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ABSTRACT

A popular approach to sample a diffusion-based generative model is to solve an
ordinary differential equation (ODE). In existing samplers, the coefficients of the
ODE solvers are pre-determined by the ODE formulation, the reverse discrete
timesteps, and the employed ODE methods. In this paper, we consider accelerating
several popular ODE-based sampling processes (including DDIM, DPM-Solver++,
and EDM) by optimizing certain coefficients via improved integration approxi-
mation (IIA). We propose to minimize, for each time step, a mean squared error
(MSE) function with respect to the selected coefficients. The MSE is constructed
by applying the original ODE solver for a set of fine-grained timesteps, which
in principle provides a more accurate integration approximation in predicting the
next diffusion state. The proposed IIA technique does not require any change of
a pre-trained model, and only introduces a very small computational overhead
for solving a number of quadratic optimization problems. Extensive experiments
show that considerably better FID scores can be achieved by using IIA-DDIM,
IIA-DPM-Solver++, and IIA-EDM than the original counterparts when the neural
function evaluation (NFE) is small (i.e., less than 25).
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Figure 1: Comparison of DDIM and proposed IIA-DDIM with 10 timesteps for text-to-image generation over
StableDiffusion V2. See Table 12 for input texts, Table 1 for FID evaluation, and Figs. 8, 9, 10 for more images.

1 INTRODUCTION

As one type of generative models Goodfellow et al. (2014); Arjovsky et al. (2017); Gulrajani
et al. (2017); Sauer et al. (2022); Bishop (2006), diffusion probabilistic models (DPMs) have made
significant progress in recent years. Following the pioneering work of Sohl-Dickstein et al. (2015),
various learning and/or sampling strategies have been proposed to improve the performance of
DPMs, which include, for example, denoising diffusion probabilistic models (DDPMs) Ho et al.
(2020), denoising diffusion implicit models (DDIMs) Song et al. (2021a), improved DDIMs Nichol &
Dhariwal (2021); Dhariwal & Nichol (2021), generalized DDIM Zhang et al. (2023b), latent diffusion
models (LDMs) Rombach et al. (2022), score matching with Langevin dynamics (SMLD) Song
& Ermon (2019); Song et al. (2021b;c), analytic-DPMs Bao et al. (2022b;a), optimized denoising
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schedules Kingma et al. (2021); Chen et al. (2020); Lam et al. (2022), and guided diffusion strategies
Nichol et al. (2022); Kim et al. (2022). It is worth noting that DDIM can be interpreted as a first-order
ODE solver, where its coefficients are pre-determined by the ODE formulation and the discrete
reverse timesteps. See also Yang et al. (2021) for a detailed literature overview.

To further improve the sampling qualities in DPMs, one recent research trend is to exploit high-order
methods for solving the ordinary differential equations (ODEs) in the sampling processes. The
authors of Liu et al. (2022) proposed pseudo linear multi-step (PLMS) sampling method, of which
high-order polynomials of the estimated Gaussian noises from a score network are introduced per
timestep to improve the sampling quality. The work Zhang & Chen (2022) further extends Liu
et al. (2022) by refining the coefficients of the high-order polynomials of the estimated Gaussian
noises, and proposes the diffusion exponential integrator sampler (DEIS). Recently, the authors of Lu
et al. (2022a;b) considered solving the ODEs of a diffusion model differently from Zhang & Chen
(2022). In particular, a high-order Taylor expansion of the estimated Gaussian noises was employed to
approximate the continuous solutions of the ODEs more accurately. The resulting sampling methods
are referred to as DPM-Solver and DPM-Solver++. The work Zhang et al. (2023a) improves the
sampling performance of DDPM, DDIM, second order PLMS (S-PNDM), DEIS, and DPM-Solver
by performing additional extrapolation on the estimated clean data at each reverse timestep. The
recent work Karras et al. (2022) achieves state-of-the-art (SOTA) sampling performance on CIFAR10
and ImageNet64 by utilizing only the improved Euler method Ascher & Petzold (1998) to solve an
ODE of a refined diffusion model, referred to as the EDM sampling procedure. Similarly to DDIM,
the coefficients of EDM are pre-determined by the ODE formulation and the reverse timesteps.

In this paper, we make two main contributions. Firstly, we propose to optimize the stepsizes (or
coefficients) in front of the selected gradient vectors in a number of promising ODE-based sampling
processes (including DDIM, DPM-Solver++, and EDM). Our basic idea is to improve the accuracy
of the integration approximation per timeslot when predicting the next diffusion state by minimising
a mean squared error (MSE) function, referred to as the improved integration approximation (IIA)
technique. The MSE per reverse timeslot is constructed by measuring the difference between the
coarse- and fine-grained approximations of an ODE integration, where the fine-grained approximation
is obtained by applying the original ODE solver over a set of fine-grained timesteps. The MSE is then
minimized with respect to the considered stepsizes embedded in the coarse integration approximation.
Our IIA technique renders more flexibility than the aforementioned existing ODE solvers, of which
the update formats are always fixed for different pre-trained diffusion models. See Bar-Sinai et al.
(2019) and Li et al. (2023) for related works on optimizing numerical integration parameters in the
context of solving differential equations describing physical systems.

Secondly, we verify the effectiveness of IIA-DDIM, IIA-DPM-Solver++, and IIA-EDM via extensive
experiments. For each method being applied to a pre-trained model with pre-defined timesteps, the
optimal stepsizes are computed only once by minimising the constructed MSEs (MMSEs), and then
stored for extensive sampling in the FID evaluation. To reduce computational overhead, the MMSEs
are performed by solving a set of quadratic functions based on a finite number of initial noise samples.
In all our experiments, introducing the IIA technique into DDIM, and DPM-Solver++, and IIA-EDM
significantly improves the sampling quality for small NFEs (see Figs. 1, 3, 5, 8, 9, 10, and Table 1).
Computational overhead and sampling time (see Tables 10 and 9) were measured for IIA-EDM,
showing that the overhead is negligible and the sampling time is roughly the same as that of EDM.

2 PRELIMINARY

Forward and reverse diffusion processes: Suppose the data sample x ∈ Rd follows a data
distribution pdata(x) with a bounded variance. A forward diffusion process progressively adds
Gaussian noises to the data samples x to obtain zt as t increases from 0 until T . The conditional
distribution of zt given x can be represented as

qt|0(zt|x) = N (zt|αtx, σ
2
t I), (1)

where αt and σt are assumed to be differentiable functions of t with bounded derivatives. We use
q(zt;αt, σt) to denote the marginal distribution of zt. The samples of the distribution q(zT ;αT , σT )
would be practically indistinguishable from pure Gaussian noises if σT ≫ αT .

The reverse process of a diffusion model firstly draws a sample zT from N (0, σ2
T I), and then

progressively denoises it to obtain a sequence of diffusion states {zti ∼ p(z;αti , σti)}}Ni=0, where
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we use the notation p(·) to indicate that reverse sample distribution might not be identical to the
forward distribution q(·) because of practical approximations. It is expected that the final sample ztN
is roughly distributed according to pdata(x), i.e., pdata(x) ≈ p(ztN ;αtN , σtN ) where tN = 0.

ODE formulation: In Song et al. (2021c), Song et al. present a so-called probability flow ODE
which shares the same marginal distributions as zt in (1). Specifically, with the formulation (1) for a
forward diffusion process, its reverse ODE form can be represented as

dz =

[
d logαt

dt
zt −

1

2

[
dσ2

t

dt
− 2

d logαt

dt
σ2
t

]
∇z log q(zt;αt, σt)

]
︸ ︷︷ ︸

d(z,t)

dt, (2)

where ∇z log q(z;αt, σt) in (2) is the score function Hyvarinen (2005) pointing towards higher
density of data samples at the given noise level (αt, σt), and the gradient dz

dt is represented by d(z, t).

As t increases, the probability flow ODE (2) continuously reduces noise level of the data samples in
the reverse process. In the ideal scenario where no approximations are introduced in (2), the sample
distribution p(z;αt, σt) approaches pdata(x) as t goes from T to 0. As a result, the sampling process
of a diffusion model boils down to solving the ODE form (2), where randomness is only introduced in
the initial samples. This has opened up the research opportunity of exploiting different ODE solvers
in diffusion-based sampling processes.

