M ;Q)|

Lb(M ;P ,Q) = − 1

N
min(ρ(M ;P ), ρ(M ;Q)),

(10)

where

ρ(M ;P ) =

N∑
v=1

N∑
w=1

Mv,wPv,w, ρ(M ;Q) =

N∑
v=1

N∑
w=1

Mv,wQw,v. (11)

For the output at inference, we binarize M row by row. There is another option to use the Hun-
garian algorithms or Paths-to-stability 6 algorithms (Garg & Hu, 2020), which may perform better.
However, we avoid using such error corrective options in default since it will cover the mistakes
of a model and hide any flaws of the model, which contradicts the purpose of the test protocol to
evaluate the model performance for general assignment problems. Furthermore, a paths-to-stability
algorithm must access complete input information, which is unavailable with latent vector inputs or
online assignment problems).

A.2 LOSS WEIGHTS

Through the experiments, we set the loss weights λm = 1.0, λs = 0.7, and λf = λb = 0.01 to train
any differentiable solvers. We adjusted these parameters with the validation sets in the following
process.

As a preliminary model, we prepared WN-15 (WN with L = 15) with a set encoder with
D = 64 and D′ = 256. In this investigation, we used a balanced distribution U and the

6Paths to stability is a problem to find any editing path to reach stable matching from a non-stable one-to-one
matching.
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Figure 8: Sensitivity against λm
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Figure 10: Sensitivity against λf
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Figure 11: Sensitivity against λb

most biased distribution UD. With this model, we first tried to fix Lm because we experimen-
tally found the tendency that the model hardly outputs a stably matched solution without min-
imizing Lm. Fig. 8 shows the success rate of stable matching with different Lm in the range
{0.001, 0.005, 0.010, 0.050, 0.100, 0.500, 1.000}, where WN-15(n) is the model trained and
validated with the samples of N = n. From this result, we decided to set λm = 1.0 (with the initial
learning rate of 0.0001) and use it as the maximum weight among the loss weights.

Next, fixing λm = 1.0, we observed the trend in success rate of stable matching against λs. Fig. 9
shows our investigation of Ls in the range {0.01, 0.10, 0.30, 0.50, 1.00}. Here, WN-dual is a pro-
totype of WeaveNet’s asymmetric variant, in which each stream has an independent set-encoder at
each layer. As a result, we found that λs should simply be large enough (ca. λs ≥ 0.30) and decided
to use 0.7 with a safety margin against the constraint violation.

To investigate the sensitivity of the model against λf and λb, we tentatively removed the safety
margin and set λs = 0.3, which is the minimum satisfiable value. Figures 10 and 11 show the
results. From these figures, we found that too-strong weights for fairness may disrupt stability. Thus,
we decided to use λf = λb = 0.01, which achieved the highest success rate of stable matching in
the search range of {0.01, 0.02, 0.03}.

Table 6: Comparison in parameter efficiency among different shape architectures. Deep achieved
the best success rate in stable matching despite its smallest architecture.

Name L D D′ # of params. Stably Matched (%)

Deep 30 22 44 117k 95.7%
Wide1 15 32 64 119k 76.0%
Wide2 15 24 98 120k 73.1%
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A.3 ANALYSIS ON THE SHAPE OF THE WEAVENET ARCHITECTURE

Table 6 shows the success rate of stable matching after 100k iterations of training. Here, we drew
samples from the U distribution with N = 30 for both training and validation. The result shows that
the deepest model performs the best despite its smallest number of parameters. Hence, we decided
to use the set encoder that has D ≤ 32 and D′ = 2D.
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Figure 12: Success rate of stable matching (solid, ↑) and SEq (dashed, ↓) according to L.

We further investigated the impact of network depth on the problem. To observe how the strongly
NP-hard target increases the difficulty in optimization, we plotted both results by WN-L and WN-Lf
with L ∈ {6, 18, 30, 42, 54, 60}. Fig. 12 shows the trend of success rate against different L. Here,
the models were trained and validated with the U distribution at N = 20. We can see from the result
that L = 6 is not enough to stably match samples of N = 20, but L = 18 is enough if only for that
purpose. Besides, we observed that a deeper stack of layers tends to improve SEq slightly.

