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Abstract

Several post-training quantization methods001
have been applied to large language models002
(LLMs), and have been shown to perform well003
down to 8-bits. We find that these methods004
break down at lower bit precision, and inves-005
tigate quantization aware training for LLMs006
(LLM-QAT) to push quantization levels even007
further. We propose a data-free distillation008
method that leverages generations produced by009
the pre-trained model, which better preserves010
the original output distribution and allows quan-011
tizing any generative model independent of its012
training data, similar to post-training quantiza-013
tion methods. In addition to quantizing weights014
and activations, we also quantize the KV cache,015
which is critical for increasing throughput and016
support long sequence dependencies at current017
model sizes. We experiment with LLaMA mod-018
els of sizes 7B, 13B, and 30B, at quantization019
levels down to 4-bits. We observe large im-020
provements over training-free methods, espe-021
cially in the low-bit settings.022

1 Introduction023

Following GPT-3 (Brown et al., 2020), several024

families of large language models (LLMs) such025

as OPT (Zhang et al., 2022), PALM (Chowdhery026

et al., 2022), BLOOM (Scao et al., 2022), Chin-027

chilla (Hoffmann et al., 2022) and LLaMA (Tou-028

vron et al., 2023a) have established that increasing029

model size leads to improved model capabilities.030

As a result, language models with tens of billions031

or even hundreds of billions of parameters have032

become the norm in today’s AI landscape. Despite033

the growing excitement around LLMs, serving such034

models to the benefit of billions of users faces sig-035

nificant hurdles due to their large computational036

cost and environmental footprint.037

Fortunately, there has been an increasing effort038

to accurately quantize LLMs, with multiple re-039

cent works (Xiao et al., 2022; Yao et al., 2022)040

focusing on 8-bit post-training quantization of041
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Figure 1: Employing LLM-QAT, accuracy improves
by 3.0 and 1.4 points for LLaMA-7B and LLaMA-
30B models over SoTA PTQ under W4A8KV8 settings.
Additionally, W4A8KV16 LLaMA-13B outperforms
W8A8KV16 LLaMA-7B by 1.1 points with similar OPs.
These improvements are substantial, especially when
considering that the LLaMA-13B model surpasses the
performance of the 7B model by a mere 1.8 points. The
quantization settings are W4A8KV8 / W4A8KV16 /
W8A8KV8 / W8A8KV16 from left to right. See Table 1
for details.

weights and activations and achieving little to no 042

loss of accuracy. as well as quantizing the weight 043

and KV cache and using GPU/CPU offloading to 044

achieve high-throughput LLM inference (Sheng 045

et al., 2023a) . However, SoTA post-training 046

quantization methods dramatically degrade in qual- 047

ity when quantizing weights, activations and KV 048

cache together to below 8-bit. For lower quanti- 049

zation bit-widths, we find it necessary to resort to 050

quantization-aware training (QAT). 051

To our knowledge, QAT for LLMs has not been 052

investigated before. This is understandable for two 053

reasons. First, LLM training is technically diffi- 054

cult and resource intensive. Second, QAT needs 055

training data, which for LLMs is difficult to ob- 056

tain. The sheer scale and diversity of pre-training 057

data is itself an obstacle. Pre-processing might 058

be prohibitive, or worse, some data might simply 059

not be available due to legal restrictions. It is also 060
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Figure 2: Overview of LLM-QAT. We generate data from the pretrained model with next token generation, which is
sampled from top-k candidates. Then we use the generated data as input and the teacher model prediction as label
to guide quantized model finetuning.