Denoising score matching: To be able to utilize (2) for sampling, one needs to specify a particular
form of the score function ∇z log q(z;αt, σt). One common approach is to train a noise estimator
ϵ̂θ by minimizing the expected L2 error for samples drawn from qdata (see Ho et al. (2020); Song
et al. (2021c;a)):

Ex∼pdata
Eϵ∼N (0,σ2

t I)
∥ϵ̂θ(αtx+ σtϵ, t)− ϵ∥22, (3)

where (αt, σt) are from the forward process (1). With (3), the score function can then be represented
in terms of ϵ̂θ(zt; t) as

∇z log q(zt;αt, σt) = −ϵ̂θ(zt; t)/σt. (4)

3 IMPROVED INTEGRATION APPROXIMATION (IIA) FOR DDIM AND
DPM-SOLVER++

In this section, we first briefly present the basic principle for incorporating IIA into existing ODE
solvers. After that, we consider applying the IIA technique for both the conventional DDIM sampling
and the classifier-free guided DDIM sampling developed for text-to-image generation. In the end, we
explain how to design IIA-DPM-Solver++ for text-to-image generation.

Design principles for incorporating IIA into an ODE solver: To our best knowledge, the formats
of existing diffusion samplers (e.g., DDIM, EDM and DPM-Solver++) are fixed irrespective of the
number of time steps and particular pre-trained models. It is likely that the coefficients of those ODE
solvers are not always optimal. To improve the accuracy of the integration approximation per timestep
in an existing ODE solver, we propose to optimize the stepsizes (or coefficients) in front of certain
selected quantities via MMSE. The quantities can be functions of, for example, estimated Gaussian
noises and/or estimated clean data. The MSE per time-interval can be constructed by measuring
the difference between the coarse- and fine-grained integration approximations, where the stepsizes
to be optimized are embedded in the coarse-grained integration approximation. In principle, the
selected quantities are appropriate as long as the residual error of the MSE after stepsize optimization
is reduced notably compared to that of the original ODE solver. As will be presented in the following,
when we incorporate IIA into DDIM, DPM-Solver++, and EDM by following the above guidance,
we focus on a particular proper selection of the quantities for each sampling method instead of finding
the optimal configuration of these quantities that produces the smallest residual error.

IIA for conventional DDIM sampling : The conventional DDIM sampling procedure is in fact
a first-order solver for the ODE formulation (2) (see Lu et al. (2022a); Zhang & Chen (2022)). Its
update expression is given by

zi+1 = αti+1

x̂(zi,ti)︷ ︸︸ ︷(
zi−σti ϵ̂θ(zi, ti)

αti

)
+σti+1

ϵ̂θ(zi, ti) ≈ zi +

∫ ti+1

ti

d(z, τ)dτ, (5)
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Figure 2: Coarse and fine-grained approximations of the integration
∫ ti+1

ti
d(z, t)dt. {ϕi0, ϕi1} are

the introduced stepsizes in IIA-DDIM for conventional sampling, which are determined by (7).

where x̂(zi, ti) denotes an estimator for the clean image x, and d(z, τ) is from (2).

We now introduce two additional quantities in computing zi+1, which are given by

zi+1 =

Φti→ti+1
(zi,ti)︷ ︸︸ ︷

αti+1
x̂(zi, ti) + σti+1

ϵ̂θ(zi, ti)+ϕ∗
i0

1st quantity︷ ︸︸ ︷
(x̂(zi, ti)− x̂(zi−1, ti−1))

+ ϕ∗
i1 (ϵ̂θ(zi, ti)− ϵ̂θ(zi−1, ti−1))︸ ︷︷ ︸

2nd quantity

. (6)

The first quantity in (6) can be interpreted as a gradient vector pointing towards the data sample x
(see Zhang et al. (2023a)). The second quantity in (6) is a vector measuring the difference of the
noise estimators at timesteps ti and ti−1, which is inspired by high-order ODE solvers Zhang &
Chen (2022); Liu et al. (2022). The two stepsizes (ϕ∗

i0, ϕ
∗
i1) in front of the two quantities in (6) are

computed by the MMSE as follows:

(ϕ∗
i0, ϕ

∗
i1) = arg min

ϕi0,ϕi1

Ezt0∼N (0,σ2
T I)

∥∥∥Φti→ti+1
(zi, ti) + ϕi0(x̂(zi, ti)− x̂(zi−1, ti−1))

+ϕi1(ϵ̂θ(zi, ti)−ϵ̂θ(zi−1, ti−1))−zi−
M−1∑
m=0

(
Φti+ m

M
→t

i+m+1
M

(zi+ m
M
, ti+ m

M
)−zi+ m

M

)∥∥∥2, (7)

where the expectation is over the probability distribution of the initial state zt0 . The summation in
the RHS of (7) from m = 0 until m = M − 1 corresponds to applying DDIM over a fine-grained
set of timesteps {ti+ m

M
}mm=0 within the time-interval of [ti, ti+1] (see Fig. 2). In principle, when

M goes to infinity, the summation would provide a very accurate approximation of the integration
in (7). The solution (ϕ∗

i0, ϕ
∗
i1) makes the update zi+1 in (6) optimal with respect to the MMSE

criterion of (7) over the probability distribution of the initial state zt0 . We note that the FID score for
measuring image quality is in fact also performed over the probability distribution of the initial state.
In principle, if the MSE on the RHS of (7) is indeed reduced due to {ϕ∗

i0, ϕ
∗
i1}, the resulting FID

would be improved. In practice, the expectation in (7) can be realized by utilizing a set B of initial
samples at t0. (ϕ∗

i0, ϕ
∗
i1) can then be computed by solving a quadratic optimization problem. Once

the optimal stepsizes are obtained, they can be stored and re-used later on for extensive sampling.

IIA for classifier-free guided DDIM sampling for text-to-image generation: The classifier-free
guided DDIM method has been widely used in diffusion based text-to-image generation. The basic
idea is to evaluate the noise prediction model two times at each timestep ti, the first time with a text
prompt: ϵ̂θ(zi, ϕ = P ; ti) (where P denotes the text prompt) and the second time with the null text
prompt: ϵ̂θ(zi, ϕ = null; ti). The two predicted noises are then combined to obtain a refined noise
ϵ̈θ(zi, ϕ = P ; ti), which is plugged into the DDIM update in computing the next diffusion state.

To apply IIA to the above text-to-image generation scenario, we optimize the stepsize (or coefficient)
in front of ϵ̈θ(zi, ϕ = P ; ti), which is found to be preferable over the two terms in (6) for the
conventional DDIM method:

zi+1 =

DDIM︷ ︸︸ ︷
Φti→ti+1

(zi, ti)+βiϵ̈θ(zi, ϕ = P ; ti), (8)

where βi is the introduced stepsize and ϵ̈θ(zi, ϕ = P ; ti) is utilized in the DDIM update expression.

To optimize the stepsize βi in (8), we construct an MSE estimate that averages over the probability
distributions of both the initial noise vector zt0 and the text prompts. We assume that the text prompts
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follow a non-parametric distribution that can be approximated by sampling. The MSE can then be
approximated as a quadratic function of βi by using finite samples of text prompts and zt0 .

IIA for classifier-free guided DPM-Solver++ sampling for text-to-image generation: IIA-DPM-
Solver++ can be designed in a similar way as IIA-DDIM for text-to-image generation presented
above. Again the MSE for computing the optimal stepsizes in IIA-DPM-Solver++ should take into
account the probability distributions of zt0 and the text prompts. See Appendix C for details.
Remark 1. We have also considered the application of IIA to the high-order methods SPNDM and
IPNDN Zhang & Chen (2022). See the performance results in Appendix G. In summary, the IIA
technique improves the sampling performance of SPNDM and IPNDM for certain pre-trained models.

