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ABSTRACT Person search is the task to localize a query person in gallery datasets of scene images. Existing
methods have been mainly developed to handle a single target dataset only, however diverse datasets are
continuously given in practical applications of person search. In such cases, they suffer from the catastrophic
knowledge forgetting in the old datasets when trained on new datasets. In this paper, we first introduce a novel
problem of lifelong person search (LPS) where the model is incrementally trained on the new datasets while
preserving the knowledge learned in the old datasets. We propose an end-to-end LPS framework that facilitates
the knowledge distillation to enforce the consistency learning between the old and new models by utilizing
the prototype features of the foreground persons as well as the hard background proposals in the old domains.
Moreover, we also devise the rehearsal-based instance matching to further improve the discrimination ability
in the old domains by using the unlabeled person instances additionally. Experimental results demonstrate that
the proposed method achieves significantly superior performance of both the detection and re-identification
to preserve the knowledge learned in the old domains compared with the existing methods.

INDEX TERMS Person search, person re-identification, lifelong learning, continual learning.

I. INTRODUCTION
Person search is the technique to find the query person from the
gallery sets of scene images where multiple persons usually
appear simultaneously in each image. It has been drawing
much attention due to its practical applicability to various
real-world scenarios such as large-scale video understanding,
surveillance, and augmented reality. Different from the person
re-identification (re-ID) [1], [2], [3], [4], [5] that finds the
query person from the sets of cropped person images, the
person search is a more challenging task that first localizes
the bounding boxes of person instances in the scene images
and then matches the identities of the detected instances to
the query person. The person search can be implemented
in the two-step manner by using separately trained two
sub-networks of the object detection and re-ID. However,
the training of the two-step methods is usually inefficient
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requiring huge computational complexity, since the detection
network extracts the bounding boxes for the person instances
from the scene images which are then inputted to the re-ID
network to retrieve the features again tailored to the re-ID task.
To overcome this issue, the end-to-end learning was

introduced that jointly trains the person detection and
re-ID networks. The end-to-end methods have been mainly
developed in the supervised learning manner based on the
assumption that both of the training and test data come
from a same target dataset [6], [7], [8], [9], [10], [12].
However, in many practical real-world applications, multiple
datasets are generated in different places and times that exhibit
domain gaps from one another. In such cases, the existing
supervised methods trained on a certain dataset usually fail to
work on other datasets. Furthermore, re-training the network,
whenever the target datasets are changed, suffers from the
high computational complexity as well as the catastrophic
forgetting [13] of the knowledge learned from the previously
trained datasets.
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FIGURE 1. The concept of the proposed lifelong person search. New
datasets on different domains are given in order. The model is
incrementally trained on new domains without entire re-training on all the
datasets while preserving the knowledge of old domains.

In this paper, we first introduce a new problem of lifelong
person search (LPS) where the new datasets on different
domains are assumed to be sequentially given in order,
as shown in Fig. 1. The model is forced to be generalized to all
domains while preserving the previously learned knowledge
without entire re-training using all the datasets. The end-to-
end LPS is more challenging compared to the lifelong object
detection [14], [15] and lifelong person re-ID [16], [17],
[18], [19], since it suffers from the catastrophic forgetting
problem in both sub-tasks of the person detection and re-ID.
Whereas the lifelong person detection is a domain-incremental
task where only the same class of person is localized across
different domains, the lifelong person re-ID is related to both
domain-incremental and class-incremental tasks since the new
person identities are additionally given from different domains.
Moreover, the end-to-end person search also suffers from the
task conflict problem where the person detection focuses on
extracting the common representation of persons distinct from
the backgrounds, but the person re-ID attempts to extract the
unique representations according to the person identities. This
task conflict problem becomes more serious in LPS scenario
where the model is encouraged to be continuously adapted to
different domains. In addition, the lifelong re-ID methods [16],
[17], [18], [19] have been usually developed for full-body
pedestrian images on similar domains. However, as shown
in Fig. 1, the LPS considers the scene images with severely
different characteristics across multiple domains, for example,
diverse backgrounds, different scales and densities of persons,
and even local body parts due to partial occlusion.
To address the LPS problem, we propose a novel

end-to-end framework that generalizes the network to be
incrementally adapted to the new domains while preserving the
previously learned knowledge in the old domains. Specifically,
we perform the knowledge distillation for both sub-tasks
of the person detection and re-ID using the old exemplar
data. We first use the prototypes, representative features

