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ABSTRACT

Reliable Q-value estimation is central to off-policy reinforcement learning in
continuous control. Standard actor-critic methods often address overestimation
bias by aggregating ensembles of Q-values conservatively, for example by taking
their minimum. While effective at reducing bias, these static rules discard useful
information, cannot adapt to training dynamics, and generalize poorly across
learning regimes. We propose Directional Ensemble Aggregation (DEA), a fully
learnable aggregation method that replaces static aggregation with a dynamic
mechanism capable of interpolating between conservative and explorative strategies
as training progresses. DEA introduces two learnable directional parameters, one
regulating critic conservatism and the other guiding actor exploration. Both are
learned using disagreement-weighted Bellman errors, where updates depend only
on the sign of each sample’s error. This decoupled design allows DEA to adjust
automatically to task-specific uncertainty, ensemble size, and update frequency in a
data-driven manner. Empirically, DEA generalizes across MuJoCo and DeepMind
Control Suite benchmarks in both interactive and sample-efficient learning regimes.

1 INTRODUCTION

Off-policy Reinforcement Learning (RL) has become a powerful framework for solving continuous
control tasks, with actor-critics forming a central class (Mnih et al., 2013; 2015). These methods
decompose training into two components: a critic (Q-function), which estimates the expected returns,
and an actor, which uses these Q-value estimates to optimize its policy (Haarnoja et al., 2018a).

A central challenge in actor-critics is overestimation bias in Q-value estimation (Thrun & Schwartz,
1993), where value estimates drift upward because positive noise is repeatedly amplified through
bootstrapping and the maximization operator (Fujimoto et al., 2018). Such bias can destabilize training
and lead to suboptimal policies (Van Hasselt, 2010; Van Hasselt et al., 2016), especially in continuous
control, where even small biases in Q-values may be exploited by the actor. Another challenge
is sample efficiency. A common remedy is to increase the number of updates per environment
interaction, known as the Update-To-Data (UTD) ratio (Chen et al., 2021). However, higher UTD
ratios place greater demands on the accuracy of Q-values, as repeated updates per environment step
can amplify estimation errors and further destabilize training (Nikishin et al., 2022).

To mitigate overestimation, many algorithms employ an ensemble of critics and aggregate their Q-
value estimates conservatively, typically by taking the minimum across the ensemble (Fujimoto et al.,
2018; Haarnoja et al., 2018a; Ciosek et al., 2019; Chen et al., 2021). While effective in reducing bias,
these static aggregation rules have several drawbacks. First, they impose unnecessary restrictions that
prevent smooth interpolation between conservative and explorative strategies, hindering fine-grained
control over the exploration-exploitation trade-off. Second, they collapse ensemble diversity into a
single value, discarding useful information. Third, they remain fixed throughout training, unable to
adapt to task-specific demands or the evolving reliability of Q-value estimates. This rigidity also
extends to policy optimization, where the actor is constrained to the same static aggregation rule
regardless of the environment’s exploration demands or the stage of training.

Furthermore, most existing algorithms are designed with a specific learning regime, defined by
particular combinations of UTD ratios and ensemble sizes. For example, interactive learning typically
employs low UTD ratios and small ensembles with frequent environment interactions (Fujimoto et al.,
2018; Haarnoja et al., 2018a; Ciosek et al., 2019; Moskovitz et al., 2021). Conversely, sample-efficient
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learning relies on higher UTD ratios and larger ensembles to minimize the number of interactions
required to learn a task (Chen et al., 2021; Wu et al., 2022; Cetin & Celiktutan, 2023). Algorithms
optimized for one learning regime often fail in the other: increasing the UTD ratio in methods
designed for interactive learning can introduce instability and degrade performance (Nikishin et al.,
2022), whereas methods optimized for sample-efficient learning tend to underperform in low-UTD
scenarios due to insufficient utilization of available updates (Liang et al., 2022; Chen et al., 2021).

Our approach. We propose Directional Ensemble Aggregation (DEA), a fully learnable aggre-
gation method for actor-critic algorithms that adapts dynamically to task demands and uncertainty
levels. DEA overcomes the rigidity of existing methods that are tailored to specific learning regimes,
enabling generalization across settings where static rules often fail. At its core, DEA replaces static
rules with a data-driven mechanism that interpolates between conservative and explorative strategies
as training progresses.

