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ABSTRACT

Reinforcement learning (RL) has become a cornerstone for improving the reason-
ing ability of large language models (LLMs). The current mainstream Group Rel-
ative Policy Optimization (GRPO) estimates advantage via relative comparisons
within the full group of sampled responses. However, this single-scale, global
comparison mechanism is inherently brittle, sensitive to the heterogeneity and
stochasticity of reward distribution, leading to unstable training signals. Drawing
inspiration from graph theory, where node importance is better captured through
local substructures than global statistics, we propose Multi-Scale Group Relative
Policy Optimization (MS-GRPO), a novel RL algorithm that generalizes GRPO
by aggregating relative advantages computed across multiple response subgroups
at varying scales (e.g., pairwise, trios, etc.). Since the exhaustive enumeration
of all meaningful subgroups grows combinatorially with group size, we further
introduce a practical acceleration scheme that selects a small yet representative
subset of subgroups via dilated scale sampling and diversity-aware subgroup se-
lection. In addition, we provide a rigorous theoretical analysis, demonstrating
that MS-GRPO can be interpreted as an adaptive correction of GRPO’s advantage
controlled by the heterogeneity of reward distribution, and gracefully degenerates
to GRPO when the reward distribution approaches homogeneity. Experiments
demonstrate that MS-GRPO significantly outperforms GRPO on various tasks,
for example, with improvements averaged over all evaluated models: +5.5 on
AIME24 math reasoning, +4.6 on RiddleSense logical reasoning, +2.7 on Live-
CodeBench programming challenges, +2.2 on MedQA medical reasoning, and
+13.5 on HotpotQA with search engine.

1 INTRODUCTION

Large language models (LLMs) have demonstrated unprecedented capabilities in complex reason-
ing. A key driver behind this success is reinforcement learning (RL), which trains a policy to maxi-
mize a reward signal. As a cornerstone algorithm, Proximal Policy Optimization (PPO) (Schulman
et al., 2017) suffers from training complexities and instabilities, largely due to its reliance on an
online-trained value network for advantage estimation. Recently, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024b) emerged as an elegant alternative, which cleverly obviates the need
for a learned value function. For each prompt, it samples a group of responses from the current pol-
icy model and uses their mean reward as an adaptive baseline. The advantage for each response is
then computed by normalizing its reward relative to the group: subtracting the group’s mean reward
and dividing by the group’s standard deviation.

Despite its conceptual simplicity and empirical success, GRPO’s advantage estimation mechanism
suffers from a fundamental limitation: it performs a single-scale, global comparison across all re-
sponses in the group, thereby ignoring the rich, multi-granularity signals embedded in fine-grained,
local comparisons. This global normalization is highly sensitive to reward distributional shifts and
outlier responses, which are common in practice due to the stochasticity of LLM generation and the
occasional instability of reward models. From a graph-theoretic perspective, treating each response
as a node in a complete graph, GRPO’s approach is equivalent to characterizing each node solely
by global graph statistics (mean and variance). However, decades of research in graph analysis have
shown that such global characterizations are brittle and limited (Wu et al., 2020; Robinson et al.,
2024; Segarra & Ribeiro, 2015; Valente et al., 2008): a node’s true importance or role is better cap-
tured by its participation in diverse local substructures (e.g., motifs (Milo et al., 2002) and graphlets
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Figure 1: Comparison of the advantage estimation mechanism in MS-GRPO and GRPO. To make
an intuitive comparison between them, we only illustrate the advantage of one response (denoted as
a red square ). GRPO compares in the full response group, and normalizes its reward using the
global mean and standard deviation of this full response group as its relative advantage. In contrast,
our MS-GRPO compares in each valid subgroup containing it, and applies normalization within
each comparison subgroup with varying scales (refer to Eq. (4)), and finally synthesizes these multi-
view advantages to a holistic advantage via a hierarchical aggregation (refer to Eq. (5) and Eq. (6)).

(Pržulj, 2007)). Analogously, a response’s relative advantage should not be judged only against the
entire group, but also against various local peer subsets (pairwise, trios, quartets, etc.), each offer-
ing a unique perspective on its advantage. Ignoring these multi-scale signals not only reduces the
robustness of the advantage estimator but also forfeits valuable information related to the true and
reliable value of a response.

In this paper, we propose Multi-Scale Group Relative Policy Optimization (MS-GRPO), a novel
RL algorithm that generalizes GRPO by incorporating multi-scale relative comparisons into advan-
tage estimation. Instead of GRPO’s single-scale advantage based on global comparison, MS-GRPO
constructs a comprehensive advantage signal by aggregating relative advantages computed over all
possible subgroups of responses, from pairwise comparisons up to the full group. To ensure statis-
tical fairness, we introduce a hierarchical aggregation strategy that first averages advantages within
each scale (i.e., subgroup size) and then combines across scales with tunable weights, preventing
larger or more numerous subgroup sizes from dominating the signal.

However, this multi-scale formulation, while conceptually powerful, entails a combinatorial explo-
sion in the number of subgroups as the group size grows, resulting in more computational cost in
practice. To address this challenge and enable scalable training, we design a practical accelera-
tion scheme (refer to Sec. 3.2) that approximates the full subgroups via two complementary down-
sampling strategies: (1) Dilated Scale Sampling, which sparsely selects a small set of representa-
tive scales across the granularity spectrum to reduce redundancy, and (2) Diverse Group Sampling,
which, for each selected scale, chooses a compact yet maximally diverse subset of subgroups to
preserve rich comparative information with minimal redundancy.

In the practical application of RL to LLMs, MS-GRPO demonstrates a notable superiority, stem-
ming from both its solid theoretical foundation and its excellent experimental performance. From a
theoretical standpoint as detailed in Appendix A, MS-GRPO modifies the advantage estimator of
GRPO (Group Relative Policy Optimization) through an adaptive, heterogeneity-aware mechanism.
When the reward distribution exhibits high heterogeneity1, MS-GRPO introduces additional correc-
tions to effectively enhance the reliability of the advantage signal. At its core, MS-GRPO provides
an extra advantage boost to samples with above-average rewards while penalizing those that fall
below average, thereby improving the signal-to-noise ratio in unstable reward environments. It also
places greater emphasis on the raw rewards of samples rather than their normalized relative rewards,

1The concept “reward heterogeneity” refers to the degree of non-uniformity in the reward distribution
within the response group. High heterogeneity implies an uneven spread of rewards, often characterized by
significant outliers or the emergence of distinct clusters (e.g., high-reward vs. low-reward subgroups). This
typically arises from randomness of the model’s performance or instability of the reward model.
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which compensates for the diminished reliability of relative comparisons when the group’s reward
structure is unstable. When the reward distribution becomes homogeneous, MS-GRPO gracefully
degenerates to GRPO, ensuring the method provides robust, context-sensitive advantage estimation
when it matters most without introducing unnecessary corrections.

Experimental results further corroborate MS-GRPO’s superiority. Across multiple tasks aimed
at improving LLM reasoning, MS-GRPO consistently outperforms GRPO, delivering performance
boosts of +5.5 on AIME24 math reasoning, +4.6 on RiddleSense logical reasoning, +2.7 on Live-
CodeBench programming challenges, and +2.2 on MedQA medical reasoning. These improvements
are averaged over all evaluated model variants, including the Qwen2.5, LLaMA3.2 and DeepSeek-
R1-Distill-Qwen families with 1.5B, 3B, and 7B parameters. Even when LLMs are integrated with
search engines, MS-GRPO still significantly outperforms GRPO, achieving gains of +13.5 on Hot-
potQA benchmark. These experimental data powerfully prove that MS-GRPO can stably and sig-
nificantly improve LLM performance across various tasks and reward structures.