of person identities, associated with the old exemplar data,
to design the rehearsal-based re-ID knowledge distillation
loss that enforces the consistency on the distributions of the
feature similarity between the old and new models. Moreover,
we also utilize the hard background proposals additionally to
refine the re-ID knowledge distillation loss that alleviate the
effect of inaccurately detected person proposals and extract
discriminative features for re-ID more reliably. In addition,
we devise the rehearsal-based instancematching loss to further
improve the model’s discrimination ability. We minimize the
feature discrepancy between the labeled proposals in the old
exemplar data and its ground truth old prototypes. We also
employ the unlabeled person identities in the old domains
as negative samples to preserve the knowledge effectively.
Experimental results demonstrate that the proposed method
preserves the knowledge of old datasets more faithfully
compared with the existing methods, and therefore serves
as a very promising tool for LPS.
The main contributions of this paper are summarized as

follows.
• To the best of our knowledge, we first introduce a new
and challenging problem of person search with lifelong
learning scenario where the model is incrementally
trained on the new domains while preserving the
previously learned knowledge in the old domains.

• We propose an end-to-end LPS framework that jointly
trains the detection and re-ID networks by using the
rehearsal-based knowledge distillation loss and the
instance matching loss, that alleviate the catastrophic
forgetting of the old knowledge during the training on
the new domains.

• We demonstrate the efficiency of the proposed method by
providing comprehensive experimental results compared
with the existing methods based on the lifelong learning
scenario.

II. RELATED WORKS
A. PERSON SEARCH
Person search has been studied mainly in the supervised
manner where the bounding boxes of person instances and the
person identities are labeled in the training datasets. The two-
step methods train the person detection and re-ID networks
separately to prevent the conflict problem between the two
tasks. Zheng et al. [20] conducted extensive experiments by
training the state-of-the-art methods of the pedestrian detection
and person re-ID. They also provided a benchmark PRW
dataset. Chen et al. [21] proposed a segmentation masking
scheme to force the re-ID network to focus on the foreground
regions of the detected persons. Lan et al. [22] extracted
multi-scale features to deal with the scale variation problem
of person size in the scene images. Wang et al. [23] made
the re-ID network more adapted to the detection results by
composing the training set with the person images cropped
by the pre-trained detection network and the person images
cropped by using the bounding box labels. Ke et al. [24]
performed a data augmentation scheme that shifts the locations
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of the ground truth bounding boxes for the re-ID network
training.
The end-to-end methods jointly train the person detection

and re-ID networks. Xiao et al. [25] firstly proposed an end-
to-end person search network and provided a benchmark
CUHK-SYSU dataset. Chen et al. [26] employed the back-
ground features as negative samples to train the re-ID network.
Chen et al. [6] separated the feature embedding into the norm
and angle which are used as a detection confidence score and
an identity feature, respectively. Zhang et al. [27] pretrained
an external re-ID network which is then used as a strong
teacher model to supervise the re-ID network based on the
knowledge distillation framework. Li andMiao [28] employed
an additional Faster R-CNN header sequentially to extract
the superior identity features from the high-quality person
proposals. Han et al. [9] adaptively controlled the gradient
backpropagation to train the sub-networks of the re-ID and
part classification according to the quality of detection results.
Lee et al. [10] suggested a feature standardization scheme and
a localization aware memory updating scheme to alleviate the
effect of class imbalance and inaccurately detected proposals,
respectively. The transformer architectures [11] were also
employed to improve the performance of person search [12],
[29], [30], [31]. Recently, Oh et al. [32] assumed the training
data of real target domains are not available, and proposed a
domain generalizable person search method that uses only an
unreal dataset for training.
On the other hand, the weakly-supervised person search

has been introduced that uses the labeled bounding boxes
only without using the identity labels for training [33],
[34], [35], [36]. Moreover, domain-adaptation methods have
been proposed to address the unsupervised person search
problem where both of the bounding box and identity
labels are not available [37], [38]. Note that the existing
methods of person search have been usually developed
considering a single target dataset only, and hence suffer
from the catastrophic forgetting problem where new target
datasets are continuously given in the lifelong learning
scenario.