A key feature of DEA is its decoupled aggregation, introducing two learnable parameters: κ̄, used
to construct what guides critic learning, and κ, to construct what guides actor learning. Separate
parameters are essential because, especially under high uncertainty, critics often benefit from more
conservative estimates to reduce overestimation bias, while actors can exploit more optimistic
estimates when uncertainty is low to encourage exploration.

These parameters are learned directly from data through some weighted Bellman objectives, with
updates depending only on the sign of each sample’s error. The sign reliably indicates whether an
estimate overshoots or undershoots its target, while ignoring noisy magnitudes that could otherwise
cause disproportionate updates. By relying on this directional signal, DEA avoids drastic parameter
swings and achieves stable, data-driven adaptation of aggregation. This reliance on error direction
motivates the name directional ensemble aggregation.

Across a broad set of continuous control benchmarks in MuJoCo and the DeepMind Control Suite,
DEA consistently demonstrates strong generalization by maintaining reliable learning dynamics and
outperforming static ensemble aggregation methods in both interactive and sample-efficient settings.

2 PRELIMINARY

We denote by P(Ω) the set of all probability distributions over a space Ω, and by B(Ω) the set of
bounded real-valued functions on Ω. For N ∈ N, we write [N ] for {1, . . . , N}.

Markov Decision Processes (MDPs). We consider an infinite-horizon MDP defined by the tuple
M = ⟨S,A, p, p0, r, γ⟩ (Puterman, 2014), where S and A are continuous state and action spaces.
The transition dynamics are governed by an unknown probability density p(s′|s, a) over next states
s′ ∈ S given a current state-action pair (s, a) ∈ S ×A. The initial state is drawn from a distribution
p0 ∈ P(S), and rewards are given by a bounded function r : S × A → [0, Br], with Br > 0. The
discount factor γ ∈ (0, 1] controls the importance of future rewards.

Policies. Let Π = {π : S → P(A)} denote the set of stochastic policies. Under a policy π ∈ Π,
the agent interacts with the MDP iteratively: at each time step t ∈ N, the agent observes a state
st ∈ S, samples an action at ∼ π(·|st), receives a reward r(st, at), and transitions to a next state
st+1 ∼ p(·|st, at). For convenience, we define the one-step policy-induced transition distribution as
pπ(s′, a′|s, a) = p(s′|s, a)π(a′|s′).

Maximum entropy RL. The objective is to find a policy π that maximizes the expected dis-
counted return, J(π) = Eπ[

∑∞
t=0 γ

tr(st, at)] with s0 ∼ p0 (Sutton & Barto, 2018; Bert-
sekas & Tsitsiklis, 1996). To encourage exploration, we consider the maximum entropy RL
framework (Ziebart, 2010; Haarnoja et al., 2017; 2018a), where the agent aims to maximize
both the expected return and the entropy of the policy. This is formalized by the objective:
Jα(π) = Eπ [

∑∞
t=0 γ

t (r(st, at) + αH(π(·|st)))], where α > 0 controls the trade-off between
reward and entropy, and the entropy term is defined as H(π(·|s)) = −Ea∼π(·|s)[log π(a|s)].
Haarnoja et al. (2018b) proposed automatic entropy tuning by adjusting α to minimize the ob-
jective J(α) = Ea∼π(·|s) [log(α) · (− log π(a|s)−Htarget)] during each policy update. This ob-
jective increases α when the current policy entropy is below the target Htarget, and to decrease
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when it is above. In practice, the target entropy Htarget is typically set heuristically, proportional
to −dim(A) or − dim(A)/2 (Haarnoja et al., 2018b; Chen et al., 2021). The state-action value
function Qπ : S × A → R under policy π satisfies Qπ(s, a) = Jα(π) starting from s0 = s and
a0 = a (Watkins & Dayan, 1992; Haarnoja et al., 2017).

3 SOFT ACTOR-CRITIC METHODS

A widely used framework for maximum entropy RL is the class of soft actor-critic methods, where
the agent jointly learns a Q-value function (the critic) and a policy (the actor). The active critic
Q estimates the state-action value function Qπ (following policy π) by minimizing the Bellman
error (Silver et al., 2014; Bertsekas & Tsitsiklis, 1996; Haarnoja et al., 2018a):

argmin
Q

E(s,a,r,s′)∼D[(Q(s, a)− y(s, a, r, s′))2], (1)

where the samples (s, a, r, s′) are drawn from a replay buffer D, and the critic’s target value
y(s, a, r, s′) is defined as:

y(s, a, r, s′) = r(s, a) + γ[Q̄(s′, a′)− α log π(a′|s′)], a′ ∼ π(·|s′), (2)

with Q̄ denoting the target critic that may differ from the active critic Q (Mnih et al., 2015). The
actor is trained to find a policy π ∈ Π that maximizes the expected entropy-regularized value:

argmax
π∈Π

Ea∼π(·|s)[Q̃(s, a)− α log π(a|s)], (3)

where Q̃ is a separate actor-update critic used solely for training the actor, and may differ from both
the active critic Q and the target critic Q̄.