increasingly common to train LLMs in multiple061

stages, involving instruction tuning and reinforce-062

ment learning (Ouyang et al., 2022), which would063

be very difficult to replicate during QAT. In this064

work, we side-step this issue by using generated065

data from the LLM itself for knowledge distilla-066

tion. This simple workaround, which we refer to067

as data-free knowledge-distillation is applicable to068

any generative model independent of whether or069

not the original training data is available. We show070

that this method is better able to preserve the origi-071

nal model’s output distribution, even compared to072

training on large subsets of the original training set.073

Moreover, we can successfully distill quantized074

models using only a small set (100k) of sampled075

data, thus keeping computational costs reasonable.076

All of our experiments are conducted using a single077

8-gpu training node.078

As a result, we are able to distill the 7B, 13B079

and 30B LLaMA models with activations quan-080

tized down to 8 bits, weights and KV cache down081

to 4-bits. In this regard, our approach exhibits082

significant enhancements in quality compared to083

post-training quantization. Notably, larger models084

employing QAT outperform smaller models utiliz-085

ing floating-point 16-bit representations, despite086

having similar model sizes, as illustrated in Fig-087

ure 1. Furthermore, we have successfully quan-088

tized activations to 6-bit precision, surpassing what089

was possible with existing methods. For a compre-090

hensive analysis of our experimental results and091

detailed ablations, please refer to Section 3.092

In summary, we present the first application of093

QAT to LLMs, resulting in the first accurate 4-bit094

quantized LLMs. We also demonstrate quantizing095

the KV cache simultaneously with weights and096

activations, which is critical to alleviate throughput097

bottlenecks for long sequence generation. All of098

this is achieved by a novel data-free distillation099

method, which makes QAT practical for large pre-100

trained generative models.101

2 Method 102

Quantizing large language models (LLMs) using 103

quantization-aware training (QAT) is a nontrivial 104

task with challenges in two key aspects. First, 105

LLMs are pre-trained to excel in zero-shot gen- 106

eralization, and it is crucial to preserve this capa- 107

bility after quantization. Therefore, selecting an 108

appropriate fine-tuning dataset is important. If the 109

QAT data is too narrow in domain or significantly 110

different than the original pre-training distribution, 111

this is likely to hurt model performance. On the 112

other hand, it is difficult to replicate the original 113

training setup exactly, due to the scale and complex- 114

ity of LLM training. In Section 2.1, we introduce 115

data-free quantization-aware training (QAT) which 116

produces QAT data using next token data gener- 117

ation. This method demonstrates superior perfor- 118

mance compared to using subsets of the original 119

pre-training data. Second, LLMs exhibit unique 120

weight and activation distributions characterized 121

by a significant presence of outliers, which distin- 122

guishes them from smaller models. Consequently, 123

the state-of-the-art quantization clipping methods 124

for small models do not work out of the box for 125

LLMs. In Section 2.2, we identify suitable quantiz- 126

ers for LLMs. 127

2.1 Data-free Distillation 128

In order to closely synthesize the distribution of the 129

pre-training data with a limited amount of fine- 130

tuning data, we proposed next token data gen- 131

eration from the original pre-trained model. As 132

shown in Figure 2 (a), we randomize the first token 133

<start> from vocabulary and let the pre-trained 134

model to generate the next token <out1>, then 135

the generated token is appended to the start token 136

for generating new output <out2>. We repeat this 137

iterative procedure until we reach either the end of 138

sentence token or the maximum generation length. 139

We test three different sampling strategies in the 140
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next token generation. The most straightforward141

