
AutoJudge: Judge Decoding
Without Manual Annotation

Roman Garipov ∗ †

HSE University, Yandex
Fedor Velikonivtsev ∗

HSE University, Yandex
Ivan Ermakov

HSE University, Yandex

Ruslan Svirschevski
Yandex

Vage Egiazarian ‡

IST Austria
Max Ryabinin

Together AI

Abstract

We introduce AutoJudge1, a method that accelerates large language model (LLM)
inference with task-specific lossy speculative decoding. Instead of matching the
original model output distribution token-by-token, we identify the generated tokens
that affect the downstream quality of the response, relaxing the distribution match
guarantee so that the “unimportant” tokens can be generated faster. Our approach
relies on a semi-greedy search algorithm to test which of the mismatches between
target and draft models should be corrected to preserve quality and which ones
may be skipped. We then train a lightweight classifier based on existing LLM
embeddings to predict, at inference time, which mismatching tokens can be safely
accepted without compromising the final answer quality. We evaluate AutoJudge
with multiple draft/target model pairs on mathematical reasoning and program-
ming benchmarks, achieving significant speedups at the cost of a minor accuracy
reduction. Notably, on GSM8K with the Llama 3.1 70B target model, our approach
achieves up to ≈2× speedup over speculative decoding at the cost of a ≤1% drop
in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge auto-
matically detects programming-specific important tokens, accepting ≥25 tokens
per speculation cycle at a 2% drop in Pass@1. Our approach requires no human
annotation and is easy to integrate with modern LLM inference frameworks.

1 Introduction
Recent advances in LLM capabilities, including chain-of-thought reasoning [Wei et al., 2022, Kojima
et al., 2022, Suzgun et al., 2022], writing complex software [Rozière et al., 2023, Li et al., 2023, Jiang
et al., 2024], or interacting with external tools [Schick et al., 2023, Qin et al., 2023], increasingly rely
on inference-time computation [Snell et al., 2024, Beeching et al., 2024]. This progress is further
accelerated with the release of reasoning-capable models, both proprietary [OpenAI et al., 2024,
Anthropic, 2024, Google DeepMind, 2025] and open-access [DeepSeek-AI et al., 2025, Meta, 2025,
Qwen Team, 2025], that were explicitly trained to perform these kinds of inference-time computation.
However, as LLMs tackle harder problems, they also tend to generate longer sequences [Muennighoff
et al., 2025] with tens of thousands of tokens [Yeo et al., 2025], taking up tens of minutes (and
hundreds of dollars in costs) per task [ARC Prize Foundation, 2024].

A popular way to speed up LLM inference is through speculative decoding [Leviathan et al., 2023,
Chen et al., 2023], which uses a small “draft” model to propose the likely next tokens, then verifies
these tokens with the main model in parallel. This method, along with its successors [Miao et al., 2023,

1Our code is available at github.com/garipovroma/autojudge.
∗Equal contribution. †Corresponding author: devilgar@gmail.com.
‡Work done during employment at Yandex.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/garipovroma/autojudge

Cai et al., 2024, Li et al., 2024d], can speed up LLM inference while guaranteeing that the generated
outputs match those of the original model (for greedy inference) or follow the same distribution.
To achieve this, speculative decoding algorithms check if the draft tokens match the original model
predictions. If there is a mismatch, they discard the incorrect token and all subsequent ones.

Speculative decoding can accelerate reasoning and other test-time computations, but it can be overly
strict in how it discards tokens [Bachmann et al., 2025, Pan et al., 2025, Tran-Thien, 2024]. Intuitively,
if a model generates a reasoning chain, not all mismatching tokens are equally important: errors
in derivation should be fixed, while minor word choices should not. Judge Decoding [Bachmann
et al., 2025] takes advantage of this by labeling which tokens are important for reasoning (and which
are not) and allowing speculative decoding to accept more tokens by skipping the unimportant ones.
However, their approach relies on human annotators to determine which tokens are important for
reasoning. This complicates adoption and can be prone to human errors, particularly if the task
requires expert knowledge (e.g., complex mathematical proofs or software engineering)

In this work, we look for ways to streamline this process. Instead of relying on human annotators, we
propose AutoJudge, a search-based algorithm that detects which tokens are important for the task at
hand based on how they affect the final answer. The algorithm is based on the idea that a token is
deemed “important” not by itself, but in combination with other generated tokens. Thus, we propose
a procedure that selects a small subset of important mismatching tokens that affect the final answer.
Using this procedure, we can automatically mine a dataset to train an important token classifier that
can then be used to accelerate speculative decoding.

The proposed search algorithm finds a small set of task-specific contextual “important tokens” —
cases where target and draft models disagree on the next token in a way that affects the final response
quality. We then train a classifier to detect these important tokens and use it to improve traditional
speculative decoding by relaxing its verification procedure.

Our experiments with Llama 3.x models demonstrate that the proposed approach can indeed identify
important tokens and save time on speculation, accepting on average over 40 tokens per target model
forward pass (approx. 2× that of speculative decoding), at the cost of a ≤1% drop in accuracy on
GSM8K [Cobbe et al., 2021] and even more with a minor accuracy drawdown. We obtain similar
results with the Qwen2.5[Yang et al., 2024] family of models, observing comparable number of ac-
cepted tokens and accuracy trade-offs. When applied to programming tasks on LiveCodeBench [Jain
et al., 2024], our approach is able to determine different task-specific important tokens, showing
similar performance gains. The proposed framework is simple and general, using a classifier only
when the original algorithm would reject a token, making it compatible with arbitrary speculative
decoding algorithms. The main contributions of our work can be summarized as follows:

• We formulate AutoJudge, an algorithm for detecting which of the tokens generated in speculative
decoding affect the downstream accuracy for a given task. Our algorithm requires no human
annotation and can be applied to most popular LLM tasks.

• We verify the efficacy of AutoJudge on mathematical reasoning and programming benchmarks for
several speculative decoding setups (model pairs). Our evaluations demonstrate favorable tradeoffs
between the accuracy and the inference speedup, generating 20–45 tokens per speculative decoding
cycle at the cost of a slight accuracy drawdown.

• We integrate AutoJudge with the vLLM framework [Kwon et al., 2023] and report the inference
speed on A100 GPUs for both 8B and 70B target models, with up to 2× speedup over speculative
decoding at a ≤1% quality decrease, and on H100 GPUs with a 405B target model.

2 Background
Speculative Decoding. Our work builds on top of speculative decoding [Stern et al., 2018, Leviathan
et al., 2023, Chen et al., 2023], a family of inference algorithms that accelerate token generation by
improving hardware utilization. Speculative Decoding uses an auxiliary “draft” model to generate
K>1 possible future tokens, then runs the main “target” model in parallel to verify∗ the generated
tokens. The drafted tokens that agree with the target model predictions are accepted by the algorithm.
In turn, the first mismatching token and all subsequent ones are rejected. This way, the method

∗For greedy decoding, it checks that the drafted tokens are the same as the target model’s own next token
predictions. For sampling, it uses a procedure that matches the sampling probabilities [Leviathan et al., 2023].

2

 the final sum of the (12, 34, 56) = 102

 and the result becomes : 12 34 + 56 = 102

... 34 + 56 = 34

 : 12 + 34 + 56 = 102

+

-

equals...

so...

mism
atc

h

target:

draft:

draft:

draft:

DATA GATHERING INFERENCE

target (parallel)
... the derivative becomes d/dx x^x = x^x (1 lnx)+

... the derivative equals d/dx x^x = x^x (1 lnx)-
draft (sequential)

mism
atc

h

mism
atc

h

classifier extra accepted tokens discard

...

Figure 1: Intuitive scheme of the proposed approach: (left) data collection: detecting mismatching
tokens that affect final response quality; these tokens are then used to train a classifier (right) using
the trained classifier to generate more tokens per cycle with speculative decoding.

guarantees that all generated tokens follow the same distribution as sampling from the target model.
Subsequent works improve on this idea by generating draft trees instead of single sequences [Miao
et al., 2023, Liu et al., 2023, Chen et al., 2024, Svirschevski et al., 2024], training specialized “heads”
to draft next tokens based on the model’s hidden states [Cai et al., 2024, Ankner et al., 2024, Li et al.,
2024d,c], and more [Fu et al., 2023, Spector and Re, 2023, Sun et al., 2023, He et al., 2023].

Lossy Speculative Decoding. The core guarantee of Speculative Decoding is that all generated
tokens follow the probability distribution of the original model. However, there are practical scenarios
where this guarantee can be sacrificed in favor of faster inference, which is known as lossy speculative
decoding algorithms [Tran-Thien, 2024, Narasimhan et al., 2025, Kim et al., 2023]. Our work extends
one such method: Judge Decoding [Bachmann et al., 2025]. The core idea of Judge Decoding is
that speculative decoding should only reject the mismatching token if accepting it would harm the
response quality. For instance, in mathematical reasoning, errors in the equations or logical fallacies
are important for the final quality, while minor style changes are not. When writing code, algorithmic
errors are important, while minor variable renames can be skipped in favor of faster inference.

The main challenge of Judge Decoding is determining which of the generated tokens can be skipped
this way. Bachmann et al. [2025] address this problem by manually labeling a training dataset for the
classifier. Judge Decoding requires human annotators to find the “mistake” — the first mismatching
token that led the draft model to diverge from the original answer. The resulting dataset of high-
quality training examples is then used to train a linear classifier that detects such “mistakes” during
inference. Authors demonstrate that the collected dataset can, in principle, be reused across tasks and
models. However, using the data from one task for inference on a different task results in substantial
performance drawdown. Intuitively, different tasks (such as creative writing, math, or programming)
have different criteria for which parts of the generated response matter most. Hence, it is best to train
the important token classifier for the exact task at hand. However, doing so with Judge Decoding
would require relabeling the data by human annotators, which can be costly and time-consuming in
specialized domains such as medicine or law. To alleviate this problem, we develop an automated
search procedure for determining important tokens without external human (or LLM) annotators.

3 Method Overview
Our approach consists of three important stages. First, we detect which of the mismatching tokens
affect the model quality using a semi-greedy search algorithm that we describe in Section 3.1. We
then use the gathered data to train a lightweight classifier that can detect important tokens at inference
time (Section 3.2). Finally, we use the trained classifier to augment a speculative decoding algorithm
as described in Section 3.3, so that it can generate more tokens per speculation-verification cycle.

3.1 Mining Important Tokens
In this section, we describe an algorithm to identify which draft tokens that mismatch with the target
ones influence the final output quality. To achieve this, we systematically alter the generation output,
swapping between draft and main model tokens and test how this affects the downstream task output,
such as the final answer to a math problem or test outputs for a programming task. If replacing a

3

Algorithm 1 SEARCH FOR IMPORTANT TOKENS

1: Input: x: prompt, θdraft: draft model, θtarget: target model
2: Output: a sequence ofM mismatches, labeled as important or unimportant
3: M← ∅ ▷ A set of tuples (position, target token, draft token, important)
4: y ← GENERATE(x, θtarget)
5: α← EXTRACTANSWER(y)
6: ỹ ← FORWARD(x⊕ y, θdraft).argmax(-1)[len(x)-1:-1]
7: I ← {i | yi ̸= ỹi} ▷ Indices where draft and target tokens mismatch
8: while I ≠ ∅ do
9: t← min(I) ▷ The earliest position where mismatch happened

10: ŷ = y1:t ⊕ ỹt ⊕ GENERATE(x⊕ y1:t ⊕ ỹt, θtarget) ▷ Replace ỹt and continue with θtarget
11: α̂← EXTRACTANSWER(ŷ)
12: if α ≡ α̂ then
13: M←M∪ {(t, yt, ỹt, False)} ▷ Equivalent answer, token yt is not important
14: y ← ŷ ▷ Continue search from the new response
15: ỹ ← FORWARD(x⊕ y, θdraft).argmax(-1)[len(x)-1:-1]
16: else
17: M←M∪ {(t, yt, ỹt, True)} ▷ Different answer, token yt is important, keep it
18: end if
19: I ← {i|yi ̸= ỹi ∩ i > t} ▷ Continue with the remaining mismatches after t
20: end while
21: return M

target model token with its draft version does not change the final answer, we deem this token swap
“unimportant” and allow it to be generated with the faster draft model. In turn, if swapping out the
token changes the final answer, it is deemed “important” and should be generated by the main model.