Note that Q̄ and Q̃ are references: Q̄ guides critic learning (in (2)), while Q̃ guides actor learning
(in (3)). Although they are not the critic or actor themselves, their construction strongly affects
stability, bias, and training success. Thus, when we later describe the critic or actor as conservative or
optimistic/explorative, we refer to how these references are constructed. In the idealized setting with
exact Bellman policy evaluation, all three value estimators, Q, Q̄, and Q̃, would match the true value
function Qπ (Sutton & Barto, 2018). However, different actor-critic methods, such as SAC (Haarnoja
et al., 2018a) and REDQ (Chen et al., 2021), differ primarily in how they construct Q̄ and Q̃.

In Section 4, we review how existing soft actor-critic methods instantiate these components and
highlight their limitations. Next, in Section 5, we introduce our proposed DEA approach, which
generalizes these constructions through a fully learnable and adaptive ensemble aggregation strategy.

4 ENSEMBLE AGGREGATION IN SOFT ACTOR-CRITIC METHODS

Ensembles of Q-functions have become standard in modern actor-critic algorithms for improving
stability and mitigating overestimation bias. Most methods aggregate the outputs of these critics
using conservative rules (e.g. by taking the minimum across the ensemble) and pair this with delayed
copies as target networks to stabilize updates (Lillicrap et al., 2016; Mnih et al., 2015; Fujimoto et al.,
2018). Formally, for each i ∈ [N ], let Qi : S ×A → R be the (active) critic and Q̄i : S ×A → R
its corresponding (delayed) target critic.

The minimum strategy, introduced by Fujimoto et al. (2018) and adopted by SAC (Haarnoja et al.,
2018a), aggregates the ensemble by selecting the lowest Q-value estimate. SAC employs this rule for
both the critic target, Q̄, used in (2), and the actor-update value, Q̃, used in (3);

SAC: Q̄(s, a) = min
i∈[N ]

Q̄i(s, a) and Q̃(s, a) = min
i∈[N ]

Qi(s, a).

SAC works well for small ensembles (e.g., N = 2), but becomes overly conservative as N grows,
often leading to underestimation and overly cautious policies (Lan et al., 2020; Kuznetsov et al.,
2020). Instead, Chen et al. (2021) proposed REDQ, which maintains a larger ensemble of N = 10
critics and applies different aggregation strategies for critic and actor. At each critic update, REDQ
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samples a random subset S ⊂ [N ] of size |S| = 2 and uses the minimum over this subset as the target
critic, and for actor policy updates it uses the average over the full N -ensemble;

REDQ: Q̄(s, a) = min
i∈S

Q̄i(s, a) and Q̃(s, a) =
1

N

N∑
i=1

Qi(s, a).

This decoupled aggregation balances critic conservatism (via a minimum of a random subset) with
actor expressiveness (via a full ensemble average), providing improved training stability and greater
sample efficiency compared to SAC, particularly in high UTD ratio regimes.

Limitations. SAC and REDQ share structural limitations. Both rely on static aggregation rules for Q̄
and Q̃, which do not generalize well across learning regimes. SAC’s use of a fixed minimum becomes
increasingly conservative with larger ensembles, often leading to persistent underestimation (Nikishin
et al., 2022), while REDQ’s actor-side averaging can become unstable when the ensemble is small.

5 DIRECTIONAL ENSEMBLE AGGREGATION IN SOFT ACTOR-CRITIC METHODS

Table 1: Aggregation strategies for constructing the
target critic (Q̄) and the actor-update critic (Q̃). δ̄ and δ
denote ensemble disagreement among {Q̄i} and {Qi},
respectively. κ̄ and κ are DEA’s learnable parameters
that determine how conservative or optimistic Q̄ and
Q̃ should be.