2 BACKGROUND

2.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO) (Shao et al., 2024b) circumvents the need for value
function approximation inherent in PPO (Schulman et al., 2017) by leveraging intra-group compar-
isons. Specifically, for each question q, GRPO samples a group of G responses, O = {o1, . . . , oG}
from the old policy model πθold . Each response oi consists of a sequence of tokens (oi,1, . . . , oi,|oi|),
with a scalar reward ri,t ∈ R assigned to each token oi,t. Let N =

∑G
i=1 |oi| denote the total num-

ber of tokens across all responses in the group. The core of GRPO lies in its advantage estimation.
Taking response oi as an example, it computes an advantage value ÂGRPO

i,t for each token in oi by
normalizing its reward relative to the statistics of the entire group:

ÂGRPO
i,t =

ri,t − µO

σO
, (1)

where µO and σO are the mean and standard deviation of the rewards within the group O, specifi-

cally, µO = 1
N

∑G
i=1

∑|oi|
t=1 ri,t and σO =

√
1
N

∑G
i=1

∑|oi|
t=1(ri,t − µO)2. This advantage ÂGRPO

i,t is
subsequently used to optimize the policy model πθ by maximizing the following objective:

J (θ) = Eq∼D

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

[min(λi,tÂ
GRPO
i,t ,clip (λi,t, 1− ϵ, 1 + ϵ) ÂGRPO

i,t )− β DKL(πθ||πref)]

 , (2)

where D denotes the training dataset. The importance sampling ratio λi,t =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

corrects
for the distributional shift between the behavior old policy model πθold that generated the responses
and the current policy model πθ being optimized. The clip(·, 1−ϵ, 1+ϵ) operation serves to stabi-
lize training by constraining the policy update magnitude, where the clipping bounds are controlled
by the hyperparameter ϵ.

2.2 MOTIVATION

Although GRPO provides an effective framework for policy alignment, its advantage estimation
mechanism is fundamentally limited by its reliance on a single, global comparison across the entire
group of G responses, thereby ignoring the rich signals embedded in more localized, fine-grained
comparisons. This limitation can be understood through the lens of graph theory. By conceptualizing
the responses as nodes in a complete graph (KG), GRPO is tantamount to characterizing each node
based solely on the graph’s global properties. However, a well-established principle in graph theory
is that characterizing a node solely by global graph properties can be misleading and brittle (Wu
et al., 2020; Robinson et al., 2024; Bringmann et al., 2019; Robins et al., 2007). Global properties
are highly sensitive to the presence of outlier nodes (Segarra & Ribeiro, 2015; Borgatti et al., 2006;
Albert et al., 2000; Cavallaro et al., 2024; Žnidaršič et al., 2018) (e.g., responses with exceptionally
high or low rewards) and the overall distribution of node attributes (Valente et al., 2008; Karimi
et al., 2018; Stoica et al., 2024; Salehzadeh-Yazdi & Hütt, 2025; Martin & Niemeyer, 2021) (e.g.,
reward distribution of a group of responses). Consequently, GRPO’s global comparison baseline is
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easily skewed by the abnormal reward noise or specific reward distribution, obscuring a response’s
more nuanced role within its local neighborhood and yielding an advantage signal that lacks the
robustness and precision required for stable policy optimization.

To overcome this limitation of GRPO, we draw inspiration from a key concept in graph analysis:
characterizing a node by the ensemble of local subgraphs it participates in, which are often re-
ferred to as graphlets (Pržulj, 2007) or network motifs (Milo et al., 2002). In this field, a node’s
robust identity is defined not by its global position, but by this rich, multi-scale signature of its local
environment. Analogously, we propose that a more robust advantage signal can be derived by aggre-
gating a response’s relative performance across a diverse set of induced subgraphs of varying scales.
For instance, a global comparison might only reveal that a response is above average in the entire
group (analogous to a model’s average score on broad benchmarks), while our multi-scale approach
provides a richer comparison (analogous to a full performance breakdown, including its outstanding
performance on some key subfields). We name this paradigm Multi-Scale Group Relative Policy
Optimization (MS-GRPO) and detail its formulation in the following section.

3 METHOD

3.1 MULTI-SCALE GROUP RELATIVE POLICY OPTIMIZATION

We propose Multi-Scale Group Relative Policy Optimization (MS-GRPO), whose core innovation
lies in a novel advantage estimation mechanism that produces a more robust and reliable advantage
by combining the advantages derived from response groups at varying scales. In contrast to GRPO,
which performs single-scale advantage estimation via global normalization over the full group of
sampled responses for a given question, our MS-GRPO first calculates a set of single-scale advan-
tages by independently normalizing rewards within every valid combination (subset) of responses,
ranging from the minimal pairwise combination to the full group. These single-scale advantages at
different scales are then fused via a hierarchical aggregation that explicitly balances the contribution
of each subset size, mitigating bias stemming from differing numbers of subsets at each size. The
resulting multi-scale advantage is used as the advantage signal in the policy optimization objective.

3.1.1 MULTI-SCALE ADVANTAGE ESTIMATION

For a given question q, MS-GRPO samples a group of G responses O = {o1, . . . , oG} from the old
policy model πθold . Each response oi = (oi,1, . . . , oi,|oi|) is a token sequence, with corresponding
token-level rewards {ri,t}|oi|t=1, where ri,t ∈ R is the scalar reward assigned to token oi,t. Our multi-
scale advantage estimation proceeds in the following three steps:

(1) Group Construction. Let’s define S as the τmin-power-set of the responses O. Different from
the normal power set that contains all subsets of O, the τmin-power-set S only considers all sub-
groups that contain at least τmin responses. Formally, we have:

S = {S(τmin), ...,S(G)}, where S(τ) = {S ⊆ O | |S| = τ}, (3)

where set S(τ) is composed of all comparison subgroups with the same scale τ . The hyperparam-
eter τmin controlling the minimum comparison scale, with a default value of τmin = 2, that is,
corresponding to pairwise comparison.

(2) Advantage Estimation. The core objective of this step is to capture each response’s relative
advantage within each subgroup. Specifically, for each response oi, we compute its advantages
relative to peers in every comparison group containing it, i.e., ∀S∈S oi ∈ S. We define the advantage
assigned to token oi,t within comparison group S as

Âi,t(S) =
ri,t − µS

σS
, (4)

where µS and σS are the mean and standard deviation of all tokens rewards with in the sub-group
S. After this step, each token oi,t is associated with a collection of advantages {Âi,t(S)}S∈S,oi∈S ,
where each advantage quantifies the token’s relative performance within a specific comparison group
S, thereby establishing a multi-perspective basis for robust advantage estimation.

(3) Hierarchical Aggregation. This step synthesizes the multi-perspective advantages from Step 2
into a comprehensive advantage signal for each token that reflects its holistic relative merit against
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the full response group O. Specifically, for each token oi,t, we aggregate the advantages Âi,t(S)
across all comparison groups S containing oi. However, simply averaging over all Âi,t(S) would
introduce a statistical bias due to the unequal number of comparison groups per size. For response
oi, the number of comparison groups of size τ containing oi is

(
G−1
τ−1

)
, since oi is fixed to be included

and the remaining τ − 1 responses are chosen from the other G − 1 responses in the full group O.
This quantity peaks near τ = G/2. As a result, medium-sized comparison groups would dominate
the aggregation, not because they provide higher-quality signals, but solely because they are more
numerous, leading to a biased advantage estimation. To avoid such bias, we perform a hierarchical
aggregation as follows: (1) For each token oi,t, we compute the scale-specific averaged advantage
at each scale τ ∈ {τmin, . . . , G}:

Ā
(τ)
i,t =

1(
G−1
τ−1

) ∑
S∈S

|S|=τ, oi∈S

Âi,t(S), (5)

which averages all advantages from comparison groups of size τ that contain oi, yielding an aver-
aged advantage at a specific scale. (2) We combine these scale-specific advantages into a holistic
multi-scale advantage:

ÂMS-GRPO
i,t =

G∑
τ=τmin

wτ · Ā(τ)
i,t , where wτ ≥ 0 and

G∑
τ=τmin

wτ = 1. (6)

The weight coefficient wτ is a hyperparameter controlling the contribution of scale τ . Uniform
weights (wτ = 1

G−τmin+1 ) are used by default, treating all scales equally. Alternatively, manually-
designed weighting schemes can also be flexibly implemented, such as assigning higher weights to
larger scales (corresponding to larger comparison groups).