B. LIFELONG OBJECT DETECTION
Lifelong object detection methods are classified into the
class-incremental approach and the domain-incremental
approach. The class-incremental object detection considers
a certain target dataset where the new object classes are
incrementally added. Shmelkov et al. [14] first introduced
the problem of catastrophic forgetting in the object detection.
Adaptive distillation has been performed between the
intermediate features and the output of the region proposal
network based on the end-to-end framework [15], [39].
Shieh et al. [40] stored a subset of old data into the
exemplar memory to alleviate the catastrophic forgetting in
old classes. Liu et al. [41] focused on the most informative
old knowledge by sampling the most reliable foreground
prediction from the old model, which are then used as pseudo
labels in a transformer based detection network, DETR [42].

Dong et al. [43] performed self-supervised learning with the
DETR network where only a few labeled new object classes
appear in the new data. On the other hand, object detection
datasets are associated with different domains according to
the variations of background, lighting, and camera viewpoint,
even though they contain the same object classes. The
domain-incremental object detection assumes incrementally
added new domains with the same object class. Li et al. [44]
used a transformer-based feature extractor to adaptively apply
the classification head network to each newly added domain.
Mirza et al. [45] stored the statistical changes across the
domains used to perform the task on the corresponding specific
domain.

C. LIFELONG PERSON RE-ID
Wu and Gong [16] first introduced the lifelong person re-ID
problem and performed coherence learning for classification,
distribution, and representation, respectively. Pu et al. [17]
adaptively accumulated the knowledge of old domains via the
instance-based similarity to improve the generalization ability.
Ge et al. [18] developed a domain adaptation framework
that reduces the gap between the old and new domains by
using the augmented new data following the distributions
of the old domains. Sun and Mu [46] selected diverse and
important patches from images by using a differentiable
patch sampler to preserve both the local and global relational
knowledge. Huang et al. [19] developed a relation consistency
learning to encourage the new model to return the consistent
results of similarity ranking to that of the old model.
Pu et al. [47] constructed meta reconciliation normalization
layers that adaptively rectify domain-independent batch norm
statistics. Yu et al. [48] proposed a knowledge transfer
scheme via bi-directional learning that dynamically updates
the old model while training the new model. Pu et al. [49]
performed adaptive knowledge accumulation using graph
convolution networks to maintain the domain knowledge
and performed ranking consistency distillation that preserves
the inter-instance ranking relationship. Xu et al. [50] used a
pair-wise relation matrix to filter out the erroneous knowledge
of the old model and transfer the refined knowledge to the new
model. Xu et al. [51] generated the prototypes of old domains
by modeling the instance features into multivariate gaussian
distribution.
Note that the lifelong person re-ID methods work on

cropped person images only where relatively large numbers
of instances with a same identity are given in each mini-batch.
Therefore, they cannot be directly applied to LPS where the
detection and re-ID tasks are systematically interconnected
during concurrent learning. We propose an end-to-end LPS
framework to alleviate the knowledge forgetting in both tasks
where a mini-batch is composed of a scene image and the
number of identities is usually restricted due to memory
constraint. Moreover, the proposedmethod can deal with many
unlabeled instances that appear in scene images, whereas the
person re-ID methods cannot. In addition, we first utilize
the features of inaccurate background proposals provided
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FIGURE 2. Overall framework of the proposed method.

by the detector to make the model robust to the inaccurate
detection results causes by knowledge forgetting.

III. PROPOSED METHOD
Fig. 2 shows the overall architecture of the proposed end-to-
end LPS framework. We use the SeqNet [28] as a baseline
network which consists of the Faster R-CNN [52] and the
NAE (norm-aware embedding) [6] header. Let us assume that
a sequence of person search datasets in different domains are
given in order, as D1 → D2 → . . . → DN . The model is
trained by using the first dataset D1. When the new dataset
D2 is given, we regard the model trained on D1 as the old
model, and construct a newmodel by replicating the old model.
Then the new model is trained by using D2 and a small subset
of D1, called exemplar data, to avoid the knowledge forgetting
of D1. We also use the representative features of person
identities, called prototypes [53], stored in the old look-up
table (LUT) T . Whenever a new dataset DN is available,
the old model is replaced with the new model, and the new
model is re-trained by using the new data DN as well as
both the old exemplar data and the old prototypes selected
from {D1, · · · ,DN−1} to mitigate the catastrophic forgetting.
We use a small subset of the old data following the typical
rehearsal (replay) based methodology of lifelong learning [16],
[18], [40], [53]. However, it is worth to note that we do not
employ multiple old models but always have a single old
model which is updated whenever a new dataset is given. The
old model conveys the knowledge of the previous domains
and thus the parameters of the old model are frozen during
the training of the new model. We preserve the knowledge of
the old data while training the model using the new data via
knowledge distillation between the old and new models.