4 IMPROVED INTEGRATION APPROXIMATION (IIA) FOR EDM
In this section, we first briefly review the EDM sampling procedure for solving the ODE (2) in Karras
et al. (2022), which produces SOTA performance over CIFAR10 and ImageNet64. We then present
our new IIA technique for solving the ODE more accurately, thus accelerating the sampling process.

4.1 REVIEW OF EDM SAMPLING PROCEDURE

The recent work Karras et al. (2022) reparameterizes the forward diffusion process (1) to be

qt|0(zt|x) = N (zt|αtx, α
2
t σ̃

2
t I), (9)

where σt of (1) is represented as σt = αtσ̃t. Let Dθ(zt, t) denote an estimator for the data sample x at
timestep t. It can be computed in terms of the noise estimator ϵ̂θ as Dθ(zt, t) = zt/αt− σ̃tϵ̂θ(zt, t).
The resulting probability flow ODE takes the form of

dz=

[(
α̇t

αt
+

˙̃σt

σ̃t

)
z−

˙̃σtαt

σ̃t
Dθ(zt, t)

]
︸ ︷︷ ︸

d(z,t)

dt, (10)

where the dot operation denotes a time derivative.

The work Karras et al. (2022) proposed a deterministic sampling procedure for solving (10) for
arbitrary σ̃t and αt. Basically, the improved Euler method Ascher & Petzold (1998) was utilized for
solving the ODE form. The resulting update expressions from time ti to ti+1 are given by

z̃i+1 = zi + (ti+1 − ti)di, (11)

zi+1 = zi + (ti+1 − ti)(
1

2
di +

1

2
d′
i+1|i)︸ ︷︷ ︸

≈
∫ ti+1
ti

d(z,t)dt

, (12)

where (ti+1− ti) is the stepsize, di = d(zi, ti), and d′
i+1|i = d(z̃i+1, ti+1). z̃i+1 is the intermediate

estimate of the hidden state z at time ti+1. The final estimate zi+1 is computed by utilizing the
average of the gradients di and d′

i+1|i. We will explain in the next subsection how we compute the
optimal stepsize in (12) instead of using the fixed one (ti+1 − ti).

4.2 BASIC IIA FOR EDM (BIIA-EDM) VIA MMSE
In this subsection, we consider improving the accuracy of the integral approximation in (12) at
timestep ti. To do so, we propose to approximate the integration

∫ ti+1

ti
d(z, t)dt by utilizing the most

recent set of gradients { 1
2di−k+

1
2d

′
i−k+1|i−k}

r
k=0, given by∫ ti+1

ti

d(z, t)dt≈
r∑

k=0

γik (
1

2
di−k+

1

2
d′
i−k+1|i−k)︸ ︷︷ ︸

∆i(zi−k)

, (13)

where the set of coefficients {γik}rk=0 can be interpreted as the stepsizes being multiplied by those
gradients. We attempt to find a proper choice for {γik}rk=0 so that the integral approximation (13)
will become more accurate than the one in (12).

Our motivation for utilizing the most recent r+1 gradients in (13) is inspired by SGD with momentum
Sutskever et al. (2013); Polyak (1964) and its variants Kingma & Ba (2017); Zhang (2023) which
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computes and makes use of the exponential moving average of historical gradients in updating
machine learning models. In general, the recent gradients provide additional directions pointing
towards higher functional values. Proper exploration of those gradients can help to accelerate the
diffusion sampling process.

We are now in a position to compute {γik}rk=0 in (13) at timestep ti. Our basic idea is to first obtain
a highly accurate approximation of

∫ ti+1

ti
d(z, t)dt, and then compute proper values of {γik}rk=0 so

that the coarse approximation (13) is optimally close to the accurate approximation. Similarly to the
design of IIA-DDIM, we approximate the integration

∫ ti+1

ti
d(z, t)dt by applying the improved Euler

method over a set of fine-grained timesteps {ti+ m
M
}Mm=0, where m = 0 and m = M correspond to

the starting time ti and ending time ti+1, respectively. Mathematically, the integration
∫ ti+1

ti
d(z, t)dt

can be estimated more accurately over {ti+ m
M
}Mm=0 as

∫ ti+1

ti

d(z, t)dt=

M−1∑
m=0

∫ t
i+m+1

M

ti+ m
M

d(z, t)dt≈
M−1∑
m=0

(
ti+m+1

M
−ti+ m

M

)(
1

2
di+ m

M
+
1

2
d′
i+m+1

M |i+ m
M

)
= ∆fg(zi), (14)

where we use ∆fg(zi) to denote the summation of the fine-grained integration approximations.

We compute the optimal solution of {γik}rk=0 in (13) via MMSE with regard to the difference of the
two approximations

∑r
k=0 γik∆i(zi−k) and ∆fg(zi):

{γ∗
ik}rk=0 = argminEzt0

∼N (0,σ2
T I)

∥∥∥∥∥
r∑

k=0

γik∆i(zi−k)−∆fg(zi)

∥∥∥∥∥
2

, (15)

where {zi−k}rk=0 are determined by the initial state zt0 in the deterministic sampling procedure.

Similarly to the stepsize optimization in IIA-DDIM, one can solve the optimization problem (15)
by utilizing a set B of initial samples at timestep t0 to approximate the expectation operation. The
solution {γ∗

ik}rk=0 can then be easily computed by minimizing a quadratic function. Consider the
simple case of r = 0 as an example, where only the quantity ∆i(zi) is employed in (15). The optimal
solution γ∗

i0 is easily seen to be

γ∗
i0 ≈

∑
zt0

∈B⟨∆i(zi),∆fg(zi)⟩∑
zt0

∈B ∥∆i(zi)∥2
, (16)

where ⟨·⟩ denotes inner product. For the general case of r > 0, one can also easily derive the
closed-form solution for {γ∗

ik}rk=0. see Alg. 2 in appendix for the sampling procedure of BIIA-EDM
after stepsize optimization.

4.3 ADVANCED IIA FOR EDM VIA MMSE
In this subsection, we present an advanced IIA technique for EDM. To do so, we reformulate the
update expression for zi+1 in (12). The resulting update expression is summarized in a lemma below:
Lemma 1. The update expression for zi+1 at timestep ti in EDM under the configuration of αt = 1
can be reformulated to be

zi+1 = zi +
ti+1 − ti

ti︸ ︷︷ ︸
1st stepsize

[zi −Dθ(zi, ti)]︸ ︷︷ ︸
1st quantity

+
(ti+1 − ti)

2ti+1︸ ︷︷ ︸
2nd stepsize

[Dθ(zi; ti)−Dθ(z̃i+1; ti+1)]︸ ︷︷ ︸
2nd quantity

, (17)

where the detailed derivation is provided in Appendix B.

Lemma 1 indicates that the integration approximation over the time interval [ti, ti+1] for computing
zi+1 is realized as a weighted summation of two quantities (see Zhang et al. (2023a)): [zi −
Dθ(zi, ti)] and [Dθ(z̃i+1; ti+1)−Dθ(zi; ti)]. The two stepsizes in front of the two quantities in
(17) are functions of ti and ti+1, which are predetermined by the improved Euler method.

We propose to introduce new stepsizes in front of the two quantities in (17). As will be explained be-
low, the new stepsizes will be determined by the improved integration approximation (IIA) technique.
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Algorithm 1 IIA-EDM as an extension of EDM in Karras et al. (2022)
1: Input:
2: number of time steps N, r = 1, {(βϵ,∗

ik , βD,∗
ik )|k = 0, . . . , r}N−2

i=1 [ pre-computed values via MMSE]
3: Sample z0 ∼ N (0, α2

t0 σ̃
2
t0I)

4: for i ∈ {0, 1, . . . , N − 1} do
5: di ← di(zi, ti)
6: z̃i+1 ← zi + (ti+1 − ti)di

7: if σti+1 ̸= 0 then
8: d′

i+1|i ← d(z̃i+1, ti+1)

9: zi+1 ← zi+
∑r

k=0

[
βϵ,∗
ik [zi−k−Dθ(zi−k; ti−k)]+β

D,∗
ik [Dθ(zi−k; ti−k)−Dθ(z̃i−k+1; ti−k+1)]

]
10: end if
11: end for
12: Output: zN

Specifically, we approximate the integration
∫ ti+1

ti
d(z, t)dt at timestep ti as∫ ti+1

ti

d(z, t)dt≈
r∑

k=0

[
βϵ
ik[zi−k−Dθ(zi−k; ti−k)]+βD

ik [Dθ(zi−k; ti−k)−Dθ(z̃i−k+1; ti−k+1)]
]

= Si

(
{βϵ

ik, β
D
ik}rk=0

)
. (18)

It is noted that a number of the most recent quantities are also included in (18) for the purpose of
providing additional gradient directions in the MSE minimisation.

