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ABSTRACT

Miscalibration in deep learning refers to the confidence of the model does not
match the performance. This problem usually arises due to the overfitting issue in
deep learning models, resulting in overly confident predictions during testing. Ex-
isting methods typically prevent overfitting and mitigate miscalibration by adding
a maximum-entropy regularizer to the objective function. The objective of these
method can be understood as seeking a model that not only fits the ground-truth
labels by increasing the confidence but also maximizes the entropy of predicted
probabilities by decreasing the confidence. However, previous methods cannot
provide clear guidance on when to increase the confidence (known knowns) or
decrease the confidence (known unknowns), leading to the two conflicting opti-
mization objectives (increasing but also decreasing confidence). In this work, we
propose a simple yet effective method called dynamic regularization calibration
(DRC), to address this trade-off by exploring outlier samples within the training
set, resulting in a reliable model that can admit it knows somethings and does
not know others. DRC effectively fits the labels for in-distribution samples while
applying regularization to potential outliers dynamically, thereby obtaining robust
calibrated model. Both theoretical and empirical analyses demonstrate the superi-
ority of DRC compared with previous methods.

1 INTRODUCTION

Deep neural networks have achieved remarkable progress on various tasks (LeCun et al., 2015).
However, current deep learning classification models often suffer from poor calibration, i.e., their
confidence scores fail to accurately reflect the accuracy of the classifier, especially exhibiting ex-
cessive overconfidence (Guo et al., 2017). This leads to challenges when deploying them to safety-
critical downstream applications like autonomous driving (Bojarski et al., 2016) or medical diagno-
sis (Esteva et al., 2017), since the decisions cannot be trusted even with high confidence. Calibrating
the confidence of deep classifiers is crucial for the successful deployment of deep neural networks.

Various regularization-based methods are proposed to calibrate the deep classifiers. Specifically,
existing empirical evidences reveal that weight decay and label smoothing can improve calibration
performance (Guo et al., 2017; Müller et al., 2019). Moreover, most previous methods directly mod-
ify the objective function by implicitly or explicitly adding a maximum-entropy regularizer during
training, such as penalizing confidence (Pereyra et al., 2017), focal loss (Mukhoti et al., 2020; Wang
et al., 2021; Ghosh et al., 2022; Tao et al., 2023), and logit normalization (Wei et al., 2022). The
underlying objective of these methods can be intuitively understood as minimizing the classification
loss by increasing confidence corresponding to the ground-truth label, while simultaneously maxi-
mizing the predictive entropy of the predicted probability by reducing confidence. In short, previous
methods strive to adjust the confidence while accurately classifying to avoid miscalibration.

However, existing methods lack clear guidance on how to adjust confidence, which may lead to
unreliable prediction when training in practical scenarios where the training set contains both easy
samples and challenging samples (e.g., outliers). On the one hand, existing methods attempt to apply
regularization to prevent the model from overly confident, which may lead to lower confidence even
for easy samples that should be classified accurately with high confidence. On the other hand, they
still strive to reduce the classification loss by increasing the confidence corresponding to the ground-
truth label to fit their labels, which could lead to higher confidence for challenging samples that are
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Figure 1: The motivation of the DRC. Previous regularization-based methods aim for accurate
classification while maximizing predictive entropy, resulting in conflicting optimization goals of si-
multaneously increasing and decreasing confidence. To address this issue, DRC dynamically applies
regularization to avoid these conflicting optimization objectives, assigning higher confidence to sim-
ple samples and lower confidence to challenging samples.

difficult to classify accurately. Therefore, when the training set contains both easy and challenging
samples, the potential limitations of existing methods are exposed. Unfortunately, such scenarios
are prevalent, arising from various reasons such as differences in inherent sample difficulty (Seedat
et al., 2022; Lorena et al., 2019; Vasudevan et al., 2022; Toneva et al., 2018), data augmentation
(Yun et al., 2019; Cubuk et al., 2020) or the existence of multiple subgroups in the data (Yao et al.,
2022; Han et al., 2022; Yang et al., 2023).

In summary, the lack of clear supervision on how to adjust confidence may lead to three significant
problems of existing methods: (1) They may overly regularize the predictions of model, resulting
in higher predicted entropy even for easy samples, potentially leading to an under-confident model
(Wang et al., 2021); (2) They enforce the model to over-confidently classify all training samples,
even though that may be potentially unclassifiable outliers; (3) Striving for accurate classification
on the training samples while simultaneously maximizing prediction entropy represents opposing
goals, making it difficult in balancing between the two objectives.

To this end, as shown in Fig. 1, we propose a simple method (DRC) to solve the above three problems
by implicitly constructing a probability of whether a sample should be known to the model and then
impose dynamic regularization to different samples. Specifically, we avoid imposing regularization
to increase predicted entropy for easy samples, which prevents undermining model confidence for
easy samples (known knows - known what can be confidently classified). Meanwhile, DRC prevents
deep learning models from miscalibration by increasing the predicted entropy on potential outlier
samples (known unknowns - known what can not be classified confidently). In this way, DRC can
elegantly balance the two opposing goals of accurately classifying training samples and maximizing
the entropy of predicted probabilities. By actively distinguishing known and unknown samples,
DRC can achieve more robust calibration. Both theoretical and experimental results demonstrate the
effectiveness of DRC. The contributions of this paper are as follows:

• We propose a simple yet effective method that improves previous regularization-based calibration
approaches by informing the model what it should and should not know, avoiding problems caused
by the lack of explicit confidence guidance in previous works.

• We provide theoretical analysis that proves the superiority of DRC in achieving lower calibration
error compared to previous regularization-based methods.

• We conduct extensive experiments on various settings and datasets. The experimental results,
with DRC achieving the best performance (87 times out of 108 experiments), strongly suggest
DRC outperforms previous approaches in calibration.

2 RELATED WORK

Confidence calibration. A well-calibrated classifier can be approached through two main methods:
post-hoc calibration and regularization-based calibration. In post-hoc calibration, after the classifier
is trained, its predicted confidence is adjusted by training extra parameters on a validation set to
improve calibration without modifying the original model (Guo et al., 2017; Yu et al., 2022). An
example is temperature scaling (Guo et al., 2017), where a temperature parameter is trained on
the validation set to scale the predicted probability distribution. On the other hand, regularization-
based calibration avoids classifier miscalibration by incorporating regularization techniques during

2



Under review as a conference paper at ICLR 2024

the training of deep neural networks. This includes strategies such as training with strong weight
decay (Guo et al., 2017), label smoothing (Müller et al., 2019), penalizing confidence (Pereyra et al.,
2017), focusing on under-confident samples (Mukhoti et al., 2020; Ghosh et al., 2022; Wang et al.,
2021; Tao et al., 2023), and constraining the norm of logits (Wei et al., 2022; 2023).

Uncertainty estimation. The primary goal of uncertainty estimation is to obtain the reliability of
the model. Traditional uncertainty estimation methods utilize ensemble learning (Lakshminarayanan
et al., 2017; Liu et al., 2019) and Bayesian neural networks (Neal, 2012; MacKay, 1992; Denker &
LeCun, 1990; Kendall & Gal, 2017) to obtain the distribution of predictions, from which uncertainty
can be estimated using the variance or entropy of the distribution. Recently, several regularization-
based uncertainty estimation methods have been proposed. These methods typically obtain un-
certainty by applying regularization to neural networks using either additional out-of-distribution
dataset (Malinin & Gales, 2018) or training set samples (Sensoy et al., 2018).

Out-of-distribution (OOD) detection. OOD detection aims to distinguish potential OOD samples
to avoid unreliable predictions. One of the primary approaches is to modify the loss function, thereby
constraining the model to effectively identify potential OOD samples. Specifically, existing methods
usually impose constraints on the model, such as having a uniform prediction distribution (Lee et al.,
2018; Hendrycks et al., 2018; Choi et al., 2023) or higher energy (Katz-Samuels et al., 2022; Liu
et al., 2020; Du et al., 2021; Chen et al., 2021), particularly on the additional outlier training set.

Comparison with existing works. The core principle shared by regularization-based approaches
in above topics is to impose regularization on neural networks during training to prevent overfit-
ting. These methods can be roughly categorized into two types: (1) training without outlier data
– These methods aim to simultaneously achieve accurate classification and regularize the model to
maximize prediction entropy on the training data. However, as shown in the introduction, there is
an underlying trade-off between achieving high accuracy and high entropy, making it challenging
to balance these two objectives. (2) training utilizing additional outlier data – Methods along this
line leverage external outlier datasets to regularize the model. The prohibitively large sample space
of outliers requires additional sample selection strategies to obtain outliers that can effectively reg-
ularize the behavior of the model (Ming et al., 2022). However, the artificially designed sample
selection strategies may introduce biases into the distribution of outlier samples, resulting in a fail-
ure to characterize the true distribution of OOD data encountered at test time. Besides, how to utilize
outlier samples to improve calibration is still an open problem. In contrast to the aforementioned
methods, DRC explores and leverages information from naturally occurring outlier samples within
the training set that have a high probability of being similar to ones encountered at test time. In this
way, DRC eliminates the need for additional external outlier datasets and the corresponding sample
selection strategies, while avoiding the trade-off between model performance and regularization.