Method Target critic Q̄ Actor-update critic Q̃

SAC mini∈[N ] Q̄i mini∈[N ] Qi

REDQ mini∈S Q̄i
1
N

∑N
i=1 Qi

DEA 1
N

∑N
i=1 Q̄i + κ̄ · δ̄ 1

N

∑N
i=1 Qi + κ · δ

Directional Ensemble Aggregation (DEA)
introduces a fully learnable framework for
ensemble-based value estimation in actor-
critic methods. It generalizes static aggre-
gation strategie, such as those used in SAC
and REDQ, by learning reference values in
a data-driven manner that adapts to uncer-
tainty and training dynamics. The adapta-
tion is controlled by two scalar parameters:
κ̄, which controls critic learning stability,
and κ, which modulates actor exploration.
Both are learned online based on the ensem-
ble’s internal disagreement. Table 1 summarizes how DEA compares to existing methods.

DEA integrates seamlessly into the soft actor-critic framework (Section 3); its full update cycle is
outlined in Algorithm 1, with the design rationale discussed below.

Algorithm 1 Directional Ensemble Aggregation (DEA)
1: Initialize: replay bufferD = ∅; critic networks Qθ1 , . . . , QθN and actor network πϕ with random

parameters {θi}Ni=1 and ϕ; target critic networks Q̄θ̄1 , . . . , Q̄θ̄N with θ̄i ← θi for i = 1, . . . , N
2: for each environment interaction do
3: take action at ∼ πϕ(·|st), observe reward rt ≜ r(st, at), transition to new state st+1 ∼

p(·|st, at), and add (st, at, rt, st+1) to replay buffer D
4: for each update-to-data ratio do
5: sample mini-batch B = {(s, a, r, s′, a′) : (s, a, r, s′) ∼ D, a′ ∼ πϕ(·|s′)}
6: θi ← θi − ηθ∇θ{ 1

|B|
∑

B (Qθi(s, a)− yκ̄(s, a, r, s
′))

2}, ∀i ∈ [N ] ▷ critic
7: θ̄i ← τθi + (1− τ)θ̄i, ∀i ∈ [N ] ▷ target critic
8: κ̄← κ̄− ηκ̄∇κ̄{ 1

|B|
∑

B |Q̃κ(s, a)− yκ̄(s, a, r, s
′)|/δ̄(s′, a′)} ▷ DEA: target critic

9: κ← κ− ηκ∇κ{ 1
|B|

∑
B |Q̃κ(s, a)− yκ̄(s, a, r, s

′)|/δ(s, a)} ▷ DEA: actor

10: ϕ← ϕ+ ηϕ∇ϕ{ 1
|B|

∑
B(Q̃κ(s, aϕ(s))− α log πϕ(aϕ(s)|s))}, aϕ(s) ∼ πϕ(·|s) ▷ policy

11: α← α+ ηα∇α{ 1
|B|

∑
B(log(α)(− log πϕ(a|s)−Htarget))} ▷ entropy

Ensemble disagreement. To quantify uncertainty within the ensemble, DEA uses a measure of
ensemble disagreement defined by the average pairwise deviation of Q-value estimates. Specifically,
for a state-action pair (s, a):

δ({Qi(s, a)}Ni=1) =
1(
N
2

) ∑
i>j

|Qi(s, a)−Qj(s, a)|, for i, j ∈ [N ].

4
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This metric is non-parametric, easy to compute, and does not rely on distributional critics (Bellemare
et al., 2023). Related notions of ensemble diversity are discussed in more detail in Section 8. For
notational clarity, we distinguish disagreement among target critics and active critics:

δ̄(s, a) ≜ δ({Q̄i(s, a)}Ni=1) and δ(s, a) ≜ δ({Qi(s, a)}Ni=1).

Soft actor-critic learning with DEA. DEA is built on the general soft actor-critic framework
(Section 3), but can be easily generalized to other algorithmic families. We chose SAC as a use
case, as it is the only commonly adopted algorithm with established variants tailored to the learning
regimes considered in this work. It replaces fixed aggregation with learnable, uncertainty-aware
versions of the target critic Q̄ and the actor-update critic Q̃:

DEA: Q̄κ̄(s, a) =
1

N

N∑
i=1

Q̄i(s, a) + κ̄ · δ̄(s, a) and Q̃κ(s, a) =
1

N

N∑
i=1

Qi(s, a) + κ · δ(s, a).

Instead of (2), the critic is trained using the modified target value using Q̄κ̄:

yκ̄(s, a, r, s
′) = r(s, a) + γ[Q̄κ̄(s

′, a′)− α log π(a′|s′)], a′ ∼ π(·|s′). (4)

As in previous work (see e.g., Section 3), DEA ensures stability through delayed target critics to
prevent rapid shift. Also, all critics share the same ensemble-based target value (4), promoting
consistency across the ensemble and avoiding instability caused by divergent critic objectives.