Next we compute the optimal stepsizes in the above function Si(·) by the following MMSE:

{βϵ,∗
i0 , βD,∗

i1 }rk=0 = argminEzt0∼N (0,σ2
T I)∥Si

(
{βϵ

ik, β
D
ik}rk=0

)
−∆fg(zi)∥2, (19)

where ∆fg(zi) is from (14). Since Si(·) is a linear function of its variables, the optimal solution in
(19) can be easily computed by minimizing a quadratic function. Similarly to the earlier subsection,
the expectation operation in (19) can be approximated by utilizing a set B of initial samples at
timestep t0. Again the optimisation (19) only needs to be performed once, and then can be used for
extensive sampling.

By inspection of (15), (18) and (19), we can conclude that the optimisation (19) exploits the internal
structure of the update for zi+1 in EDM. For the special case of r = 0, (19) involves two variables
(βϵ

i0, β
D
i0 ) while (15) only consists of one variable γi0. Informally, the residual error of (19) after

minimisation should be smaller than that of (15), which would lead to improved sampling quality.

5 EXPERIMENTS

We investigated the performance gain of the IIA technique when being incorporated into DDIM,
and DPM-Solver++, and EDM sampling procedures. For the EDM sampling procedure, two IIA
techniques are proposed. The associated sampling procedures are referred to as BIIA-EDM (see
Alg. 2) and IIA-EDM. As we mentioned earlier, the optimal stepsizes for each pre-trained model
over a particular set of reverse timesteps were only computed once and were then stored and used
for generating a default of 50K images (unless specified otherwise) in the computation of the FID
score. It is found that the IIA technique significantly improves the sampling qualities for low NFEs
(e.g., less than 25). For text-to-image generation, IIA-DDIM and IIA-DPM-Solver significantly
outperforms their counterparts.

5.1 PERFORMANCE OF BIIA-EDM AND IIA-EDM
In this experiment, we tested four pre-trained models for four datasets: CIFAR10, FFHQ, AFHQV2,
and ImageNet64 (see Table 2 in Appendix D.1). The set-size |B| for computing the optimal stepsizes
when employing the IIA techniques was |B| = 200, which is also the default minibatch size for
sampling in the EDM official open-source repository.1 See Table 2 for the setup of other hyper-
parameters. We note that r in BIIA-EDM and IIA-EDM was set to r = 1 to save memory space.

1https://github.com/NVlabs/edm
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Figure 3: Sampling performance of EDM, BIIA-EDM, and IIA-EDM over four datasets.
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Figure 4: Comparison of average residual errors of EDM, BIIA-EDM, IIA-EDM in Fig. 3.

Table 1: Comparison of five methods for text-to-image generation over StableDiffusion V2 in terms of FID (the
lower the better) and CLIP (the high the better) scores.

DDIM IIA-DDIM DPM
-Solver++

IIA-DPM
-Solver++ PLMS DDIM IIA-DDIM DPM

-Solver++
IIA-DPM
-Solver++ PLMS

10
NFEs

FID 14.78 13.21 15.82 12.97 24.42 30
NFEs

FID 15.08 14.03 14.23 13.26 15.31

ClIP 24.86 24.93 24.83 25.32 23.85 CLIP 25.00 25.05 25.05 25.16 24.92

20
NFEs

FID 14.65 13.14 13.85 12.77 14.30 40
NFEs

FID 14.69 13.85 14.29 13.68 15.05

ClIP 25.00 25.08 25.02 25.21 24.80 CLIP 25.01 25.05 25.05 25.12 24.95

Fig. 3 visualizes the FID scores for the four pre-trained models. It is clear that IIA-EDM consistently
outperforms the EDM sampling procedure when the NFE is smaller than 25. This can be explained
by the fact that for a small NFE, the integration approximation in EDM is not accurate. IIA-EDM
improves the accuracy of the integration approximation by introducing optimal stepsizes. The
performance of IIA-EDM is also superior to that of BIIA-EDM because IIA-EDM exploits the
internal structure of the EDM update expressions (see Lemma 1 and (18)), making it more flexible.

Fig. 4 displays the average residual errors between the coarse- and fine-grained integration approxi-
mations for EDM, BIIA-EDM, and IIA-EDM. It is clear that for each NFE, IIA-EDM provides the
smallest error while EDM yields the largest error. This indicates that the original stepsizes of EDM
are not optimal for at least small NFEs. Our work provides one approach to compute better stepsizes
via IIA for small NFEs.

It is seen from the FID curves over ImageNet64 in Fig. 3 that BIIA-EDM performs slightly worse
than EDM when NFE is greater than 25. This may be because, for large NFEs, an accurate integration
approximation does not necessarily lead to a better sampling quality (e.g., see the sampling perfor-
mance of Bao et al. (2022a)). To the best of our knowledge, it is not clear from the literature why for
large NFEs, there exists a discrepancy between FID scores and accurate integration approximation.

Sampling time and computational overhead of IIA-EDM: The sampling time of IIA-EDM and
EDM can be found in Table 9 in Appendix E. It can be concluded from the table that the two methods
consume almost the same amount of time per mini-batch, demonstrating the efficiency of IIA-EDM.
The computational overhead of IIA-EDM is summarized in Table 10. It is seen the time overhead is
very small in comparison to the training or fine-tuning of a typical DNN model.

5.2 EVALUATION OF IIA-DDIM AND IIA-DPM-SOLVER++

Text-to-image generation: In this experiment, we performed FID and CLIP evaluation for IIA-
DDIM, IIA-DPM-Solver++, DDIM, DPM-Solver++, and PLMS by using the validation set of
COCO2014 over StableDiffusion V2. For each sampling method, 20K images of size 512×512 were
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Figure 5: Sampling performance of DDIM and IIA-DDIM for conventional pre-trained models.

generated in FID and CLIP evaluation by using 20K different text prompts. All five methods share
the same set of text prompts and the same seed of the random noise generator. The obtained images
were resized to a size of 256 × 256 before computing the FID and CLIP scores. The tested NFEs
were {10, 20, 30, 40}. The parameter M in IIA-DDIM was set to M = 10, and the fine-grained
timesteps were uniformly distributed within each time-interval. The set of quadratic functions for
approximating the MSEs in IIA-DDIM and IIA-DPM-Solver++ were constructed by utilizing 20
different text-prompts from the validation set to compute the optimal stepsizes (see Fig. 7 for the
optimal stepsizes {β∗

i } in IIA-DDIM). Once the optimal stepsizes for each sampling method with a
certain set of timesteps were obtained, 20K images were then generated accordingly.

Table 1 summarizes the FID and CLIP scores of the five methods. It is clear from the table that our
two new methods IIA-DDIM and IIA-DPM-Solver++ perform significantly better than the original
counterparts in terms of FID performance. The facts that the FIDs of DPM-Solver++ and PLMS are
larger than that of DDIM at 10 NFEs might be because the gradient statistics of the classifier-free
guided diffusion sampling are different from those of the conventional diffusion sampling. As a
result, the stepsizes in front of the gradients in DPM-Solver++ and PLMS might not be optimal
for the scenario of the classifier-free guided diffusion sampling when NFE is small. On the other
hand, different stepsizes in IIA-DDIM and IIA-DPM-Solver++ are learned via MMSE for different
pre-trained models no matter if it is classifier-free guided diffusion sampling or conventional sampling.