A. RE-ID KNOWLEDGE DISTILLATION
1) PROTOTYPE-BASED DISTILLATION
Existing methods of lifelong person re-ID [16], [18] perform
the knowledge distillation by matching the distributions of the

feature similarity between the old and new models within
a mini-batch. However, it may not provide faithful results
when applied to LPS, since a mini-batch is composed of
relatively small numbers of scene images, and small numbers
of identities accordingly, due to the memory constraints.
Furthermore, multiple person instances with the same identity
are rarely included in a single mini-batch according to the
uniqueness prior [34].
To address this issue for LPS, we utilize the stored

prototypes of person identities as informative guidance for
the re-ID knowledge distillation. The prototype is computed
by aggregating the features of diverse person instances with
the same identity [6], [12], [25], [28]. Let F denotes the set
of the foreground proposals in the exemplar data of a single
mini-batch, that is detected by the Faster R-CNN of the new
model. Let xoldi and xnewi be the L2-normalized features of the
i-th proposal in F , that are extracted through the NAE headers
of the old and new models, respectively. We estimate the target
distribution of the feature similarity of xoldi compared to all
the prototypes in T , such that the probability qi,k associated
with xoldi and zk , the k-th prototype in T , is given by

qi,k =
exp

(
zTk x

old
i /τd

)∑
z∈T exp

(
zTxoldi /τd

) . (1)

We also estimate the predicted distribution of the feature
similarity of xnewi compared to all the prototypes, such that
the probability pi,k associated with xnewi and zk is given by

pi,k =
exp

(
zTk x

new
i /τd

)∑
z∈T exp

(
zTxnewi /τd

) . (2)

Note that the predicted similarity distribution with respect
to the prototypes in the old domains changes when the
model is trained on the new domain, which could cause
the forgetting of the re-ID knowledge learned on the old
domains. Therefore, we train the newmodel to generate a more
consistent distribution to the target distribution by employing
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FIGURE 3. Sampling of the hard background proposals detected from the exemplar data.

a prototype-based re-ID knowledge distillation loss given by

Lrkd =
1

|F |

1
|T |

∑
i∈I (F )

∑
k∈I (T )

qi,k log
qi,k
pi,k

, (3)

where I (·) means the index set. By minimizing Lrkd, the new
model is trained to yield a more consistent distribution to the
target distribution with respect to the prototypes in the old
domains, and eventually extracts unique and representative
features of all person identities alleviating the catastrophic
forgetting in re-ID.

2) HARD BACKGROUND PROPOSAL-BASED DISTILLATION
Though the prototypes in the old LUT serve as a good prior
for the re-ID knowledge distillation, we further improve
the performance by using the background proposals in
the old domains additionally. At each iteration, the new
model detects the background proposals from the scene
images in the exemplar data, as depicted in the red boxes
in Fig. 3. Inaccurate background proposals are often generated
that partially overlap with the foreground person instances.
We refer them as the hard background proposals. The hard
background proposals convey the partial information of the
person identities, exploited to improve the discrimination
performance of the person identities.
Specifically, we sample the hard background proposals

that have the higher intersection over union (IoU) scores
than a certain threshold λb, with respect to the ground truth
bounding boxes of the foreground persons, as depicted in
the blue boxes in Fig. 3. Then we store the re-ID features of
the hard background proposals into the feature memoryM.
We re-compute the distributions of the feature similarity
compared to all the prototypes in T as well as all the
features of the hard background proposals inM, such that the
probabilities q+

i,k and p
+

i,k associated with zk , the k-th element
in T ∪M, are given by

q+

i,k =
exp

(
zTk x

old
i /τd

)∑
z∈{T ∪M}

exp
(
zTxoldi /τd

) , (4)

p+

i,k =
exp

(
zTk x

new
i /τd

)∑
z∈{T ∪M}

exp
(
zTxnewi /τd

) . (5)

Accordingly, we have the refined re-ID knowledge
distillation loss as

L+

rkd =
1

|F |

1
|T ∪M|

∑
i∈I (F )

∑
k∈I (T ∪M)

q+

i,k log
q+

i,k

p+

i,k

. (6)

Consequently, we improve the discrimination performance
of the person identities by exploiting more rich information
carried by the hard background proposals. Furthermore, the
features learned by additionally using the hard background
proposals are more robust against the inaccurately detected
person proposals, which alleviates the task conflict problem
between the detection and re-ID even when the detection
knowledge in the old domains is forgotten.