For policy optimization, the actor trained using the modified actor-update critic Q̃κ estimate:

argmax
π∈Π

Ea∼π(·|s)[Q̃κ(s, a)− α log π(a|s)]. (5)

Learning the directional aggregation parameters. DEA update κ̄ and κ through a two-stage
learning scheme that aligns critic and actor references while adapting to uncertainty. The critic-side
parameter κ̄ is optimized to stabilize target values by minimizing the ensemble disagreement-weighted
Bellman error:

argmin
κ̄

E(s,a,r,s′)∼D,a′∼π(·|s′)[|Q̃κ(s, a)− yκ̄(s, a, r, s
′)|/δ̄(s′, a′)]. (6)

Subsequently, the actor-side parameter κ is updated to track the learned critic target while being
regularized by active-critic disagreement:

argmin
κ

E(s,a,r,s′)∼D,a′∼π(·|s′)[|Q̃κ(s, a)− yκ̄(s, a, r, s
′)|/δ(s, a)]. (7)

These objectives use disagreement-weighted absolute errors, producing sign-based gradients. Specifi-
cally, the gradient of (6) with respect to κ̄ is −γE[sign(Q̃κ(s, a)− yκ̄(s, a, r, s

′))], and the gradient
of (7) with respect to κ is E[sign(Q̃κ(s, a)− yκ̄(s, a, r, s

′)).

The key idea is that while error magnitudes are noisy, their sign reliably indicates whether estimates
overshoot or undershoot targets. By using only this directional signal, DEA avoids domination by
high-variance samples and ensures each transition contributes similarly. As a result, κ̄ and κ change
gradually rather than erratically, improving stability. This reliance on error direction but no magnitude
motivates the name: directional ensemble aggregation.

Ensemble disagreement and its effect on conservatism and exploration. Early in training, limited
data and unrefined critics lead to high disagreement across the ensemble. As learning progresses and
the critics become more aligned, disagreement decreases; especially relative to the growing scale of
the Q-values (e.g., see Figures 10 to 13 in Appendix C). This evolving disagreement regulates the
balance between conservatism and exploration in DEA and helps mitigate primacy bias (Nikishin
et al., 2022) by reducing the influence of noisy early estimates.

When updating the critic parameters θ, disagreement enters through the reference target yκ̄: if δ̄(s′, a′)
is large, a positive κ̄ inflates yκ̄ and risks overestimation, so smaller (often negative) values yield more
stable targets. When updating the actor parameters ϕ, disagreement enters via the actor reference Q̃κ:
when δ(s, a) is large, large κ would over-emphasize noisy estimates; only as disagreement falls does
a larger κ become reasonable, supporting more optimistic updates.
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When updating the κ parameters themselves, since the entropy term −α log π(a′|s′) is positive, yκ̄
often exceeds Q̃κ, making Q̃κ − yκ̄ negative on average. This drives κ̄ downward (more conservative
critic targets) while pushing κ upward (more optimistic actor updates). Together, these dynamics
ensure DEA transitions from cautious critic guidance under high uncertainty to more exploratory
actor updates as training progresses.

The joint evolution of κ̄ and κ is analyzed in the next section and illustrated in Figure 1, with
additional results across regimes and environments in Figures 6 to 9 in Appendix C.

6 EXPERIMENTS

Table 2: Learning regimes.
Learning
regime

Ensemble
size

Environment
interactions

UTD
ratio

Interactive 2 1.000.000 1
Sample-efficient 10 300.000 20

Learning regimes. The goal of our exper-
iments is to evaluate DEA across learning
settings. These regimes are defined by the
UTD ratio, which specifies how many gradi-
ent updates are performed per environment
interaction. We consider two regimes, inter-
active and sample-efficient, ranging from low
to high update intensity. To align with each setting, we scale the ensemble size proportionally to
the UTD ratio; smaller ensembles minimize compute in interactive settings, while larger ensembles
promote stability when updates are frequent. Table 2 summarizes the learning regimes. SAC is
typically used for the interactive, while REDQ is designed for sample-efficient one. DEA is evaluated
in both to assess its ability to generalize.