3 DYNAMIC REGURLARIZATION CALIBRATION

Notations. Let X and Y = {1, 2, · · · ,K} be the input and label space respectively, where K
denotes the number of classes. The training dataset D = {xi, yi}ni=1 consists of n samples indepen-
dently drawn from a training distribution P over X × Y . The label y can also be represented as a
one-hot vector y = [y1, · · · , yK ], where yk = 1(k = y) and 1(·) is the indicator function. The goal
of the classification task is to train a model fθ : X → ∆K parameterized with θ ∈ Θ, where ∆K

denotes the classification probability space. This model can produce a predictive probability vector
fθ(x) = [f1θ(x), · · · , fKθ (x)] for input x. The predicted label and the corresponding confidence
score can be obtained with ŷ := argmax fθ(x) and P̂(x) := max fθ(x), respectively. Moreover,
P̂(x) is generally considered as the estimated probability that ŷ is the correct label for x.

Confidence calibration. A model is considered perfectly calibrated (Guo et al., 2017) when the
estimated probability or confidence score P̂(x) precisely matches the probability of the model clas-
sifying x correctly, i.e., P(ŷ = y | P̂(x) = p) = p for all p ∈ [0, 1]. For instance, for samples
that obtain an estimated confidence of 0.8, a perfectly calibrated neural network should have an
accuracy of 80%. However, recent empirical observations have revealed that widely used deep neu-
ral networks often exhibit overconfidence due to overfitting on the training data (Guo et al., 2017;
Mukhoti et al., 2020). The objective of confidence calibration is to obtain a model whose predicted
confidence scores can accurately reflect the predictive accuracy of the model.
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3.1 REGULARIZATION IN NEURAL NETWORKS FOR CALIBRATION

This paper focuses on applying regularization to prevent overfitting, thus alleviating overconfidence.
Existing regularization-based methods typically incorporate implicit or explicit regularization on the
model by modifying the objective function. We first present two representative methods (more meth-
ods detailed in the appendix (Sec. A)) and then show that they share similar goals and limitations.

Label smoothing is a regularization technique that involves training the neural network with soft-
ened target labels ỹ = [ỹ1, · · · , ỹK ] to improve the reliability of confidence (Müller et al., 2019),
where ỹk = (1 − ϵ)yk + ϵ/K and 0 < ϵ < 1 controls the strength of smoothing. When using
cross-entropy loss, the label smoothing loss can be decomposed as follows:

Lce(fθ(x), ỹ) = (1− ϵ)Lce(fθ(x),y) + ϵLce(fθ(x),pu), (1)

where Lce denotes the cross-entropy loss and pu = [1/K, · · · , 1/K] is a uniform distribution.

Focal loss and other related calibration methods implicitly regularize the deep neural network by
increasing the weight of samples with larger losses. This prevents the model from overfitting due to
excessive attention to simple samples (Mukhoti et al., 2020; Ghosh et al., 2022; Tao et al., 2023).
The classical focal loss is defined as Lf (fθ(x),y) = −(1 − fyθ (x))

γ log fyθ (x), where γ is a
hyperparameter that controls the reweighting strength, allowing higher weight to be assigned to
samples with lower confidence in the correct label. A general form of focal loss can be formulated
as an upper bound of the regularized cross-entropy loss (Mukhoti et al., 2020),

Lf (fθ(x),y) ≥ Lce(fθ(x),y)− γH(fθ(x)), (2)

where H(fθ(x)) represents the entropy of the predicted distribution.

It can be seen from Eq. 1 and Eq. 2 that the objective of regularization-based calibration algorithms
involves minimizing the classification loss while maximizing the predictive entropy. Specifically,
the first objective typically represents a common classification loss (e.g., cross-entropy loss) that
minimizes the discrepancy between fθ(x) and y. The second objective serves as the regularization
term, which prevents overconfidence of the deep neural network by encouraging lower confidence.
For instance, in Eq. 1, the second term aims to push the predicted distribution closer to the uniform
distribution, while in Eq. 2, it aims to maximize the entropy of the predicted distribution.

However, the above objectives faces a conflict, i.e., minimizing the classification loss by increasing
the confidence corresponding to the ground-truth label and maximizing the entropy of the predictive
probability by decreasing the confidence. To increase and decrease confidence are two opposite
goals and striking the appropriate balance between them is difficult, leading to potential problems.
For example, the model obtained with weak-regularization may classify all samples with high confi-
dence, leading to overconfident especially on the challenging samples. Besides, strong regularization
try to reduce confidence even on the easy samples, which may lead to an underconfident model es-
pecially on the easy samples, even harming the overall model performance (Wang et al., 2021). The
key reason for these problems with previous methods is that they apply the same regularization to
all samples without considering the inherent difficulty in correctly classifying each training sample.

3.2 DYNAMIC REGULARIZATION CALIBRATION

In this section, we propose to leverage the inherent outliers in the training set to provide clearer
guidance on how the model should adjust its predictive confidence on each sample. Intuitively, we
recognize that strong regularization is not required for easy samples, which should be classified
correctly with higher confidence. Conversely, for outlier samples in the training set, which are
challenging to correctly classify, a lower confidence score should be assigned. This motivates us to
calibrate confidence while accounting for the existence of outliers.

To this end, we assume the training set drawn from distribution P follows Huber’s η-contamination
model (Huber, 1992), i.e.,

P = (1− η)Pin + ηPout, (3)
where Pin and Pout represent the in-distribution and arbitrary outlier distribution respectively.
0 < η < 1

2 represents the fraction of the outlier data. In practical scenarios, it is common that
training data contains a mixture of simple in-distribution samples and challenging outlier samples.
These simple in-distribution samples are more likely to be classified correctly, while some difficult
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samples may not be classified correctly owing to the lack of crucial features or inherent ambiguity
and indistinguishability (Seedat et al., 2022; Lorena et al., 2019). Empirical studies have also shown
that even widely used datasets like ImageNet, CIFAR10, and CIFAR100 contain many easily clas-
sifiable samples as well as outlier samples that pose challenges for classification (Vasudevan et al.,
2022; Toneva et al., 2018). Besides, the data augmentation methods, a widely-used component in the
training of deep neural network, create novel samples by perturbing the training data, potentially in-
troducing outlier samples (Yun et al., 2019; Cubuk et al., 2020). Considering the existence of outlier
samples in the training data, we expect the model to be robust calibrated not only on in-distribution
Pin, but also on outlier distribution Pout.

Unlike previous methods that regularize all samples indiscriminately, we impose dynamic regular-
ization on the samples by considering the existence of outlier samples to provide explicit confidence
supervision. Specifically, we first introduce the probability that a training sample x belongs to the
in-distribution Px∼Pin or outlier distribution Px∼Pout , where Px∼Pout + Px∼Pin = 1. Then we
formally define the following dynamic regurlarization calibration loss LDRC:

LDRC(fθ(x),y) = Px∼PinLin(fθ(x),y) + Px∼PoutLout(fθ(x),y), (4)
where Lin represents the in-distribution data loss, and in practice we can directly utilize the cross-
entropy loss or square loss. Lout is the loss function corresponding to outliers, serving as a regular-
izer to make the model having lower confidence on outlier samples. Eq. 4 has an intuitive motivation
that model should admit some samples are within its ability and should be classified accurately, while
others are outside its ability. Specifically, for samples with a high probability of being in-distribution
data, we should minimize its classification loss to increase the confidence. Conversely, for samples
with a high probability of belonging to the outlier distribution, we should regularize its predic-
tion confidence to avoid making overconfident decisions. By applying the dynamic regularization,
we can achieve confident predictions on in-distribution samples, while avoiding overconfidence on
challenging outlier samples.