B. REHEARSAL-BASED INSTANCE MATCHING
The foreground and background proposals extracted from the
exemplar data are used for consistent learning between the
old and new models via the re-ID knowledge distillation.
Note that, as depicted in the green boxes in Fig. 3, some
foreground person instances have no identity labels. Such
unlabeled instances can also serve as the negative samples for
all the labeled identities to learn the discriminative feature
representations. At the same time, the new model should
be guided to minimize the feature discrepancy across the
person instances in the exemplar data that have the same
identity. Therefore, we also utilize the unlabeled instances
in the exemplar data to further capture the re-ID knowledge
in the old domains while the model is trained on the new data.
The features of the unlabeled proposals are stored in the

old circular queue Q. Let FL denote the set of the labeled
proposals in F , and let xnewi be the feature of the i-th proposal
inFL extracted by the new model. We compute the probability
that xnewi is classified into its ground truth label as

ρi =
exp

(
z(i)Txnewi /τr

)∑
z∈T exp

(
zTxnewi /τr

)
+

∑
y∈Q exp

(
yTxnewi /τr

) ,

(7)

where z(i) means the prototype of the ground truth identity
of the i-th proposal in FL , and y denotes the feature of the
unlabeled proposals stored in Q. We train the new model
to increase the classification score of the extracted features
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TABLE 1. Statistics of person search datasets.

by employing the rehearsal-based instance matching loss
given by

Lrim = −
1

|FL |
∑

i∈I (FL )
log ρi. (8)

By minimizing Lrim, we reduce the feature discrepancy
between the labeled proposal and its ground truth identity
while preserving the discrimination performance in the old
domains with the help of the unlabeled proposals. It is worth to
note that the conventional OIM [25] loss considers the labeled
identities and the unlabeled instances in a single target domain
only. On the contrary, the proposed rehearsal-based loss Lrim
employs the labeled identities and the unlabeled instances
across the old data, aiming to preserve the discrimination
performance in the old domains for lifelong learning purpose.

C. TRAINING AND INFERENCE
At the training phase, both of the person detection and re-ID
networks are trained in the end-to-end manner. Note that
the baseline network of SeqNet [28] also uses the losses of
Ldet and Loim when training the new model by using the
new dataset. To preserve the knowledge of the old domains
in terms of the person detection, we additionally use the
detection knowledge distillation loss Ldkd of the existing
lifelong object detection method [15]. Finally, the total loss
function is given by

Ltotal = Ldkd + L+

rkd + Lrim + Ldet + Loim. (9)

The overall training procedures of the proposed method are
described in Algorithm 1.
After the new model is trained with the last dataset DN ,

we discard the old model and only utilize the new model to
detect the bounding boxes of the person instances and extract
the re-ID features for all the datasets {D1,D2 . . .DN } at the
inference phase.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
1) DATASETS
We used the three datasets to evaluate the performance of the
proposed lifelong person search method. CUHK-SYSU [25]
and PRW [20] are widely used for the person search task.
The CUHK-SYSU dataset includes the images obtained from
the street snapshots and movies, with the annotations of the
bounding boxes and person identities. We set the gallery

Algorithm 1 Lifelong Learning Process
1: Input:Model, sequence of datasets {D1,D2, . . . ,DN }

2: Train model using dataset D1
3: Initialize old model with the model trained on D1
4: Store subset of data from D1 into exemplar memory
5: Store prototype(zk ) from D1 into T
6: for each new dataset Dt where t = 2, . . . ,N do
7: Replicate old model to create new model
8: Freeze parameters of old model
9: for epochs do
10: for iterations do
11: Load exemplar data and new data
12: Calculate Eq.9 with newmodel and old model
13: Update parameters of new model
14: end for
15: end for
16: Replace old model with new model
17: Store subset of data from Dt into exemplar memory
18: Store zk from Dt into T
19: end for
20: Output: New model

size to 100. The PRW dataset is composed of the video
frames capturing a university campus by six different cameras.
We also use a recently released large-scale person search
dataset of MovieNet-PS [54] gathered from the 385 movie
sequences. The MovieNet-PS is a challenging dataset since
it includes the scene images with diverse backgrounds,
illuminations, and poses of persons to reflect more realistic
and challenging scenarios of person search. Moreover, there
are many persons partially appearing due to the occlusion,
and the person instances with the same identity often wear
different clothes. The statistics of the three datasets are shown
in Table 1.