In more formal terms, consider the task defined as a prompt x with and two models: the larger
θtarget and the smaller θdraft. Both models can generate a response y = (y1, . . . , yT) =
GENERATE(x, θdraft) with up to T≤Tmax total tokens. For simplicity, we first assume that the
GENERATE procedure is deterministic (e.g., greedy) and generalize to sampling in Appendix A.

Without the loss of generality, we also assume that there is a problem-specific way to extract the
final answer from the model’s response, a = EXTRACTANSWER(y). In mathematical reasoning
tasks such as GSM8K [Cobbe et al., 2021], the final answer is literally whatever the model puts
after "the final answer (is)". In programming tasks, the “answer” would be the output from
the testing system given the generated code — either a report about passing and failing tests or
a testing error (e.g., an Out Of Memory or Syntax Error). Finally, we say that two answers are
equivalent aref≡aalt if they are the same from the downstream task perspective. Note that this does
not require them to be exactly equal as strings: in math problems, 1.5≡3/2, whereas in programming
tasks, two programs can be equivalent despite having different variable names. If the task at hand
does not have a formalized evaluation procedure, e.g., general conversation agents, we can define
EXTRACTANSWER(y) = y and detect if two answers are equivalent using an LLM or human judges.

Following this notation, let ytarget = GENERATE(x, θtarget) be the main model outputs. A token
yt ∈ ytarget is unimportant if swapping that token for the draft model’s output results in an equivalent
answer. Likewise, if replacing yi (and continuing target generation from there) results in a different
answer, then the original token was “important” and the token should be generated with θtarget.

Note that even if θdraft is significantly smaller than θtarget, most of the individual tokens will match
between the two. As such, we are only interested in the mismatches — the cases where draft and
target models produce different tokens given the same prefix:

I(x) = {t ∈ [1, T) : argmax
ynext

P (ynext|x, y1:t, θtarget) ̸= argmax
ynext

P (ynext|x, y1:t, θdraft)},

where y1:t = y1, . . . , yt−1 denotes taking a prefix of y up to, but excluding index t. In prac-
tice, we can find these tokens quickly by re-encoding the target model response with the draft
model: FORWARD(x ⊕ y, θdraft).argmax(dim=-1)[M-1:M+T-1] , where x ⊕ y denotes concate-
nation, FORWARD(·, ·) is a parallel transformer forward pass that outputs next token logits, and
the logits.argmax(dim=-1)[M-1:M+T-1] takes the most likely next tokens for every position,
excluding the prompt and accounting for the shift from next token prediction.

4

When deciding if a mismatching token is important for the final response, we need to account for the
fact that changing one token will most likely lead to changes in subsequent tokens. A naïve way to
account for that change is by continuing∗ the response after replacing one token ỹt:

ŷ = y1:t ⊕ ỹt ⊕ GENERATE(x⊕ y1:t ⊕ ỹt, θtarget)

However, this approach has a significant downside in that it assumes that all subsequent tokens will be
generated by θtarget, whereas in reality, some of them may be generated by θdraft following the same
algorithm. In preliminary experiments, we found that, with a capable enough θtarget, even significant
generation errors can be detected and self-corrected (similar to the “Aha moment” from DeepSeek-AI
et al. [2025], Muennighoff et al. [2025]). However, if the model makes multiple mistakes, they
eventually reach a critical mass, leading to an incorrect answer.

To address this, we reframe our task from detecting individual important tokens to finding com-
binations of tokens that jointly affect the final answer. This changes our problem to finding the
minimal set of mismatching tokens that need to be generated by θtarget while still producing
an equivalent answer∗. Since replacing a single mismatching token affects all subsequent token
choices, the exact solution to this problem requires a tree search over possible token assignments.
While this type of tree search is possible, it would take up significant runtime due to the large number
of LLM forward passes required to try all mismatch combinations.

To simplify the procedure, we opt instead for a simpler, semi-greedy search that starts from the target
model response and iteratively tries to replace mismatching target model tokens with their draft
counterparts. If replacing a token affects the final answer, we consider this token important and keep
the original (target model) version. If, however, replacing the token results in an equivalent answer,
we deem this token unimportant, replace it with the draft model version and continue the search from
the new sequence, with a different suffix and possibly a different I. That way, we guarantee that the
search algorithm is aligned with what happens during inference: the important tokens are generated
with the target model and the unimportant ones are kept from the draft model. We summarize the
resulting search procedure in Algorithm 1 and discuss some of its implications in Appendix A.

3.2 Classifier Training

Once we gather a dataset of task-specific important tokens with Algorithm 1, we can train a classifier
that would detect such tokens for use during inference. This classifier can, in principle, be any type of
model, from a simple linear model or decision tree to a fine-tuned transformer layer. However, in our
work, we default to training lightweight linear models with existing LLM hidden states as features,
since those would introduce the least overhead during inference. There are several important design
choices that can affect the effectiveness of such a classifier: we address each one separately.

1. Which token representations to use: the hidden states that predicted the mismatched token, or
the next hidden states that encode the mismatched token itself? In our experiments, we found that
using the latter representations results in substantially greater classifier accuracy (see Appendix B).
However, obtaining these representations comes with a caveat.

Normally, when doing speculative decoding, one generates a draft “window” of W tokens with
θdraft, then verifies these tokens by processing them (in parallel) with θtarget. This automatically
computes the necessary hidden representations for all but for the very last token — the next token
predicted from the last hidden state in the window, which is not encoded. There are two ways to
address this: either encoding the extra token alongside the window, or simply assuming that if the
very last token mismatches between θdraft and θtarget, it is automatically discarded without the
classifier. However, in practice, we found that the overhead from either strategy is negligible and is
outweighed by greater classifier accuracy that translates to more accepted tokens.

2. Which token alternative to use? Since the classifier works best with the representations from
encoding the mismatching token, it is natural to ask which token should be encoded: the draft
token, the mismatching target token, or both? When analyzing this, we found that using both token
representations comes with a slight increase in classifier accuracy (see Appendix B). However,

∗For notation simplicity, we assume that the GENERATE(·, ·) function can be called with a prefix of a response.
In that case, we assume that the total response length (and not just newly generated tokens) does not exceed
Tmax, so that the response cannot grow indefinitely with each subsequent replacement.

∗More precisely, find the fastest-to-generate sequence, accounting for the differences in response length.

5

[GSM8K] Arnel had ten boxes of pencils ... how many pencils are in each box?
Arnel kept ten pencils and shared the remaining pencils with his 5 friends.

[.] He shared the ... ✓ [equally] with ... ✓
This means that the total number of pencils he shared is 10 * x - 10. ...

[Arnel] ... ✓ [-] x - 10 ...×
[GSM8K]Adlai has 2 dogs and 1 chicken.
How many animal legs are there in all?
To find the total number of animal legs,
we need to calculate the legs [total] of
each animal and then add them up.

- 2 dogs have 4 [2] legs each, so 2
dogs have 2 * [times] 4 = 8 legs.
- 1 chicken has 2 legs.

Now [Adding], let’s add the legs
together [of] , we get 8 (from the dogs)
+ 2 (from the chicken) = 10 legs.

The final answer is 10.