way is to pick the top-1 candidate as the next token.142

However, the generated sentence lacks of diver-143

sity and will cyclically repeat several tokens. To144

address this issue, we instead stochastically sam-145

ple the next token from the distribution using the146

SoftMax output of the pre-trained model as the147

probability. This sampling strategy yields more di-148

verse sentences and greatly enhances the accuracy149

of the fine-tuned student model. Furthermore, we150

discover that the initial few tokens play a crucial151

role in determining the prediction trend. There-152

fore, it is important for them to have higher con-153

fidence. In our generative process, we employ a154

hybrid sampling strategy that deterministically se-155

lects the top-1 predictions for the first 3~5 tokens156

and stochastically samples the remaining tokens. A157

detailed ablation study comparing different gener-158

ated data and real data is presented in Section3.3.1.159

2.2 Quantization-Aware Training160

2.2.1 Preliminaries161

In this work, we study linear quantization i.e., uni-162

form quantization. Linear quantization can be cate-163

gorized into two categories based on whether the164

real values are clipped or not: MinMax quantiza-165

tion, which preserves all value ranges, and clipping-166

based quantization.167

In MinMax quantization,168

Xi
Q = αX̂i

Q = α⌊
Xi

R − β

α
⌉+ β. (1)169

Here XQ and XR denote the quantized and full-170

precision variables, respectively. i refers to the i-th171

element in the tensor. α is the scaling factor and β172

is the zero-point value. For symmetric quantization,173

α = max(|XR|)
2N−1−1

, β = 0. And for asymmetric quan-174

tization, α = max(XR)−min(XR)
2N−1

, β = min(XR).175

Compared to the MinMax Quantization, clip-176

ping the outliers can help improve the precision177

and allocate more bits to the intermediate values.178

Thus, many recent work (Shen et al., 2020a; Zhang179

et al., 2020) adopts clipping-based quantization for180

transformer-based language models. The quantiza-181

tion can be formulated as:182

Xi
Q = αX̂i

Q = α⌊Clip(
Xi

R − β

α
, 0, 1)⌉+β. (2)183

where the scale α and zero-point value β can be184

calculated statistically or learned through gradients.185
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Figure 3: Overview of the quantized transformer in
LLM-QAT. We quantize all the weights and input acti-
vations in fully-connected linear layers. The KV cache
is also quantized if specified.