2) EVALUATION METRICS
We evaluated the performance of the person detection and
re-ID, respectively, based on the LPS framework. We used the
recall and the average precision (AP) to measure the detection
performance. The recall calculates the percentage of the true
positive bounding boxes where the IoU scores with respect
to any ground truth bounding box are higher than 0.5. The
AP computes the average precision of the bounding boxes by
measuring the area under the Precision-Recall curve using the
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TABLE 2. Performance of the lifelong learning evaluated on the three person search datasets with the training order of CUHK-SYSU → PRW → MovieNet-PS.
The performance on each dataset is measured by using the model after the training with the last dataset is over. * means that we use the ground-truth
bounding boxes for person detection. The best scores are boldfaced.

IoU scores with respect to the ground truth. We also used the
mean Average Precision (mAP) and the Top-k scores for the
re-ID. The mAP calculates the averaged precision of searching
a query from the gallery images. It measures the area under the
Precision-Recall curve using the feature similarities between
the query and all the detected gallery persons. The detected
bounding boxes that overlap with the ground-truth with the
IoU scores higher than 0.5 are set as the true positives. The
Top-k score checks whether at least one of the k-most similar
candidates is a true positive or not. We adopted the Top-1 score
in this work.

3) IMPLEMENTATION DETAILS
We uniformly sampled 2% of the training data from the
old datasets to construct the exemplar data, as did in many
literatures of lifelong person re-ID [16], [18], [48]. We store
the prototypes of the persons in the exemplar data only into
the old LUT, which are not updated during the training on the
new domain. For the model training, we set the batch size
for the exemplar data to 2 for each old domain and 5 for
the new domain, respectively. We resized the input image
to 1500 × 900 and applied the random horizontal flipping.
We set the size of the old circular queueQ as 1000. We trained
the model until it reaches the highest performance on the
first domain, and trained the model for 5 epochs each on the
other domains. Since our baseline setting achieves the best
performance when the model is trained during 5 epochs for
each new dataset, we also trained the model for 5 epochs on
the new dataset for fair comparison to the baseline setting.
The initial learning rate is set to 0.003, which is warmed
up with a learning rate scheduler and further decayed by
the value of 0.1 in the 3rd epoch of each new domain.

FIGURE 4. Performance in terms of the old knowledge forgetting in LPS
evaluated on the old datasets of CUHK-SYSU (blue) and PRW (red), when
the model is sequentially trained on each new dataset in the x-axis. The
performance of the FineTune method and the proposed method are shown
with the solid and dashed lines, respectively.

For the stochastic gradient descent, we set the momentum
value to 0.9 and the weight decay to 0.0005. λb, τd , and τr
are empirically set to 0.1, 0.3 and 0.1, respectively. All our
experiments were implemented using PyTorch and a single
NVIDIA TITAN X GPU.

B. LIFELONG LEARNING PERFORMANCE
We evaluate the lifelong learning performance of the proposed
method with the training order of CUHK-SYSU → PRW →

MovieNet-PS and MovieNet-PS → CUHK-SYSU → PRW
in Table 2 and Table 3, respectively. We first compare two
different methods: Joint-Train and FineTune, implemented
on our baseline network. The Joint-Train method trains the
model by using all the available datasets simultaneously. The
FineTune method trains the model on each dataset in order,
where the model is initialized with the previously trained
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TABLE 3. Performance of the lifelong learning evaluated on the three person search datasets with the training order of MovieNet-PS → CUHK-SYSU → PRW.
The performance on each dataset is measured by using the model after the training with the last dataset is over. * means that we use the ground-truth
bounding boxes for person detection. The best scores are boldfaced.

FIGURE 5. Performance of the proposed method with two different
training orders. Order1: CUHK-SYSU → MovieNet-PS → PRW. Order2: PRW
→ CUHK-SYSU →MovieNet-PS.