3.1.2 TRAINING OBJECTIVE

Building on our multi-scale advantage ÂMS-GRPO
i,t from Eq. (6), policy optimization proceeds by

adopting the GRPO-style objective defined in Eq. (2), with the sole modification that the original
advantage term ÂGRPO

i,t is replaced with our more reliable multi-scale advantage ÂMS-GRPO
i,t . This

substitution enables more reliable policy updates by leveraging multi-scale relative comparisons.

3.2 PRACTICAL ACCELERATION SCHEME

Although the multi-scale advantage estimation of MS-GRPO described in Sec. 3.1.1 is theoretically
sound, its computational complexity presents a practical scalability challenge. The total number of
valid comparison groups (i.e., the size of S defined in Eq. (3)) grows exponentially with the group
size G, rendering the computation of the multi-scale advantage computationally intractable for large
group size G.

To ensure the scalability of MS-GRPO, we introduce a practical acceleration scheme based on ap-
proximation via subsampling. The core idea is to compute an approximated multi-scale advantage
by operating not on the exhaustive set S, but on a much smaller, representative subset C ⊂ S. The
construction of this subset C is approached along two orthogonal dimensions to reduce redundancy.
First, we apply a Dilated Scale Sampling strategy to select a representative but sparse set of scales,
denoted as T. Second, for each scale τ ∈ T, we employ a Diverse Group Sampling procedure to
select a concise yet informative subset of comparison groups, denoted as C(τ). The final, overall
representative subset C is then formed by the union of these per-scale subsets C = ∪τ∈TC(τ). The
advantage estimation process (Steps (2) and (3) in Sec. 3.1.1) is then performed exclusively on this
condensed set C. The specific mechanisms for each of these two sampling dimensions are detailed
in the following Sec. 3.2.1 and Sec. 3.2.2, respectively.

3.2.1 DILATED SCALE SAMPLING FOR SCALE SELECTION

In MS-GRPO, a scale refers to the size τ = |C| of a comparison group, which determines the granu-
larity of the relative comparison. Small scales (e.g., τ = 2) capture fine-grained, local comparisons,
while large scales (e.g., τ = G) reflect coarse-grained, global comparisons. A full estimation that
considers all consecutive scales inherently introduces redundancy, as adjacent scales (e.g., τ and
τ + 1) yield highly correlated advantage signals.
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Inspired by the classical dilated convolution (Yu & Koltun, 2015), we perform analogous dilated
sampling over the scale dimension to ensure balanced coverage across the entire scale spectrum.
Specifically, given a hyperparameter M representing the target number of scales, our Dilated Scale
Sampling strategy partitions the full scale range [τmin, G] into M non-overlapping intervals and
selects one scale per interval. This process is formalized in two steps: First, we partition the integer
range [τmin, G] into M contiguous and non-overlapping intervals, {Ij}Mj=1. The j-th interval, Ij =
[sj , ej ], is formally defined by its start point sj = max(τmin, ej−1 + 1) and end point ej = G −
(M − j) ·

⌈
G−τmin+1

M

⌉
. Second, we uniformly sample one scale τj ∼ Uniform(Ij) from each

interval. This process yields the final set of selected scales T = {τ1, . . . , τM}, which forms the
basis for the per-scale group sampling described next.

3.2.2 DIVERSE GROUP SAMPLING FOR PER-SCALE COMPARISON GROUP SELECTION

For each scale τ ∈ T selected above, the number of possible comparison groups is
(
G
τ

)
, which can be

prohibitively large and informationally redundant. For instance, two groups that differ by only one
member provide highly correlated advantage signals, and averaging over them yields diminishing
returns. Our goal, therefore, is to select a concise subset of comparison groups that maximizes
internal diversity. To achieve this, we apply a conditional sampling strategy controlled by a budget
hyperparameter K. Let S(τ) = {S ⊆ O

∣∣ |S| = τ} denote the set of all valid comparison groups at
scale τ , and Nτ = |S(τ)| =

(
G
τ

)
. We define the representative subset C(τ) as follows:

C(τ) =

{
S(τ) if Nτ ≤ K,

K diverse comparison groups from S(τ) otherwise.
(7)

In the latter case, we formalize the selection as a diversity maximization optimization problem.
Specifically, we aim to find a subset C(τ) ⊂ S(τ) of size K that maximizes the sum of pairwise
Jaccard distances dJ between its members:

C(τ)∗ = argmax
C(τ)⊂S(τ),|C(τ)|=K

∑
Sa,Sb∈C(τ),a̸=b

dJ(Sa,Sb), (8)

where dJ(Sa,Sb) = 1− |Sa∩Sb|
|Sa∪Sb| defines the divergence between any two groups Sa,Sb ∈ S(τ). As

this problem is NP-hard, we design a fast, polynomial-time greedy algorithm that offers theoretical
approximation guarantees (derived in Appendix E). Specifically, starting with an empty set C(τ) =
∅, the algorithm iteratively constructs the set C(τ) by repeatedly adding the candidate group S∗ from
the remaining pool (S(τ) \ C(τ)) that is most dissimilar to the groups already selected:

S∗ = argmax
S∈S(τ)\C(τ)

∑
S′∈C(τ)

dJ(S,S ′). (9)

This greedy process terminates after K iterations, yielding the final representative set C(τ) of size
K. By construction, for each selected scale τ ∈ T, we have |C(τ)| ≤ K. Since |T| = M , the total
number of comparison groups used in the accelerated MS-GRPO is bounded by M · K, ensuring
computational tractability without sacrificing representativeness.

4 EXPERIMENTS

In this section, we first compare the performance of our MS-GRPO and GRPO on a wide range of
tasks in Sec. 4.1, and then ablate each of our key designs in Sec. 4.2. The experimental settings are
detailed in Appendix B.

4.1 MAIN RESULTS

Math Reasoning. As shown in Table 1, our MS-GRPO demonstrates comprehensive superiority on
all math reasoning benchmarks, significantly and consistently outperforming GRPO across both the
Qwen and LLaMA series models. For example, it achieves additional average accuracy gains of +4.1
for Qwen2.5-Math-7B and +5.0 for LLaMA3.2-3B-Instruct over GRPO across the five benchmarks.
It is worth noting that as the model size increases (from 1.5B to 7B), the improvement brought by our

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison with GRPO on five challenging math reasoning benchmarks.

Model AIME24 AMC23 MATH-500 MinervaMath OlympiadBench Avg.

Qwen2.5-Math-1.5B 13.3 30.0 36.6 19.1 22.6 24.3
+ GRPO 20.0 57.5 76.4 32.3 38.5 44.9
+ MS-GRPO (Ours) 26.7 (+6.7) 62.5 (+5.0) 80.0 (+3.6) 33.4 (+1.1) 40.5 (+2.0) 48.6 (+3.7)

Qwen2.5-Math-7B 13.3 40.0 53.6 17.2 17.4 28.3
+ GRPO 33.3 67.5 82.0 36.0 42.6 52.3
+ MS-GRPO (Ours) 40.0 (+6.7) 72.5 (+5.0) 82.8 (+0.8) 40.4 (+4.4) 46.4 (+3.8) 56.4 (+4.1)

Qwen2.5-Math-1.5B-Instruct 10.0 60.0 74.2 32.3 39.5 43.2
+ GRPO 16.7 62.5 76.4 30.8 40.1 45.3
+ MS-GRPO (Ours) 20.0 (+3.3) 62.5 (+0.0) 77.6 (+1.2) 33.0 (+2.2) 41.7 (+1.6) 47.0 (+1.7)

Qwen2.5-Math-7B-Instruct 13.3 70.0 81.2 36.0 45.6 49.2
+ GRPO 16.7 70.0 82.6 38.7 46.8 51.0
+ MS-GRPO (Ours) 23.3 (+6.6) 75.0 (+5.0) 83.5 (+0.9) 40.4 (+1.7) 47.8 (+1.0) 54.0 (+3.0)

LLaMA3.2-3B-Instruct 3.3 22.5 48.0 16.5 14.5 21.0
+ GRPO 13.3 27.5 57.2 20.9 21.6 28.1
+ MS-GRPO (Ours) 20.0 (+6.7) 40.0 (+12.5) 59.6 (+2.4) 22.7 (+1.8) 23.2 (+1.6) 33.1 (+5.0)

DeepSeek-R1-Distill-Qwen-1.5B 28.8 62.9 82.8 26.5 43.3 48.9
+ GRPO 30.0 67.5 83.8 29.7 47.0 51.6
+ MS-GRPO (Ours) 33.2 (+3.2) 75.0 (+7.5) 86.0 (+2.2) 31.1 (+1.4) 49.4 (+2.4) 54.9 (+3.3)

Table 2: Comparison with GRPO on five code generation benchmarks.