[LCB] Given a string S of lowercase...
If there are adjacent occurren- ces of
a and b in S, print Yes; ...
```python
# -*-[YOUR] coding: utf-8 -*-
def[#] solve[check](s):

for i in range(len(s) -[)] 1):
if s[i] == ’a’ and s[i+1] == ’b’:

return "Yes"
if s[i] == ’b[a]’ and s[i+1] == ’a’:

return "Yes"
return "No"

if[#] __name__ == "__main__":...

Figure 2: Excerpts from GSM8K (top, left) and LiveCodeBench (right) labeled by Algorithm 1.
Important mismatching tokens that are in red, unimportant ones are in green. Alternative tokens are
shown in [brackets]. Black tokens are where θdraft and θtarget gave the same prediction. The top
example additionally shows θtarget continuations after mismatching tokens (✓ if α ≡ α̂,×if not).

obtaining these representations in practice would require running θtarget more than once during the
verification stage, which would complicate inference and introduce performance overhead. For this
reason, we opt to use only the draft token representations for the classifier, since those are already
available in regular speculative decoding.

3. Which model provides feature representations? During the verification stage, we have access to
both the draft and the target model hidden states: we can use either or both of them as the input. In
practice, we found that concatenated draft and target model representations give slightly better results
than just those of the target model, and using draft model representations alone is substantially worse.
Since both representations are already available during inference, we opt to use each of them.

Classifier model & training. In this work, we train a simple logistic regression to detect important to-
kens. While a more complex model could achieve greater accuracy, logistic regression is significantly
easier to deploy, has less runtime & memory overhead and needs less training data. Furthermore, it
can be fused with the existing “LM head” layer of the draft and target LLMs, which would make
its computation virtually free. To control overfitting, we perform a simple grid search over the L2

regularization coefficient (“C”) with a logarithmic grid. We report additional details in Appendix B.

3.3 Inference

The resulting classifier can be used with an arbitrary speculative decoding algorithm that has a
verification stage. During said verification stage, the classifier is called when the original algorithm
would reject a token. If the would-be-rejected token is deemed to be unimportant, i.e. not to affect the
response quality, then we override the verification procedure and accept the token instead, proceeding
to test subsequent tokens (if any) as per the original algorithm.

Generality. In our initial experiments, we focus on traditional speculative decoding [Leviathan
et al., 2023, Chen et al., 2023] for simplicity. However, our algorithm is compatible with arbitrary
speculative decoding algorithms, including tree-based [Miao et al., 2023, Svirschevski et al., 2024,
Chen et al., 2024] and single-model multi-head algorithms [Cai et al., 2024, Li et al., 2024d,c].
This also means that our approach can be integrated into existing inference frameworks such as
vLLM [Kwon et al., 2023], TensorRT-LLM [NVIDIA, 2023] or TGI [Hugging Face, 2023].

Thresholds. To balance computational efficiency and downstream performance, we select a decision
threshold that achieves a high recall (≥90%) in order to retain quality. Since the classifier is accurate
enough, this threshold can also achieve a reasonable rejection rate, i.e., the rate of tokens correctly
predicted to be unimportant. This allows us to retain downstream accuracy while skipping a large

6



8 10 12 14 16 18 20
Average Accepted Tokens

43%

49%

55%

61%

67%

73%

79%

85%

Te
st

 A
cc

ur
ac

y

Llama 3.1 8B Instruct 83.47%

Llama 3.2 1B Instruct 43.36%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

15 20 25 30 35 40 45 50
Average Accepted Tokens

85%

87%

89%

91%

Te
st

 A
cc

ur
ac

y

Llama 3.1 70B Instruct 92.19%

Llama 3.1 8B Instruct 83.47%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 3: Accuracy and the number of accepted tokens on GSM8K for (left) 8-shot Llama-3.2 1B
draft / Llama-3.1 8B target and (right) 0-shot Llama 3.1 8B draft / Llama 3.1 70B target (all Instruct)

portion of unimportant tokens, thus enabling efficient speculative decoding. In Section 4, we evaluate
various threshold values to show their effect on accuracy and acceptance rate.

Comparison with Judge Decoding. As we discussed earlier, our approach can be seen as an extension
of Judge Decoding that enables automatic dataset mining. As such, the dataset generation algorithm
from Section 3.1 can be used in conjunction with the Judge Decoding training and inference protocol,
which appears to be similar to ours up to possible minor details. In Appendix N, we additionally
compare against manual human annotation similar to Judge Decoding. Unfortunately, the original
source code and data from Judge Decoding are not available, making it difficult to compare directly.

4 Experiments
We organize our evaluations as follows: in Section 4.1 we evaluate AutoJudge on the GSM8K [Cobbe
et al., 2021] mathematical reasoning benchmark. Next, in Section 4.2, we evaluate our approach
on programming tasks from LiveCodeBench [Jain et al., 2024]. Finally, Section 4.3 contains GPU
inference speed benchmarks with our vLLM implementation. We focus on two pairs of Llama 3.x
models: 1) Llama-3.2-1B-Instruct draft / Llama-3.1-8B-Instruct target∗ and 2) Llama-3.1-8B-Instruct
draft / Llama-3.1-70B-Instruct target. We also report results with Qwen2.5 models on the GSM8K
benchmark to showcase the method’s transferability across model families. Our main experiments
run in bfloat16 precision (see Appendix C). We run AutoJudge on top of the standard speculative
decoding algorithm [Leviathan et al., 2023] in main experiments and explore EAGLE-2 in Appendix J.

4.1 Mathematical Reasoning with GSM8K
Our first set of experiments is based on the GSM8K dataset with grade school mathematical problems.
This dataset has a natural split with≈7.47K training samples and≈1.32K test samples. Following the
standard evaluation procedure, we use the training set to “mine” important tokens with Algorithm 1
and train the classifier, then run inference and evaluate on the test set with the recommended
parameters [Gao et al., 2021] for zero-shot and 8-shot evaluation: greedy inference with a prompt
that encourages chain-of-thought reasoning. During training, we consider two responses equivalent
(a≡â in Algorithm 1) if the extracted final answers (numbers) are equal. For reference, we provide
an example of important token assignments found by our algorithm in Figure 2.

We train a classifier on the last hidden state embeddings from both draft and target models (concate-
nated) for encoded draft tokens. The training dataset contains ≈130K mismatches, about 20% of
which are deemed important. We train a logistic regression with the L2 regularization coefficient
tuned individually for each setup(for instance 10−4 for 8B/70B), found by grid search over a log-
arithmic grid between 100, . . . , 10−7. During inference, we integrate the trained classifier into the

∗The reason why the two models have different minor versions (i.e. 3.1 and 3.2) is that the 3.2 version does
not have the larger 8B models, and the 3.1 version does not have the smaller 1B models.

7



10 20 30 40 50 60
Average Accepted Tokens

35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%

Te
st

 A
cc

ur
ac

y

Qwen2.5-7B-Instruct 87.33%

Qwen2.5-0.5B-Instruct 37.90%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

10 20 30 40 50 60
Average Accepted Tokens

35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%

Te
st

 A
cc

ur
ac

y

Qwen2.5-32B-Instruct 91.73%

Qwen2.5-0.5B-Instruct 37.90%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 4: Accuracy and the average number of accepted tokens on GSM8K 8-shot for (left) Qwen2.5-
0.5B draft / Qwen2.5-7B target and (right) Qwen2.5-0.5B draft / Qwen2.5-32B target (all Instruct).

speculative decoding loop from Leviathan et al. [2023] during verification. Whenever the original
algorithm would reject a token, we run the classifier to determine if changing that token affects the
final response quality, and if not — accept the token and continue verification for subsequent tokens
(if any). Since the resulting algorithm can accept additional tokens, we use the increased draft window
size of W=64 tokens for all evaluations.

We report two main metrics: downstream accuracy and the number of accepted tokens per speculative
decoding cycle. The accuracy is measured as the exact match rate for the final answer extracted from
the response as per standard GSM8K evaluation protocol. In turn, we report the decoding speed in
terms of the number of tokens accepted per target model forward pass, aiming to decouple our results
from the specific hardware configuration. We evaluate AutoJudge with different classifier thresholds,
balancing between accuracy and speed. Our baselines are traditional speculative decoding, decoding
with the draft model, and a simpler lossy speculative decoding method. In the latter, we accept a
mismatching draft token if it is within top-K most likely tokens of the target model, similarly to how
it is defined in Bachmann et al. [2025]. We report K=2, 4, 8, . . . , |V | for different speed-accuracy
tradeoffs: increasing K results in more accepted tokens but reduces accuracy.

The results in Figure 3 demonstrate that AutoJudge decoding can achieve substantial speedups.
Notably, our algorithm can accept over 40 tokens per target model forward pass in 8-shot evaluations
for the 8B draft / 70B target model pair with a ≤1% change in accuracy. Varying the classifier
threshold allows us to achieve even greater speedups at the cost of several percentage points drop
in accuracy. The heuristic-based top-K baseline also achieves some speedups, but at the cost of a
significantly higher accuracy drawdown. We report setups in Appendix D.1.

4.2 Programming with LiveCodeBench
Next, we test if the AutoJudge search algorithm is able to generalize between domains. For this
purpose, we evaluate the same model family on the LiveCodeBench [Jain et al., 2024] programming
benchmark. Here, we use the code_generation_lite∗ dataset with the version tag release_v5.
The dataset contains 880 programming tasks; we evaluate on all three subsets: easy, medium and
hard. Since LiveCodeBench does not have a dedicated training split, we evaluate using out-of-fold
predictions. Namely, we split the dataset randomly into 5 folds. For each fold, we evaluate using the
classifier trained on the 4 remaining folds. We use the standard evaluation protocol: extracting the
generated code and evaluating it using the benchmark’s built-in test suite. We otherwise follow the
standard evaluation protocol for this benchmark and report Pass@1 in zero-shot setting.

Similarly to Section 4.1, we use the training data to find important tokens — this time, in terms of the
resulting program correctness, measured as passing tests. Since the calibration dataset is smaller and
further subdivided into folds, we only have ≈27K mismatching tokens to train the classifier (with a

∗huggingface.co/datasets/livecodebench/code_generation_lite

8

https://huggingface.co/datasets/livecodebench/code_generation_lite


10 15 20 25 30 35 40 45
Average Accepted Tokens

3%

5%

7%

9%

11%

13%

15%

17%

Pa
ss

@
1 

(c
or

re
ct

ly
 so

lv
ed

 ra
te

)

Llama 3.1 8B Instruct 16.81%

Llama 3.2 1B Instruct 3.07%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

15 20 25 30 35 40
Average Accepted Tokens

16%

18%

20%

22%

24%

26%

28%

30%

32%

34%

Pa
ss

@
1 

(c
or

re
ct

ly
 so

lv
ed

 ra
te

) Llama 3.1 70B Instruct 30.90%

Llama 3.1 8B Instruct 16.25%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 5: Downstream Pass@1 and the average number of accepted tokens on LiveCodeBench for
(left) Llama-3.2 1B draft / Llama-3.1 8B target and (right) Llama 3.1 8B draft / Llama 3.1 70B target.
We use Instruct versions for both model pairs and report additional details in Section 4.2.

slight ≤0.5K variation depending on the active fold). Furthermore, we found that only ≈5% of the
mismatching tokens were deemed to affect the output quality. We provide example token assignments
in Figure 2 (right): notably, the tokens deemed important in that case would not appear in GSM8K in
the same context. We otherwise follow the same training and evaluation protocol as before.

The results in Figure 5 are similar to what we observed in Section 4.1: AutoJudge decoding can accept
over 22 tokens per speculative decoding cycle at the cost of a ≈2% accuracy decrease. This results
in approximately 2× increase over traditional speculative decoding [Leviathan et al., 2023]. The
top-K baseline can similarly achieve some increase in the number of accepted tokens, but AutoJudge
decoding offers significantly better quality-speed tradeoffs across all configurations. We report
additional configurations and threshold values in Appendix D.2, including the setup for AutoJudge
decoding “out-of-domain”, i.e. using the classifier trained on GSM8K for LiveCodeBench evaluation.
This out-of-domain configuration results in inferior performance, which aligns with our hypothesis
that the important tokens depend on the problem type and evaluation criteria.

4.3 Inference Benchmarks with vLLM

In this section, we report the GPU inference speed of speculative decoding with AutoJudge classifiers.
To benchmark real-world inference speed, we integrated AutoJudge into vLLM speculative decoding.