However directly estimating the probability Px∼Pin
and Px∼Pout

presented in Eq. 4 is intractable
since which distribution the training example is from is unknown. Therefore, we first present a
simplified implementation of Eq. 4 and then show that this simplified version implicitly estimates
Px∼Pin

and Px∼Pout
to achieve the same effect as the original objective when consider the whole

training process. Specifically, in practice, given B training examples during each training step, the
simplified dynamic regurlarization calibration loss can be formulated as follows:

L̃DRC(fθ(xi),yi) = δiLce(fθ(xi),yi) + (1− δi)βLkl(fθ(xi),pu). (5)
δi can be seen as whether the sample is in-distribution data and it is set to 0 if cross-entropy loss of
xi ranks in the top-ηB in a batch of B samples, otherwise it is set to 1 , where η is outlier fraction
hyperparameter when the outlier proportion is unknown. Lce(fθ(xi),yi) is the cross-entropy loss
serving as loss function of potential in-distribution data. Lkl(fθ(xi),pu) denotes the KL-divergence
between fθ(xi) and pu, serving as a regularizer to prevent overfitting on the potential outlier sam-
ples. β is a hyperparameter to tune the strength of the KL-divergence. Eq. 5 simplifies the concept
presented in Eq. 4 by performing non-parametric binary classification to avoid directly estimating
the intractable Px∼Pin and Px∼Pout . But when considering the whole training process, Px∼Pin and
Px∼Pout can be implicitly estimated and Eq. 5 can have the similar objective to Eq. 4. Specifically,
if sample xi is sampled S times during the whole training process, and at the s-th sampling xi is
categorized as an outlier (δsi = 0) or in-distribution data (δsi = 1). Then after S times samplings,
the whole objective for xi can be written as∑S

s=1
[δsiLce(fθ(xi),yi) + (1− δsi )βLkl(fθ(xi),yi)]. (6)

Then Px∼Pin and Px∼Pout are implicitly estimated as
∑S

s=1 δ
s
i /S and 1−

∑S
s=1 δ

s
i /S respectively.

The whole pseudocode of the DRC is shown in Alg. 1.

4 EXPERIMENTS

We conduct extensive experiments on multiple datasets with outliers to answer the following ques-
tions. Q1 Effectiveness: Does DRC outperform other methods in terms of accuracy? Q2 Reliability:
Can DRC obtain a more reliable model? Q3 Robustness: How does DRC perform on outlier data?
Q4 Ablation study: How would the performance be if outlier samples are not exploited? Q5 Hyper-
parameter analysis: How do the hyperparameters in DRC affect model performance?
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Algorithm 1: The training pseudocode of DRC.
Input: Training dataset D, outlier fraction η and hyperparameter β;
Output: The trained neural network fθ.
for each iteration do

Sample B training samples {xi,yi}i∈B from the training set D with a random index set B;
Compute the corresponding cross-entropy loss Lce(fθ(xi),yi) of each sample;
Sort the losses and set δi for each sample according to the sorting result;
Compute the loss L̃DRC(fθ(xi),yi) according to Eq. 5 for each sample;
Update θ by one step to minimize Ei∈B[L̃DRC(fθ(xi),yi)] with some gradient method.

4.1 EXPERIMENTAL SETUP

We briefly describe the experimental setup including the used experimental datasets, evaluation met-
rics, experimental settings and comparison methods. Details can be found in the appendix (Sec. B).

Datasets. We conduct extensive experiments on multiple datasets with potential outliers, includ-
ing CIFAR-8-2, CIFAR-80-20 (Krizhevsky et al., 2009), Food101 (Bossard et al., 2014),
Camelyon17 (Bandi et al., 2018; Koh et al., 2021), and ImageNetBG (Xiao et al., 2020).
To evaluate model performance when datasets contain a certain fraction of outlier samples, the
CIFAR-8-2 and CIFAR-80-20 datasets are constructed from CIFAR10 and CIFAR100 re-
spectively. Specifically, we randomly select 8 classes from CIFAR10 (80 for CIFAR100) as in-
distribution samples, while the remaining samples are randomly relabeled as one of the selected
classes to serve as outliers. Food101 is a widely used classification dataset. Due to the imperfect
data collection, the training set contains outlier samples, while the samples in the test set are all man-
ually reviewed to ensure that they are all in-distribution data. Camelyon17 is a pathological image
classification dataset consisting of multiple subgroups, which may contain challenging outlier data
that cannot be accurately classified. ImageNetBG is a subset of ImageNet, which is used to eval-
uate the dependence of classifiers on the background of images. Its test set has both in-distribution
data and challenging outliers with different predefined changes in the background of images.

Evaluation metrics. Following the standard metrics used in previous works (Moon et al., 2020;
Corbière et al., 2019), we evaluate the performance from three perspectives: (1) the accuracy (ACC)
on the test set; (2) ordinal ranking based confidence evaluation, including area under the risk cover-
age curve (AURC), excess-AURC (EAURC) (Geifman et al., 2018), false positive rate when the true
positive rate is 95% (FPR95%TPR), and area under precision-recall curve with incorrectly classified
examples as the positive class (AUPRErr) (Corbière et al., 2019); (3) calibration-based confidence
evaluation, including expected calibration error (ECE) (Guo et al., 2017), the Brier score (Brier)
(Brier, 1950) and negative log likelihood (NLL). For datasets where the test set consists of a mixture
of ID and outlier samples, we show both the performance on all test samples and the performance on
only outlier samples. For the CIFAR-8-2 and CIFAR-80-20 datasets, since the labels of the outlier
samples are set randomly, we only report the calibration-based confidence evaluation metrics.

Experimental settings. We perform experiments under two different settings of weak augmentation
and strong augmentation to validate the effectiveness of DRC. In this way, we can fully explore
how outlier samples introduced by different augmentation techniques affect the calibration methods.
Specifically, under the weak augmentation setting, same as standard setup of deep neural network
training (He et al., 2016; Zagoruyko & Komodakis, 2016), we employ basic augmentation methods
such as random cropping and image flipping. Under the strong augmentation setting, we use more
aggressive methods, including random augmentation (Cubuk et al., 2020) and cutout (DeVries &
Taylor, 2017). For all methods, under the exactly same setting, we tune hyperparameters based on
the accuracy of validation set and run over three times to report the means and standard deviations.

Comparison methods. We conduct comparative experiments with multiple baseline methods, in-
cluding empirical risk minimization (ERM), penalizing confidence (PC) (Pereyra et al., 2017), label
smoothing (LS) (Müller et al., 2019), focal loss (FL) (Mukhoti et al., 2020), sample dependent focal
loss (FLSD) (Mukhoti et al., 2020), inverse focal loss (IFL) (Wang et al., 2021), dual focal loss (Tao
et al., 2023). Besides we conduct ablation study by removing outliers with high probability (RO)
during training. Details of the comparison methods are in the appendix (Sec. B.4).
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Table 1: The main experimental results (reported as percentages (%)) under the weak augmenta-
tion setting. The best and second-best results are in bold and underline, respectively. For datasets
containing both ID and outlier test samples, we report the results on the full test set and the outlier
subset. We mark whether the test samples are from the full set, ID subset, or outlier subset (Out.).

Method
CIFAR-8-2 ImageNetBG Food101

(Full) (Out.) (Full) (ID)
ACC EAURC ECE ECE ACC EAURC ECE ACC EAURC ECE

ERM 77.86 1.84 14.17 55.69 85.79 1.23 4.79 84.99 1.62 4.82
PC 77.36 2.67 18.06 70.60 85.57 1.33 8.62 85.29 1.63 8.12
LS 77.93 5.01 8.37 36.33 86.62 1.34 10.01 85.04 2.21 10.49
FLSD 76.79 2.96 11.63 57.10 85.36 1.43 6.30 85.00 1.75 3.54
FL 77.26 2.37 16.31 67.07 85.67 1.29 1.50 85.37 1.68 1.32
IFL 78.30 1.02 5.64 14.01 85.47 1.26 6.67 86.50 1.52 7.64
DFL 77.14 2.35 16.00 65.82 85.66 1.42 1.62 85.50 1.63 0.80
RO 77.57 6.83 18.52 74.56 85.95 2.73 8.88 85.42 2.72 6.24
DRC 78.39 0.90 3.82 10.24 86.12 0.89 1.04 86.53 1.46 3.66

Method
CIFAR-80-20 ImageNetBG Camelyon17

(Full) (Out.) (Out.) (Out.)
ACC EAURC ECE ECE ACC EAURC ECE ACC EAURC ECE

ERM 60.77 4.60 23.79 64.26 81.51 2.09 6.32 85.75 3.41 8.73
PC 62.10 4.44 23.77 64.50 81.24 2.23 11.20 85.16 3.42 11.44
LS 62.08 3.90 8.31 29.65 82.60 2.17 9.87 84.73 4.41 13.21
FLSD 59.44 5.04 12.92 45.59 80.94 2.41 6.32 86.09 3.69 9.12
FL 60.30 4.96 18.30 53.16 81.36 2.18 2.08 86.60 3.36 3.45
IFL 61.82 3.62 20.80 46.29 81.11 2.14 8.69 85.85 2.92 11.21
DFL 59.94 4.96 17.24 52.10 81.34 2.38 1.75 85.75 3.03 2.87
RO 60.78 13.92 24.25 65.14 81.82 4.49 11.52 84.36 5.83 12.34
DRC 62.74 3.19 9.53 15.38 81.97 1.51 1.32 87.46 2.83 6.39

4.2 EXPERIMENTAL RESULTS

We conduct experiments to answer the above-posed questions. The main experimental results under
different settings are presented in Tab. 1 and Tab. 2. Detailed experimental results with standard
diversion and more evaluation metrics are shown in the Tab. 3 and Tab. 4 of the appendix.