Evaluation metrics. We evaluate performance using three metrics: Final return measures the
average return at the end of training across evaluation repetitions; InterQuartile Mean (IQM) of the
final evaluation-time return provides a robust average across seeds by excluding outliers (Agarwal
et al., 2021); Area Under the Learning Curve (AULC) captures the cumulative reward over the course
of training, reflecting both speed and stability of learning. For each metric and environment, we
assign a rank to each method, where a lower rank indicates better performance (i.e., rank 1 is best,
rank 2 is second-best, and so on). The average rank is then computed for each metric.

Experimental setup. We evaluate DEA on continuous control tasks from the MuJoCo physics
simulator (Todorov et al., 2012; Brockman et al., 2016; Towers et al., 2024, version v5) and the
DeepMind Control Suite (DMC) (Tassa et al., 2018), under the learning regimes defined in Table 2.
These benchmarks were chosen because the limitations of static aggregation and the advantages of
adaptive strategies are already well pronounced in such settings, and qualitatively different behavior is
not expected in other continuous control domains. Each experiment is repeated across ten seeds. All
methods use automatic entropy temperature tuning of α, following Haarnoja et al. (2018b). Further
details on network architecture, training settings, and hyperparameters are provided in Appendix B.
Code will be released publicly upon publication to ensure reproducibility.

Learning trajectories of directional parameters κ̄ and κ. To better understand how DEA mod-
ulates aggregation during training, Figure 1 visualizes the trajectories of κ̄ and κ under the two
learning regimes (Table 2). We initialize the aggregation parameters as κ̄ = −0.8 and κ = 0.0; an
ablation of initialization sensitivity is provided in Section 7. To ensure stable optimization in an
unconstrained parameter space, we apply a tangent transformation to map both parameters into the
open interval from minus one to one. The first row of the figure corresponds to the interactive regime,
and the second row to the sample-efficient regime. The trends align with the behavior anticipated
from our analysis in Section 5. In particular, as training progresses, κ̄ typically remains negative,
anchoring conservative critic estimates, while κ tends to be positive and further increases when
learning proceeds, to support explorative actor behavior. This dynamic interplay reflects DEA’s ability
to adaptively balance exploration and conservatism based on the ensemble disagreement and training
context. Trajectories across all tasks, seeds, and learning regimes can be found in Appendix C.

Generalization across learning regimes. Average performance across both learning regimes is
summarized in Table 3; detailed results for each individual regime are provided in Appendix C.
Overall, DEA outperforms the best-performing baseline across tasks and metrics. Notably, it achieves
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Figure 1: Trajectories of the directional aggregation parameters κ̄ (critic) and κ (actor) on MuJoCo.
The top row shows results for the interactive regime, and the bottom row for the sample-efficient
regime (Table 2). Trajectories of all tasks, seeds, and learning regimes can be found in Appendix C.

Table 3: Performance on MuJoCo and DMC environments. Metrics are average final return, In-
terQuantile Mean (IQM) of the final return, and Area Under the Learning Curve (AULC), averaged
over learning regimes, evaluation repetitions, and ten seeds. Average rank is computed per metric
across environments. ↑: higher is better, ↓: lower is better. Best algorithm per metric is bold.

Final Return (↑) IQM (↑) AULC (↑)
Environment DEA REDQ SAC DEA REDQ SAC DEA REDQ SAC

M
u
J
o
C
o

Ant-v5 4920 4278 2199 5226 4712 2583 2829 2249 1556
HalfCheetah-v5 10158 10065 8267 10334 10039 8250 7745 7682 6600
Hopper-v5 3376 2756 2526 3543 2835 2760 2780 2432 1891
Humanoid-v5 5073 4682 4832 5331 5338 5311 3315 2864 2857
Walker2d-v5 4425 4440 2989 4663 4564 2716 3111 3037 1963

MuJoCo Avg. Rank (↓) 1.2 2.0 2.8 1.2 1.8 3.0 1.0 2.0 3.0

D
M
C

Cheetah-run 813 833 690 812 855 707 619 650 525
Hopper-hop 175 174 58 157 148 40 112 105 32
Hopper-stand 785 620 379 930 525 448 579 490 216
Humanoid-run 152 149 80 154 155 80 92 83 39
Humanoid-stand 658 634 348 676 654 313 344 327 170
Humanoid-walk 498 487 283 507 506 283 282 267 149
Quadruped-run 823 803 531 844 869 454 621 597 413
Quadruped-walk 925 917 566 946 939 527 754 701 472
Walker-run 731 705 503 753 715 499 597 568 395

DMC Avg. Rank (↓) 1.11 1.89 3.00 1.33 1.67 3.00 1.11 1.89 3.00

Avg. Rank (↓) 1.14 1.93 2.93 1.29 1.71 3.00 1.07 1.93 3.00

the highest average rank in all three metrics: final return, IQM, and AULC, with a particularly strong
lead in AULC, indicating more reliable and efficient learning over time. Unlike existing methods,
which are typically optimized for a fixed learning regime, DEA adapts its aggregation strategy during
training, based on ensemble disagreement and training context, enabling it to generalize across
learning regimes.