Model LiveCodeBench HumanEval HumanEval+ MBPP MBPP+ Avg.

Qwen2.5-7B-Instruct 22.4 86.4 80.5 75.6 66.7 66.3
+ GRPO 28.6 87.8 84.0 80.4 68.9 70.0
+ MS-GRPO (Ours) 30.6 (+2.0) 88.5 (+0.7) 84.8 (+0.8) 82.5 (+2.1) 70.8 (+1.9) 71.4 (+1.4)

Qwen2.5-Coder-7B-Instruct 30.7 86.0 83.2 82.5 69.7 70.4
+ GRPO 32.6 87.1 83.3 83.7 70.1 71.4
+ MS-GRPO (Ours) 36.0 (+3.4) 88.0 (+0.9) 84.2 (+0.9) 85.9 (+2.2) 74.4 (+4.3) 73.7 (+2.3)

MS-GRPO also grows instead of narrows, which highlights the excellent scalability of our method.
Furthermore, our method exhibits a more pronounced superiority on more difficult benchmarks,
such as AIME24. These results provide strong evidence that, compared to GRPO, our proposed
MS-GRPO can more effectively unlock the deep reasoning potential of LLMs for solving complex
mathematical problems.

Code Reasoning. For code generation, MS-GRPO showcases similarly strong performance. As
shown in Table 2, MS-GRPO delivers consistent performance gains over GRPO across all five code
benchmarks. In particular, MS-GRPO achieves higher advantage of the code-specialized model,
Qwen2.5-Coder-7B-Instruct, than that of the general model, Qwen2.5-7B-Instruct (+2.3 vs. +1.4).
Similar with the findings in math reasoning, the gains of MS-GRPO relative to GPRO becomes
more substantial on challenging benchmarks, for example, +3.4 on LiveCodeBench and +4.3 on
MBPP+. This clearly indicates that MS-GRPO not only excels at general-purpose code tasks but
also effectively enhances LLMs’ ability to tackle complex programming challenges.

Logical Reasoning. Logical reasoning, often assessed with puzzles, is a key indicator of the intel-
ligence of LLMs. We evaluate on the well-known RiddleSense benchmark. The results in Table 3
clearly demonstrate the significant superiority of MS-GRPO compared with GRPO. On the smaller
1.5B level models, MS-GRPO surpasses GRPO by +5.3 and +5.9, respectively. On the larger 7B
models, the advantage remains notable at +4.0 and +3.3. It shows that MS-GRPO can effectively
unlock and enhance the logical reasoning capabilities of models, particularly for smaller models.

Medical Reasoning. In the highly specialized medical domain, MS-GRPO continues to demonstrate
its superiority over GRPO. As shown in Table 4, on the authoritative MedQA benchmark (based on
the US Medical Licensing Examination), our MS-GRPO consistently outperforms GRPO with gains
of +2.0 to +2.5 across all baseline LLMs. This result validates the generalizability and effectiveness
of MS-GRPO in specialized domains, showcasing its power to further enhance LLMs’ ability on
tasks requiring deep, domain-specific knowledge.

Question Answering with Search Engine. We also compare MS-GRPO with GRPO for training
LLMs integrated with a search engine. In this setting, the model can query a search engine to re-
trieve relevant external knowledge to aid its reasoning process. Therefore, this training setting is
particularly challenging since it requires enhancing not only the model’s core reasoning abilities but
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Table 3: Comparison with GRPO on logical rea-
soning benchmark (RiddleSense).

Model before
training

+ GRPO + MS-GRPO
(Ours)

Qwen2.5-1.5B 6.4 65.0 70.3 (+5.3)

Qwen2.5-7B 60.2 73.8 77.8 (+4.0)

Qwen2.5-1.5B-Instruct 36.5 64.3 70.2 (+5.9)

Qwen2.5-7B-Instruct 65.5 76.0 79.3 (+3.3)

Table 4: Comparison with GRPO on medical rea-
soning benchmark (MedQA).

Model before
training

+ GRPO + MS-GRPO
(Ours)

Qwen2.5-1.5B 8.4 42.2 44.2 (+2.0)

Qwen2.5-7B 47.8 61.3 63.4 (+2.1)

Qwen2.5-1.5B-Instruct 19.4 42.9 45.0 (+2.1)

Qwen2.5-7B-Instruct 60.5 64.1 66.6 (+2.5)

Table 5: Comparison with GRPO on general and multi-hop QA tasks for LLMs with search engine.

Benchmarks Qwen2.5-1.5B Qwen2.5-3B
before training + GRPO + MS-GRPO (Ours) before training + GRPO + MS-GRPO (Ours)

NQ 0.2 19.4 38.4 (+19.0) 2.3 40.6 44.1 (+3.5)
HotpotQA 0.4 18.3 30.8 (+12.5) 2.1 28.4 42.8 (+14.4)

Avg. 0.3 18.9 34.6 (+15.7) 2.2 34.5 43.5 (+9.0)

also its proficiency in interacting with the search engine. As shown in Table 5, MS-GRPO compre-
hensively and significantly outperforms GRPO on both general QA benchmark (NQ) and multi-hop
QA benchmark (HotpotQA), with the average bonus of +15.7 and +9.0 over GRPO for Qwen2.5-
1.5B and Qwen2.5-3B, respectively. Notably, MS-GRPO is exceptionally effective at unlocking the
potential of smaller models. Specifically, for Qwen2.5-1.5B, it delivers an impressive average per-
formance boost of +15.7, and achieves a massive gain of +19.0 on NQ benchmark, nearly doubling
the performance of GRPO. Furthermore, for Qwen2.5-3B, MS-GRPO shows larger improvements
on the more challenging HotpotQA than NQ, achieving remarkable gains of +12.5 and +14.4 over
GRPO. These results clearly indicate that MS-GRPO not only enhances a model’s intrinsic reason-
ing ability but also significantly optimizes its performance when acting as an agent that interacts
with external tools like a search engine.

4.2 ABLATION STUDY

We ablate the efficacy of two key components in MS-GRPO: (1) the Hierarchical Aggregation strat-
egy for multi-scale advantages, and (2) the Practical Acceleration Scheme for scalable computation.
Ablation experiment on each term is conducted under two training settings: training LLaMA3.2-
3B-Instruct on math dataset, and training Qwen2.5-Coder-7B-Instruct on code dataset. We report
the average pass@1 across five benchmarks for math and code evaluation, respectively.

Efficacy of Hierarchical Aggregation. Hierarchical aggregation (detailed in Sec. 3.1) is a core
component of MS-GRPO that first averages advantages within each scale and then combines across
scales with weighted summation, making a fair contribution for all scales. We investigate two as-
pects of this design:

• Necessity: To evaluate its necessity, we compare it against a naive aggregation that directly aver-
ages all per-subgroup advantages without scale-wise awareness. As shown in Table 6a (line 1-2),
this naive manner underperforms hierarchical aggregation by 1.5 on math and 0.8 on code, con-
firming that explicit scale-wise averaging is crucial to avoid bias from combinatorial imbalance.

• Impact of weighting scheme {wτ}: We compare three different weight coefficients {wτ}τ in
Eq. (6): (1) uniform: equal weight per scale, (2) global-biased: higher weight for larger scales,
emphasizing global comparisons. (3) local-biased: higher weight on smaller scales, emphasizing
local comparisons. In all cases, the weights are normalized to sum to one. As Table 6a (line 2-
4), uniform weighting achieves the best performance, while the local-biased weighting performs
worst. Notably, even the global-biased variant outperforms GRPO by +1.4 and +2.0, demon-
strating that incorporating any form of multi-scale signal can improve upon GRPO’s single-scale
advantage estimation.