Q1 Effectiveness. Compared to other methods, DRC achieves superior performance in terms of
accuracy. Specifically, as shown in the experimental results, compared with previous methods, DRC
achieves top two accuracy rankings consistently on almost all datasets under the weak-augmentation
and strong augmentation settings. For example, on the Camelyon17 dataset, DRC achieves the best
accuracy performance of 87.46% and 93.43% under weak and strong augmentation settings. This
improvement can be attributed to the ability of DRC to prevent the neural network from overfitting to
outlier samples in the training data, thereby improving the generalization and classification accuracy
on the test data slightly. Although DRC demonstrates superior performance, please note that the
main goal of calibration methods is to calibrate the model thereby improving trustworthiness rather
than improve accuracy simply.

Q2 Reliability. We can obtain the following observations from the experimental results. (1) DRC
can obtain the state-of-the-art confidence quality in terms of ranking-based metrics (e.g., EAURC)
across almost all datasets. Specifically, under the weak-augmentation setting, DRC achieves superior
EAURC performance on all datasets. For example, on the CIFAR-80-20 dataset, DRC outperforms
the second best method by 0.43% in terms of EAURC. Moreover, under the strong-augmentation
setting, DRC achieves the best performance across all datasets except Food101 dataset. (2) DRC also
demonstrates outstanding performance on calibration-based metrics (e.g., ECE). For example, un-
der weak-augmentation setting, DRC achieves 3.82% performance on the full test set of CIFAR-8-2
dataset, which is 1.82% lower than the second best method. The key reason behind the perfor-
mance improvements is that DRC effectively leverages outlier samples in the training set to provide
more explicit confidence supervision to improve the confidence quality, resulting in more reliable
predictions.
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Table 2: The main experimental results (reported as percentages (%)) under the strong augmenta-
tion setting. The best and second-best results are in bold and underline, respectively. For datasets
containing both ID and outlier test samples, we report the results on the full test set and the outlier
subset. We mark whether the test samples are from the full set, ID subset, or outlier subset (Out.).

Method
CIFAR-8-2 ImageNetBG Food101

(Full) (Out.) (Full) (ID)
ACC EAURC ECE ECE ACC EAURC ECE ACC EAURC ECE

ERM 79.35 0.70 6.89 26.42 87.35 0.98 3.47 87.26 1.25 2.37
PC 79.65 0.64 4.94 15.17 86.88 1.09 7.19 87.54 1.24 5.87
LS 79.65 4.57 10.01 39.34 87.54 1.26 4.42 87.33 1.80 19.70
FLSD 78.22 2.33 8.58 52.43 86.64 1.21 7.51 85.98 1.55 6.04
FL 78.96 1.07 9.51 43.23 86.70 1.17 3.92 86.32 1.45 3.62
IFL 79.70 0.70 4.97 14.40 87.26 1.03 4.89 87.67 1.22 5.05
DFL 78.69 1.97 13.25 60.51 87.11 1.17 2.96 86.80 1.40 1.29
RO 75.38 5.48 17.36 58.97 87.21 2.08 6.22 87.23 2.12 3.04
DRC 79.97 0.62 3.30 8.81 87.53 0.94 2.23 87.32 1.25 2.17

Method
CIFAR-80-20 ImageNetBG Camelyon17

(Full) (Out.) (Out.) (Out.)
ACC EAURC ECE ECE ACC EAURC ECE ACC EAURC ECE

ERM 63.68 3.42 17.08 47.87 83.52 1.68 4.61 90.21 1.41 4.60
PC 64.10 3.02 16.09 37.96 82.91 1.83 9.40 87.30 1.97 9.91
LS 63.73 4.17 5.07 30.26 83.81 2.07 4.21 92.52 1.28 18.69
FLSD 61.88 5.02 16.49 55.18 82.63 2.05 7.92 92.24 1.12 12.81
FL 63.06 3.30 9.29 30.87 82.72 1.99 4.04 92.30 1.11 12.91
IFL 64.43 3.02 21.66 54.86 83.41 1.73 6.43 88.99 1.59 7.15
DFL 63.47 3.31 8.42 29.68 83.28 1.97 3.03 90.60 1.72 7.18
RO 60.20 14.23 24.73 65.26 83.41 3.51 8.14 91.55 2.99 7.10
DRC 65.90 2.37 9.84 20.57 83.83 1.58 2.97 93.43 0.83 2.30

Q3 Robustness. To evaluate the robustness of DRC, we also show the performance of the different
method on the outlier test dataset. We can draw the following observations. (1) When evaluated
on outlier datasets, the performance usually decreases. For example, on the outlier subset of the
ImageNetBG test set, the performance is lower across all metrics compared to the full test set. This
highlights the necessity to study robust calibration methods. (2) DRC shows excellent performance
on outlier test dataset. For example, under the weak augmentation setting, DRC achieves 10.24% and
15.38% in terms of ECE on the outlier subset of CIFAR-8-2 and CIFAR-80-20, outperforming the
second best by 3.77% and 14.27% respectively. This indicates that DRC is more robust to potential
outlier data, because it effectively utilizes the outlier data during training to impose clear guidance
about what should be unknown for the model.
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Figure 2: Performance of the model on different metrics with varying outlier fraction hyperparame-
ter η, while fixing the regularization strength β to 1, on the CIFAR-8-2 dataset.

Q4 Ablation study. As shown in Tab. 1 and Tab. 2, compared with ERM and removing outliers
(RO), DRC consistently shows better performance. Specifically, our experiments demonstrate that
utilizing outlier samples for regularization during deep neural network training through DRC can
lead to more reliable confidence estimation than ERM and RO.
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Q5 Hyperparameter Analysis. We conduct hyperparameter analysis on the CIFAR-8-2 dataset
under the weak augmentation setting. To evaluate the effect of the outlier fraction hyperparameter η,
we tune η and show the corresponding experimental results in Fig. 2. From the experimental results,
we can have the following observations: (1) when the outlier fraction hyperparameter η is close to the
true outlier fraction (0.2 for CIFAR-8-2), DRC can achieve better performance in terms of accuracy
and EAURC; (2) increasing the outlier fraction hyperparameter η can obtain better model in terms
of ECE. However, when it exceeds the true outlier fraction, the improvement of ECE performance
is limited. More hyperparameter analysis results are provided in the appendix (Sec. B.6).

5 THEORETICAL ANALYSIS

In this section, we aim to characterize the calibration error of DRC and the previous regularization-
based methods under the Huber’s η-contamination model (Eq. 3). The results demonstrate that DRC
could obtain smaller calibration error.

Data generative model. We consider the Huber’s η-contamination model described in Eq. 3.
Specifically, we assume Pin follows a Gaussian mixture model for binary classification, where X is
standard Gaussian, Y ∈ {−1, 1} with prior probability P(Y = 1) = P(Y = −1), and

X | Y ∼ N(Y ·w∗, Id),

where Id denotes the d-dimensional identity matrix, w∗ is the ground-truth coefficient vector. We
further assume Pout follows the opposite distribution where X | Y ∼ N(−Y · w∗, Id). We have
i.i.d. observations {(xi, yi)}ni=1 sampled from the distribution P = (1− η)Pin + ηPout.

The baseline estimator. We consider the method of minimizing the common used classification
loss (e.g., square loss) with label smoothing as our baseline, which produces a solution:

ŵ = argminw
1
n

∑n
i=1(w

⊤xi − ỹi)
2,

where ỹi = (1− ϵ)yi + ϵ/2. For k ∈ {−1, 1}, the confidence P̂k(x) is an estimator of P̂(y = k|x),
and it takes the form P̂k(x) = 1/(e−k·ŵ⊤x + 1). Other regularization-based methods essentially
have similar goals to label smoothing.

Calibration error. Here we consider the case where P1(X) > 1/2, as the case where P1(X) ≤ 1/2
can be analyzed similarly by symmetry. For p ∈ (1/2, 1), the signed calibration error at a confidence
level p is p−P(Y = 1 | P̂1(X) = p). As a result, the formula of calibration error (ECE) is given by

ECE[P̂] = E[|P(Y |P̂(X) = p)− p|].
In the following, we show that the calibration error of our proposed Algorithm 1, denoted by P̂DRC,
is smaller than the baseline algorithm P̂baseline. The proof is in the appendix (Sec. 1).
Theorem 1. Consider the data generative model and the learning setting above. We assume
∥w∗∥ ≤ c0 for some sufficiently small c0 > 0, and d/n = o(1). Suppose the initialization param-
eter θ(0) satisfies ∥θ(0) −w∗∥ ≤ c1 for a sufficiently small constant c1 > 0. Then, for sufficiently
large n, for k = 2, . . . ,K, we have

ECE[P̂DRC] < ECE[P̂baseline].