We use the same GSM8K evaluation setup as in Section 4.1 and evaluate 3 model pairs from Llama
3.x family: 1B/8B, 8B/70B and 8B/405B draft/target respectively (all Instruct).

Table 1: Inference speed benchmarks on GSM8K 0-shot with vLLM for (left) 1B draft / 8B target
models with tuned window size (baseline = 8, AutoJudge = 10) and (right) for 8B draft / 70B target
models (all Instruct) with tuned window size (baseline = 8, AutoJudge = 32 ).

Llama 3.2 1B draft / 3.1 8B target (0-shot)

Threshold 0.06 0.12 0.15 0.16

Accuracy, % 83.1 80.2 79.8 77.4
Speed, tokens/s 149.2 169.2 171.2 173.9

Speculative Decoding: 147.7 tokens/s

Speedup(ours) 1.01 1.14 1.15 1.17

Llama 3.1 8B draft / 3.1 70B target (0-shot)

Threshold 0.005 0.031 0.145 0.230

Accuracy, % 92.0 91.9 89.9 88.0
Speed, tokens/s 72.3 80.6 107.4 109.6

Speculative Decoding: 72.3 tokens/s

Speedup(ours) 1.0 1.11 1.49 1.52

9



Table 2: Inference speed with vLLM for (left) Llama 3.1 8B draft / 405B target models on GSM8K
0-shot with tuned window size (baseline=14, AutoJudge=20). (right) Llama 3.1 8B draft / 70B target
(all Instruct) on GSM8K 8-shot with offloading, tuned window size (baseline=10, AutoJudge=48).

Llama 3.1 8B draft / 3.1 405B target (0-shot)

Threshold 0.01 0.05 0.09 0.14

Accuracy, % 96.1 93.4 92.5 91.5
Speed, tokens/s 50.6 58.0 58.5 60.1

Speculative Decoding: 50.0 tokens/s

Speedup(ours) 1.01 1.16 1.17 1.20

Llama 3.1 8B draft / 3.1 70B target (offload)

Threshold 0.03 0.05 0.11 0.28

Accuracy, % 95.4 94.8 93.4 90.4
Speed, tokens/s 1.4 1.6 1.9 2.4

Speculative Decoding: 1.19 tokens/s

Speedup(ours) 1.20 1.31 1.59 1.98

We compare AutoJudge decoding against lossless vLLM speculative decoding [Leviathan et al., 2023].
To ensure fair comparison, we tune draft window size for AutoJudge and baseline independently (see
Appendix G). In each configuration, we report the absolute speed in tokens per second (batch size 1),
as well as the relative speedup over speculative decoding. We run 1B/8B model pair on a single
A100-SXM4-80GB GPU; 8B/70B on 4 A100-SXM4-80G GPUs in tensor-parallel mode. Finally,
the 8B/405B runs on 8 H100-SXM5-80GB GPUs with the 405B model loaded in FP8 precision.
Additionally, we consider a setup where 8B/70B model pair runs on a single A100-SXM4-80GB GPU
with RAM offloading (see Appendix H). We provide additional configuration details in Appendix E.

Our results in Tables 1 and 2 demonstrate consistent improvements across all model pairs, with
particularly high speedups for 8B/70B with and without offloading. This confirms that our earlier
results in terms of accepted tokens (Sections 4.1 & 4.2) translate to real-world tokens per second.
Namely, if we allow ≤2% change in accuracy, our vLLM inference with AutoJudge classifier can
achieve 107.4 tokens per second for 8B/70B model pair, which translates into about 1.5× speedup
compared to regular speculative decoding. This improvement is even more noticeable for hybrid
setup with offloaded target model (in Table 2), where AutoJudge achieves up to 2× speedup.

Additional evaluations. To better explore the wide variety of tasks, methods and hardware setups,
we report multiple series of additional experiments in supplementary materials. We evaluate Auto-
Judge decoding with EAGLE-2 in Appendix J. Next, we generalize to open-ended problems (question
answering and creative writing) with LLM-as-a-judge evaluation in Appendix L. We also evaluate
how AutoJudge classifiers transfer to adjacent problems in Appendix M. Finally, we benchmark with
equal window size in Appendix D and control for vLLM nondeterminism in Appendix I.

Limitations. Our approach assumes that the downstream task has a way to determine whether or not
two solutions are equivalent. While this is true for many tasks, we found that AutoJudge sometimes
struggles in open-ended tasks with no clear criteria for correct answers. It would be interesting to
explore alternative algorithm designs more suitable for open-ended problems. Additionally, running
Algorithm 1 consumes compute resources, mostly LLM inference, in the form of local inference or
API calls. We discuss this in more detail in Appendices P and Q.

5 Conclusion
In this work, we propose and evaluate a fully automated protocol for task-specific acceleration of
speculative decoding. Our experiments show that a simple procedure can automatically determine
which of the mismatching tokens in the LLM response affect the downstream quality on a variety of
tasks. Our runtime benchmarks demonstrate significant speedups on top of already tuned speculative
decoding and EAGLE algorithms with minimal inference code modification. We hope that AutoJudge
can facilitate the use of Judge Decoding across different task types, languages and modalities.

One promising direction for future research is to focus on open-ended problems such as instruction
following or creative writing. While AutoJudge already demonstrates some speedups on open-ended
tasks, it was primarily designed for technical problems such as math and programming. It would be
interesting to investigate how it can be extended for longform generations with noisy and informal
quality criteria. Another possible direction is to combine AutoJudge with additional speculative
decoding algorithms, such as speculative decoding with tree-based drafts [Miao et al., 2023, Chen
et al., 2024, Svirschevski et al., 2024] or learned drafting heads [Cai et al., 2024, Li et al., 2025].

10



Acknowledgements

We would like to express our sincere gratitude to Denis Mazur for his valuable contributions to the
implementation of API calls used in Algorithm 1 and for supporting inference with the Llama 405B
model. We are also thankful for his positive influence on the overall atmosphere and team morale
throughout the course of this project.

References
Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-

Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding,
2024. URL https://arxiv.org/abs/2402.05109.

Anthropic. Claude 3.7 sonnet and claude code, 2024. URL https://www.anthropic.com/news/
claude-3-7-sonnet. Accessed: 2025.04.02.

ARC Prize Foundation. Openai’s new o3 system scores breakthrough on arc-agi-pub, 2024. URL
https://arcprize.org/blog/oai-o3-pub-breakthrough. Accessed: 2025.03.28.

Gregor Bachmann, Sotiris Anagnostidis, Albert Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schönfeld, Ali Thabet, and Jonas K Kohler. Judge decoding:
Faster speculative sampling requires going beyond model alignment. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=mtSSFiqW6y.

Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
open models, 2024. URL https://huggingface.co/spaces/HuggingFaceH4/
blogpost-scaling-test-time-compute.

Tianle Cai, Xinyun Li, Zhiruo Wang, Yuhuai Wang, and Dawn Song. Medusa: Simple llm inference
acceleration framework with multiple decoding heads. arXiv preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding, 2024. URL
https://arxiv.org/abs/2402.12374.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,

11

https://arxiv.org/abs/2402.05109
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2402.12374


Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm inference
using lookahead decoding. Accessed: 2023-11-29, 2023.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.5371628.

Google DeepMind. Gemini 2.5: Our Newest Gemini Model with Thinking. https://blog.google/
technology/google-deepmind/gemini-model-thinking-updates-march-2025/
#gemini-2-5-thinking, 2025. Accessed: 2025-04-07.

E. J. Gumbel. Statistical Theory of Extreme Values and Some Practical Applications, volume 33
of Applied Mathematics Series. National Bureau of Standards, Washington, D.C., 1954. U.S.
Government Printing Office.

Horace He and Thinking Machines Lab. Defeating nondeterminism in llm infer-
ence. Thinking Machines Lab: Connectionism, 2025. doi: 10.64434/tml.20250910.
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In ICLR. OpenReview.net, 2020. URL http://dblp.uni-trier.de/db/conf/
iclr/iclr2020.html#HoltzmanBDFC20.

Hugging Face. Text generation inference, 2023. URL https://github.com/huggingface/
text-generation-inference. GitHub repository.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/2403.
07974.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan,
editors, Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1601–1611, Vancouver, Canada, July 2017. Association for

12

https://arxiv.org/abs/2501.12948
https://doi.org/10.5281/zenodo.5371628
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/#gemini-2-5-thinking
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
http://dblp.uni-trier.de/db/conf/iclr/iclr2020.html#HoltzmanBDFC20
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2406.00515


Computational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W. Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Neural Information Pro-
cessing Systems, 2023. URL https://api.semanticscholar.org/CorpusID:256868484.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022. URL https://api.
semanticscholar.org/CorpusID:249017743.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Randy Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nourhan Fahmy, Urvashi Bhattacharyya, W. Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jana Ebert, Tri Dao, Mayank Mishra, Alexander Gu, Jennifer
Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel
Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you! ArXiv,
abs/2305.06161, 2023. URL https://api.semanticscholar.org/CorpusID:258588247.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gonzalez,
and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939, 2024a.

Tianle* Li, Wei-Lin* Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E. Gonzalez, and Ion
Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, April 2024b. URL
https://lmsys.org/blog/2024-04-19-arena-hard/.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees, 2024c. URL https://arxiv.org/abs/2406.16858.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. In Proceedings of the 41st International Conference on Machine
Learning, pages 31147–31162. PMLR, 2024d.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference accel-
eration of large language models via training-time test, 2025. URL https://arxiv.org/abs/
2503.01840.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Ion Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Paul Joe Maliakel, Shashikant Ilager, and Ivona Brandic. Investigating energy efficiency and
performance trade-offs in llm inference across tasks and dvfs settings, 2025. URL https://
arxiv.org/abs/2501.08219.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. https:
//ai.meta.com/blog/llama-4-multimodal-intelligence/, 2025.

13

https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://api.semanticscholar.org/CorpusID:256868484
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:258588247
https://lmsys.org/blog/2024-04-19-arena-hard/
https://arxiv.org/abs/2406.16858
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2503.01840
https://arxiv.org/abs/2501.08219
https://arxiv.org/abs/2501.08219
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/


Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta,
Aditya Krishna Menon, and Sanjiv Kumar. Faster cascades via speculative decoding. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=vo9t20wsmd.

NVIDIA. Tensorrt-llm, 2023. URL https://github.com/NVIDIA/TensorRT-LLM.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,
Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card,
2024. URL https://arxiv.org/abs/2412.16720.

14

https://openreview.net/forum?id=vo9t20wsmd
https://openreview.net/forum?id=vo9t20wsmd
https://github.com/NVIDIA/TensorRT-LLM
https://arxiv.org/abs/2412.16720


Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specreason:
Fast and accurate inference-time compute via speculative reasoning, 2025. URL https://arxiv.
org/abs/2504.07891.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems (NeurIPS). Neural
Information Processing Systems Foundation, 2019.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 12(Oct):2825–2830, 2011.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan, Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie, Jie Zhou, Marc H. Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master 16000+
real-world apis. ArXiv, abs/2307.16789, 2023. URL https://api.semanticscholar.org/
CorpusID:260334759.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P
Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. ArXiv, abs/2308.12950, 2023. URL
https://api.semanticscholar.org/CorpusID:261100919.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use
tools. ArXiv, abs/2302.04761, 2023. URL https://api.semanticscholar.org/CorpusID:
256697342.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Benjamin Spector and Chris Re. Accelerating llm inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623, 2023.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
Spectr: Fast speculative decoding via optimal transport. arXiv preprint arXiv:2310.15141, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-
bench tasks and whether chain-of-thought can solve them. In Annual Meeting of the Association
for Computational Linguistics, 2022. URL https://api.semanticscholar.org/CorpusID:
252917648.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer
devices, 2024. URL https://arxiv.org/abs/2406.02532.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

15

https://arxiv.org/abs/2504.07891
https://arxiv.org/abs/2504.07891
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://qwenlm.github.io/blog/qwq-32b/