In particular, SAC is designed for low-UTD settings with small ensembles and often becomes overly
conservative under higher UTD ratios. REDQ, by contrast, performs well in sample-efficient settings
where its high UTD ratio and large ensemble size support rapid learning. Yet, REDQ tends to be
unstable or less effective in low-update regimes, where its fixed update strategy becomes less reliable.
DEA avoids these limitations by dynamically adjusting its behavior to the demands of the training
context, rather than relying on static aggregation rules.
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Learning curves and trajectories of the directional aggregation parameters (κ̄ and κ) across all tasks
and learning regimes are provided in Appendix C.

7 ABLATIONS

Our experiments already spans two distinct learning regimes (interactive and sample-efficient) which
naturally serve as ablations over ensemble size and UTD ratio. As shown in Section 6, DEA remains
effective across these varying configurations.

Fixed aggregation and degenerate cases. A natural ablation is to fix κ̄ and κ to constants. Doing
so effectively recovers existing baselines: for example, setting both to enforce a static minimum
corresponds to the conservative update used in SAC, while using a fixed mean aligns with REDQ.
These variants remove DEA’s adaptivity and result in behavior already covered by prior methods.
Fixing either κ̄ or κ individually also degrades performance. As described in Section 5, these
parameters act as directional anchors: κ̄ controls critic-side conservatism, while κ guides actor-side
aggregation. Learning both jointly is crucial to allow DEA to interpolate between exploration and
caution based on ensemble disagreement. Without this flexibility, the critic and actor can become
misaligned, undermining the value of directional ensemble learning. In such cases, DEA loses its
ability to adapt to uncertainty and learning dynamics, and its performance suffers accordingly.

Sensitivity to initializations. We study the sensitivity of DEA to different initializations of the
critic-side aggregation parameter κ̄, while keeping the actor-side initialization of κ fixed at zero. This
isolates the effect of κ̄ and avoids interactions between the two directional parameters. Initializing κ
at zero provides a neutral initialization that does not bias the actor toward conservatism or optimism
at the start of training. Results are shown in Figures 14 and 15 (Appendix D) for the five MuJoCo
environments. As expected, the impact of initialization varies across tasks and learning regimes.
While these results highlight the importance of choosing a good initialization, especially in higher
UTD settings, DEA remains stable across all tested configurations, thanks to its robustness to the
unforeseen effects of numerical perturbations. This robustness stems from its directional update rule,
which only preserves the essential sign-information. None of the initializations lead to divergence or
collapse, and many configurations outperform both SAC and REDQ.

8 RELATED WORK

Ensemble methods in off-policy RL have been widely studied for their ability to stabilize training,
estimate uncertainty, and facilitate exploration. Below, we review prior work through three lenses
most relevant to our work: (i) reducing overestimation bias, (ii) enabling efficient exploration, and
(iii) improving sample efficiency across varying UTD regimes. These objectives often overlap, and
many methods address multiple goals simultaneously. Below, we highlight representative approaches
within each category. A more detailed discussion is provided in Appendix A.

Reducing overestimation bias with ensembles. Overestimation bias in Q-value estimates can
destabilize training and degrade policy performance. To address this issue, various methods have
been proposed for both discrete and continuous control. In discrete-action settings, overestimation
is mitigated by aggregating multiple Q-value estimates in various different manners (Van Hasselt,
2010; Van Hasselt et al., 2016; Anschel et al., 2017; Lan et al., 2020). However, these techniques
do not extend naturally to continuous control. In continuous settings, TD3 (Fujimoto et al., 2018)
proposed taking the minimum over two Q-networks to reduce bias, a strategy adopted and extended
by SAC (Haarnoja et al., 2018a) and others (Chen et al., 2021; Ciosek et al., 2019). These methods
stabilize training by conservatively anchoring the target through fixed ensemble aggregation rules.
DEA, on the other hand, avoids such hard-coded ensemble rules and allows adjusting ensembles
dynamics based on training dynamics.