Conventional DDIM sampling: In the second experiment, we studied the performance gain of
IIA-DDIM in comparison to DDIM. We tested three pre-trained models (see Table 11 in the appendix),
one for a particular dataset: CIFAR10, LSUN bedroom, and LSUN church. The set-size |B| for
approximating the expectation operation in (7) was set to 16, which is also the mini-batch size for
sampling in the computation of the FID scores. The hyper-parameter M in (7) was set to M = 3.

The performance results of DDIM and IIA-DDIM are shown in Fig. 5. It is seen that IIA-DDIM
outperforms DDIM consistently for different NFEs and across different pre-trained models. The
performance of IIA-SPNDM and IIA-IPNDM is shown in the Appendix G.

To summarize, in all our experiments, the IIA based ODE solvers improve the image quality remark-
ably when the NFE is small (i.e., less than 25). The performance gain of the IIA technique is obtained
by improving the accuracy of the integration approximation per timestep via stepsize optimization.
When the NFE is large, the integration approximation of existing ODE solvers is accurate in general,
leaving little room to improve the accuracy to a large extent. Consequently, there is no significant
improvement for large NFE when applying our IIA technique.

6 CONCLUSION

In this paper, we have proposed a new technique of improved integration approximation (IIA) to
accelerate the diffusion-based sampling processes. In particular, we have proposed to introduce
new stepsizes (coefficients) in front of certain quantities in existing popular ODE solvers in order
to improve the accuracy of integration approximation. The stepsizes at timestep ti are determined
by encouraging a coarse integration approximation over [ti, ti+1] to get closer to a highly accurate
integration approximation over the same time slot. The optimal stepsizes only need to be computed
once and can then be stored and reused later on for extensive sampling. Extensive experiments
confirm that the IIA technique is able to significantly improve the sampling quality of EDM, DDIM,
and DPM-Solver++ when the NFE is small (e.g., less than 25). This can be explained by the fact
that the integration approximation in the original method for small NFE is a rough estimate. The
employment of IIA has significantly improved the accuracy of the integration approximation.
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A UPDATE PROCEDURE OF BIIA-EDM

Algorithm 2 BIIA-EDM as an extension of EDM in Karras et al. (2022)
1: Input:
2: number of time steps N, r = 1, {γ∗

ik|k = 0, 1}N−2
i=1 [ pre-computed values obtained via MMSE]

3: Sample z0 ∼ N (0, α2
t0 σ̃

2
t0I)

4: for i ∈ {0, 1, . . . , N − 1} do
5: di ← d(zi, ti) =

(
˙̃σti
σ̃ti

+
α̇ti
αti

)
zi −

˙̃σti
αti

σ̃ti
Dθ (zi; ti)

6: z̃i+1 ← zi + (ti+1 − ti)di

7: if σti+1 ̸= 0 then

8: d′
i+1|i ← d(z̃i+1, ti+1) =

(
˙̃σti+1

σ̃ti+1
+

α̇ti+1

αti+1

)
z̃i+1 −

˙̃σti+1
αti+1

σ̃ti+1
Dθ (z̃i+1; ti+1)

9: zi+1 ← zi + (ti+1 − ti)
∑r

k=0 γ
∗
ik

(
1
2
di−k + 1

2
d′
i−k+1|i−k

)
[historical gradients are used]

10: end if
11: end for
12: Output: zN

Remark: Sampling of Karras et al. (2022) is recovered when {γ∗
i0 = 1}N−2

i=0 and {γ∗
ik = 0|k ̸= 0}N−2

i=0 .

B PROOF FOR LEMMA 1

Firstly, we rewrite the update expression for zi+1 in terms of zi, and the two estimators Dθ(zi, ti)
and Dθ(z̃i+1, ti+1):

zi+1 = zi + (ti+1 − ti)(0.5di + 0.5d′
i)

= zi + (ti+1 − ti)

(
zi −Dθ(zi,ti)

2ti
+

z̃i+1 −Dθ(z̃i+1, ti+1)

2ti+1

)
= zi + (ti+1 − ti)

zi −Dθ(zi, ti)

2ti

+ (ti+1 − ti)
zi + (ti+1 − ti)(zi −Dθ(zi, ti))/ti −Dθ(z̃i+1, ti+1)

2ti+1

assume
= zi + (ti+1 − ti)

zi − D̄θ(zi, z̃i+1)

ti
. (20)

Next, we derive the expression for D̄θ(zi, z̃i+1) in (20). To do so, we let

zi−D̄θ(zi, z̃i+1)

ti
=

zi −Dθ(zi, ti)

2ti
+
zi+(ti+1 − ti)(zi−Dθ(zi,ti))/ti−Dθ(z̃i+1, ti+1)

2ti+1

⇔zi−D̄θ(zi, z̃i+1) = 0.5(zi−Dθ(zi, ti))+
tizi+(ti+1−ti)(zi−Dθ(zi, ti))−tiDθ(z̃i+1, ti+1)

2ti+1

⇔− D̄θ(zi, z̃i+1) = −0.5Dθ(zi, ti) +
−(ti+1 − ti)Dθ(zi,ti) − tiDθ(z̃i+1, ti+1)

2ti+1

⇔− D̄θ(zi, z̃i+1) = −Dθ(zi, ti) +
ti(Dθ(zi, ti)−Dθ(z̃i+1, ti+1))

2ti+1

⇔D̄θ(zi, z̃i+1) = Dθ(zi, ti) +
ti(Dθ(z̃i+1, ti+1)−Dθ(zi, ti))

2ti+1
. (21)

Plugging (21) into (20), and rearranging the terms in the expression yields (17). The proof is complete.
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C DESIGN OF IIA-DPM-SOLVER++ FOR CLASSIFIER-FREE GUIDED
TEXT-TO-IMAGE GENERATION

In general, DPM-Solver has different implementations in the platform of StableDiffusion V2. The
results in Table 1 were obtained by using the multi-step 2nd-order DPM-Solver++, which is the
default setup in StableDiffusion. At each timestep tj , the pre-trained DNN model produces an
estimator x̂θ(zj , ϕ = P, tj) of the clean-image, where P denotes the text prompt. In general, when
i > 0, the diffusion state zi+1 is computed by making use of the two most recent clean-image
estimators {x̂θ(zj , ϕ = P, tj)|j = i − 1, i} as well as the current state zi. For simplicity, let us
denote the update expression of DPM-Solver++ for computing zi+1 at timestep ti as

zi+1 = Γti→ti+1 (zi, {x̂θ(zj , ϕ = P, tj)|j = i− 1, i}) . (22)

Next, we consider refining the estimation for zi+1 in (22) by using the IIA technique. Similarly to
the design of IIA-DDIM, we propose to compute zi+1 at timestep ti by introducing two additional
quantities into (22), which takes the form of

zi+1 = Γti→ti+1
(zi, {x̂θ(zj , ϕ = P, tj)|j = i− 1, i}) + φi0zi + φi1x̂θ(zi, ϕ = P, ti). (23)

To optimize the two stepsizes (φi0, φi1) in (23), we construct the following MSE function
(φ∗

i0, φ
∗
i1)

= argminE
∥∥∥Γti→ti+1 (zi, {x̂θ(zj , ϕ = P, tj)|j = i− 1, i})

+ φi0zi + φi1x̂θ(zi, ϕ = P, ti)

−zi−
M−1∑
m=0

(
Γti+ m

M
→t

i+m+1
M

(
zi+ m

M
, {x̂θ(zj , ϕ = P, tj)|j = m− 1,m}

)
−zi+ m

M

)∥∥∥2, (24)

where the expectation is taken over the distribution of initial Gaussian noise zt0 ∼ N (0, σ2
T I) and

the distribution of the text-prompt P ∼ ptext. The summation from m = 0 to m = M − 1 in the
RHS of (24) corresponds to applying the original DPM-Solver++ over a set of fine-grained timeslots
within [ti, ti+1]. We use C to denote a set of finite pairs of (zt0 , P ). The MSE in (24) can then be
approximated by using the finite set C. In our experiment for both IIA-DDIM and IIA-DPM-Solver in
the task of text-to-image generation, the set-size of C was set to 20. The optimal solution (φ∗

i0, φ
∗
i1)

can be computed by solving a quadratic optimization problem based on C. Once the optimal stepsizes
(φ∗

i0, φ
∗
i1)

N−1
i=1 are computed for the first time, they are then utilized for generating 20K images in

FID and CLIP evaluation by feeding 20K different text-prompts from COCO2014 validation set.