6 CONCLUSION

In this paper, we summarize the core principle of existing regularization-based calibration methods,
and show their underlying limitations due to lack of explicit confidence supervision. To address
these limitations, we propose a simple yet effective approach called dynamic regularization calibra-
tion (DRC), which regularizes the model using potential outlier samples in the training data, thus
allowing us to provide the model with clear direction on confidence calibration by informing the
model what it should know and what it should not know. DRC significantly outperforms existing
methods on real-world datasets, achieving robust calibration performance. Moreover, the theoretical
analyses shows that DRC achieves smaller calibration error over previous methods. In this work,
we first introduce the paradigm of dynamic regularization for calibration and provide a simple yet
effective implementation. In the future, we believe exploring more elegant and effective strategies
for dynamic regularization will be an interesting and promising direction.
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Appendix

A REGULARIZATION-BASED CALIBRATION METHODS

Evidential deep learning (Sensoy et al., 2018) constructs the classification outputs as Dirichlet
distributionsDir(α) with parameters α = [α1, · · · , αK ], and then minimizes the expected distance
between the obtained Dirichlet distributions and the labels while regularizing by minimizing the
KL divergence between the obtained Dirichlet distributions and the uniform distribution. The loss
function is formulated as follows:

K∑
k=1

yk
(
ψ(S)− ψ(αk)

)
+ γKL[Dir(α̃), Dir([1, · · · , 1])], (7)

where S =
∑K

k=1 α
k is the Dirichlet strengthes, ψ(·) represents the digamma function, γ is a

hyperparameter, α̃ = y + (1− y)⊙α, and Dir([1, · · · , 1]) is a uniform Dirichlet distribution.

Penalizing confidence (Pereyra et al., 2017) suggest a confidence penalty term to prevent the deep
neural networks from overfitting and producing overconfident predictions. Formally, the loss func-
tion of penalizing confidence is defined as:

Lce(fθ(x),y)− γH(fθ(x)), (8)

where γ is a hyperparameter to control the penalizing strength.

B EXPERIMENTAL DETAILS

In this section, we present the experimental setup in detail including the backbone model for each
dataset (Sec. B.1), descriptions of the datasets (Sec. B.2), evaluation metrics (Sec. B.3), comparison
methods (Sec. B.4), comparison experimental results on various metrics (Sec. B.5), and additional
experimental results from hyperparameter analysis (Sec. B.6). We are committed to open-sourcing
the code related to our research after publication to present more details.

B.1 BACKBONE MODEL

For the CIFAR-8-2 and CIFAR-80-20 datasets, we use a randomly initialized WideResNet-28-10
(Zagoruyko & Komodakis, 2016) as the backbone network; for the Camelyon17 dataset, we use
a DenseNet-121 (Huang et al., 2017) network pre-trained on ImageNet as the backbone network;
for other datasets, we use a ResNet-50 (He et al., 2016) network pre-trained on ImageNet as the
backbone network.

B.2 DATASETS DETAILS

The datasets used in the experiments are described in detail here.

• CIFAR-8-2: The CIFAR-8-2 dataset is artificially constructed to evaluate the performance
of the model when the outlier fraction of the dataset is available. Specifically, we randomly
select 8 classes from CIFAR10 (Krizhevsky et al., 2009) as in-distribution samples, while the
remaining samples are randomly relabeled as one of the selected classes to serve as outliers.
The true outlier fraction of the CIFAR-8-2 dataset is 20%. Since the outlier labels in the
cifar-8-2 dataset are randomly generated, the accuracy and ordinal ranking based confidence
evaluation metrics lose their meaning on this dataset. Therefore, we do not report these metrics
for the outlier dataset in the experimental results.

• CIFAR-80-20: Samilar as CIFAR-8-2, we randomly select 80 classes from CIFAR100
(Krizhevsky et al., 2009) dataset, and relabel other samples as one of the selected calsses
to serve as outliers. The true outlier fraction of the CIFAR-80-20 dataset is 20%. Since the
outlier labels in the cifar-80-20 dataset are randomly generated, the accuracy and ordinal rank-
ing based confidence evaluation metrics lose their meaning on this dataset. Therefore, we do
not report these metrics for the outlier dataset in the experimental results.
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• Camelyon17: Camelyon17 is a pathology image dataset containing over 450,000 lymph
node scans from 5 different hospitals, used for detecting cancerous tissues in images (Bandi
et al., 2018). Similar to previous work (Koh et al., 2021), we take part of the data from 3
hospitals as the training set. The remaining data from these 3 hospitals, together with data
from another hospital, are used as the validation set. The last hospital is used as an outlier test
set. Notably, due to differences in pathology staining methods between hospitals, even data
within the same hospital can be seen as sampled from multiple subpopulations. We verify on
the Camelyon17 dataset whether models can achieve more robust generalization performance
when the training set contains multiple subgroups.

• ImageNetBG: ImageNetBG is a benchmark dataset for evaluating the dependence of clas-
sifiers on image backgrounds (Xiao et al., 2020). It consists of a 9-class subset of ImageNet
(ImageNet-9) and provides bounding boxes that allow removing the background. Similar as
in previous settings (Yang et al., 2023), we train models on the original IN-9L (with back-
ground) set, adjust hyperparameters based on validation accuracy, and evaluate on the test set
(in-distribution data), MIXED-RAND, NO-FG and ONLY-FG test set (outlier data).

• Food101: Food101 is a commonly used food classification dataset containing 101 food cat-
egories with a total of 101,000 images (Bossard et al., 2014). For each category, there are
750 training images and 250 manually verified test images. The training images are intention-
ally unclean and contain some amount of noise, primarily in the form of intense colors and
occasionally wrong labels, which can be seen as outlier data.

B.3 EVALUATION METRICS

The evaluation metrics used in the experiments are described in detail here.

• AURC and EAURC: The AURC is defined as the area under the risk-coverage curve (Geifman
& El-Yaniv, 2017), where risk represents the error rate and coverage refers to the proportion
of samples with confidence estimates exceeding a specified confidence threshold. A lower
AURC indicates that correct and incorrect samples can be effectively separated based on the
confidence of the samples. However, AURC is influenced by the predictive performance of
the model. To allow for meaningful comparisons across models with different performance,
Excess-AURC (E-AURC) is proposed by (Geifman et al., 2018) by subtracting the optimal
AURC (the minimum possible value for a given model) from the empirical AURC.

• AUPRErr: AUPRErr represents the area under the precision-recall curve where misclassified
samples (i.e., incorrect predictions) are used as positive examples. This metric can evaluate
the capability of the error detector to distinguish between incorrect and correct samples. A
higher AUPRErr usually indicates better error detection performance (Corbière et al., 2019).

• FPR95%TPR: The FPR95%TPR metric measures the false positive rate (FPR) when the true
positive rate (TPR) is fixed at 95%. This metric can be interpreted as the probability that an
incorrect prediction is mistakenly categorized as a correct prediction, when the TPR is set to
95%.

• ECE: The Expected Calibration Error (ECE) provides a measure of the alignment between the
predicted confidence scores and labels. It partitions the confidence sores into multiple equally
spaced intervals, computes the difference between accuracy and average confidence in each
interval, and then aggregates the results weighted by the number of samples. Lower ECE
usually indicates better calibration.

• NLL: The Negative Log Likelihood (NLL) measures the log loss between the predicted prob-
abilities and the one-hot label encodings. Lower NLL corresponds to higher likelihood of the
predictions fitting the true distribution.

• Brier: The Brier score calculates the mean squared error between the predicted probabilities
and the one-hot label.

Since the outlier labels in the cifar-8-2 and cifar-80-20 datasets are randomly generated, the accu-
racy and ordinal ranking based confidence evaluation metrics lose their meaning on this datasets.
Therefore, we do not report these metrics for the outlier dataset in the experimental results.
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B.4 COMPARISON METHODS

The Comparison methods are described in detail here.

• ERM trains the model by minimizing the empirical risk on the training data, using cross-
entropy as the loss function.

• PC trains the model with cross-entropy loss while regularize the neural networks by penalizing
low entropy predictions.

• LS is a regularization technique that trainin the neural network with softened target labels.
• FLSD refers to a sample-dependent focal loss, where the hyperparameters of the focal loss are

set differently for samples with different confidence scores (Mukhoti et al., 2020).
• FL refers to focal loss, which implicitly regularize the deep neural network by increasing the

weight of samples with lager losses.
• IFL conduct a simple modification on the weighting term of original focal loss by assigning

larger weights to the samples with larger output confidences.
• DFL aims to achieve a better balance between over-confidence and under-confidence by max-

imizing the gap between the ground truth logit and the highest logit ranked after the ground
truth logit.

• RO: We conduct ablation studies by removing potential outlier samples during training.
Specifically, during training, given B samples, we directly drop the top ηB samples with
the highest losses, where η is the predefined outlier fraction.