weights and then re-trained by using the new dataset. At the
inference phase, the performance is evaluated on every dataset
by using the model trained on the last dataset.
The Joint-Train method achieves the best performance

since it uses all the training datasets at once, however,
it requires a huge burden of the computation as well as the
storage space. We observe that the proposed method provides
comparable results to the Joint-Train method and outperforms
the FineTune method in terms of the averaged mAP and
Top-1 score, respectively. Note that the FineTune method
sequentially re-trains the model on each dataset without using
the previous old datasets, and thus its performance on the
last dataset, MovieNet-PS in Table 2 and PRW in Table 3,
is relatively high. On the contrary, the proposed method uses
a small subset of the old data to alleviate the knowledge
forgetting and slightly degrades the performance on the last
dataset compared to the FineTune method. However, the
proposed method significantly outperforms the FineTune

method in the old datasets of CUHK-SYSU and PRW
in Table 2, and MovieNet-PS and CUHK-SYSU in Table 3.
In addition, to verify the effect of the detection performance
on the person re-ID, we measured the upper bound re-ID
performance by using the ground-truth bounding boxes for the
person detection during the inference phase, denoted as Det*
and Proposed*. As shown in Tables 2 and 3, the averaged
re-ID performance of Proposed* increases over that of the
proposed method with the perfect results of detection.

Fig. 4 shows the performance evaluated on the old datasets
of CUHK-SYSU (blue) and PRW (red), when the model is
sequentially trained on the new datasets in the x-axis, in order.
As shown by the dashed lines, both the AP and mAP scores
are decreased in the FineTune method showing the knowledge
forgetting effect of both the detection and re-ID tasks in the
LPS scenario. However, the proposed method significantly
mitigates such performance degradation as shown by the solid
lines, and successfully preserves the old knowledge for LPS.
In addition, we show the performance of the proposed

LPS method when the model is trained with different orders
of the datasets. In Fig. 5, Order1 and Order2 represent the
training orders of ‘CUHK-SYSU → MovieNet-PS → PRW’
and ‘PRW → CUHK-SYSU → MovieNet-PS,’ respectively.
In both orders, we see that the proposed method still
outperforms the FineTune methods in terms of the detection
and re-ID performances, which indicates that the proposed
method provides reliable performance regardless of the
training orders.

C. COMPARISON WITH TWO-STEP METHODS
Note that we first introduce the new problem of LPS in this
paper, and there is no existing method fairly comparable
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FIGURE 6. Qualitative comparison of the Top-1 results in the training order of CUHK-SYSU → PRW → MovieNet-PS. From top to bottom, we show the
results evaluated on the test images in CUHK-SYSU, PRW, and MovieNet-PS, respectively. The query, true positive, and false positive are depicted by the
blue, green, and red boxes, respectively.

to the proposed method. We attempted to conduct the
additional comparative experiments by using the recent
lifelong re-ID methods of AKA [17], LSTKC [50], DKP [51],
PTKP [18] and KRKC [48]. The lifelong re-ID methods
work on the cropped person images only and cannot be
directly applied to our LPS framework that considers the
scene images. We instead implemented the two-step person
search framework by using the existing lifelong person
re-ID methods, where the detection and re-ID networks
are trained separately. We used the ResNet-50 as the
backbone network for the compared methods. We also trained
the detection network by using the detection knowledge
distillation loss Ldkd for fair comparison.

Table 2 and Table 3 compare the quantitative performance
of lifelong learning. In both Tables, we see that the proposed
method achieves better performance than the two-step
methods of ‘Det + AKA,’ ‘Det + LSTKC,’ ‘Det + DKP,’
‘Det + PTKP,’ and ‘Det + KRKC’ in terms of the averaged
re-ID performance. It means that whereas the two-step
implementation of LPS by using the existing lifelong re-ID
methods does not effectively reflect huge domain gaps
among the person search datasets with severely different
characteristics. On the other hand, the proposed end-to-end
method uses prototypes as well as unlabeled instances to train
the model more reliably and hence alleviate such domain
gaps and being more generalizable to diverse person search
datasets. In Table 3, we see that ‘Det* + KRKC’ shows the
best performance in the last dataset of PRW, however, it suffers
from the catastrophic forgetting due to a large domain gap and
degrades the performance on the first dataset of MovieNet-PS.
We also compared the upper-bound performance of the

person re-ID, Det* and Proposed*. Note that all the methods

yield the perfect performance of detection in terms of the recall
and AP, but the proposed method achieves better performance
of re-ID compared with all of the two-step methods in Table 2
and most of the two-step methods in Table 3.
Fig. 6 visualizes the qualitative results of the proposed

method and the two-step methods. We observe that both of
PTKP [18] and KRKC [48] fail to find the query persons
correctly in the challenging cases, for example, with the
occluded persons and/or relatively small bounding boxes in
the scene images. However, the proposed method successfully
matches the query persons even in such cases, demonstrating
the robustness to diverse LPS scenarios.
It is worth to note that the two-step person search

framework trains the backbone network when training the
detection and re-ID networks, respectively, and hence requires
high computational complexity and huge memory space.
In contrary, the proposed end-to-end method shares the
backbone network between the jointly trained detection
and re-ID networks, and is a more promising tool for LPS
considering practical real-world applications.