A.4 NETWORK ARCHITECTURE FOR A FAIR COMPARISON

To avoid a complicated architecture search for all the baseline models, we used a common shape
for all L layer-level encoders regardless of the method. With this setting, we have at most three
hyper-parameters to decide the architecture. L is the number of layers, and D is the number of
output channels at each layer. WN and SSWN have an additional parameter D′, the number of
output channels of φ1 in the set-encoder. Similarly, DBA A also has an additional parameter that
corresponds to the channels of key and query. We also refer it toD′. Note that we repeat the shortcut
path for the residual structure regularly for every two layers.

Table 7 summarizes the hyper-parameters for the differentiable solvers including baselines. MLP
could not converge when more than three hidden layers are stacked. Hence, we set the number of
layers to be three, as used in Li (2019). For GIN (Xu et al., 2019), we put two graph convolutional
layers followed by a single linear layer, which outputN2 channels of M . The number of GCN layers
is decided based on the original paper, which reported it performs best for a node classification task.
Some other papers also pointed out the over-smoothing problem of GCNs (Li et al., 2018; Oono &
Suzuki, 2020), which is not a problem for graph classification, but seriously damages the results in
node classification. Our preliminary experiments also support that we can not boost the performance
by deepening GCN.
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Table 7: Architecture of each model. D′ represents the output channels of φ1 for the set-encoder
and the length of key and query features for self-attention. Since MLP and GIN parameters differ
for N , we show here cases with N = 5.

Model Encoder D D′ Residual Structure # of params.

MLP dense layer 200 - w/o 97k
GIN graph conv. 70 - w/o 79k
DBA P(L = 10) max pooling 56 - w/ 77k
DBA A(L = 10) self-attention 56 48 w/ 80k
SSWN(L = 10) set encoder 64 32 w/ 78k
WN(L = 10) set encoder 32 64 w/ 77k

DBA P(L = 60) max pooling 64 - w/ 725k
SSWN(L = 60) set encoder 64 64 w/ 740k
WN(L = 60) set encoder 32 64 w/ 493k

WN(L = 80) set encoder 32 64 w/ 659k

Table 8: Numbers of blocking pairs in the estimated matching with U at N = 100. Fail counts
outputs that are not a one-to-one matching.

#Block. Pairs WN-80f +Hung. WN-80b +Hung.

0 (stable) 84.4% 89.4% 73.2% 80.8%

1 2.2% 4.6% 6.7% 10.9%
2 0.0% 0.4% 0.3% 1.2%

≥ 3 0.0% 5.6% 0.0% 7.1%
Fail 13.4% - 19.8% -

B EFFECT OF THE HUNGARIAN ALGORITHM AT N = 100

To obtain further insight, we prepared Table 8, which summarizes the difference w/ and w/o the
Hungarian algorithm at N = 100. In this setting, we have more agents with which WN fails even to
obtain one-to-one matching by the argmax binarization. Binarization by the Hungarian algorithm
can force one-to-one output even such failure cases; however, for SEq, we obtained only 5.0% gain
of success cases from the 13.4% fail cases. Similarly, for Bal, we obtained 7.5% success gain from
19.8% fail cases. These results confirmed that the Hungarian algorithm can improve solution quality
but only for a limited volume of hard samples.

C TRAINING PROTOCOL FOR 3D POINT CLOUD MATCHING

In the experiment in 4.2, we set a batch size of 50. We trained models 30 epochs and confirmed that
all the models reached convergence. We preserved any other training conditions as in the original
code of CorrNet3D. For a fair comparison, we adjusted the models to have a similar number of
parameters (see Table 9.)

Table 9: Architecture of each model. D′ represents the output channels of φ1 for the set-encoder
and the length of the key and query vectors for self-attention.

Model L D D′ # of params.

CN3D - - - 3.1M
CN3D-Deep - - - 3.8M
CN3D-DBA P 6 16 - 3.1M
CN3D-DBA A 6 16 16 3.1M
CN3D-WN 6 16 16 3.2M
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