D ABLATION STUDY OF IIA-BASED ODE SOLVERS

In this section, we first present the setup of the hyperparameters in IIA when performing MMSE.
We then study the performance of BIIA-EDM and IIA-EDM for different r values. After that, we
examine how the parameter M affects the performance of IIA-EDM with 11 and 19 NFEs. Finally,
we consider the performance of IIA-DDIM by optimizing one coefficient per timestep instead of two
coefficients per step as being studied in (6)-(7).

D.1 HYPER-PARAMETERS OF IIA WHEN PERFORMING MMSE
The reason we select r = 1 or r = 0 in Table 2 for BIIA-EDM and IIA-EDM is because the ablation
study in Subsection D.2 over CIFAR10 shows that the setup r = 2 does not generally improve the
FID performance. It is also noted in Table 2 that only for BIIA-EDM over FFHQ64, the setup r = 0
is being employed instead of r = 1. The ablation study in Table 3 shows that the performance of
r = 0 is slightly better than that of r = 1 in BIIA-EDM over FFHQ64.

For the experiment of IIA-DDIM, IIA-SPNDM, and IIA-IPDNM, the hyper-parameter M was set to
M = 3. Similarly, the fine-grained timestep ti+ m

M
was computed as ti+ m

M
= ti +

(ti+1−ti)m
M .

D.2 ABLATION STUDY FOR BIIA-EDM AND IIA-EDM WITH DIFFERENT r VALUES

In this section, we perform an ablation study for BIIA-DDIM and IIA-EDM with r = 1 and r = 2.
The parameter M was set to M = 3, which is the same as the setup for obtaining Figure 3.
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Table 2: Parameter-setups when performing MMSE in BIIA-EDM and IIA-EDM. The four pre-trained models
below were downloaded from the official open source repository of the work Karras et al. (2022). The fine-
grained timesteps {ti+ m

M
}Mm=0 were uniformly distributed within each time slot [ti, ti+1]. In particular, ti+ m

M

was computed as ti+ m
M

= ti +
(ti+1−ti)m

M
.

pre-trained models BIIA-EDM IIA-EDM
edm-cifar10-32x32-cond-vp.pkl (M, r) = (3, 1) (M, r) = (3, 1)

edm-ffhq-64x64-uncond-vp.pkl (M, r) = (3, 0) (M, r) = (3, 1)

edm-afhqv2-64x64-uncond-vp.pkl (M, r) = (3, 1) (M, r) = (3, 1)

edm-imagenet-64x64-cond-adm.pkl (M, r) = (3, 1) (M, r) = (3, 1)

Table 3: FID comparison of the setups r = 1 and r = 0 in BIIA-EDM for FFHQ64. The parameter M was set
to M = 3.

NFEs 11 13 15 19
BIIA-EDM (r = 1) 16.01 9.24 6.25 4.02
BIIA-EDM (r = 0) 12.78 7.33 5.09 3.66

EDM 29.34 15.87 9.85 5.26

Table 4 and 5 summarize the averaged residual errors and the FID scores of the two methods,
respectively. By inspection of the FID scores, it is seen that as r increases from r = 1 to r = 2, the
performance for each sampling method is slightly degraded in most cases. On the other hand, as
r increases, the averaged residual errors for each method in Table 4 slightly decrease. The above
analysis is a bit counter-intuitive. It implies that when we introduce more gradient vectors in IIA-
EDM or BIIA-EDM, it reduces the averaged residual error but does not always improve the FID
score. This suggests that in addition to the residual errors of the MSEs, there are some unknown
factors that affect the image sampling quality.

It is noted from Table 5 that for each sampling method, the differences of the FID scores for r = 1
and r = 2 are very small. In practice, it does not matter much regarding the FID scores if one chooses
γ = 1 or = 2. However, the setup γ = 2 would incur additional memory consumption. It is thus
recommended to use γ = 1 as least for CFIAR10 in Table 5.

Table 4: Averaged residual errors of BIIA-EDM and IIA-EDM with r = 1 and r = 2.

NFEs BIIA-EDM
(r = 2)

BIIA-EDM
(r = 1)

IIA-EDM
(r = 2)

IIA-EDM
(r = 1)

EDM

C
IF

A
R

10 11 4.31 4.93 2.87 2.98 17.33

13 1.75 2.08 1.07 1.12 6.22

15 0.84 1.00 0.52 0.54 2.58

19 0.24 0.28 0.14 0.15 0.61

Table 5: FID evaluation of BIIA-EDM and IIA-EDM with r = 1 and r = 2.

NFEs BIIA-EDM
(r = 2)

BIIA-EDM
(r = 1)

IIA-EDM
(r = 2)

IIA-EDM
(r = 1)

EDM

C
IF

A
R

10 11 7.81 7.97 5.01 4.90 14.42

13 4.01 3.91 2.96 2.89 6.79

15 2.87 2.76 2.37 2.33 4.31

19 2.20 2.16 2.06 2.04 2.54

D.3 ABLATION STUDY OF IIA-EDM FOR DIFFERENT M VALUES

In this section, we study how the parameter M affects the performance of IIA-EDM over CIFAR10.
The tested M values were M ∈ {3, 10, 20, 50}. Two NFEs were considered in the ablation study,
which were 11 and 19.

14



Published as a conference paper at ICLR 2024

The results are summarized in Table 6. It is clear from the table that the one-time computational
overhead increases linearly as M increases from 3 to 50. When the M value is larger than 10, the
obtained FID scores and the averaged residual errors are roughly the same. This suggests that in
practice, a reasonably large M value is sufficient when applying the IIA technique. For the results in
Table 6, M = 10 is sufficiently large.

Table 6: Comparison of FID, computational overhead (in seconds), and averaged residual errors for different
M values in IIA-EDM over CIFAR10. The parameter r was set to r = 1.

M 3 10 20 50
IIA-EDM
(11 NFEs) FID 4.90 3.76 3.71 3.70

IIA-EDM
(11 NFEs)

computational
overhead (s) 17.6 46.8 88.0 210.5

IIA-EDM
(11 NFEs)

averaged
residual errors 2.98 3.32 3.35 3.36

IIA-EDM
(19 NFEs) FID 2.04 2.10 2.11 2.11

IIA-EDM
(19 NFEs)

computational
overhead (s) 34.1 91.9 171.8 418.9

IIA-EDM
(19 NFEs)

averaged
residual errors 0.146 0.179 0.181 0.182

D.4 ABLATION STUDY OF IIA-DDIM BY OPTIMIZING ONE COEFFICIENT PER-TIMESTEP

In Section 3, we have presented IIA-DDIM for both conventional diffusion sampling and text-to-
image generation. For the case of conventional diffusion sampling, we optimize two stepsizes in
front of two quantities for IIA-DDIM as shown in (6). In this section, we consider the sampling
performance of IIA-DDIM that involves only one quantity in terms of the difference of the estimated
clean data. In particular, the update expression for zi+1 is computed as

zi+1 =

Φti→ti+1
(zi,ti)︷ ︸︸ ︷

αti+1 x̂(zi, ti) + σti+1 ϵ̂θ(zi, ti)+ϕ∗
i

additional quantity︷ ︸︸ ︷
(x̂(zi, ti)− x̂(zi−1, ti−1)), (25)

where the optimal coefficient ϕ∗
i can be obtained by MMSE. We omit the details for computing ϕ∗

i to
avoid redundant derivation.