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:256697342
https://api.semanticscholar.org/CorpusID:252917648
https://api.semanticscholar.org/CorpusID:252917648
https://arxiv.org/abs/2406.02532
https://github.com/tatsu-lab/stanford_alpaca


Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Vivien Tran-Thien. An optimal lossy variant of speculative decoding, June 2024. URL https://
huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding.
Hugging Face Blog.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms, 2025. URL https://arxiv.org/abs/2502.03373.

Jiayi Yuan, Hao Li, Xinheng Ding, Wenya Xie, Yu-Jhe Li, Wentian Zhao, Kun Wan, Jing Shi, Xia
Hu, and Zirui Liu. Give me fp32 or give me death? challenges and solutions for reproducible
reasoning, 2025. URL https://arxiv.org/abs/2506.09501.

16

https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://huggingface.co/blog/vivien/optimal-lossy-variant-of-speculative-decoding
https://arxiv.org/abs/2502.03373
https://arxiv.org/abs/2506.09501


1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that AutoJudge can accelerate decoding and support it with experi-
ments in Section 4, including vLLM inference benchmarks in Section 4.3. We claim that our
method works across different tasks, supporting it with an evaluation on both mathematical
reasoning and programming benchmarks. Our claim that the method does not require human
annotation (unlike Judge Decoding) and provide the search algorithm (Alg. 1) that justifies
this claim. Thus, the claims in the abstract do indeed reflect our main contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We summarize the limitations of our work on the last page, near the Discussion
section. For instance, that our algorithm is so far limited to tasks where one can determine if
answers are equivalent, which may not always be possible.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

17



3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: While we include some simple mathematical claims, none of them are signifi-
cantly novel. The main contributions of our work are empirical, not theoretical.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the supplementary code that includes instructions for reproducing
our experiments and details regarding hardware and library versions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

18



In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the supplementary code with the paper and intend to release it
immediately upon publication. For convenience, we also release the mined datasets of
important tokens used in our work, though one can also reconstruct them from public
datasets using our algorithm.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the important configuration details, within reason, in the experi-
mental section and appendices. More importantly, we include the exact configurations with
the supplementary code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We include error bars in some, but not all results. The main reason we do not
provide error bars everywhere is that it our main experiments require LLM inference with
long sequences on large datasets, which is computationally expensive.

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We run our experiments on a fairly homogenous hardware (servers with 8x
A100 each) and describe details in Section P.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is focused on fundamental LLM inference efficiency and complies
with the Code of Ethics. Notably, AutoJudge does not require human annotators, which
means we do not use crowdsourcing.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

20

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work (stemming from
more efficient LLM inference), none which we feel must be specifically highlighted here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All the models and datasets used in our work are either already open-access or
can be generated automatically based on public models and datasets. Hence, we see no need
to safeguard their release.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

21



Justification: We do our best to cite all code, datasets and models used in our research.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our supplementary code contains a README with instructions for reproduc-
ing our experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: We only have one small-scale analysis that required a small amount of human
annotations (in Appendix N). This analysis was run by acknowledged volunteers with no
compensation over the course of a few hours. One of the main contributions of our work is
that we provide an algorithm that bypasses the need for human annotators.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

22

paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: We only used crowdsourcing with a small group of volunteers in Appendix N
over the course of several hours. The crowdsourced tasks had volunteers analyze LLM
solutions to simple non-sensitive problems (e.g. grade school math). Our institution’s policy
classifies this analysis as too small-scale to seek formal approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our work uses repeated LLM inference with substituted tokens to detect which
of the generated tokens are important for LLM inference. We describe it in Section 3 and
evaluate it through the actual use of LLMs in Section 4.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM


A Additional Considerations for Section 3.1

Generalization to sampling. In Section 3.1, we assume that the generation procedure is determin-
istic, i.e. that the model performs “greedy inference”. In practice, however, many applications work
better with stochastic sampling [Holtzman et al., 2020]. However, this has an obvious caveat for
Algorithm 1: if the text generation process is stochastic, a token can be deemed important based not
on its actual impact on the model outputs, but on the randomness of the decoding procedure.

To generalize our approach for stochastic generation, we take advantage of the well-known Gumbel-
max trick [Gumbel, 1954]. To recap, if we add independent Gumbel-distributed random variables to
each predicted logit and take the index of the maximum, the probability that a certain index will be
chosen is equal to the softmax of the original logits.

In case of Algorithm 1, we use the Gumbel-max trick to reparameterize stochastic sampling from
the model as deterministic sampling conditioned on a predefined random state s← RANDBITS(N).
Given a prompt x, a response prefix y1:t and model parameters θ, we generate the next token as
follows:

ynext = argmax
i

logP (i|x⊕ y1:t, θ) + GUMBELPRNG(s⊕ x⊕ y1:t),

where GUMBELPRNG is a function that samples a pseudo-random variable from standard Gumbel
distribution based on an input seed s⊕ x⊕ y1:t. To recall, ⊕ denotes concatenation. This way, ynext
is distributed as P (ynext|x⊕ y1:t, θ), but it is deterministic when conditioned on the random state s.
Hence, we sample a random state s once at the beginning of Algorithm1, the entire procedure after
that will also be conditionally deterministic (given s).

Issues with naïve important token mining. As we described earlier, Algorithm 1 is inher-
ently sequential because it searches not for individual important tokens, but for important to-
ken combinations. In principle, it is tempting to consider a simpler algorithm that consid-
ers each token replacement in isolation and can run in parallel. However, when considering
[target_model_gen_0, draft_token, target_model_gen_1] sequences only, a sufficiently
strong target model might recover from even a low-quality token and still produce the correct answer.
This results in a failure mode where all tokens are individually unimportant, but when all such tokens
are jointly replaced with their draft versions, the model fails to produce the correct answer. In our
preliminary experiments, when using Llama-3.1-70B-Instruct Touvron et al. [2023] as the target
model and Llama-3.2-1B-Instruct as the draft model, fewer than 1% of the tokens were labeled as
important with this simplified algorithm, whereas our main Algorithm 1 found substantially more.
One interesting guarantee of Algorithm 1 over its naïve counterpart is that whenever draft and target
models produce different (non-equivalent) answers to a given prompt, our algorithm will find at least
one important token, whereas the naïve algorithm may find none.

On starting conditions for the important token search. To recall, mining important tokens can be
viewed as a shortest path search algorithm in a tree of possible mismatch choices. When performing
this type of search, there are two possible directions that one can search from. In Algorithm 1, we
start from the target model outputs and iteratively (greedily) replace the mismatching tokens with
their draft versions. However, one could also start from the draft model outputs and iteratively swap
in target model outputs until the answer becomes equivalent to that of the target model. If we were to
use an exhaustive search algorithm, both approaches would converge to the same important token
labeling. However, since we are using a semi-greedy algorithm, it is easier to start with an already
correct solution and simplify it, as opposed to starting with a wrong one and attempting to fix it.

B Additional Details on Classifier Training

As we discussed earlier in Section 3.2, there are several important design choices that can affect the
performance of an important token classifier in our setting. Here, we report the experiments that led
us to use a linear classifier based on draft token embeddings encoded with both θdraft and θmain. To
that end, we compare the different classifier variants using the important token embeddings from the
GSM8K [Cobbe et al., 2021] training subset (see Section 4.1).

24



To compare different classifier configurations, we further divide the GSM8K training set into classifier
training (90%) and validation (10%) subsets. We perform this division at the sample level, i.e., all
labeled tokens from a given GSM8K sample are used either entirely for classifier training, or entirely
for validation. We use the same training and validation subsets throughout this section.

For the first set of experiments (Figure 6), we compare regularizer coefficients for Logistic Regression
(left). We also report different classifier types: Logistic Regression, a Random Forest with 128
trees and a multi-layer perceptron (MLP) with a single hidden layer consisting of 128 hidden units
with ReLU activation. For consistency, we run all models using scikit-learn [Pedregosa et al., 2011]
v1.4.2 with all other settings kept to their default values. For LogisticRegression, we set max_iter
parameter to 500. For MLP, we perform early stopping on yet another 10% subset of the training
set with the built-in default MLPClassifier early stopping parameters. For RandomForest, we use
min_samples_leaf set to 0.001. For this evaluation, all classifiers use draft and target model hidden
states (concatenated) encoding the draft token, which is our main setup from Section 3.2.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for varying regularizer coefficients

C=1e-05, AUC=0.803
C=1e-04, AUC=0.819
C=1e-03, AUC=0.818
C=1e-02, AUC=0.804

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for varying classifier types

LogisticRegression (C=1e-4), AUC=0.812
Random Forest (n_estimators=128), AUC=0.768
MLP (hidden_layer_sizes=(128,)), AUC=0.799

Figure 6: Receiver Operating Characteristics and the corresponding AUC values values for different
Logistic Regression regularizers (left) and classifier types (right). Bold lines are validation curves
and the dotted lines represent training curves. The AUC is reported in the legend (bottom right).

The results in Figure 6 demonstrate that the classifier quality is fairly robust to the choice of the
regularization hyperparameter. It is also fairly robust to the choice of the classifier architecture,
barring perhaps the Random Forest classifier, which is overfitting the training data more than other
models. Note that this does not necessarily mean that the MLP or tree-based classifiers are generally
worse than linear models — only that linear model is enough in our exact setup with a limited training
set. We hypothesize that, if allowed to train on much larger dataset, the more complex models will be
able to match and possibly outperform logistic regression.

Next, we compare classifier inputs. As we describe in Section 3.2, we use existing LLM hidden
states from the last layer of θdraft and θtarget since they are already computed during speculative
decoding. This, however, leaves several possible choices about which hidden states should be used:

• Previous token embeddings, last hidden states used to predict the mismatching token;

• Draft token embeddings are the next embeddings, obtained by encoding the draft token;

• Target token embeddings are the next embeddings, obtained by encoding the target token;

• Both token embeddings are concatenations of the draft and target token embeddings;

We compare the four input configurations in Figure 7 (left), using Logistic Regression with C=10−4

and both draft and target model hidden states (concatenated) for each case. The results suggest that a
classifier that uses mismatching token embeddings (for draft or target token) is significantly more
accurate than using the preceding token embeddings (the ones used to predict the mismatch). In turn,

25