2.2.2 Quantization for LLMs 186

Quantization function We illustrate our quantized 187

transformer model in Figure 3. In line with the find- 188

ings in (Dettmers et al., 2022; Xiao et al., 2022), 189

we have also observed a significant presence of 190

outliers in both the weights and activations of large 191

language models (LLMs). These outliers have a 192

notable impact on the quantization process, as they 193

contribute to an increase in the quantization step 194

size while diminishing the precision of intermedi- 195

ate values. Nevertheless, clipping these outliers 196

during quantization proves detrimental to LLM per- 197

formance. During the initial stages of training, any 198

clipping-based method will lead to exceptionally 199

high perplexity scores (i.e., > 10000), causing a 200

substantial loss of information that proves to be 201

difficult to recover through fine-tuning. Therefore, 202

we choose to retain these outliers instead. More- 203

over, we find that in the model with the gated linear 204

unit (GLU), the activations are weights are mostly 205

symmetrically distributed. Based on our analysis 206

and empirical observations, we choose symmetric 207

MinMax quantization for both weights and activa- 208

tions: 209

Xi
Q = α⌊

Xi
R

α
⌉, α =

max(|XR|)
2N−1 − 1

(3) 210

Here XQ denotes the quantized weights or activa- 211

tions and XR denotes the real-valued weights or 212

activations. To ensure efficient quantization, we 213

adopt the per-token activation quantization and per- 214

channel weight quantization. For a comprehensive 215

evaluation of the different quantizer choices, we 216

provide the ablation study in Section 3.3.2. 217

Quantization-aware training for KV-cache In 218

3



addition to weight and activation quantization, the219

key-value cache (KV cache) in large language220

models (LLMs) also consumes a non-negligible221

amount of memory. However, only a few previous222

works have addressed the KV cache quantization in223

LLMs, with the methods primarily limited to post-224

training quantization(Sheng et al., 2023b). In our225

study, we demonstrate that a similar quantization-226

aware training approach used for activation quanti-227

zation can be employed to quantize the KV cache.228

We adopt per-token quantization in Eq. 3, given229

that the key and value are generated token by token.230

During the generation process, the current key and231

value are quantized, and their corresponding scal-232

ing factor is stored. During the training process for233

QAT, we apply quantization to the entire activation234

tensors of both the keys and values, as shown in235

Figure 3. By integrating the quantization function236

into the gradient calculation, we ensure effective237

training using quantized key-value pairs.238

Knowledge distillation We use cross-entropy239

based logits distillation for training the quantized240

student network from the full-precision pre-trained241

teacher network:242

LCE = − 1

n

∑
c

n∑
i=1

pTc (Xi) log(p
S
c (Xi)), (4)243

Here i denotes the ith sample in the current batch244

with n total sentences. c denotes the number of245

classes and in our case, it equals the size of the246

vocabulary. T and S are the teacher network and247

student network, respectively.248

As discussed in Section 2.1, in the data gener-249

ation process, it is important to sample the next250

token from distribution rather than always select-251

ing the top-1 candidate. By doing so, the next252

token does not necessarily represent the optimal la-253

bel for training the student model, as the sampling254

introduces inherent noise. Consequently, we pro-255

pose to utilize the predictions from the pre-trained256

model as soft labels, which provides more informa-257

tive targets for guiding the training of the student258

model. Detailed ablation study can be found in259

Section 3.3.3.260

3 Experiments261