Experimental comparison: Table 7 summarizes the averaged residual errors of the associated
MSEs for DDIM, and IIA-DDIM with one quantity and two quantities. As we explained earlier,
IIA-DDIM with one quantity has the update expression (25) while IIA-DDIM with two quantities
has the update expression (6). It is clear from the table that IIA-DDIM with two quantities produces
the smallest residual error for each number of timesteps. The residual errors of IIA-DDIM with one
quantity are also consistently smaller than those of DDIM. By following the design principle of IIA
in Section 3, both versions of IIA-DDIM are good sampling candidates.

Table 8 below summarizes the obtained FID scores for the three sampling methods in Table 7. It is
clear from the table that both versions of IIA-DDIM perform much better than DDIM. Furthermore,
IIA-DDIM with two quantities outperforms IIA-DDIM with one quantity. The above results are
consistent with the behaviors of averaged residual errors of the three methods in Table 7.

Table 7: Averaged residual errors of IIA-DDIM with one quantity (see (6)) and two quantities (see (25)) for
conventional diffusion sampling (see also Fig. 5). The residual error of DDIM is also included as a reference.

timesteps IIA-DDIM
(one quantity)

IIA-DDIM
(two quantities) DDIM

C
IF

A
R

10 10 8.20e-2 6.60e-2 1.73e-1

20 8.0e-3 4.50e-3 2.21e-2

40 8.50e-4 3.76e-4 3.10e-3

Study of the two quantities : We now show that the difference x̂(zi, ti) − x̂(zi−1, ti−1) of the
estimated clean data cannot be represented by using the difference of the estimated Gaussian noises
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Table 8: FID evaluation of IIA-DDIM with one quantity (see (6)) and two quantities (see (25)) for conventional
diffusion sampling (see also Fig. 5). The performance of DDIM is also included as a reference.

timesteps IIA-DDIM
(one quantity)

IIA-DDIM
(two quantities) DDIM

C
IF

A
R

10 10 9.50 8.66 14.38

20 5.43 4.85 7.51

40 3.97 3.68 4.95

ϵ̂θ(zi, ti)− ϵ̂θ(zi−1, ti−1):

x̂(zi, ti)− x̂(zi−1, ti−1)

=
zi−σti ϵ̂θ(zi, ti)

αti

−
zi−1−σti−1

ϵ̂θ(zi−1, ti−1)

αti−1

=

(
zi
αti

− zi−1

αti−1

)
−

(
σti ϵ̂θ(zi, ti)

αti

−
σti−1

ϵ̂θ(zi−1, ti−1)

αti−1

)
, (26)

where in general σti

αti
̸= σti−1

αti−1
. As a result, one can conclude from the above derivation that the

additional two quantities in (6) cannot be reduced to one quantity together with a linear combination
of zi and zi−1.

E SAMPLING TIME AND COMPUTATIONAL OVERHEAD OF IIA-EDM

Table 9: Comparison of sampling time between EDM and IIA-EDM (in seconds) over a GPU (NVIDIA RTX
2080Ti). The batchsize was set to 200. See Table 10 for the computational overhead of IIA-EDM.

NFEs 11 13 15 17 19 21 23

CIFAR10
EDM 5.1 6.1 7.1 8.2 9.2 10.3 11.4

IIA-EDM 5.2 6.3 7.3 8.4 9.3 10.4 11.4

FFHQ
EDM 12.4 15.0 17.4 20.0 22.4 24.9 27.3

IIA-EDM 12.6 15.2 17.5 20.0 22.5 25.0 27.4

AFHQV2
EDM 12.6 15.0 17.5 19.9 22.3 24.9 27.4

IIA-EDM 12.7 15.1 17.6 20.0 22.4 24.9 27.5

Table 10: One-time computational overhead (in seconds) of IIA-EDM for computing the optimal coefficients
via MMSE.

NFEs 11 13 15 17 19 21 23
CIFAR10 17.6 21.9 25.9 30.0 34.1 37.3 41.8
FFHQ 42.8 52.6 62.0 71.9 80.3 91.6 102.1

AFHQV2 42.7 52.3 62.2 72.4 82.0 92.0 101.8

The GPU (NVIDIA RTX 2080Ti) was utilized for measuring the processing time (in seconds). The
hyper-parameter (|B|,M, r) was set to (M, r) = (200, 3, 1) as in the paper, where |B| denotes the
number of samples in set B of initial noise vector zt0 . r = 1 refers to the case that only the gradient
of the most recent time step is being utilized in IIA-EDM, which should not take much memory
space.

F TESTED PRE-TRAINED MODELS FOR IIA-DDIM, IIA-SPNDM AND
IIA-IPNDM
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Table 11: Tested pre-trained models in Fig. 5 and Fig. 6
1.ddim_cifar10.ckpt
2.ddim_lsun_bedroom.ckpt
3.ddim_lsun_church.ckpt
(from https://github.com/luping-liu/PNDM)

G PERFORMANCE OF IIA-SPNDM AND IIA-IPNDM

G.1 DESIGN OF IIA-SPNDM

IIA-SPNDM is designed to solve a variance-preserving (VP) ODE (i.e., σt =
√
1− α2

t in (2)) by
following a similar procedure for IIA-DDIM presented in Section 3. We summarize the sampling
procedure of IIA-SPNDM in Alg. 3. The only difference between IIA-SPNDM and SPNDM is the
computation of zi+1 for i = 1, . . . , N − 1, where two additional terms are introduced for better
integration approximation. The two coefficients φ∗

i0and φ∗
i01 in Alg. 3 can, in principle, be computed

by performing the following MMSE

(φ∗
i0, φ

∗
i1) = argminEzt0∼N (0,σ2

T I)

∥∥∥Ψti→ti+1
(zi, ti) + φi0(x̂[i:i−1] − x̂[i−1:i−2])

+ φi1(ϵ̃[i:i−1] − ϵ̃[i−1:i−2])−
M−1∑
m=0

Ψti+ m
M

→t
i+m+1

M

(zi+ m
M
, ti+ m

M
)
∥∥∥2, (27)

where Ψti→ti+1(zi, ti) represents the update expression of SPNDM over the time interval [ti, ti+1],
given by

Ψti→ti+1(zi, ti) = αi+1

x̂[i:i−1]︷ ︸︸ ︷
(zi −

√
1− α2

i ϵ̃[i:i−1])/αi +
√
1− α2

i+1ϵ̃[i:i−1], (28)

and the summation
∑M−1

m=0 Ψti+ m
M

→t
i+m+1

M

(zi+ m
M
, ti+ m

M
) in (27) provides a highly accurate integra-

tion approximation by applying SPNDM over a fine-grained set of timesteps within the time interval
[ti, ti+1]. When the two coefficients are manually set to (φ∗

i0, φ
∗
i01) = (0, 0) for all i, IIA-SPNDM

reduces to SPNDM.

From Alg. 3, we observe that the method SPNDM or IIA-SPNDM exploits 2nd order polynomial
of the estimated Gaussian noises {ϵ̂θ(zi−j , i− j)}1j=0 in estimation of zi+1 at timestep i > 0. The
coefficients (3/2,−1/2) of the polynomial are fixed across different timesteps.
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Algorithm 3 Sampling of IIA-SPNDM
Input: z0 ∼ N (0, I), {φ∗

i0, φ
∗
i1}N−1

i=1

for i = 0 do

(a)


zi+1=

αi+1

αi

(
zi−

√
1− α2

i ϵ̂θ(zi, i)
)
+
√
1− α2

i+1ϵ̂θ(zi, i)

ϵ̂[i+1:i] =
1
2 (ϵ̂θ(zi, i) + ϵ̂θ(zi+1, i+ 1))

x̂i = (zi −
√
1− α2

i ϵ̂[i+1:i])/αi

zi+1= αi+1x̂i +
√
1− α2

i+1ϵ̂[i+1:i]

end for
Denote x̂[0:−1] = x̂0

for i = 1 . . . , N − 1 do

(b)


ϵ̃[i:i−1] =

1
2
(3ϵ̂θ(zi, i)− ϵ̂θ(zi−1, i− 1))

x̂[i:i−1] = (zi −
√

1− α2
i ϵ̃[i:i−1])/αi

zi+1= αi+1x̂[i:i−1] +
√

1− α2
i+1ϵ̃[i:i−1] + φ∗

i0(x̂[i:i−1] − x̂[i−1:i−2])

+φ∗
i1(ϵ̃[i:i−1] − ϵ̃[i−1:i−2])

end for
output: zN

* The update for z1 in (a) is referred to as pseudo improved Euler step in Liu et al. (2022).
* The update for zi+1 in (b) is referred to as pseudo linear multi step in Liu et al. (2022).
* IIA-SPNDM reduces to SPNDM when {φ∗

i0 = 0, φ∗
i1 = 0}N−1

i=1 .