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for varying token embeddings

Previous token embeddings, AUC=0.816
Draft token embeddings, AUC=0.819
Target token embeddings, AUC=0.804
Both tokens embeddings, AUC=0.826

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curves for varying model hiddens

Draft model hiddens, AUC=0.763
Target model hiddens, AUC=0.818
Both token embeddings, AUC=0.819

Figure 7: Receiver Operating Characteristics and the corresponding AUC scores (in the plot legend)
for different classifier input tokens (left) and models (right). See Appendix B for details.

using both token embeddings results in somewhat better performance than either of them. However,
using both token embeddings introduces complications during inference time.

In normal speculative decoding, the algorithm already computes hidden states for draft tokens with
both θdraft (during draft generation) and θtarget (during verification). However, it does not compute
embeddings for target tokens since those tokens are not known before the end of the verification stage
— and computing them already requires a forward pass with θtarget. As a result, computing target
(or both draft & target) token embeddings would require two sequential forward passes with θtarget
— one to determine the target tokens and detect mismatches, and the other to compute embeddings
for those mismatching target tokens. In principle, one could devise a more sophisticated algorithm
that computes only the θdraft embeddings for mismatching target tokens or guesses the target tokens
prior to the verification stage, but doing so would greatly complicate the implementation. Since the
increase in the AUC score compared to using just the draft token embeddings is relatively small
(Figure 7, on the left), we default to using draft token embeddings.

Additionally, we also test three model hidden states configurations for draft token embeddings: draft
model hidden states, target model hidden states, and concatenated hidden states from both models in
Figure 7 (right). Here, using the target model hidden states results in superior accuracy to using the
draft model. In turn, using both θdraft and θtarget produces an additional, if marginal, increase in
accuracy. However, since both hidden states are already available during inference, using them both
does not pose additional complications. Though, some real world inference systems may make it
more convenient to only use θtarget for classifier inputs since the AUC difference is within 1%.

C Precision Matters for Speculative Decoding

When validating the AutoJudge algorithm, we found a peculiar implementation detail that can affect
the real world performance of speculative decoding. Namely, when using the LLM in half precision,
token embeddings can differ significantly (up to 10%) between parallel and sequential forward passes
on the same data. In other words, if we record model hidden states as it generates a sequence, then
encode the same sequence in parallel to recompute said hidden states, the two sets of hidden states
will not match exactly. We attribute this to the fact that encoding tokens in parallel has a different
summation order to encoding tokens one by one, which introduces small numeric errors. These errors
compound over consecutive layers, resulting in larger errors in the final hidden states.

This is important for AutoJudge, since Algorithm 1 runs sequential inference with θtarget and parallel
inference on θdraft, whereas inference-time speculative decoding does it the other way around:
sequential calculations of θdraft during the draft generation phase, then parallel forward pass with
θtarget during the verification phase. As a result, the classifier is trained on features that can be
significantly different from what they would be during inference. In contrast, running in full precision
(float32) does not have such problems.

26



10 20 30 40 50 60
Average Accepted Tokens

40%

45%

50%

55%

60%

65%

70%

75%

80%

Te
st

 A
cc

ur
ac

y

Spec. Decoding
Spec. Decoding GSM8K Accuracy
AutoJudge (FP32)
AutoJudge (BF16)

Figure 8: Accuracy on GSM8K and the number of accepted tokens per speculative decoding cycle in
float32 and bfloat16 precision. The setup is the same as in Section 4.1.

In Figure 8, we compare accuracy and acceptance rate trade-offs for different classifier thresholds
in the same setup as in Section 4.1. There are several ways to circumvent this problem. The most
practical one would be to recompute target model embeddings for Algorithm 1 in a parallel forward
pass and not using the draft model embeddings (since adding them has negligible effect on accuracy,
see Figure 7, right). As a result, the classifier would use θtarget embeddings computed in parallel
over draft tokens during both training and inference.

D Additional Evaluations

D.1 Additional Evaluations for Section 4.1

In Figure 9, we report accuracy and the number of accepted tokens for Llama-3.1-8B draft / Llama-
3.1-70B target and Llama-3.1-8B draft / Llama-3.1-70B target model pairs in GSM8K 8-shot setup.

10 15 20 25 30 35
Average Accepted Tokens

45%

55%

65%

75%

85%

95%

Te
st

 A
cc

ur
ac

y

Llama 3.1 70B Instruct 94.84%

Llama 3.2 1B Instruct 45.26%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

10 20 30 40 50 60
Average Accepted Tokens

85%

87%

89%

91%

93%

95%

Te
st

 A
cc

ur
ac

y

Llama 3.1 70B Instruct 94.84%

Llama 3.1 8B Instruct 85.97%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 9: Downstream accuracy and the average number of accepted tokens for GSM8K 8-shot with
Llama-3.1-70B-Instruct target and Llama-3.2-1B-Instruct draft models (left) and Llama-3.1-70B-
Instruct target and Llama-3.1-8B-Instruct draft models (right)

27



10 20 30 40 50 60
Avg. Accepted Tokens

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

G
SM

8K
 A

cc
ur

ac
y 

(te
st

 se
t)

AutoJudge, GSM8K Head
AutoJudge, LCB Head
Top-K (baseline)
Spec. Decoding
Spec. Decoding GSM8K Accuracy

10 20 30 40 50 60
Avg. Accepted Tokens

2%

6%

10%

14%

18%

LC
B

 P
as

s@
1 

(c
or

re
ct

ly
 so

lv
ed

 ra
te

) AutoJudge, LCB Head
AutoJudge, GSM8K Head
Top-K (baseline)
Spec. Decoding
Spec. Decoding LCB Accuracy

Figure 10: Downstream accuracy and the average number of accepted tokens for GSM8K (left) and
LiveCodeBench (right) with Llama-3.1-8B-Instruct target and Llama-3.2-1B-Instruct draft models.

10 20 30 40 50 60
Average Accepted Tokens

3%

5%

7%

9%

11%

13%

15%

17%

Pa
ss

@
1 

(c
or

re
ct

ly
 so

lv
ed

 ra
te

)

Llama 3.1 8B Instruct 16.81%

Llama 3.2 1B Instruct 3.07%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

20 30 40 50 60
Average Accepted Tokens

16%

18%

20%

22%

24%

26%

28%

30%

32%

34%
Pa

ss
@

1 
(c

or
re

ct
ly

 so
lv

ed
 ra

te
) Llama 3.1 70B Instruct 30.90%

Llama 3.1 8B Instruct 16.25%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 11: Downstream accuracy and the average number of accepted tokens for LiveCodeBench
with Llama-3.1-8B-Instruct target and Llama-3.2-1B-Instruct draft models (left) and Llama-3.1-70B-
Instruct target and Llama-3.1-8B-Instruct draft models (right)

D.2 Additional Evaluations for Sections 4.2

In this section, we provide additional classifier threshold evaluations for both model pairs in our
LiveCodeBench setup. These results are reported in Figure 11, with 1B draft / 8B target models on
the left and 8B draft / 70B target on the right. We use the same setup as in Section 4.2 and the portion
of the results at the top are exactly the same values that we reported in Figure 5.

Additionally, we evaluate the AutoJudge classifier trained on LiveCodeBench on GSM8K and
vice versa to gauge the effect of task-specific training. We repost results for Llama-3.2-1B draft /
Llama-3.1-8B target models pair in Figure 10. Predictably, these out-of-domain classifiers perform
significantly worse. We attribute this to the fact that the GSM8K-trained classifier likely did not see
any Python source code, whereas the LiveCodeBench classifier did not perform arithmetic operations
and did not solve equations that are common in GSM8K.

E vLLM Inference Implementation Details

To measure time efficiency of AutoJudge, we incorporate it into vLLM inference library. The integra-
tion is built upon vllm==0.8.5, torch==2.7.0 with CUDA 12.8 and transformers==4.51.3.

28



We use a window size of 32 and a batch size of 1. The implementation allows to perform batched
inference without modifications, but we choose to evaluate with batch size 1 for accurate measure-
ments. For efficiency, the current implementation predicts important tokens using only the hidden
state of the target model, as we have shown that adding hidden states of the draft model does not
substantially increase the accuracy. We run evaluations for the 1B/8B model pair and for the 8B/70B
pair on 1 and 4 NVIDIA A100-SXM4-80GB GPUs respectively and on 8 NVIDIA H100-SXM5
80GB GPUs for 8B/405B in FP8 precision in the tensor parallel setup.

F Additional Inference Benchmarks: Equal Window Size

In this section, we report additional runtime benchmarks that extend our evaluations from Section 4.3.
For these experiments, we use a fixed window size of 32 for both vanilla speculative decoding and
AutoJudge (as opposed to individually tuned window size in Section 4.3).

We report our results for GSM8K with 1B/8B model pair in Table 3, 8B/70B in Table 4 and 1B/70B
in Table 5. All three model pairs show significant speedups relative to standard speculative decoding.
Notably, our 8B/70B setup has up to 2.5x with about 2.5% loss in accuracy.

Table 3: Inference speed benchmarks on GSM8K for 1B draft / 8B target model on: (left) GSM8K
0-shot evaluation and (right) GSM8K 8-shot evaluation.

Llama 3.2 1B draft / 3.1 8B target (0-shot)

Threshold 0.04 0.09 0.12 0.16

Accuracy, % 83.9 82.0 80.2 77.4
Speed, tokens/s 89.1 106.8 121.0 146.2

Speculative Decoding: 84.5 tokens/s

Speedup(ours) 1.05 1.26 1.43 1.72

Llama 3.2 1B draft / 3.1 8B target (8-shot)

Threshold 0.050 0.087 0.098 0.133

Accuracy, % 85.7 85.1 84.5 83.1
Speed, tokens/s 66.5 74.3 76.3 83.3

Speculative Decoding: 62.4 tokens/s

Speedup(ours) 1.07 1.19 1.22 1.33

Table 4: Inference speed benchmarks on GSM8K for 8B draft / 70B target model on: (left) GSM8K
0-shot evaluation and (right) GSM8K 8-shot evaluation.

Llama 3.1 8B draft / 3.1 70B target (0-shot)

Threshold 0.005 0.031 0.145 0.230

Accuracy, % 92.0 91.9 89.9 88.0
Speed, tokens/s 41.8 80.6 107.4 109.5

Speculative Decoding: 40.6 tokens/s

Speedup(ours) 1.03 1.98 2.64 2.70

Llama 3.1 8B draft / 3.1 70B target (8-shot)

Threshold 0.03 0.05 0.18 0.28

Accuracy: Accuracy, % 95.4 94.8 92.9 90.4
Speed, tokens/s 64.4 71.1 79.3 86.2

Speculative Decoding: 40.5 tokens/s

Speedup(ours) 1.58 1.74 1.94 2.11

Table 5: Inference speed benchmarks on GSM8K 8-shot with vLLM implementation for 1B draft /
70B target models.

Llama 3.2 1B draft / 3.1 70B target (8-shot)

Threshold 0.01 0.03 0.05 0.11

Accuracy, % 95.1 95.3 94.6 92.3
Speed, tokens/s 50.1 65.6 75.5 79.9

Speculative Decoding: 45.7 tokens/s

Speedup(ours) 1.10 1.44 1.65 1.75

29



G Evaluation with Individually Tuned Window Sizes

As we discussed in Section 4.3, we tune the speculation window size individually for AutoJudge
and vanilla speculative decoding to provide a more competitive baseline. This is because traditional
speculative decoding accepts, on average, less tokens and does not benefit from having a larger draft
window size. Thus, the two algorithms often work best with different draft sizes.

In this section, we account for this by evaluating AutoJudge and speculative decoding with optimal
window sizes for every model pair. We consider window sizes between 6 and 64 with the following
values: [6, 8, 10, 12, 14, 16, 20, 24, 26, 28, 32, 40, 48, 54, 64] and choose the best window size in
terms of tokens per second. Note that this evaluation protocol suffers from the natural variance in
latency (e.g. due to varying individual clock rates) since we report the highest value measured.

The results for 1B/8B models pair are reported in Table 6. The results for 8B/70B pair are reported in
Table 7. Overall, AutoJudge decoding still significantly outperforms standard speculative decoding.

Table 6: (left) Inference speed benchmarks on GSM8K 0-shot with vLLM implementation for 1B
draft / 8B target models with tuned window size (Spec. Decoding = 8 tokens, AutoJudge = 10
tokens) and (right) for 1B draft / 8B target models on GSM8K 8-shot with tuned window size (Spec.
Decoding = 6 tokens, Autojudge = 10 tokens).

Llama 3.2 1B draft / 3.1 8B target (0-shot)

Threshold 0.06 0.12 0.15 0.16

Accuracy, % 83.1 80.2 79.8 77.4
Speed, tokens/s 149.2 169.2 171.2 173.9

Speculative Decoding: 147.7 tokens/s

Speedup(ours) 1.01 1.14 1.15 1.17

Llama 3.2 1B draft / 3.1 8B target (8-shot)

Threshold 0.050 0.098 0.133 0.164

Accuracy, % 85.7 84.5 83.1 81.2
Speed, tokens/s 114.4 125.0 132.1 139.3

Speculative Decoding: 116.8 tokens/s

Speedup(ours) 0.98 1.07 1.13 1.19

Table 7: (left) Inference speed benchmarks on GSM8K 0-shot with vLLM implementation for 8B
draft / 70B target models with tuned window size (Spec. Decoding = 8 tokens, Autojudge = 32
tokens) and (right) for 8B draft / 70B target models on GSM8K 8-shot with tuned window size (Spec.
Decoding = 8 tokens, Autojudge = 16 tokens).

Llama 3.1 8B draft / 3.1 70B target (0-shot)

Threshold 0.005 0.031 0.145 0.230

Accuracy, % 92.0 91.9 89.9 88.0
Speed, tokens/s 72.3 80.6 107.4 109.6

Speculative Decoding: 72.3 tokens/s

Speedup(ours) 1.0 1.11 1.49 1.52

Llama 3.1 8B draft / 3.1 70B target (8-shot)

Threshold 0.03 0.05 0.18 0.28

Accuracy, % 95.4 94.8 92.9 90.4