D. ABLATION STUDY
1) LOSSES
In Table 4, we first evaluate the effect of the three losses,
the detection knowledge distillation loss Ldkd, the re-ID
knowledge distillation loss L+

rkd, and the rehearsal-based
instance matching loss Lrim, respectively. Note that detaching
all the losses is the same as the FineTune method since the
proposed losses are designed to work only when the old data
are available. We see that adding each loss improves the
performance, respectively. Specifically, when we use Ldkd,
the detection performance is largely increased from that
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TABLE 4. Effect of the losses used in the proposed method. The performance on each dataset is measured by using the model after the training with the last
dataset is over. The best scores are boldfaced.

TABLE 5. Performance comparison when using the transformer based
method of COAT [12] as the backbone network.

TABLE 6. Effect of using the prototype features in the old LUT for re-ID
knowledge distillation.

of the FineTune method on the old datasets, and the re-ID
performance is also increased accordingly. On the other hand,
L+

rkd and Lrim slightly increase the detection performance of
using Ldkd, but significantly improve the re-ID performance
on the old datasets of CUHK-SYSU and PRW by huge
margins, demonstrating the effectiveness to preserve the re-ID
knowledge in the old domains.

2) BASELINE NETWORK
It is worth to note that the proposed method can be applied
to any baseline network of person search. We conducted the
additional experiment by implementing the proposed method
on the transformer based architecture of COAT [12]. Table 5
shows the results where we see that the proposed method
significantly improves the performance compared to that of
the FineTune method.

3) OLD PROTOTYPE-BASED KNOWLEDGE DISTILLATION
Table 6 shows the effect of using the old prototype features
for re-ID knowledge distillation. The conventional method,
Intra-batch, estimates the distributions of the feature similarity
with respect to all the detected proposals within a mini-
batch. On the other hand, the proposed method matches the
distributions of the feature similarity by using the prototype
features of all identities stored in the old LUT, and thus
provides better results than the Intra-batch scheme.

4) EXEMPLAR DATA SAMPLING
Table 7 shows the results of using different sampling
schemes to compose the exemplar data from the old datasets.

TABLE 7. Effect of the exemplar data sampling schemes.

TABLE 8. Effect of the old data sampling ratio.

‘Max BBox’ samples the images that have the top 2% largest
numbers of ground truth bounding boxes. ‘Max ID’ samples
the images that have the top 2% largest numbers of person
instances with identity labels. ‘Random’ samples 2% images
randomly from the old datasets. We see that different sampling
schemes provide similar performances to one another, and
selected the uniform sampling that yields a slightly better
performance of the old knowledge preservation compared to
the other ones.
Table 8 shows the performance variation according to the

exemplar memory size by changing the old data sampling
ratio, where we select 2% of the sampling ratio in this work.

E. LIMITATION
The proposed method stores 2% of the old data into
the exemplar memory the typical rehearsal (replay) based
methodology of lifelong learning [16], [18], [40], [53].
Therefore, the size of the exemplar memory increases as
we have more and more datasets. As a future research
topic, we will investigate other methodologies of lifelong
learning that address the limitation of using the exemplar
memory. In addition, the generalized knowledge obtained by
multi-modal learning such as [55] and [56] may improve the
performance of person search.

V. CONCLUSION
In this paper, we proposed a novel LPS framework where
the model needs to be incrementally trained on the new
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datasets while preserving the knowledge of the old datasets.
We implemented the knowledge distillation between the old
and new models based on the rehearsal methodology by
using the representative prototype features of the labeled
foreground persons as well as the hard background proposals
in the old exemplar data. We also designed the rehearsal-based
instance matching loss to improve the discrimination ability
by using the unlabeled person instances in addition to the
prototype features. Experimental results evaluated on three
datasets of person search showed that the proposed method
achieves significantly better performance of lifelong learning
compared with the existingmethods, and successfully prevents
the knowledge forgetting in the old domains. We expect
this pioneering work would encourage further research for
practical LPS applications, such as autonomous vehicles and
robot navigation where new environments with various people
are continuously encountered.
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