Efficacy of Acceleration Scheme. Our acceleration scheme (detailed in Sec. 3.2) consists of two
orthogonal components: Dilated Scale Sampling and Diverse Group Sampling. We analyze their
individual and combined effects below:
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Table 6: Ablation study on two key designs of MS-GRPO: (a) Hierarchical Aggregation (HA) and its
weighting scheme; (b) Practical Acceleration scheme with two components, Dilated Scale Sampling
(DSS) and Diverse Group Sampling (DGS). The impact of hyperparameters M and K is evaluated
in (c) and (d), respectively, where the reported scores follow the format math / code performance.
The light blue shallow highlighted our default configuration. For reference, GRPO achieves 28.1
(math) and 71.4 (code) in average pass@1 (%), with a training time of 184 seconds (s) per step.

(a)

HA weighting
scheme

Math
(Avg)

Code
(Avg)

✗ - 31.6 72.9
✓ uniform 33.1 73.7
✓ global-biased 32.7 73.4
✓ local-biased 31.3 72.5

(b)

DSS DGS Math
(Avg)

Code
(Avg)

Time per step
(Avg)

Comparison Group
Number

✗ ✗ 33.3 74.0 233s 247
✓ ✗ 33.3 74.0 220s 93∼155
✗ ✓ 33.1 73.8 203s 49
✓ ✓ 33.1 73.7 199s 25

(c)

DSS
sampling mode

M no
sampling2 4 6

fixed 30.4 / 72.0 31.5 / 73.2 32.9 / 73.4
random 31.6 / 72.7 33.1 / 73.7 33.1 / 73.7 33.1 / 73.8

(d)

DGS
sampling mode

K no
sampling4 8 16 32

random 32.6 / 72.7 32.6 / 72.9 32.9 / 73.5 33.1 / 73.9
optimized 32.7 / 73.2 33.1 / 73.7 33.0 / 73.7 33.3 / 73.9 33.3 / 74.0

• Impact of Dilated Scale Sampling (DSS): DSS reduces redundancy across scales by selecting
only M representative scales from the full range [τmin, G]. As shown in Table 6b, applying DSS
only reduces the number of comparison groups by nearly half while maintaining the performance
(line 1-2). A key design choice in DSS is the sampling strategy. Instead of deterministically
selecting scales at fixed intervals (e.g., τ = 2, 4, 6, 8), we partition the scale range into M con-
tiguous intervals and randomly sample one scale per interval. As Table 6c shows, this random
sampling strategy consistently outperforms fixed-interval sampling across all M values. There-
fore, random sampling within each interval is the merit of maintaining the performance during
scale sparsification. We attribute this gain to the stochasticity introduced during training: ran-
dom scale selection ensures that all scales have a chance to be used over time, reducing human-
designed bias in fixed-interval sampling and improving generalization. Table 6c further studies
the sensitivity to hyperparameter M , the number of scales to be retained. Performance improves
as M increases, but with diminishing returns beyond M = 4. Given the trade-off between effi-
ciency and performance, we adopt M = 4 as the default.

• Impact of Diverse Group Sampling (DGS): DGS controls the number of comparison groups
per scale via a budget K. As shown in Table 6b and Table 6d, disabling DGS (i.e., using all
subgroups) yields the best performance, while enabling DGS with K = 8 slightly reduces scores
(from 33.3 to 33.1 on math, 74.0 to 73.7 on code), a minor drop given the drastic reduction in
the number of comparison groups (from 247 to 25). Crucially, the diversity-aware selection in
DGS is essential. Table 6d shows that the optimized strategy consistently outperforms random
sampling, especially at small K, indicating that maximizing subgroup diversity preserves more
informative signals under tight budgets K. Finally, we analyze the effect of K. Performance
increases with K and saturates around K = 16 or 32. However, even with K = 8, our method
achieves 99.4% of the full performance (33.1 vs. 33.3 on math), thus, we choose K = 8 as the
default, striking an optimal balance between efficiency and signal fidelity.

5 CONCLUSION

We propose Multi-Scale Group Relative Policy Optimization (MS-GRPO), which improves upon
GRPO by leveraging multi-scale comparisons across response subgroups to generate more robust
and reliable advantage signals. MS-GRPO mitigates the brittleness of global normalization under
reward heterogeneity and stochasticity. We further introduce a practical acceleration scheme to
ensure its efficiency and scalability.

LLM-Usage Statement. The authors used a large language model to assist with language polishing,
grammar correction, and typo identification in this paper. The ideas, methodology, experimental
design, and results presented are the sole work of the authors.
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REPRODUCIBILITY STATEMENT
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A ANALYSIS ON THE ADVANTAGE DIFFERENCE OF MS-GRPO AND GRPO

To further understand the distinction between the advantage estimators of MS-GRPO and GRPO,
we derive an analytical expression for their difference, denoted as ∆Âi,t. The complete derivation
is provided in Appendix D.1, yielding the following formula (where Var(·) denotes the variance):

∆Âi,t = ÂMS-GRPO
i,t − ÂGRPO

i,t

≈

Correction Term 1︷ ︸︸ ︷
(ri,t − µO)︸ ︷︷ ︸

global-relative reward

(
1

ES [σS ]
− 1

σO

)
︸ ︷︷ ︸

scaling factor 1

+

Correction Term 2︷ ︸︸ ︷
ri,t︸︷︷︸

reward

VarS(σS)

(ES [σS ])3︸ ︷︷ ︸
scaling factor 2

(10)

This difference can be interpreted as an additive correction bias that MS-GRPO applies to the
GRPO’s advantage. It consists of two distinct correction terms: the first scales the global-relative
reward (ri,t − µO), while the second scales the raw reward (ri,t).

Rationale of Correction Term 1. The first correction term can be understood as using the difference
between each token’s reward ri,t and the global average reward µO to correct its relative advantage.
Since “scaling factor 1 (1/ES [σS ]− 1/σO)” is non-negative (proven in Appendix Proof 1), the sign
of “correction term 1” is determined solely by whether the token’s reward exceeds or falls below the
global average reward. Among all tokens in the G responses, it grants an additional advantage bonus
to tokens above the global reward level, while imposing an additional advantage penalty to tokens
below the global reward level. In addition to being affected by the absolute deviation |ri,t−µO|, the
magnitude of these additional advantage bonus or penalties also increases with the heterogeneity of
the reward distribution, since the magnitude of the “scaling factor 1” increases with the heterogeneity
of the reward distribution (proven in Appendix Proof 2). This is reasonable because if the model’s
answer quality to the current question is unstable (high heterogeneity), a response that significantly
outperforms the average is more notable and thus deserves a larger advantage boost.

Rationale of Correction Term 2. The second correction term can be understood as using the scaled
reward value of each token to correct its relative advantage. Since “scaling factor 2” is non-negative
(proven in Appendix Proof 3), the sign of the second correction term is determined by the positive
or negative value of the raw reward ri,t. Among all tokens in the G responses, this term assigns
a higher additional advantage boost for higher-quality tokens (corresponding to higher rewards).
In addition to being affected by the reward value of the token, the magnitude of this correction
term is also affected by the reward heterogeneity. The greater the heterogeneity, the larger the
magnitude of the second correction term, because the magnitude of “scaling factor 2” increases
with the heterogeneity of the reward distribution (proven in Appendix Proof 4). This is reasonable
because if the reward distribution is highly heterogeneous (e.g., caused by the instability of model
performance or reward model), the reward groups for advantage estimation will also be unstable,
and the reliability of relative comparisons will be weakened. Therefore, in this highly uncertain
comparison environment, it is reasonable to place slightly more trust in a token’s absolute superiority
(reflected by its raw reward ri,t), as the second correction term does.

Overall Interpretation: MS-GRPO as an Adaptive Advantage Correction. In summary, our
analysis reveals that the advantage difference ∆Âi,t acts as an adaptive, heterogeneity-aware cor-
rection that MS-GRPO applies to the GRPO’s advantage. The behavior of this correction is dictated
by the structure of the reward distribution:

• When the reward distribution is nearly homogeneous, the two variance related to the reward
heterogeneity (VarS(µS) and VarS(σS)) approach zero. Consequently, both “scaling factor 1”
and “scaling factor 2” also approach zero, causing the entire advantage difference ∆Âi,t to
vanish. In this simple case, MS-GRPO gracefully degenerates to GRPO, demonstrating that
the correction is adaptively applied only when necessary.