We assess the effectiveness of our approach by con-262

ducting experiments on LLaMA-7B/13B/30B mod-263

els and presenting results on various tasks. Specifi-264

cally, we report the zero-shot performance on Com-265

mon Sense Reasoning tasks such as BoolQ (Clark266

et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap 267

et al., 2019), HellaSwag (Zellers et al., 2019), 268

WinoGrande (Sakaguchi et al., 2021), ARC (Clark 269

et al., 2018), and OBQA (Mihaylov et al., 2018). 270

We also assess the few-shot performance on Trivi- 271

aQA (Joshi et al., 2017) and MMLU (Hendrycks 272

et al., 2020) datasets, along with perplexity scores 273

on WikiText2 (Merity et al., 2016) and C4 (Raffel 274

et al., 2020) datasets. 275

3.1 Experimental Settings 276

In our quantized network training process, we ini- 277

tialize the model with a pre-trained model and 278

employ it as the teacher for knowledge distil- 279

lation. To optimize the model, we utilize the 280

AdamW (Loshchilov and Hutter, 2017) optimizer 281

with zero weight decay. Each GPU is assigned a 282

batch size of 1, and the learning rate is set to 2e-5, 283

following a cosine learning-rate decay strategy. For 284

data generation, we utilize the LLaMA-7B model, 285

and the maximum length of generated sequences 286

is set to 2048. We calculate number of OPs by 287

OPs = MACs×Wbits ×Abits with the sequence 288

length equals to 2048. 289

3.2 Main Results 290

We consider three post-training quantization (PTQ) 291

methods, round-to-nearest (RTN), GPT-Q (Frantar 292

et al., 2022) and SmoothQuant (Xiao et al., 2022) 293

as baselines. We compare to them in several dif- 294

ferent settings, where the weights, activations and 295

KV cache values are quantized to different levels 296

(denoted as W-A-KV). Different PTQ methods per- 297

form well in different settings, and we compare our 298

method to the best PTQ result in each setting. 299

Table 1, table 2 and table 6 (in Appendix) give 300

the comparisons of the proposed QAT methods 301

with SOTA PTQ methods for LLMs on Zero-shot 302

tasks on Common Sense Reasoning tasks, perplex- 303

ity evaluation on Wiki2 and C4 and few shot exact 304

match on the MMLU and TriviaQA benchmarks 305

respectively. The perplexity evaluations verify 306

whether the quantize models are able to preserve 307

the output distribution of the model on a diverse 308

sample of its training domains. The zero-shot and 309

few-shot evaluations measure if the model’s capa- 310

bilities on downstream tasks are retained. 311

The trends in each table are similar. All methods 312

tend to do well in the 8-bit setting across all model 313

sizes. This holds even when the KV cache is also 314

quantized to 8-bits, together with weights and acti- 315

vations. However, when either of these three values 316
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Table 1: Zero-shot performance on Common Sense Reasoning tasks.
#OPs Size BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method #Bits (×1015) (GB) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 3.81 12.6 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 RTN 4-8-4 0.63 3.5 51.9 56.3 40.5 35.7 49.9 39.3 25.3 30.8 41.2
3 SmoothQuant 4-8-4 0.63 3.5 54.7 55.4 41.1 38.9 51.5 43.9 27.7 32.0 43.2
4 LLM-QAT 4-8-4 0.63 3.5 73.7 77.3 47.9 71.9 66.4 69.0 46.5 51.6 63.0
5 RTN 4-8-8 0.70 3.5 67.8 76.6 47.2 71.4 67.2 67.4 45.6 51.2 61.8
6 SmoothQuant 4-8-8 0.70 3.5 71.0 76.0 45.4 67.8 66.0 67.4 42.8 47.0 60.4
7 LLM-QAT 4-8-8 0.70 3.5 74.6 78.5 49.4 74.0 69.0 71.5 47.0 54.0 64.8
8 RTN 4-6-16 0.74 3.5 62.4 74.5 46.8 67.9 64.5 64.6 41.5 49.0 58.9
9 SmoothQuant 4-6-16 0.74 3.5 68.8 73.9 44.5 65.7 65.3 66.0 43.6 48.0 59.5
10 LLM-QAT 4-6-16 0.74 3.5 73.9 77.7 48.2 72.3 66.3 68.8 45.3 52.0 63.0
11 RTN 4-8-16 0.84 3.5 67.6 77.4 47.1 71.6 66.9 67.1 45.8 52.0 61.9
12 SmoothQuant 4-8-16 0.84 3.5 70.2 76.4 44.8 68.1 66.0 67.3 42.9 49.0 60.6
13 LLM-QAT 4-8-16 0.84 3.5 74.5 78.5 49.2 74.0 67.1 71.6 47.4 54.6 64.6