G.2 SAMPLING PROCEDURE OF IIA-IPNDM

In brief, IPNDM is a 4th-order ODE solver Zhang & Chen (2022) as an extension of the PNDM
method Liu et al. (2022). At timestep i, the four most recent estimated Gaussian noises {ϵθ(zi−j , i−
j)}3j=0 are linearly combined to produce a more reliable estimated Gaussian noise ϵ̃θ,i. IPNDM then
utilizes ϵ̃θ,i and zi to compute the next diffusion state zi+1.

We extend IPNDM to obtain IIA-IPDNM, aiming to find out if the IIA technique can assist the
sampling performance of IPNDM. The sampling procedure of IIA-PNDM is summarized in Alg. 4.
The two coefficients (φ∗

i0, φ
∗
i1) at iteration i are pre-determined by the IIA technique via solving a

quadratic optimisation, which is constructed in a similar way as (27). We omit the details here.

Algorithm 4 Sampling of IIA-IPNDM
Input: z0 ∼ N (0, I), {φ∗

i0, φ
∗
i1}N−1

i=1

for i = 0 do
x̂i = (zi −

√
1− α2

i ϵθ(zi, i))/αi

zi+1= αi+1x̂i +
√
1− α2

i+1ϵθ(zi, i)

end for
for i = 1 . . . , N − 1 do

if i = 1 then
ϵ̃θ,i = (3ϵθ(zi, i)− ϵθ(zi−1, i− 1))/2

else if small i = 2 then
ϵ̃θ,i = (23ϵθ(zi, i)− 16ϵθ(zi−1, i− 1) + 5ϵθ(zi−2, i− 2))/12

else
ϵ̃θ,i = (55ϵθ(zi, i)− 59ϵθ(zi−1, i− 1) + 37ϵθ(zi−2, i− 2)− 9ϵθ(zi−3, i− 3))/24

end if
x̂i = (zi −

√
1− α2

i ϵ̃θ,i)/αi

zi+1= αi+1x̂i +
√

1− α2
i+1ϵ̃θ,i + φ∗

i0(x̂i − x̂i−1) + φ∗
i1(ϵ̃θ,i − ϵ̃θ,i−1)

end for
output: zN

* IIA-IPNDM reduces to IPNDM when {φ∗
i0 = 0, φ∗

i1 = 0}N−1
i=1 .
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Algorithm 5 IPNDM
Input: zN ∼ N (0, I)
for i = N do
x̂i = (zi −

√
1− α2

i ϵθ(zi, i))/αi

zi−1= αi−1x̂i +
√
1− α2

i−1ϵθ(zi, i)

end for
for i = N − 1 . . . , 0 do

if i = N − 1 then
ϵ̃θ,i = (3ϵθ(zi, i)− ϵθ(zi+1, i+ 1))/2

else if small i = 2 then
ϵ̃θ,i = (23ϵθ(zi, i)− 16ϵθ(zi+1, i+ 1) + 5ϵθ(zi+2, i+ 2))/12

else
ϵ̃θ,i = (55ϵθ(zi, i)− 59ϵθ(zi+1, i+ 1) + 37ϵθ(zi+2, i+ 2)− 9ϵθ(zi+3, i+ 3))/24

end if
x̂i = (zi −

√
1− α2

i ϵ̃θ,i)/αi

zi−1= αi−1x̂i +
√

1− α2
i−1ϵ̃θ,i

end for
output: z0

G.3 PERFORMANCE COMPARISON
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Figure 6: Performance comparison of four sampling methods.

In this experiment, we investigate the sampling performance of four methods: SPNDM, IIA-SPNDM,
IPDNM, and IIA-IPNDM. The experimental setup follows that of IIA-DDIM in Subection 5.2 and
Section F. The tested pre-trained models are listed in Table F.

Fig. 6 summarizes the performance of the four sampling methods for small NFEs. It is clear that
IIA-SPNDM outperforms SPNDM for CIFAR10. For LSUN-bedroom and LSUN-church, the
performance of IIA-SPNDM and SPNDM is almost identical.

Next, we consider the performance of IIA-IPNDM and IPNDM. It is seen from the figure that for
CIFAR10, IIA-IPNDM produces slightly better performance. However, for LSUN-bedroom and
LSUN-church, the IIA technique does not help the sampling procedure of IPNDM. This can be
explained by the fact that for LSUN-bedroom and LSUN-church, the FID score of IPNDM first
decreases and then quickly increases in the NFE range of [15 − 40], which is undesirable. This
implies that as the NFE increases from 15 to 40, the accuracy of the integration approximation of
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IPNDM may not be monotonically increasing. We note that the IIA technique implicitly assumes that
a highly accurate integration approximation for each timeslot [ti, ti+1] can be obtained by performing
IPNDM over a set of fine-grained timesteps within [ti, ti+1]. Our above analysis suggests that the
assumption of the IIA technique might be violated in the NFE range of [15, 40] for LSUN-bedroom
and LSUN-church.

To summarize, the IIA technique improves the sampling performance of SPNDM and IPNDM
for certain pre-trained models when the FID score decreases as the NFE increases. On the other
hand, the IIA technique does not help with the sampling performance of SPNDM and IPNDM for
those pre-trained models where the FID score first decreases and then quickly increases as the NFE
increases.

H EXPERIMENTS ON TEXT-TO-IMAGE GENERATION

In our experiment, the pre-trained model used for text-to-image generation over StableDiffusion V2
is “v2-1_512-ema-pruned.ckpt". The three reference methods DDIM, PLMS and DPM-Solver++ are
implemented by StableDiffusion V2 itself.

Fig. 7 below summarizes the obtained optimal β values (see (8)) in IIA-DDIM for the text-to-
image generation task. As can be seen, for each NFE scenario, the optimal β values are different
across different timestep indices. As ti approaches to tN = 0, the optimal β parameter increases.
Furthermore, as NFE increases from 10 to 40, the average of the beta values decreases. From the
above analysis, we can conclude that it is time-consuming to manually tune the parameter β.
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Figure 7: Optimal β values in IIA-DDIM for classifier-free guided text-to-image sampling.
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I ADDITIONAL IMAGE COMPARISONS

Table 12: text-prompts in Fig. 1, 8, and 9.
(a) A bench sitting along side of river next to tree
(b) A blonde boy stands looking happily at the camera
(c) A double decker bus is moving along a stretch of road
(d) A large black bear standing in a forest
(e) A blue and light green bus parked at a terminal
(f) Two cats sleep together in a open case
(g) a black bench and a green and blue bottle
(h) The sheep graze and eat in a city field
(i) A sheep with horns in a grassy green field
(j) Flowers in a vase on top of a wooden table
(k) A large white bear standing near a rock
(l) A man in glasses wearing a suit and tie
(m) A cat that is looking at a dog
(n) A man dressed for the snowy mountain looks at the camera
(o) A bird standing alone in the water looking
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Figure 8: Comparison of images generated by DDIM and IIA-DDIM at 10 timesteps over StableDiffusion V2.
See Table 12 for input texts.

22



Published as a conference paper at ICLR 2024

D
D
IM

II
A
-D
D
IM

D
D
IM

II
A
-D
D
IM

(j) (k) (l)

(m) (n) (o)

Figure 9: Comparison of images generated by DDIM and IIA-DDIM at 10 timesteps over StableDiffusion V2.
See Table 12 for input texts.
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EDM IIA-EDM

Figure 10: Comparison of images generated by EDM and IIA-EDM at 11 NFEs (or equivalently 6 timesteps).
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