• Conversely, when the reward distribution is highly heterogeneous, the correction term becomes
more significant. The correction operates through two synergistic mechanisms. “Correction
Term 1” grants an additional advantage boost to tokens with above-average rewards (since out-
performing the average is more significant and notable in an unstable sampling), and imposes
an additional advantage penalty on those below average. Simultaneously, “Correction Term
2” places greater trust in a token’s raw reward when the high heterogeneity makes the context
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for relative comparisons unstable. Both terms, therefore, leverage the rich, fine-grained infor-
mation embedded in the group’s reward heterogeneity to produce a more nuanced and reliable
advantage signal. This stands in sharp contrast to GRPO’s single-scale, global estimation,
which completely overlooks the crucial structural information.

The combined effect results in a sophisticated correction that not only accounts for a token’s relative
standing but also the reliability of the context in which that standing is measured, leading to a more
robust and nuanced advantage signal.

B EXPERIMENTAL SETTINGS

Implementation Details. Our implementation is built upon the VeRL (Sheng et al., 2025) library.
For the hierarchical aggregation in Eq. (6), we adopt uniform weights across all scales (i.e., wτ =
1/(G − τmin + 1)) by default, because we empirically find that this simple setting consistently
yields strong performance. In fact, linearly assigning higher weights to larger scales underperforms
uniform weighting, as verified in our ablation study (see Table 4.2 (a)). For the two hyperparameters
introduced in our acceleration scheme, we set M = 4 and K = 8 by default in our experiments.
These values strike a favorable trade-off between computational efficiency and advantage estimation
fidelity across all tasks, and we ablate the effect of them in Table 6c and Table 6d.

Training Settings. For each training data, we sample G = 8 responses from the current policy with
temperature 1.0. The maximum output sequence length is set as 2048 tokens. We use a constant
learning rate of 1 × 10−6, weight decay of 0.01, and the AdamW optimizer. The prompt batch
size is set to 256. Training proceeds for 500 steps for math reasoning, code reasoning, and LLM
with search engine tasks. While for logical and medical reasoning, we train for 300 steps due to
their faster convergence. The KL penalty coefficient in the objective function of GRPO is set to
0.0001, and we set the entropy coefficient as 0.001 to encourage exploration. All the rewards are
derived from rule-based outcome verifiers. For code reasoning, we set the pass rate over all test cases
(#passed test cases

#total test cases ) as the reward. For other tasks, a binary reward is assigned based on the correctness
of the final answer: the reward is set to 1 if the final answer is correct, otherwise, the reward is set
to 0.

Training Dataset. The training datasets we used are listed as follows: (1) Math Reasoning: We
train the DeepSeek-R1-Distill-Qwen-1.5B model on a combination of AIME (1984-2023), AMC
problems (prior to 2023), and Omni-MATH (Gao et al., 2024) datasets. Other models are trained
on 8K problems from the MATH (Hendrycks et al., 2021) dataset with difficulty levels between 3
and 5. (2) Code Reasoning: All models are trained on 2K programming problems from the Leet-
CodeDataset (Xia et al., 2025). (3) Medical Reasoning: All models are trained on 10K English
questions from the training split of MedQA (USMLE) (Jin et al., 2021). (4) Logical Reasoning: All
models are trained on 3K examples from the training split of RiddleSense (Lin et al., 2021). (5)
QA with Search Engine: All models are trained on 90K questions from the training set of HotPotQA
(Yang et al., 2018).

Evaluation Protocol. We employ greedy decoding for all test data and report the pass@1 metric
across the following benchmarks: (1) For Math Reasoning: we evaluate the mathematics problem-
solving ability on five widely-used challenging benchmarks, including AIME24 (AIME, 2024),
AMC23 (AMC, 2023), MATH-500 (Hendrycks et al., 2021), MinervaMath (Lewkowycz et al.,
2022), and OlympiadBench (He et al., 2024). (2) For Code Reasoning: We evaluate the complex
programming ability on five code generation benchmarks, including MBPP (Austin et al., 2021),
MBPP+ (Liu et al., 2023), HumanEval (Chen et al., 2021), HumanEval+ (Liu et al., 2023), and
LiveCodeBench (Jain et al., 2024). (3) For Logical Reasoning: We evaluate the LLMs’ ability to
solve puzzles on the well-known RiddleSense benchmark. (4) For Medical Reasoning: The medical
reasoning evaluation is conducted using the test split of MedQA (USMLE) (Jin et al., 2021). (5)
QA with Search Engine: We evaluate on two popular QA benchmarks, one Natural Questions (NQ)
(Kwiatkowski et al., 2019) designed for general question answering, and another is HotPotQA (Yang
et al., 2018), which qualifies the multi-hop reasoning ability.

Baseline Models. We conduct experiments across a diverse set of popular LLMs, including both the
Qwen2.5 (Yang et al., 2024a) and LLaMA3.2 (AI, 2024) families with varying sizes (1.5B, 3B, and
7B parameters). For math and code reasoning, we additionally experiment with specialized models,
Qwen2.5-Math (Yang et al., 2024b) and Qwen2.5-Coder (Hui et al., 2024), respectively. Beyond
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them, we also consider a LongCoT instruction-tuned model, DeepSeek-R1-Distill-Qwen-1.5B (Guo
et al., 2025), to examine the effectiveness of our method on the model with the recent advanced long
chain-of-thought reasoning paradigm. Both base LLMs and instruction-tuned LLMs are considered
to provide comprehensive comparisons on two common RL settings: (1) Directly RL starting from
a base (pretrained-only) model, i.e., Zero-RL, and (2) Applying RL for an instruction-tuned (SFT)
model.

C RELATED WORK

LLM Reasoning. Recent research (OpenAI, 2024; 2025a;b; Guo et al., 2025) has demonstrated that
large language models can achieve significant performance gains by incorporating step-by-step rea-
soning. Most of these approaches rely on prompting to guide the model into generating explicit and
sequential reasoning paths (Wei et al., 2022; Yao et al., 2023; Besta et al., 2024). This includes well-
known methods such as Chain-of-Thought (CoT) prompting (Wei et al., 2022; Kojima et al., 2022;
Reynolds & McDonell, 2021; Zelikman et al., 2022; Ye et al., 2025), Tree-of-Thought (Yao et al.,
2023), and Graph of Thoughts (Besta et al., 2024). Additionally, some works integrate more sophis-
ticated search algorithms (Feng et al., 2024; Xin et al., 2024; Trinh et al., 2024) with the reasoning
process, for instance, by using Monte Carlo Tree Search (Trinh et al., 2024). However, reasoning
capabilities triggered solely by prompting can be unstable and may not fully unlock a model’s true
potential. To address this limitation, other research has proposed training-based methods to further
strengthen a model’s step-by-step reasoning ability. These efforts often involve creating datasets
(Muennighoff et al., 2025; Min et al., 2024; Luo et al., 2025) with reasoning annotations or utilizing
bootstrapping self-training techniques (Zelikman et al., 2022). To improve reasoning performance,
some studies have trained verifiers to check the validity of intermediate steps (Lightman et al., 2023;
Cobbe et al., 2021). The use of these verifiers has been shown to significantly boost a model’s overall
reasoning ability.

