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ABSTRACT
Neural scene reconstruction is gaining importance in autonomous
driving, especially for closed-loop simulation of real-world record-
ings. This paper introduces an automated pipeline for training
neural reconstruction models, utilizing sensor streams captured by
a data collection vehicle. Subsequently, these models are deployed
to replicate a virtual counterpart of the actual world. Additionally,
the scene can be replayed or manipulated in a controlled manner.
To achieve this, our in-house simulator is employed to augment
the recreated static environment with dynamic agents, managing
occlusion and lighting. The simulator’s versatility allows for vari-
ous parameter adjustments, including dynamic agent behavior and
weather conditions.
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1 INTRODUCTION
The development of robust autonomous driving systems relies heav-
ily on diverse datasets for training and evaluation purposes. Con-
ventional methodologies leverage recordings of real-world driving
scenarios. However, these datasets [Caesar et al. 2020; Matuszka
et al. 2023] often suffer from a lack of critical safety-related edge
cases due to their inherent rarity. The high costs and logistical
complexities associated with capturing such infrequent events ne-
cessitate the exploration of alternative approaches. This has led to a
surge of interest in synthetic data generation techniques, which of-
fer a promising solution to bridge the gap in safety-critical scenarios
for autonomous vehicle development.

This work introduces an end-to-end learning framework for re-
constructing extensible static 3D environments from real-world
data. The reconstructed environment facilitates the virtual insertion
of dynamic agents at arbitrary locations, environmental condition
adjustments, and rendering from previously unseen camera view-
points. Our solution departs from prior methods[Ljungbergh et al.
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2024; Zhou et al. 2023] by integrating cutting-edge neural recon-
struction techniques within a well-established rendering pipeline.
This synergistic approach enables real-time generation of high-
fidelity images in full 360° view directions of the desired scenarios.
To train our 3D Gaussian Splatting (3DGS) and NeRF-based models,
we leverage synchronized data collected by vehicles equipped with
RGB cameras, precise GNSS devices, and LiDAR sensors.

2 METHOD
2.1 Neural model generation
Our pipeline uses four input data sources for the reconstruction:
images from the high-resolution onboard cameras of the vehicle,
point clouds generated by one or more onboard LiDARs, egomotion
and extrinsic and intrinsic calibration of the cameras.

Since the vanilla implementations of both 3DGS and NERF strug-
gle with temporarily inconsistent scenes, we remove the dynamic
agents by masking them from the training images, only leaving
the static scene to be learned. While segmenting the RGB images
using an off-the-shelf segmentation tool, and masking out every
object that potentially can move might be suitable, this approach
would lead to serious artifacts behind stationary vehicles. Therefore
our solution uses a custom dynamic object masking method. First,
we track the segmentation masks of the relevant objects in image
space using an optical flow-based frame-to-frame tracking method.
Then, we generate 3D bounding boxes of potential dynamic ob-
jects in the scene by utilizing our in-house model. We determine
the stationarity of the boxes in 3D world space, project them to
image space, and match the bounding boxes with the segmentation
masks, essentially creating a bounding box-based tracking of the
segmentation masks with stationarity information. Then we filter
and merge the image space and the bounding box-based tracks and
drop the ones corresponding to stationary objects.

High-fidelity 3D scene reconstruction necessitates highly ac-
curate intrinsic calibration and camera poses. We address this by
refining camera poses and intrinsic parameters using a modified
version of COLMAP.

While these steps would already result in sufficient quality for
RGB renderings, the final depth-based compositing step also re-
quires accurate depth information. Since both underlying recon-
struction methods fail to estimate depth for weakly textured or
blurred surfaces, we explicitly employ depth regularization based
on LiDAR data. For this purpose, we use an egomotion-corrected,
filtered, and aggregated point cloud. For each frame, we apply an
adaptive voxel downsampling based on the distance from the ego
vehicle to reduce the number of points to be processed. Then, we
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Figure 1: Schematic visualization of our simulation pipeline. Left: static scene reconstruction. Right: dynamic agent composition.
The bright green, blue, and pink nodes correspond to the input, processing, and final output steps, respectively.

calculate the occluded point cloud using Open3D [Zhou et al. 2018]
for each camera and generate a sparse depth map by projecting
the points to the corresponding camera’s image space. Finally, we
apply a classical depth map completion algorithm [Ku et al. 2018]
to acquire the dense depth map.

Autonomous driving tasks often need large scenes to be recon-
structed in a highly scalable manner, however, neural reconstruc-
tion methods do not scale well to very large scenes. To tackle this
problem, we opted to decompose the scene to multiple overlapping
blocks in a simplified Block-NeRF [Tancik et al. 2022] like manner.

We use a customized version of Nerfstudio [Tancik et al. 2023]
to train the individual models. A modified version of the Depth-
Nerfacto model with depth loss scheduling, omnidirectional camera
model support, and a learned affine color transform-based color
correction is used for NeRF training, and a depth-supervised modi-
fication of the Splatfacto model is used as the 3DGS method.

2.2 Hybrid rendering pipeline
Our graphics pipeline is physically-based and responsible for ren-
dering neural model-based static backgrounds and mesh-based dy-
namic objects. Image-based lighting (IBL) is also part of the pipeline
so that the amount of light from the background is used to shade
the dynamic objects, to ensure realistic lighting, reflections, and
seamless integration. If tessellated ground surfaces are also avail-
able, an ambient occlusion (AO) method can be utilized for realistic
contact shadows for dynamically placed objects. The depth output
from the neural reconstruction model lets us use depth compositing
to merge all elements and generate the final output image. This
compositing step optionally allows us to add precipitation, like
snow or rain, to the scene, which is also influenced by the IBL.

3 LIMITATIONS AND FUTUREWORK
Most of the limitations of our method stem from the characteristics
of the automotive-grade cameras and the image signal processing
pipelines we are using. These imaging systems typically employ
rolling shutter sensors and utilize auto white balance, auto gain,
and dynamic tone mapping. This can lead to artifacts, even when
using appearance embeddings. Additional information about the
limitations, ongoing works such as LiDAR simulation, and imple-
mentation details can be found in the supplementary material.
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