B.5 ADDITIONAL RESULTS

In Tab. 3 and Tab. 4, we present the experimental results for all evaluation metrics along with the
corresponding standard deviations. From the experimental results we can draw similar conclusions
as those in the experiments section. Specifically, DRC achieves the best performance 87 times out
of 108 experiments, which strongly suggest DRC outperforms previous approaches in calibration.
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Figure 3: Performance of the model on multiple metrics with varying outlier fraction hyperparameter
η, while fixing the regularization strength β to 1, on the CIFAR-8-2 dataset.

B.6 MORE RESULTS OF HYPERPARAMETER ANALYSIS

We present the detailed hyperparameter analysis results on the CIFAR-8-2 and CIFAR-80-20
datasets in Fig.3, Fig.4, Fig.5 and Fig.6. Specifically, to evaluate the effect of the outlier fraction hy-
perparameter η and regularization strength β on the model, we tune one hyperparameter while fixing
the other. From the experimental results we can draw the following conclusions: (1) As shown in
Fig.3 and Fig.5, when the set outlier fraction hyperparameter η is close to the true outlier sample ra-
tio, the model can achieve relatively optimal performance. Meanwhile increasing η within a certain
range does not significantly degrade the model performance. For example, on most metrics of the
CIFAR-8-2 and CIFAR-80-20 datasets, the relatively best performance is achieved at η = 0.2. (2)
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Figure 4: Performance of the model on different metrics with varying regularization strength hyper-
parameter β, while fixing the outlier fraction hyperparameter η to 0.2, on the CIFAR-8-2 dataset.
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Figure 5: Performance of the model on multiple metrics with varying outlier fraction hyperparameter
η, while fixing the regularization strength β to 1, on the CIFAR-80-20 dataset.
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Figure 6: Performance of the model on different metrics with varying regularization strength hyper-
parameter β, while fixing the outlier fraction hyperparameter η to 0.2, on the CIFAR-80-20 dataset.

As shown in Fig.4 and Fig.6, we can find that increasing the regularization strength β to a certain
level yields relatively good performance, after which further increases does not significantly im-
prove the results. For instance, when β exceeds 1, the performance of the model remains relatively
stable, with most metrics changing negligibly.
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Table 3: The comparison experimental results on different datasets and different methods under
the weak augmentation setting. ↓ and ↑ indicate lower and higher values are better respectively. For
better presentation, the best and second-best results are in bold and uderline respectively. For clarity,
NLL values are multiplied by 10. Remaining values are reported as percentages (%). For datasets
with both ID and outlier test samples, we report the results on all samples and outlier samples. We
mark whether the test samples are sampled from ID or outliers in the table. Compared with other
methods, DRC achieves excellent performance on different metrics in almost all datasets.

Dataset Method
ACC EAURC AURC AUPR FPR95% ECE Brier NLL
(↑) (↓) (↓) Err (↑) TPR(↓) (↓) (↓) (↓)

CIFAR
-8-2
(All)

ERM 77.86±0.19 1.84±0.66 4.50±0.71 74.27±5.70 41.81±14.15 14.17±5.27 35.22±5.55 16.06±6.34
PC 77.36±0.14 2.67±1.08 5.45±1.09 71.12±6.43 48.10±12.39 18.06±2.45 39.34±3.32 23.63±9.21
LS 77.93±0.23 5.01±2.95 7.65±2.99 74.82±6.05 34.36±9.55 8.37±1.02 30.08±2.61 7.66±0.65

FLSD 76.79±0.12 2.96±0.16 5.89±0.18 68.88±1.13 56.54±1.52 11.63±0.07 35.42±0.26 11.87±0.15
FL 77.26±0.25 2.37±0.05 5.18±0.12 70.58±0.18 52.30±0.88 16.31±0.13 37.65±0.30 15.38±0.21
IFL 78.30±0.18 1.02±0.14 3.57±0.10 82.98±1.27 18.80±2.05 5.64±1.04 26.80±0.76 7.92±0.88
DFL 77.14±0.16 2.35±0.07 5.19±0.05 69.92±1.06 53.53±1.44 16.00±0.09 37.65±0.24 15.48±0.07
RO 77.57±0.31 4.10±0.44 6.83±0.40 65.33±0.89 57.23±0.75 18.52±0.47 39.97±0.65 18.55±0.60

DRC 78.39±0.02 0.90±0.04 3.42±0.03 83.76±0.49 18.85±1.71 3.82±0.24 25.86±0.21 6.88±0.07

CIFAR
-80-20
(All)

ERM 60.77±0.37 4.60±0.18 13.56±0.34 81.95±0.18 56.81±0.30 23.79±0.39 60.44±0.72 32.04±0.66
PC 62.10±0.28 4.44±0.05 12.75±0.14 81.40±0.31 55.31±1.48 23.77±0.36 59.27±0.53 29.61±0.47
LS 62.08±0.43 3.90±0.14 12.22±0.33 85.06±0.37 46.26±0.72 8.31±0.81 48.99±0.67 17.79±0.26

FLSD 59.44±0.36 5.04±0.14 14.68±0.32 82.15±0.42 55.51±0.96 12.92±0.35 54.81±0.49 23.31±0.17
FL 60.30±0.12 4.73±0.18 13.92±0.21 81.40±0.17 55.35±0.95 18.30±0.12 56.81±0.26 26.06±0.28
IFL 61.82±0.46 3.62±0.03 12.07±0.25 86.66±0.31 44.96±0.63 20.80±0.49 56.18±0.62 27.76±0.25
DFL 59.94±0.21 4.96±0.04 14.34±0.14 81.59±0.37 55.03±0.50 17.24±0.22 56.71±0.40 26.22±0.15
RO 60.78±0.46 4.96±0.10 13.92±0.19 80.99±0.35 58.50±0.65 24.25±0.85 61.08±0.75 30.90±2.45

DRC 62.74±0.44 3.19±0.07 11.21±0.24 87.41±0.21 40.02±0.92 9.53±0.41 48.76±0.71 19.31±0.13

Image
NetBG
(All)

ERM 85.79±0.11 1.23±0.01 2.29±0.01 62.29±0.37 47.97±0.50 4.79±0.41 20.30±0.20 4.71±0.08
PC 85.57±0.15 1.33±0.07 2.43±0.08 62.42±1.70 49.01±3.92 8.62±0.46 22.45±0.71 6.30±0.44
LS 86.62±0.12 1.34±0.03 2.27±0.05 62.91±0.28 43.95±0.46 10.01±0.30 19.84±0.09 4.92±0.03

FLSD 85.36±0.16 1.43±0.05 2.56±0.03 61.70±1.63 49.68±2.06 6.30±0.08 21.00±0.04 4.81±0.01
FL 85.67±0.11 1.29±0.02 2.37±0.03 62.62±0.19 48.03±0.25 1.50±0.11 19.76±0.12 4.42±0.03
IFL 85.47±0.05 1.26±0.03 2.38±0.03 62.99±0.48 48.07±0.74 6.67±0.32 21.32±0.11 5.21±0.07
DFL 85.66±0.25 1.42±0.07 2.51±0.11 61.69±0.49 48.87±2.11 1.62±0.07 19.94±0.38 4.50±0.09
RO 85.95±0.18 1.70±0.03 2.73±0.01 58.32±0.63 52.66±0.28 8.88±0.18 22.56±0.29 6.44±0.08

DRC 86.12±0.11 0.89±0.01 1.90±0.02 67.74±0.34 38.18±0.42 1.04±0.17 18.71±0.18 4.41±0.06

Image
NetBG

(Outlier)

ERM 81.51±0.15 2.09±0.02 3.91±0.02 62.91±0.36 56.87±0.50 6.32±0.52 26.34±0.30 6.12±0.11
PC 81.24±0.17 2.23±0.12 4.11±0.14 63.03±1.70 57.12±2.79 11.20±0.57 29.14±0.93 8.18±0.58
LS 82.60±0.16 2.17±0.04 3.78±0.07 63.60±0.31 51.89±0.65 9.87±0.39 25.24±0.10 6.07±0.03

FLSD 80.94±0.20 2.41±0.07 4.36±0.06 62.41±1.60 57.78±1.66 6.32±0.13 26.88±0.06 6.06±0.02
FL 81.36±0.13 2.18±0.03 4.04±0.05 63.19±0.16 56.30±0.58 2.08±0.25 25.61±0.15 5.71±0.05
IFL 81.11±0.04 2.14±0.05 4.05±0.06 63.60±0.43 57.04±0.74 8.69±0.38 27.66±0.13 6.76±0.08
DFL 81.34±0.35 2.38±0.12 4.24±0.19 62.33±0.46 56.63±1.86 1.75±0.36 25.79±0.53 5.79±0.12
RO 81.82±0.24 2.73±0.03 4.49±0.03 59.33±0.70 59.97±0.51 11.52±0.22 29.13±0.38 8.33±0.10

DRC 81.97±0.15 1.51±0.01 3.24±0.04 68.38±0.33 47.09±0.48 1.32±0.22 24.17±0.23 5.68±0.08

Food
101
(ID)