Reinforcement Learning for LLMs. A key driver of recent advancements in large language mod-
els (LLMs) (OpenAI, 2024; 2025a;b; Guo et al., 2025; Team et al., 2025) has been Reinforcement
Fine-Tuning (RFT) (Schulman et al., 2017; Shao et al., 2024a; Guo et al., 2025; Yu et al., 2025; Hu,
2025), a technique that refines model behavior through reward-guided optimization. This approach
fundamentally differs from Supervised Fine-Tuning (SFT) (Muennighoff et al., 2025; Min et al.,
2024; Luo et al., 2025), which aligns model outputs with labeled responses, by using reinforcement
learning to adapt models based on feedback signals. Typically, RFT relies on reinforcement learning
algorithms like Proximal Policy Optimization (PPO) (Schulman et al., 2017) paired with rule-based
reward functions. For example, DeepSeek-R1 (Guo et al., 2025) utilized Group Relative Policy Op-
timization (GRPO) (Shao et al., 2024a) with binary rewards to indicate the correctness of answers
in tasks such as mathematics (AIME, 2024) and coding (Jain et al., 2024), achieving impressive
results. A number of studies suggest that RFT not only enhances cognitive abilities like reflection
and self-correction (Gandhi et al., 2025; Guo et al., 2025) but also improves generalization across
various tasks (Chu et al., 2025a). Current RFT research is largely centered on algorithmic improve-
ments. For instance, VinePPO (Kazemnejad et al., 2024) was designed to address the limitations of
PPO’s value networks in complex reasoning tasks by introducing unbiased Monte Carlo estimates
for better credit assignment, leading to gains in both efficiency and performance over PPO baselines.
Similarly, Liu et al. (2025) analyzed the training pipeline of DeepSeek-R1-Zero (Guo et al., 2025),
identifying biases in GRPO and proposing Dr.GRPO to enhance both token efficiency and final per-
formance. Other efforts have aimed to simplify the GRPO algorithm, for example, by removing the
KL-divergence term to produce more robust empirical results (Yu et al., 2025; Chu et al., 2025b).

D ANALYSIS ON THE ADVANTAGE ESTIMATION DIFFERENCE BETWEEN
MS-GRPO AND GRPO

In this section, we first provide a detailed derivation for the advantage difference ∆Âi,t between
Multi-Scale Group Relative Policy Optimization (MS-GRPO) and Group Relative Policy Optimiza-
tion (GRPO) in Sec. D.1. Then, we prove the properties of two critical terms of ∆Âi,t in Sec. D.2
and Sec. D.3.
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D.1 DERIVATION OF THE APPROXIMATE ADVANTAGE DIFFERENCE

Let ÂMS-GRPO
i,t and ÂGRPO

i,t denote the advantage estimates from MS-GRPO and GRPO for oi,t (the
t-th token of i-th response) with reward ri,t, respectively. The difference is defined as:

∆Âi,t = ÂMS-GRPO
i,t − ÂGRPO

i,t (11)
For clarity in the following formulas, we use the simplified notation ES [·] to represent the hierar-
chical aggregation of MS-GRPO. Substituting the definitions of advantage in Eq. (6) and Eq. (1), we
can expand the expression as follows:

∆Âi,t = ES

[
ri,t − µS

σS

]
− ri,t − µO

σO

= ES

[
ri,t
σS

]
− ES

[
µS

σS

]
− ri,t

σO
+

µO

σO

= ri,t ES

[
1

σS

]
− ES

[
µS

σS

]
− ri,t

σO
+

µO

σO

(12)

To make this expression tractable, we further derive the expressions for the two expectation terms
ES

[
1
σS

]
and ES

[
µS
σS

]
:

• Derivation for ES

[
1
σS

]
: We apply the second-order Taylor expansion on function f(σS) =

1/σS around the mean ES [σS ]:

f (σS) ≈ f (ES [σS ]) + (σS − ES [σS ]) f
′ (ES [σS ]) +

1

2
(σS − ES [σS ])

2 f ′′ (ES [σS ]) (13)

Taking the expectation of both sides, the linear term vanishes since ES
[
σS − ES [σS ]

]
= 0, and

we get the approximation for the expectation:

ES

[
1

σS

]
≈ 1

ES [σS ]
+

1

2
VarS(σS) · f ′′(ES [σS ])

=
1

ES [σS ]
+

1

2
VarS(σS) ·

2

(ES [σS ])3

=
1

ES [σS ]
+

VarS(σS)

(ES [σS ])3

(14)

This result shows how the expectation of the inverse is related to the inverse of the expectation
plus a correction term that is directly proportional to the variance of the random variable.

• Derivation for ES

[
µS
σS

]
: We apply the first-order multivariate Taylor expansion on function

f(µS , σS) = µS/σS , giving:
f(µS , σS) ≈ f

(
ES [µS ] ,ES [σS ]

)
+

(
µS − ES [µS ]

)
f ′
µS

(
ES [µS ] ,ES [σS ]

)
+

(
σS − ES [σS ]

)
f ′
σS

(
ES [µS ] ,ES [σS ]

) (15)

Taking the expectation of both sides, the linear terms vanish since ES
[
µS − ES [µS ]

]
= 0 and

ES
[
σS − ES [σS ]

]
= 0, and ES [µS ] = µO (given by the Law of Total Expectation), we get the

approximation for the expectation:

ES

[
µS

σS

]
≈ ES [µS ]

ES [σS ]
=

µO

ES [σS ]
(16)

Now, we substitute the expressions of the two expectation terms in Eq. (14) and Eq. (16) back into
the expanded difference formula in Eq. (12). Plugging in the results from the derivations above and
grouping the terms containing ri,t and µO, we have:

∆Âi,t ≈ ri,t

(
1

ES [σS ]
+

VarS(σS)

(ES [σS ])3

)
−

(
µO

ES [σS ]

)
− ri,t

σO
+

µO

σO

= ri,t

(
1

ES [σS ]
− 1

σO

)
− µO

(
1

ES [σS ]
− 1

σO

)
+ ri,t

VarS(σS)

(ES [σS ])3

= (ri,t − µO)

(
1

ES [σS ]
− 1

σO

)
+ ri,t

VarS(σS)

(ES [σS ])3

(17)
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To analyze the terms above, we need to find an expression for the remaining expectation term
ES [σS ]. Next, we continue to derive it:

• Derivation for ES [σS ]: First, we establish a relationship between the expectation of the
squared local standard deviation, ES [σ

2
S ], and the square of its expectation, (ES [σS ])

2. This
identity is derived directly from the fundamental definition of variance:

Var(σS) = ES
[
(σS − ES [σS ])

2
]

= ES
[
σ2
S − 2σSES [σS ] + (ES [σS ])

2
]

= ES [σ
2
S ]− ES

[
2σSES [σS ]

]
+ ES

[
(ES [σS ])

2
]

= ES [σ
2
S ]− 2ES [σS ]E[σS ] + (ES [σS ])

2

= ES [σ
2
S ]− (ES [σS ])

2

(18)

Rearranging this identity gives the desired relationship:

(ES [σS ])
2 = ES [σ

2
S ]− Var(σS) (19)

Then, according the Law of Total Variance, we have the expression for ES [σ
2
S ]:

ES [σ
2
S ] = σ2

O − VarS(µS) (20)

By equating Eq. (19) and Eq. (20), we can solve for (ES [σS ])
2:

(ES [σS ])
2 = σ2

O − VarS(µS)− VarS(σS) (21)

Taking the square root gives us the desired expression for the average local standard deviation:

ES [σS ] =
√

σ2
O − VarS(µS)− VarS(σS) (22)

Substituting this back into Eq. (17) gives its exact expression, forming the basis of our analysis in
the following subsection.

∆Âi,t ≈

Correction Term 1︷ ︸︸ ︷
(ri,t − µO)︸ ︷︷ ︸

global-relative reward

(
1

ES [σS ]
− 1

σO

)
︸ ︷︷ ︸

scaling factor 1

+

Correction Term 2︷ ︸︸ ︷
ri,t︸︷︷︸

reward

VarS(σS)

(ES [σS ])3︸ ︷︷ ︸
scaling factor 2

,

where ES [σS ] =
√
σ2
O − VarS(µS)− VarS(σS)

(23)

D.2 ANALYSIS ON THE PROPERTIES OF “SCALING FACTOR 1” IN EQ. (23)

The “scaling factor 1” in Eq. (23) has two crucial properties:
• It is non-negative.
• Its magnitude increases with the heterogeneity of reward distribution.

Below, we prove these properties in Proof 1 and Proof 2, respectively.

Proof 1: The “scaling factor 1”
(
ES

[
1
σS

]
− 1

σO

)
is non-negative

This property can be formally proven using the expression for ES [σS ] derived in Eq. (23), i.e.,
ES [σS ] =

√
σ2
O − VarS(µS)− VarS(σS). Since both variance terms, VarS(µS) and VarS(σS),

are non-negative by definition, the term inside the square root is always less than or equal to σ2
O.