Recently, regularized value estimation methods have sought to adaptively reduce bias. GPL (Cetin &
Celiktutan, 2023), for example, uses a distributional critic and dual TD-learning with regularization.
However, GPL does not straightforwardly generalize outside its narrow learning regime, struggling in
interactive (low-UTD) settings and requiring large ensembles and high UTD ratios for stability (Cetin
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& Celiktutan, 2023, Figures 13 and 15). Its sample efficiency depends on pre-tuned, task-specific
hyperparameters, particularly heuristic entropy targets, and a fixed optimism schedule (Cetin &
Celiktutan, 2023, Tables 2 and 3). In contrast, DEA avoids such rigidity by using scalar Q-values and
learning aggregation weights directly from data, adapting flexibly across learning regimes without
distributional modeling or handcrafted schedules.

Efficient exploration. While conservative value estimates provide stability, they can suppress ex-
ploration and slow learning. Prior approaches for discrete control encourage exploration by leveraging
ensemble disagreement (Osband et al., 2016; Chen et al., 2017). In continuous control, OAC (Ciosek
et al., 2019) leverages upper confidence bounds to guide exploration, while TOP (Moskovitz et al.,
2021) frames the trade-off between conservatism and exploration as a multi-armed bandit problem,
switching between predefined aggregation strategies. DAC (Nauman & Cygan, 2025) takes a different
approach by maintaining two actors; a pessimistic one for conservative updates and an optimistic
one for exploration. DEA differs from these methods by guiding a single actor through a fully
learnable aggregation scheme. Rather than relying on handcrafted decision rules, confidence bounds,
or architectural complexity, DEA integrates ensemble disagreement directly into the actor update and
adjusts exploration adaptively during training.

Sample efficiency. Improving sample efficiency is a central goal in off-policy RL. REDQ (Chen
et al., 2021) addresses this by using large ensembles and high UTD ratios. However, REDQ relies
on a fixed aggregation strategy and does not adapt to evolving uncertainty or training dynamics.
AQE (Wu et al., 2022) and TQC (Kuznetsov et al., 2020) enhance learning by either averaging over
subsets of multi-head critics (AQE) or truncating the highest Q-value estimates (TQC). However,
both approaches require manually chosen thresholds or hyperparameters that must be tuned separately
for each task or training regime. In contrast, DEA dynamically adapts its aggregation behavior based
on ensemble disagreement, automatically adjusting conservatism and exploration without relying on
fixed schedules or per-task tuning.

Other methods like SUNRISE (Lee et al., 2021) and MeanQ (Liang et al., 2022) also promote
sample-efficient learning but are tailored to fixed schedules and architectures. DEA instead modulates
ensemble aggregation dynamically, allowing a single actor-critic algorithm to perform robustly across
both interactive (low-UTD) and sample-efficient (high-UTD) regimes without manual tuning.

DEA aims to learn a general-purpose aggregation mechanism that operates effectively across learning
regimes, from interactive (low-UTD) to sample-efficient (high-UTD) settings, by leveraging ensemble
disagreement in a principled, learnable manner. In this landscape, SAC (Haarnoja et al., 2018a) and
REDQ (Chen et al., 2021) represent the most adopted baselines for each learning regime.

9 DISCUSSION

DEA is an adaptive ensemble-based method for actor-critics that works across learning regimes.
Its key strength is adaptability: DEA learns directional aggregation weights that evolve with the
data, allowing it to adjust autonomously to varying tasks, uncertainty levels, and training dynamics.
This flexibility allows DEA to perform reliably across both interactive and sample-efficient settings,
something that prior methods typically address only in isolation.

Limitations. Despite strong empirical performance, DEA has limitations. Learnable aggregation
parameters increase training complexity. Although DEA was stable across tasks and seeds in our
experiments, its effectiveness may decline with very small ensembles that provide weak disagreement
signals. Our study focused on dense-reward environments where random exploration often suffices
and estimation bias can be partly offset by heuristics. The fact that DEA still yields clear gains
highlights its strength, and we expect these benefits to be even greater in sparse-reward settings where
exploration is harder. While results indicate that directional aggregation mitigates overestimation
bias and improves learning, this remains unsupported by theory.

Future work. Our work focuses exclusively on online RL; extending these ideas to the offline
setting is an exciting direction, especially building on the promising findings demonstrated in the
online setting. Additionally, pairing DEA with more advanced frameworks, such as BRO (Nauman
et al., 2024b) or Simba (Lee et al., 2025), could further improve learning.
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