Speed, tokens/s 69.0 73.1 83.6 84.5

Speculative Decoding: 57.3 tokens/s

Speedup(ours) 1.20 1.27 1.45 1.47

H Offloading

As we presented in Section 4, AutoJudge can accept up to 40 tokens per verification cycle, which
makes it naturally well-suited for scenarios with a large draft window. In offloading setups, the
drafting step is significantly cheaper than verification, yet speculative decoding suffers from being able
to accept only a few tokens on average. AutoJudge avoids this limitation by accepting substantially
more tokens per verification cycle, leading to notable gains in offloading configurations.

As reported in Table 8, the accuracy drop with AutoJudge does not exceed 3% across thresholds,
while achieving throughput between 1.4 and 2.4 tokens/s, compared to 1.19 tokens/s for speculative

30



Table 8: Inference speed benchmarks on GSM8K 8-shot for 8B draft / 70B target models with
offloading on a single NVIDIA A100-SXM4 GPU with tuned window size (Spec. Decoding = 10
tokens, AutoJudge = 48 tokens).

Llama 3.1 8B draft / 3.1 70B target (8-shot)

Threshold 0.03 0.05 0.11 0.28

Accuracy, % 95.4 94.8 93.4 90.4
peed, tokens/s 1.4 1.6 1.9 2.4

Speculative Decoding: 1.19 tokens/s

Speedup(ours) 1.20 1.31 1.59 1.98

decoding. This corresponds to relative speedups of 1.2×–1.98×. It turns out that the optimal window
size for AutoJudge is 48 tokens, whereas for speculative decoding it is only 8.

I On the Instability of vLLM Inference for Accuracy Benchmarks

In Section 4, we evaluate AutoJudge decoding in terms of the number of accepted tokens per phase
and the real-world tokens per second. For convenience, we only use vLLM implementation to
evaluate the number of tokens per second and report all other metrics based on transformers / pytorch
implementation. This is because, in our preliminary experiments, we observed discrepancies between
benchmark accuracy with vLLM inference and PyTorch. Upon further investigation, we found that
vLLM inference sometimes produces inconsistent results. Namely, if we run vLLM greedy inference
in bfloat16 precision with speculative decoding, changing “technical” hyperparameters such as
window size can significantly affect the accuracy. To illustrate this, we measure GSM8K accuracy on
132 random test samples in the same setup as Section 4.3. We use standard vLLM implementation of
speculative decoding Leviathan et al. [2023] without any modifications to the vLLM codebase.

Table 9: Llama 3.2 1B draft / 3.1 70B target, 10% random test samples from GSM8K. Accuracy is
measured based on vLLM generations with varied window size.

Window Size Accuracy, %

8 93.9
10 93.9
12 93.9
14 93.9
16 95.4
20 95.4
24 94.6
26 94.6

The results in Table 9 illustrate the observed inconsistency: changing window size can affect the
accuracy to a significant degree. This coincides with concurrent observations about inconsistent
LLM inference from Yuan et al. [2025] and He and Lab [2025]. To make our measurements more
consistent, we report all accuracy and accepted token rates using a more stable implementation based
on Hugging Face Transformers (included in our repository), only using vLLM to measure the speed
in terms of tokens/second.

J EAGLE experiments

Following the invention of speculative decoding, several lines of work proposed follow-up algorithms
that incorporate trained speculation “heads”[Cai et al., 2024, Li et al., 2024d,c], tree decoding [Miao
et al., 2023, Chen et al., 2024, Svirschevski et al., 2024] and many other improvements. In this
section, we explore how AutoJudge generalizes to these more advanced decoding algorithms.

31



To that end, we integrate AutoJudge with the popular EAGLE-2 algorithm [Li et al., 2024c]. Unlike
the original speculative decoding, EAGLE-2 does not have a separate draft model, but trains a
lightweight “head” to predict future tokens from target model hidden states. This allows EAGLE to
draft tokens much faster, albeit less accurately than powerful standalone draft model.

We evaluate Llama 3.1 8B Instruct using the official pre-trained EAGLE heads∗. Since there is no
separate draft model, the classifier is trained we only use target model hidden states when training. Ad-
ditionally, since EAGLE draft model was not trained to produce long coherent drafts, we use a shorter
draft window size of 8. We integrate AutoJudge with the official EAGLE implementation and set
parameters that are compatible with the vLLM EAGLE implementation (depth=window_size-1).
Aside from that, we use the same evaluation protocol as in Section 4.1 for GSM8K.

In Figure 12, we report GSM8K accuracy and the average number of accepted tokens for AutoJudge
with the official PyTorch implementation∗ of EAGLE 2. We also report real-world inference speed
(tokens per second) using the vLLM implementation on a single A100-80GB GPU. The results
suggests that integrating AutoJudge with EAGLE can produce additional speedups on top of the
highly efficient speculative decoding algorithm.

2.5 3.0 3.5 4.0 4.5 5.0
Avg. Accepted Tokens

40%
50%
60%
70%
80%
90%

A
cc

ur
ac

y

AutoJudge
Baseline

Llama 3.1 8B Instruct + EAGLE head (0-shot)
Threshold 0.05 0.15 0.30 0.40

Accuracy, % 81.4 81.3 81.0 78.1
Speed, tokens/s 91.1 96.8 102.6 107.5

EAGLE: 89.8 tokens/s

Speedup(ours) 1.01 1.08 1.14 1.20

Figure 12: Evaluating AutoJudge with EAGLE-2 draft head on GSM8K using Llama 3.1 8B Instruct
model. (Left) Accuracy to accepted tokens in PyTorch, (right) vLLM inference speed on A100-80GB.

K Rule-Based Approaches Ablation

Table 10: Comparison between AutoJudge and simple rule-based heuristic focused on mathematical
tokens, GSM8K 0-shot, Llama 3.2 1B Instruct draft / 3.1 8B Instruct target.

Method Math Only Math & Top-1024 Math & Top-128
Heuristic criterion

Accuracy, % 65.05 72.27 80.36
Accepted Tokens 39.7 22.3 15.5

AutoJudge (nearest threshold)
Accuracy, % 57.8 75.6 81.0
Accepted Tokens 37.4 22.3 15.3

To explore how AutoJudge decoding compares to rule-based methods for mathematical reasoning,
we compare it against two heuristic alternatives. The first heuristic approach is to consider only
the mathematical symbol tokens as “important”. To that end, we filter the mismatching tokens that
contain numbers, operations (e.g., + - * / =, etc.), as well as some common variables. Mismatches
in these mathematical tokens are rejected, whereas mismatches in non-mathematical tokens are
allowed. As it turns out (Table 10), this algorithm misses important planning and logical steps that do
not contain computations explicitly, which results in poor accuracy. To address this, we introduce
a second, more complex heuristic approach that combines the mathematical rule with the Top-K
baseline we use in Section 4. This works somewhat better, but still does not outperform the learned
AutoJudge classifier.

∗https://huggingface.co/yuhuili/EAGLE-LLaMA3.1-Instruct-8B
∗https://github.com/SafeAILab/EAGLE/

32

https://huggingface.co/yuhuili/EAGLE-LLaMA3.1-Instruct-8B
https://github.com/SafeAILab/EAGLE/


L Open-Ended Generation with LLM-as-a-Judge

As we discuss earlier in Section 3.1, the choice of important tokens largely depends on what
counts as an “equivalent answer quality”. For mathematical reasoning, we can check whether the
alternative response leads to the same numerical answer (up to notation) or an equivalent formula.
For programming, we compare how the two programs behave in testing. However, not all LLM tasks
have formal quality criteria. Open-ended tasks like creative writing and question answering have
implicit quality criteria that are difficult to evaluate. In this section, we investigate how AutoJudge
generalizes to two open-ended problems: generative question answering and creative writing.

Case A: Question Answering. For this task, we evaluate Llama 3.x LLMs generative question
answering on questions from the TriviaQA dataset [Joshi et al., 2017]. We use the “closed book” setup,
where the LLM receives only the question itself as the prompt, without any additional information
(i.e. no search results). Then, we use a more powerful LLM-as-a-judge to compare responses against
target model outputs. We mine important tokens on 500 training samples and evaluate on a subset of
100 validation samples. Since this dataset was intended for short answers (typically 1 sentence), we
stop generation on \n or after generating 120 tokens.

Case B: Creative Writing. We use the “Creative Writing” subset of Arena-Hard-Auto-v2.0 [Li
et al., 2024b,a] that contains 250 creative writing tasks sourced from Chatbot Arena. These tasks
include requests to write a poem on a certain topic, an imaginary dialogue transcript, or similar, in
several languages. These tasks are even harder to judge than question answering, often boiling down
to personal preference. We set 100 queries aside for evaluations and use the rest to mine important
tokens, using the standard generation prompt from Arena-Hard-Auto-v2.

LLM-as-a-judge. We evaluate generations using a pairwise LLM-as-a-judge protocol inspired by
Arena-Hard-Auto-v2.0. Under this protocol, the LLM “judge” does not test model answers against a
pre-defined “correct” response, but compares two generations against each other. For our speculative
decoding setup, we ask the LLM judge to compare target model generation against the output of
speculative decoding with AutoJudge head. When comparing two generations, the LLM judge sees
both responses A and B and chooses one of 5 options:

1. Assistant A is significantly better: [[A>>B]]

2. Assistant A is slightly better: [[A>B]]

3. Tie, relatively the same: [[A=B]]

4. Assistant B is slightly better: [[B>A]]

5. Assistant B is significantly better: [[B>>A]

When evaluating on creative writing, we found that the default LLM judge often produces different
answers between consecutive runs, both with sampling and greedy decoding, likely due to numer-
ical instability [Yuan et al., 2025]). To make our results more reliable we switch to a stronger
claude-sonnet-4-20250514 judge model and run it 3 times with majority voting:

• If there are more votes [[A>>B]] & [[A>B]] than the opposite, then A is better.

• If there are more votes [[B>>A] & [[B>A]]) than the opposite, then B is better.

• If there are equal number of votes favoring A and B or all votes are [[A=B]], we declare A
and B are equivalent. Note that this rule does not differentiate between [[A>B]] and [[A>B]]
as we found them to be uninformative.

Mining important tokens. We mine important tokens using Algorithm 1 with one change: in L12
(if a ≡ â then . . . ), we ask the LLM judge to compare the alternative response ŷ (with the draft
token) against y. If the new response is rated strictly worse, we label the corresponding draft token
as important and roll back to the target token. Otherwise (better or equal), we keep the draft token
and label it unimportant, same as in the original algorithm. Note that the LLM judge compares not
against the original target model response (L4 Alg. 1), but against the current running response y that
contains unimportant draft tokens from previous iterations (L14). This change would have no effect
for tasks with formal a ≡ â criteria from math and programming benchmarks due to transitivity.
However, for LLM-as-a-judge, this results in more accurate labels and improves classifier accuracy.
We only use this for training, not evaluation.

33



10 15 20 25 30
Average Accepted Tokens

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

>=
 T

ar
ge

t r
at

e 
on

 T
riv

ia
Q

A
(v

al
 se

t) Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

8 10 12 14 16 18 20 22 24
Average Accepted Tokens

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

>=
 T

ar
ge

t r
at

e 
on

 C
re

at
iv

e 
W

rit
in

g(
va

l s
et

)

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 13: AutoJudge performance on open-ended generation with LLM-as-a-judge evaluation.
(Left) closed-book generative question answering on TriviaQA questions (Right) creative writing on
Arena-hard-Auto-v2.0 queries. Both use Llama-3.2-1B draft / Llama-3.1-8B target models (Instruct).
Creative writing was later found to have noisy labels (>70% mismatches judged non-equivalent).

Results. We report our evaluations on question answering and creative writing in Figure 13 left
and right, respectively. Similarly to Sections 4.1 and 4.2, we evaluate AutoJudge against the top-K
baseline in terms of i) the average number of accepted tokens for greedy decoding and ii) the rate
at which our outputs were equal or better than the target model. We use the same Claude Sonnet 4
judge and best of 3 voting as specified above. Note that the lossless decoding results are not exactly
at 0.5 quality because some response pairs were deemed equal, i.e. [[A=B]].

The results suggest that AutoJudge classifier outperforms traditional speculative decoding on question
answering, but not on creative writing. Upon closer inspection, we found that the creative writing
benchmark has a very high rate of important tokens — over 70% mismatching tokens result in
non-equivalent answers, much larger than all other problems. We attribute this anomaly to creative
writing being inherently subjective, resulting in noisy LLM judgements. With such high rate of
important tokens, there is little room for speed up with AutoJudge. To summarize, we found that
AutoJudge can be indeed be used for open-ended problems with the LLM-as-a-judge paradigm,
outperforming the baseline in some but not all cases.

M Trained Classifier Transfer Between Tasks

M.1 From GSM8K to MATH-hard Subset

To evaluate the task transfer capability of AutoJudge, we test whether a classifier trained on one