This leads to the inequality ES [σS ] ≤ σO. Taking the reciprocal of both sides reverses the inequality,
which in turn proves that: ES

[
1
σS

]
− 1

σO
.

Proof 2: The magnitude of “scaling factor 1”
(
ES

[
1
σS

]
− 1

σO

)
increases with the heterogene-

ity of reward distribution.
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The concept of reward heterogeneity refers to the degree of non-uniformity in the reward distribution
within group O. High heterogeneity implies an uneven spread of rewards, potentially characterized
by significant outliers or the emergence of distinct clusters, such as a “high-reward” subgroup or
a “low-reward” subgroup. Reward heterogeneity can be quantitatively captured by two key terms:
VarS(µS) and VarS(σS).

• First, VarS(µS), the variance of subgroup means, serves as the primary and most direct mea-
sure of heterogeneity. As revealed by the Law of Total Variance (σ2

O = ES [σ
2
S ] + VarS(µS)),

VarS(µS) accounts for the portion of global variance attributable to differences between sub-
group averages. It thus reflects how much the “center of gravity” of rewards shifts across local
views. A large VarS(µS) is a strong indicator of clustered reward structures.

• Second, VarS(σS), the variance of subgroup standard deviations, acts as a secondary but in-
formative signature of heterogeneity. In heterogeneous populations, subgroups exhibit highly
variable internal dispersion, for instance, a homogeneous high-reward subgroup will have low
σS , while a mixed subgroup may display high variability. The fluctuation in these local standard
deviations across subgroups is precisely what VarS(σS) measures.

In conclusion, as reward heterogeneity increases, VarS(µS) and VarS(σS) grow, widening the gap
between σ2

O and ES [σ
2
S ], and thereby increasing the magnitude of (1/ES [σS ]− 1/σO). This es-

tablishes a clear link between structural heterogeneity in rewards and the magnitude of the second
factor (1/ES [σS ]− 1/σO).

D.3 ANALYSIS ON THE PROPERTIES OF “SCALING FACTOR 2” IN EQ. (23)

The “scaling factor 2” in Eq. (23) has two crucial properties:
• It is non-negative.
• Its magnitude increases with the heterogeneity of reward distribution.

Below, we prove these properties in Proof 3 and Proof 4, respectively.

Proof 3: The “scaling factor 2”
(

VarS(σS)
(ES [σS ])3

)
is non-negative

First, the numerator term VarS(σS) represents the variance of the random variable σS . By the
definition of variance, VarS(σS) is always non-negative, i.e., VarS(σS) ≥ 0.

Second, for the denominator term (ES [σS ])
3, to determine the sign, we first analyze its base, ES [σS ].

Taking the expression from Eq. (23), we can know that ES [σS ] =
√
σ2
O − VarS(µS)− VarS(σS) ≥

0. Thus, its cube, (ES [σS ])
3, must also be non-negative, i.e., (ES [σS ])

3 ≥ 0.

In conclusion, since both the numerator VarS(σS) and denominator (ES [σS ])
3 are non-negative,

their ratio is guaranteed to be non-negative. We have proven that VarS(σS)
(ES [σS ])3 ≥ 0.

Proof 4: The magnitude of “scaling factor 2”
(

VarS(σS)
(ES [σS ])3

)
increases with the heterogeneity of

reward distribution.

As discussed in Proof 2, the reward heterogeneity can be quantitatively measured by terms such as
VarS(µS) and VarS(σS). As reward heterogeneity increases, VarS(µS) and VarS(σS) also grows.

Recalling the expression of ES [σS ] derived in Eq. (23), we have ES [σS ] =√
σ2
O − VarS(µS)− VarS(σS). As reward heterogeneity increases, VarS(µS) and VarS(σS)

also grows, thereby leading to the corresponding decrease of ES [σS ]. Since ES [σS ] > 0, its cube,
(ES [σS ])

3 decreases as well. Thus, as the reward heterogeneity increases, the numerator VarS(σS)

increases, while the denominator (ES [σS ])
3 declines, thereby resulting in a larger VarS(σS)

(ES [σS ])3 . This

formally proves that the magnitude of “scaling factor 2”, VarS(σS)
(ES [σS ])3 , is a increasing function of the

heterogeneity of the reward distribution.
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E APPROXIMATION GUARANTEE FOR THE GREEDY ALGORITHM

In this section, we provide a theoretical justification for the greedy algorithm used for the Diverse
Group Sampling procedure (Sec. 3.2.2). We first formalize the problem and then provide a proof
sketch for the approximation guarantee in the context of submodular function maximization, to
which our diversity objective is closely related.

E.1 PROBLEM FORMULATION

As stated in the main text, for a given scale τ , we aim to select a subset of comparison groups Cτ of
size K from an exhaustive set Sτ that solves the Maximum Diversity problem:

C∗
τ = argmax

Cτ⊂Sτ ,|Cτ |=K

∑
Sa,Sb∈Cτ ,a̸=b

dJ(Sa,Sb). (24)

Let f(Cτ ) =
∑

Sa,Sb∈Cτ ,a̸=b dJ(Sa,Sb) be our objective function. As this problem is NP-hard, we
employ a greedy algorithm that iteratively constructs the set. Let Ck be the set of k groups selected
after k iterations. In step k + 1, the algorithm selects the group Sk+1 that provides the maximum
marginal gain:

Sk+1 = argmax
S∈Sτ\Ck

f(Ck ∪ {S})− f(Ck). (25)

Note that the selection criterion in the main text,
∑

S′∈Ck
dJ(S,S ′), is precisely this marginal gain.

E.2 SUBMODULARITY AND APPROXIMATION GUARANTEES

The effectiveness of this greedy strategy is best understood through the lens of submodularity. A set
function f : 2V → R is submodular if for any two sets A ⊆ B ⊂ V and any element x ∈ V \B, it
satisfies the “diminishing returns” property:

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). (26)

In words, the marginal gain of adding an element x to a small set A is greater than or equal to the
marginal gain of adding the same element to a larger superset B.

While our Max-Sum Diversity objective f(Cτ ) is not strictly submodular, it is closely related to this
class of functions, and the greedy algorithm is the principled approach for both. For the general class
of non-negative, monotone submodular functions, a celebrated result provides a strong performance
guarantee for the greedy algorithm.

The theorem in (Nemhauser et al., 1978) states that: for the problem of maximizing a non-negative,
monotone submodular function f subject to a cardinality constraint |C| ≤ K, the greedy algorithm
produces a solution CG such that: f(CG) ≥

(
1− 1

e

)
f(C∗), where C∗ is the true optimal solu-

tion and e is the base of the natural logarithm. This guarantees that the greedy solution is within
approximately 63.2% of the optimal solution.

E.3 PROOF SKETCH FOR THE SUBMODULAR CASE

We provide a sketch of the classic proof for the (1 − 1/e) approximation guarantee to illustrate
the principle. Let Ck be the greedy set of size k and C∗ be the optimal set of size K. Let gk =
f(Ck)− f(Ck−1) be the marginal gain at step k.

The key insight is to bound the difference between the optimal value and the current greedy value.
By monotonicity and submodularity, we can write:

f(C∗) ≤ f(Ck ∪ C∗) (27)

= f(Ck) +
∑

x∈C∗\Ck

(f(Ck ∪ {x})− f(Ck)) (28)

≤ f(Ck) +
∑

x∈C∗\Ck

(f(Ck−1 ∪ {x})− f(Ck−1)) (by submodularity) (29)
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The greedy choice at step k maximizes the marginal gain, so its gain gk is at least the average gain
of the elements in C∗ \ Ck−1. This leads to the inequality:

f(C∗)− f(Ck−1) ≤ K · gk = K · (f(Ck)− f(Ck−1)) (30)

Rearranging this recurrence relation over k from 1 to K and using the fact that (1− 1/K)K ≈ 1/e
leads to the final bound f(CK) ≥ (1− 1/e)f(C∗).

This proof sketch demonstrates how the diminishing returns property of submodularity allows the
greedy algorithm to provide a constant-factor approximation of the true optimum. While our specific
objective requires a more tailored analysis, this classic result provides the theoretical foundation
for why the greedy approach is a fast, principled, and provably effective choice for our diversity
maximization task.
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