ERM 84.99±0.09 1.62±0.01 2.80±0.02 60.33±0.44 52.35±0.68 4.82±0.18 21.90±0.14 5.87±0.03
PC 85.29±0.16 1.63±0.02 2.77±0.04 59.95±0.32 52.59±0.97 8.12±0.12 22.94±0.29 7.15±0.09
LS 85.04±0.10 2.21±0.03 3.39±0.04 57.59±0.31 55.80±0.42 10.49±0.07 23.35±0.07 6.79±0.03

FLSD 85.00±0.07 1.75±0.03 2.93±0.03 58.00±0.42 55.94±1.31 3.54±0.04 21.82±0.04 5.47±0.01
FL 85.37±0.13 1.68±0.02 2.81±0.03 58.61±0.93 53.37±0.80 1.32±0.10 21.11±0.07 5.32±0.01
IFL 86.50±0.12 1.52±0.03 2.47±0.05 57.81±0.20 51.32±0.37 7.64±0.16 21.29±0.26 6.66±0.12
DFL 85.50±0.08 1.63±0.02 2.74±0.03 58.52±0.27 52.95±1.04 0.80±0.15 20.79±0.10 5.30±0.01
RO 85.42±0.26 1.61±0.03 2.72±0.07 58.67±0.15 53.70±0.06 6.24±0.33 21.93±0.45 6.11±0.14

DRC 86.53±0.09 1.46±0.02 2.41±0.01 57.93±0.17 51.61±0.89 3.66±0.14 19.95±0.05 5.44±0.02

Came
lyon

(Outlier)

ERM 85.75±1.32 3.41±0.66 4.48±0.86 39.42±0.39 73.35±2.54 8.73±1.15 22.56±2.32 4.41±0.54
PC 85.16±0.47 3.42±0.36 4.58±0.43 40.42±0.61 74.48±1.54 11.44±0.43 25.41±0.93 6.38±0.32
LS 84.73±1.43 4.41±0.71 5.65±0.94 38.21±0.77 75.98±2.02 13.21±1.57 25.94±1.54 4.29±0.18

FLSD 86.09±0.73 3.69±0.11 4.71±0.22 37.85±1.08 73.96±0.76 9.12±0.77 21.99±0.60 3.69±0.08
FL 86.60±0.77 3.36±0.19 4.30±0.27 38.39±1.64 72.46±1.24 3.45±0.77 19.52±0.78 3.23±0.11
IFL 85.85±0.29 2.92±0.16 3.97±0.13 41.19±1.40 72.31±0.57 11.21±0.32 24.46±0.49 6.31±0.07
DFL 85.75±0.84 3.03±0.25 4.10±0.36 41.58±1.13 71.72±1.09 2.87±0.25 19.74±0.92 3.19±0.13
RO 84.36±1.91 4.52±0.64 5.83±0.93 39.43±2.03 75.86±2.24 12.34±2.05 27.14±3.71 7.19±1.32

DRC 87.46±1.56 2.83±0.43 3.66±0.62 37.96±1.62 71.18±2.54 6.39±1.35 19.34±2.38 3.52±0.41

Dataset Method
ECE Brier NLL

Dataset Method
ECE Brier NLL

(↓) (↓) (↓) (↓) (↓) (↓)

CIFAR
-8-2

(Outlier)

ERM 55.69±23.39 136.37±24.91 67.67±29.01

CIFAR
-80-20

(Outlier)

ERM 64.26±0.39 151.27±0.57 106.94±1.80
PC 70.60±10.18 151.27±13.78 99.21±42.13 PC 64.50±1.19 152.05±1.46 95.59±2.37
LS 36.33±11.02 110.98±9.95 27.55±2.13 LS 29.65±0.92 116.05±0.73 54.92±0.62

FLSD 57.10±0.44 134.02±0.63 50.15±0.73 FLSD 45.59±0.39 129.95±0.48 76.85±0.56
FL 67.07±0.65 146.57±0.99 66.37±0.74 FL 53.16±0.35 138.38±0.37 86.54±0.65
IFL 14.01±4.25 97.20±3.93 26.11±3.04 IFL 46.29±0.38 133.23±0.50 79.58±0.86
DFL 65.82±0.28 144.78±0.43 66.31±0.46 DFL 52.10±0.26 137.08±0.34 86.46±0.28
RO 74.56±1.08 156.72±1.46 79.05±2.43 RO 65.14±2.38 152.38±2.96 96.58±8.82

DRC 10.24±0.44 93.44±0.61 23.37±0.41 DRC 15.38±0.85 109.05±0.49 49.97±0.35
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Table 4: The comparison experimental results on different datasets and different methods under the
strong augmentation setting. ↓ and ↑ indicate lower and higher values are better respectively. For
better presentation, the best and second-best results are in bold and uderline respectively. For clarity,
NLL values are multiplied by 10. Remaining values are reported as percentages (%). For datasets
with both ID and outlier test samples, we report the results on all samples and outlier samples. We
mark whether the test samples are sampled from ID or outliers in the table. Compared with other
methods, DRC achieves excellent performance on different metrics in almost all datasets.

Dataset Method
ACC EAURC AURC AUPR FPR95% ECE Brier NLL
(↑) (↓) (↓) Err (↑) TPR(↓) (↓) (↓) (↓)

CIFAR
-8-2
(All)

ERM 79.35±0.27 0.70±0.02 2.99±0.07 83.77±0.83 16.29±1.22 6.89±0.78 25.86±0.77 6.78±0.31
PC 79.65±0.17 0.64±0.03 2.87±0.01 84.54±1.18 12.80±1.53 4.94±0.44 24.35±0.29 6.66±0.20
LS 79.65±0.10 4.57±1.80 6.80±1.78 75.48±3.08 29.96±5.26 10.01±0.40 28.05±0.89 7.62±0.34

FLSD 78.22±0.18 2.33±0.06 4.89±0.05 70.65±0.83 50.43±0.94 8.58±0.36 32.14±0.14 10.54±0.11
FL 78.96±0.09 1.07±0.19 3.46±0.20 78.62±1.84 31.57±6.61 9.51±1.84 29.34±1.73 8.78±1.28
IFL 79.70±0.09 0.70±0.01 2.92±0.01 84.86±0.19 12.85±0.28 4.97±0.34 24.39±0.22 6.82±0.16
DFL 78.69±0.25 1.97±0.13 4.42±0.07 71.32±1.06 48.43±2.15 13.25±0.24 33.70±0.05 12.47±0.38
RO 75.38±4.42 2.03±0.47 5.48±1.78 76.19±3.88 43.03±2.23 17.36±1.22 40.15±4.98 23.41±3.95

DRC 79.97±0.09 0.62±0.02 2.78±0.03 84.09±0.77 11.50±0.30 3.30±0.32 23.14±0.09 5.98±0.07

CIFAR
-80-20
(All)

ERM 63.68±0.47 3.42±0.51 11.01±0.70 84.17±2.74 47.71±7.28 17.08±4.87 52.00±4.53 25.22±6.82
PC 64.10±0.52 3.02±0.18 10.42±0.40 86.81±0.14 40.59±0.98 16.09±0.34 50.17±0.79 21.96±0.67
LS 63.73±0.61 4.17±0.90 11.73±0.63 83.69±3.16 46.24±4.89 5.07±2.14 47.08±0.38 18.16±0.75

FLSD 61.88±0.35 5.02±0.03 13.44±0.16 80.19±0.35 55.50±0.33 16.49±0.06 54.23±0.36 26.09±0.42
FL 63.06±0.45 3.30±0.07 11.16±0.28 86.46±0.22 41.15±0.98 9.29±0.30 47.72±0.46 18.56±0.30
IFL 64.43±0.62 3.02±0.09 10.27±0.33 86.66±0.48 41.42±1.10 21.66±1.07 54.25±1.46 29.84±1.70
DFL 63.47±0.48 3.31±0.10 10.99±0.31 85.89±0.33 41.43±0.72 8.42±1.17 47.08±0.52 18.16±0.35
RO 60.20±1.04 4.97±0.30 14.23±0.81 81.19±0.12 58.94±0.96 24.73±2.69 62.20±1.83 42.31±3.34

DRC 65.90±0.33 2.37±0.11 8.98±0.24 88.38±0.10 34.76±0.29 9.84±0.40 44.59±0.44 17.20±0.19

Image
NetBG
(All)

ERM 87.35±0.14 0.98±0.02 1.82±0.04 61.85±1.00 44.06±1.25 3.47±0.10 17.79±0.30 4.04±0.07
PC 86.88±0.36 1.09±0.06 1.99±0.11 61.90±0.71 45.12±2.37 7.19±0.46 19.95±0.89 5.21±0.35
LS 87.54±0.39 1.26±0.02 2.07±0.07 60.55±0.61 44.85±0.89 4.42±0.27 17.73±0.47 4.20±0.12