mathematical reasoning dataset can generalize to a different, more challenging dataset. For this
evaluation, we use the AutoJudge classifier trained on GSM8K 0-shot with the Llama-3.2-1B-Instruct
draft / Llama-3.1-8B-Instruct target model pair (from Section 4.1) and apply it to the MATH-hard
subset from the LLama Codebook ∗ based on the lm-evaluation-harness benchmark [Gao et al.,
2021]. The MATH-hard dataset contains significantly more challenging mathematical problems
compared to GSM8K, requiring more advanced mathematical reasoning. We follow the standard
evaluation protocol from the lm-evaluation-harness framework and report exact match accuracy as
the downstream metric.

The results are presented in Figure 14 (left). While AutoJudge can still accept more tokens than
standard speculative decoding, the accuracy-speed trade-offs are less favorable than the top-K baseline
across most operating points. This suggests that the patterns of important tokens learned from grade-
school math problems (GSM8K) might not transfer well to more advanced math reasoning tasks.

∗We reproduce the setup and get the problems from the official Meta evaluations repository.

34

https://github.com/meta-llama/llama-cookbook/tree/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval


M.2 From GSM8K to Long Context

To test AutoJudge on long-context tasks, we construct a synthetic long-context mathematical reasoning
benchmark based on GSM8K. For each test problem, we concatenate 250 randomly sampled GSM8K
questions (without their solutions) as context, followed by a single target question that the model
must solve. The resulting prompts contain approximately 8-10K tokens before applying the chat
template, significantly longer than the standard GSM8K setup.

We evaluate the Llama-3.2-1B-Instruct draft / Llama-3.1-8B-Instruct target model pair using the
AutoJudge classifier trained on hiddens mined described long context GSM problems. The results are
presented in Figure 14 (right). AutoJudge maintains its ability to accept more tokens than standard
speculative decoding in this long-context regime, achieving better accuracy while maintaining a
similar number of accepted tokens compared to the Top-K baseline.

These results demonstrate that AutoJudge classifiers trained on standard-length examples can general-
ize to significantly longer contexts, suggesting that the notion of “important tokens” for mathematical
reasoning remains consistent regardless of the input length.

20 30 40 50 60
Average Accepted Tokens

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Te
st

 A
cc

ur
ac

y

Llama 3.1 8B Instruct 25.00%

Llama 3.2 1B Instruct 10.49%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

10 20 30 40 50 60
Average Accepted Tokens

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Llama 3.1 8B Instruct 92.18%

Llama 3.2 1B Instruct 53.90%

Spec. Decoding
AutoJudge (ours)
Top-K (baseline)

Figure 14: (Left) Task transfer: accuracy vs. accepted tokens on MATH-hard using GSM8K-trained
classifier. (Right) Long-context performance: accuracy vs. accepted tokens on GSM8K with 8-10K
token prompts. Both use Llama-3.2-1B draft / Llama-3.1-8B target setup (Instruct).

N Manual Annotation

To compare our automated approach with the manual annotation procedure from Judge Decoding
(Bachmann et al. [2025]), we conduct an experiment following their methodology as closely as
possible. Unfortunately, the original paper does not provide public access to their annotated dataset or
source code, which limits direct comparison. Therefore, we recreate their data collection and training
procedure based on the methodology described in Section 4.1 of their paper.

Dataset construction. We curate a dataset of 167 high-quality questions from two sources: the
ARC-Challenge benchmark Clark et al. [2018] (25 questions) and the Alpaca dataset Taori et al.
[2023] (142 questions, split between 71 mathematical reasoning problems and 71 coding problems).
Since the exact question indices used in the original Judge Decoding work are not publicly available,
we manually selected challenging and diverse questions from each dataset that represent a range of
difficulty levels similar to those described in the original paper.

For each question, we generate responses using three different models from the Llama family:
Llama-3.2-1B-Instruct, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct. This produces 501 total
generated responses with varying quality levels, providing a diverse set of correct and incorrect
continuations for training.

35



10 20 30 40 50 60
Average Accepted Tokens

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

Llama 3.1 8B Instruct 83.47%

Llama 3.2 1B Instruct 43.36%

Spec. Decoding
AutoJudge on manual data
Top-K (baseline)

Figure 15: GSM8K 0-shot evaluation of Llama-3.2-1B draft / Llama-3.1-8B target model pair
comparing AutoJudge with manual annotation mining (following [Bachmann et al., 2025]) against
Top-K baseline.

Manual annotation. Following the procedure described in "Dataset Curation" in Section 4.1 of
[Bachmann et al., 2025], we manually annotate each generated response to identify the precise
location where errors occur. We encode all responses using the Llama-3.1-8B-Instruct model to
extract hidden state representations, then manually label each token as either correct or incorrect
based on whether accepting that token would lead to a wrong final answer. This annotation process
required approximately 8-10 hours of careful manual review by the authors.

Training and evaluation. Using these manually annotated hidden states, we train AutoJudge
classifier with the same architecture and hyperparameters described in Section 4.1 and Appendix B.
We then evaluate the resulting "manually-annotated" AutoJudge classifier on GSM8K 0-shot with the
Llama-3.2-1B-Instruct draft / Llama-3.1-8B-Instruct target setup, comparing against Top-K baseline.
The results are presented in Figure 15. We observe that the manually-annotated classifier performs
substantially worse than Top-K baseline and, consecutively, our automatically-mined approach. The
manually-annotated classifier achieves lower acceptance rates while exhibiting greater accuracy
degradation, suggesting that manual annotation is both less effective and more labor-intensive. We
attribute this gap to several factors: (1) human annotators may inconsistently label edge cases or
fail to account for how subsequent tokens interact, (2) the manual process is prone to errors over
hundreds of annotations, and (3) our automated search procedure (Algorithm 1) systematically tests
token combinations in a way that better reflects actual inference conditions. These results validate
that our automated mining procedure not only eliminates the substantial human effort required for
manual annotation (8-10 hours in our case), but also produces more robust training data that leads to
better classifier performance.

36



O Correlation between Draft Model and AutoJudge Classifier Probabilities

One reasonable heuristic for speculative decoding is to consider a token important if a model is certain
in its generation, measured in terms of that token’s probability. Here, we check whether the AutoJudge
classifier is similar to that heuristic. To that end, we measure the correlation between the Llama 3.2
1B Instruct draft model’s probability of the chosen draft token and the corresponding AutoJudge
classifier probability on the 1B/8B model pair using the GSM8K dataset (0-shot setting). The resulting
Pearson correlation varies within approximately ±0.3 per generation, and the full-sample covariance
is −0.073. This suggests that AutoJudge classifier does not act on that heuristic.

P Hardware Configurations

We run our experiments primarily on A100-SXM4 GPUs with 80GB DRAM on servers with dual
Epyc 7742 CPU and 1TiB RAM. For 8B/405B model pair we used 8 NVIDIA H100-SXM5 80GB
GPUs.

For model pairs that do not fit on a single GPU, we use distributed inference with naive model
parallelism (device_map=“auto”) when using transformers and tensor parallelism for vLLM
experiments.

The actual time per experiment varies by the dataset and model pair: 1B draft / 8B target model pair
takes, on average, 65.6 seconds to process a GSM8K example, whereas the 8B draft / 70B target
takes up an average of 706.4 seconds per sample. On LiveCodeBench, the same 8B draft / 70B
target model takes up 449 seconds per sample. Since Algorithm 1 can run independently for each
sample, we were able to run our code on low-priority preemptible hardware. However, this also
makes it hard to measure the exact amount of computations used in our experiments since some of
them were lost due to preemption. For running on a single A100/H100 server, please refer to the time
per sample above to estimate the total runtime requirements. Please also note that there are ways to
mine important tokens more efficiently using APIs (below).

Q Power consumption

To estimate the energy consumption of AutoJudge, vanilla speculative decoding, and sequential
decoding, we run each inference method on a 10% sample of the GSM8K test set using vLLM.
We measure real-world power usage on Llama 3.2 1B draft / 3.1 8B target models with a single
A100-SXM4-80GB GPU (Watts) as reported by nvidia-smi, and multiply it by the mean inference
time. This represents the GPU-reported power consumption, before adjusting for PSU inefficiency
(equally for AutoJudge and baselines) and will vary between GPU types. For convenience, we convert
all results to kJ, similar to Maliakel et al. [2025].

Table 11: Estimated energy consumption of running inference on 10% of GSM8K test set.

Method Autoregressive Speculative Decoding AutoJudge
Power Usage (kJ) 87 43 37

R Scaling Up Algorithm 1 with API Calls

We would also like to mention that it is possible to scale up the important token discovery in
AutoJudge by reframing it in terms of API calls. Note that the search algorithm only ever runs regular
generation (greedy or sampling) with the target model and runs parallel forward pass on θdraft.

Hence, we can run Algorithm 1 by replacing GENERATE(...) on lines 4 and 10 with a call to an
LLM generation API with the specified input. With this reframing, we can mine important tokens by
querying LLM API providers even if they cannot inference the large target model locally. This can
help in a number of use cases: for instance, when developing a speculative decoding algorithm for
use with offloading [Svirschevski et al., 2024, Miao et al., 2023].

37



Additionally, modern open-source inference libraries for LLMs often expose an an OpenAI-
compatible API. This way, one can run the important token mining algorithm efficiently over a
pool of LLM inference servers, taking advantage of server-side batching and optimized kernels.

Note, however, that this regime requires tokenizing and detokenizing the target model’s messages
received from API calls, since most public services operate on non-tokenized text strings. Since there
are several ways to spell the same text with a given BPE merge table, this can sometimes lead to
unintentional “token healing”.

In our repository, we provide a variant of the important token mining algorithm that leverages the
Together Inference API to run the target model. This enables training the AutoJudge classifier even on
models that cannot be hosted locally. As a demonstration, we conducted an experiment using Llama
3.1-405B-Instruct (accessed via API) as the target model and Llama 3.1-8B-Instruct as the mining
model. The experiment required ≈ $800 in API credits. This example illustrates that Algorithm 1 is
applicable to models available exclusively through an API. Results obtained for this model pair are
presented in Table 2 (left).

S Dataset and Model Licenses

In this section, we summarize our use of licensed models and datasets.

• The GSM8K benchmark [Cobbe et al., 2021] is licensed under the MIT License;
• The LiveCodeBench benchmark [Jain et al., 2024] is licensed under the MIT License;
• Llama 3.1 and 3.2 models Dubey et al. [2024] are under the Llama Community License Agreement.

Our work would also be impossible without open-source software including (but not limited to)
PyTorch [Paszke et al., 2019], Hugging Face Transformers [Wolf et al., 2019], vLLM [Kwon et al.,
2023] and hundreds of other open-source packages in the Python data science & machine learning
ecosystem. Enumerating and acknowledging all these individual packages would take up several
pages, but they can be recovered automatically from our repository.

38


	Introduction
	Background
	Method Overview
	Mining Important Tokens
	Classifier Training
	Inference

	Experiments
	Mathematical Reasoning with GSM8K
	Programming with LiveCodeBench
	Inference Benchmarks with vLLM

	Conclusion
	Additional Considerations for Section 3.1
	Additional Details on Classifier Training
	Precision Matters for Speculative Decoding
	Additional Evaluations
	Additional Evaluations for Section 4.1
	Additional Evaluations for Sections 4.2

	vLLM Inference Implementation Details
	Additional Inference Benchmarks: Equal Window Size
	Evaluation with Individually Tuned Window Sizes
	Offloading
	On the Instability of vLLM Inference for Accuracy Benchmarks
	EAGLE experiments
	Rule-Based Approaches Ablation
	Open-Ended Generation with LLM-as-a-Judge
	Trained Classifier Transfer Between Tasks
	From GSM8K to MATH-hard Subset
	From GSM8K to Long Context

	Manual Annotation
	Correlation between Draft Model and AutoJudge Classifier Probabilities
	Hardware Configurations
	Power consumption
	Scaling Up Algorithm 1 with API Calls
	Dataset and Model Licenses