FLSD 86.64±0.34 1.21±0.04 2.15±0.09 61.42±0.94 47.22±0.32 7.51±0.38 19.56±0.33 4.50±0.07
FL 86.70±0.20 1.17±0.07 2.10±0.08 62.08±1.79 46.23±2.16 3.92±0.13 18.65±0.37 4.21±0.09
IFL 87.26±0.24 1.03±0.04 1.88±0.06 62.24±0.77 45.32±1.56 4.89±0.27 18.37±0.31 4.32±0.11
DFL 87.11±0.48 1.17±0.06 2.04±0.13 60.91±1.27 46.51±0.79 2.96±0.26 18.11±0.66 4.09±0.15
RO 87.21±0.29 1.23±0.05 2.08±0.08 59.35±1.32 48.24±1.78 6.22±0.26 19.22±0.33 4.76±0.09

DRC 87.53±0.42 0.94±0.04 1.75±0.09 62.53±0.60 42.47±0.65 2.23±0.42 17.45±0.51 4.01±0.14

Image
NetBG

(Outlier)

ERM 83.52±0.15 1.68±0.03 3.12±0.06 62.37±1.06 53.02±1.13 4.61±0.10 23.13±0.37 5.25±0.10
PC 82.91±0.47 1.83±0.11 3.38±0.19 62.65±0.57 54.36±2.34 9.40±0.63 25.93±1.17 6.77±0.46
LS 83.81±0.52 2.07±0.03 3.46±0.12 61.05±0.67 53.05±0.90 4.21±0.30 22.86±0.62 5.31±0.16

FLSD 82.63±0.43 2.05±0.08 3.66±0.16 61.96±0.92 54.95±0.86 7.92±0.44 24.99±0.44 5.67±0.10
FL 82.72±0.25 1.99±0.11 3.57±0.14 62.59±1.83 54.38±2.00 4.04±0.17 24.01±0.48 5.38±0.12
IFL 83.41±0.35 1.73±0.06 3.19±0.11 62.87±0.77 53.79±1.17 6.43±0.37 23.87±0.47 5.61±0.16
DFL 83.28±0.64 1.97±0.10 3.46±0.21 61.44±1.35 54.90±0.88 3.03±0.35 23.36±0.86 5.24±0.21
RO 83.41±0.37 2.04±0.09 3.51±0.14 59.99±1.34 56.03±1.06 8.14±0.34 24.93±0.41 6.18±0.12

DRC 83.83±0.55 1.58±0.05 2.97±0.15 63.01±0.62 51.31±0.14 2.97±0.56 22.59±0.67 5.18±0.18

Food
101
(ID)

ERM 87.26±0.14 1.25±0.02 2.10±0.02 58.21±1.04 50.47±1.13 2.37±0.08 18.44±0.12 4.68±0.04
PC 87.54±0.08 1.24±0.01 2.05±0.02 56.87±0.23 50.58±0.30 5.87±0.12 19.17±0.11 5.45±0.02
LS 87.33±0.03 1.80±0.03 2.64±0.03 53.76±0.22 54.59±0.56 19.70±0.16 23.58±0.03 6.91±0.01

FLSD 85.98±0.09 1.55±0.01 2.58±0.01 57.34±0.55 54.40±0.37 6.04±0.04 20.90±0.08 5.21±0.02
FL 86.32±0.22 1.45±0.02 2.43±0.05 58.26±0.43 51.60±0.45 3.62±0.12 19.91±0.17 4.95±0.04
IFL 87.67±0.07 1.22±0.04 2.01±0.03 57.87±0.80 49.71±1.12 5.05±0.07 18.58±0.07 5.10±0.01
DFL 86.80±0.11 1.40±0.04 2.31±0.06 57.31±0.47 52.08±1.04 1.29±0.13 19.15±0.23 4.80±0.06
RO 87.23±0.01 1.26±0.03 2.12±0.03 57.80±1.23 50.83±1.60 3.04±0.08 18.65±0.12 4.79±0.05

DRC 87.32±0.12 1.25±0.01 2.09±0.03 58.27±0.42 50.33±0.76 2.17±0.13 18.34±0.13 4.67±0.02

Came
lyon

(Outlier)

ERM 90.21±0.38 1.41±0.06 1.91±0.10 38.69±0.55 63.63±0.88 4.60±0.19 14.89±0.51 2.59±0.08
PC 87.30±0.40 1.97±0.10 2.81±0.14 40.47±0.75 70.33±0.54 9.91±0.80 21.92±1.14 5.09±0.54
LS 92.52±0.48 1.28±0.16 1.57±0.19 34.84±0.71 58.96±1.14 18.69±0.36 18.66±0.47 3.49±0.06

FLSD 92.24±0.28 1.12±0.05 1.43±0.07 35.29±0.31 59.69±1.19 12.81±0.27 15.83±0.17 2.85±0.03
FL 92.30±0.24 1.11±0.04 1.41±0.06 35.17±0.12 59.67±1.09 12.91±0.28 15.82±0.10 2.85±0.02
IFL 88.99±0.85 1.59±0.19 2.23±0.29 40.02±0.69 65.91±1.59 7.15±0.92 17.71±1.57 3.36±0.33
DFL 90.60±1.30 1.72±0.21 2.19±0.34 36.44±2.74 61.35±0.52 7.18±0.96 15.39±0.93 2.66±0.11
RO 91.55±0.58 2.62±0.33 2.99±0.38 31.57±1.27 64.19±2.47 7.10±0.60 15.28±1.16 5.31±0.58

DRC 93.43±0.22 0.83±0.06 1.05±0.07 34.34±0.92 57.07±1.58 2.30±0.38 10.16±0.39 1.88±0.10

Dataset Method
ECE Brier NLL

Dataset Method
ECE Brier NLL

(↓) (↓) (↓) (↓) (↓) (↓)

CIFAR
-8-2

(Outlier)

ERM 26.42±2.31 103.12±1.77 27.70±1.06

CIFAR
-80-20

(Outlier)

ERM 47.87±13.87 134.26±14.91 87.04±27.59
PC 15.17±1.88 96.69±1.59 25.52±0.86 PC 37.96±0.75 124.76±0.48 67.83±1.09
LS 39.34±4.34 113.79±4.10 29.97±1.45 LS 30.26±3.68 116.36±2.94 58.00±2.39

FLSD 52.43±0.34 127.95±0.66 45.84±0.71 FLSD 55.18±0.87 140.49±0.93 94.46±1.79
FL 43.23±7.89 118.76±8.28 37.93±6.23 FL 30.87±1.14 116.85±0.95 60.91±0.90
IFL 14.40±1.39 96.78±0.89 25.34±0.60 IFL 54.86±2.30 141.27±2.32 93.67±4.71
DFL 60.51±1.02 138.24±1.58 55.67±2.37 DFL 29.68±2.15 116.09±1.92 59.39±1.78
RO 58.97±12.40 137.18±14.39 74.23±24.88 RO 65.26±6.81 152.99±7.96 128.48±14.80

DRC 8.81±1.51 92.69±0.66 22.93±0.35 DRC 20.57±0.67 112.30±0.61 51.92±0.33
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C PROOF OF THEOREM 1

Following Bai et al. (2021), we have

p− P(Y = 1 | P̂1(X) = p) = p− EZ [σ(
∥w∗∥
∥ŵ∥

cos θ̂ · σ−1(p)) + sin θ̂ · ∥w∗∥Z],

where cos θ̂ = ŵ⊤w∗

∥ŵ∥·∥w∗∥ .

We first compute the calibration error for the baseline method

ŵ = argmin
w

1

n

n∑
i=1

(w⊤xi − ỹi)
2,

where ỹi = (1− ϵ)yi + ϵ/2. As d/n = o(1), we have

ŵ = (E[xix⊤i ])−1E[xiỹi] + o(1) =
1− ϵ

1 + ∥w∗∥2
E[xiyi] + o(1) = (1− ϵ)(1− 2η) ·w∗ + o(1).

In the above derivation, the first equation uses Sherman–Morrison formula.

As a result, we have cos θ̂ = 1− o(1) as n grows, and therefore when n→ ∞,

p− P(Y = 1 | P̂baseline(X) = p) = p− σ(
1

(1− ϵ)(1− 2η)
σ−1(p)).

Now, for the DRC, when the initialization parameter θ(0) satisfies ∥θ(0)−w∗∥ ≤ c1 for a sufficiently
small constant c1 > 0, there will be only o(1) outliers left, and therefore

p− P(Y = 1 | P̂DRC(X) = p) = p− σ(
1

1− η
σ−1(p)).

By the monotonicity of σ and the nonnegativity of σ−1(p) when p > 1/2. We have

|p− P(Y = 1 | P̂DRC(X) = p)| < |p− P(Y = 1 | P̂baseline(X) = p)|.

Taking the expectation of p for both sides, we have

ECE[P̂DRC] < ECE[P̂baseline].
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