14 RTN 4-16-16 1.27 3.5 71.2 77.3 47.6 72.7 66.9 68.8 46.4 52.8 63.0
15 GPTQ 4-16-16 1.27 3.5 67.7 76.0 46.8 69.4 66.7 66.9 43.0 50.6 60.9
16 LLM-QAT 4-16-16 1.27 3.5 73.9 78.8 49.1 74.0 68.6 71.7 48.2 54.4 64.8
17 RTN 8-8-4 1.06 6.5 54.7 59.4 43.1 45.6 57.4 51.2 29.6 37.8 47.4
18 SmoothQuant 8-8-4 1.06 6.5 60.7 67.5 44.9 58.3 58.6 57.5 36.9 43.6 53.5
19 LLM-QAT 8-8-4 1.06 6.5 75.3 78.0 48.0 73.5 66.7 71.2 47.6 51.6 64.0
20 RTN 8-8-8 1.13 6.5 76.4 79.5 48.7 75.5 69.5 72.3 46.6 56.0 65.6
21 SmoothQuant 8-8-8 1.13 6.5 76.1 79.6 48.7 76.2 70.1 73.7 48.7 57.0 66.3
22 LLM-QAT 8-8-8 1.13 6.5 76.1 78.9 48.7 75.4 70.4 72.9 48.7 55.4 65.8
23 RTN 8-8-16 1.27 6.5 76.4 79.1 48.3 75.7 70.5 72.8 46.5 55.6 65.6
24 SmoothQuant 8-8-16 1.27 6.5 76.2 79.5 48.6 76.1 70.5 73.2 47.7 57.2 66.1
25 LLM-QAT 8-8-16 1.27 6.5 76.3 79.0 48.9 75.7 70.4 72.5 47.3 55.6 65.7
26 LLaMA-13B 16-16-16 7.26 24.2 78.1 80.0 50.5 79.2 73.6 74.5 52.6 55.0 68.0
27 RTN 4-8-4 1.11 6.5 54.0 59.2 41.9 41.6 55.9 45.0 27.0 33.2 44.7
28 SmoothQuant 4-8-4 1.11 6.5 63.0 65.3 42.2 50.6 54.1 49.6 30.3 34.2 48.7
29 LLM-QAT 4-8-4 1.11 6.5 72.0 76.8 49.2 73.6 66.5 69.3 46.9 52.8 63.4
30 RTN 4-8-8 1.22 6.5 76.2 78.8 49.3 76.2 69.9 72.2 50.7 56.8 66.3
31 SmoothQuant 4-8-8 1.22 6.5 72.5 77.1 47.2 74.3 69.5 67.4 43.3 53.4 63.1
32 LLM-QAT 4-8-8 1.22 6.5 77.5 79.1 48.6 77.5 70.6 73.0 51.9 56.2 66.8
33 RTN 4-6-16 1.24 6.5 71.8 74.1 47.7 70.2 65.1 69.3 44.1 45.6 61.0
34 SmoothQuant 4-6-16 1.24 6.5 70.6 76.3 47.9 73.1 68.5 65.9 43.3 52.6 62.3
35 LLM-QAT 4-6-16 1.24 6.5 75.4 79.3 48.4 76.5 69.2 73.1 48.6 53.4 65.5
36 RTN 4-8-16 1.44 6.5 76.8 79.1 49.1 76.3 70.5 72.6 49.8 56.6 66.4
37 SmoothQuant 4-8-16 1.44 6.5 72.5 77.9 47.6 74.2 69.7 68.2 45.0 54.2 63.7
38 LLM-QAT 4-8-16 1.44 6.5 77.7 79.3 48.4 77.5 70.6 73.5 53.0 57.4 67.2
39 RTN 4-16-16 2.27 6.5 77.4 79.1 49.2 76.8 70.5 72.6 51.2 54.2 66.4
40 GPTQ 4-16-16 2.27 6.5 78.0 79.8 49.2 77.7 72.6 73.2 50.6 55.4 67.1
41 LLM-QAT 4-16-16 2.27 6.5 77.7 79.4 49.1 77.7 71.5 72.8 52.0 53.8 66.7
42 RTN 8-8-4 1.95 12.4 65.8 66.2 43.9 56.7 57.3 58.2 34.5 42.6 53.2
43 SmoothQuant 8-8-4 1.95 12.4 66.6 71.7 44.8 61.1 61.0 63.4 38.3 43.6 56.3
44 LLM-QAT 8-8-4 1.95 12.4 74.9 78.3 48.0 75.7 68.9 71.9 51.1 54.2 65.4
45 RTN 8-8-8 2.06 12.4 77.8 80.0 50.8 78.9 72.6 74.5 52.1 55.6 67.8
46 SmoothQuant 8-8-8 2.06 12.4 78.3 80.3 50.8 79.2 73.2 74.8 52.4 55.4 68.0
47 LLM-QAT 8-8-8 2.06 12.4 78.7 80.4 50.1 79.1 73.2 74.8 51.7 55.4 67.9
48 RTN 8-8-16 2.27 12.4 77.8 80.1 50.6 78.9 73.5 74.9 51.9 56.4 68.0
49 SmoothQuant 8-8-16 2.27 12.4 78.7 80.0 50.6 79.1 73.4 74.8 51.4 56.0 68.0
50 LLM-QAT 8-8-16 2.27 12.4 78.5 80.4 50.6 79.0 72.8 74.2 52.9 55.8 68.0
51 LLaMA-30B 16-16-16 17.9 60.6 83.2 82.1 50.4 82.9 75.6 80 58 59.3 71.4
52 RTN 4-8-4 2.54 15.7 56.9 56.2 40.2 39.6 50.0 40.6 26.4 29.8 42.5
53 SmoothQuant 4-8-4 2.54 15.7 56.6 55.0 39.9 33.8 49.9 38.8 24.5 27.2 40.7
54 LLM-QAT 4-8-4 2.54 15.7 80.5 80.3 49.7 80.2 75.2 78.2 56.0 59.2 69.9
55 RTN 4-8-8 2.76 15.7 78.8 79.9 49.0 80.2 75.2 78.4 54.4 57.2 69.1
56 SmoothQuant 4-8-8 2.76 15.7 74.9 79.5 47.1 76.9 70.6 76.5 54.5 55.0 66.9
57 LLM-QAT 4-8-8 2.76 15.7 81.3 80.9 50.4 81.3 76.3 80.3 56.5 57.0 70.5
58 RTN 4-6-16 2.66 15.7 64.5 57.0 42.1 48.9 55.4 39.3 27.0 32.2 45.8
59 SmoothQuant 4-6-16 2.66 15.7 75.0 77.6 46.6 73.8 69.1 74.5 52.9 50.6 65.0
60 LLM-QAT 4-6-16 2.66 15.7 78.8 80.3 50.3 79.9 75.1 77.0 54.4 59.0 69.4
61 RTN 4-8-16 3.19 15.7 79.1 79.6 49.5 80.4 74.9 78.3 53.7 57.2 69.1
62 SmoothQuant 4-8-16 3.19 15.7 76.0 79.8 48.2 77.0 71.6 76.4 55.6 54.2 67.3
63 LLM-QAT 4-8-16 3.19 15.7 80.6 80.8 50.1 81.2 75.8 79.7 56.3 56.3 70.1
64 RTN 4-16-16 5.29 15.7 80.8 80.1 49.8 81.6 75.8 79.3 55.8 57.2 70.1
65 GPTQ 4-16-16 5.29 15.7 81.0 81.6 49.7 82.2 74.3 79.6 56.1 58.2 70.3
66 LLM-QAT 4-16-16 5.29 15.7 81.8 81.0 49.7 81.8 75.1 79.4 56.8 54.9 70.1
67 RTN 8-8-4 4.65 30.7 59.8 64.5 42.7 51.8 55.0 52.2 33.2 38.0 49.6
68 SmoothQuant 8-8-4 4.65 30.7 58.9 63.7 43.5 54.8 55.2 55.3 33.6 40.2 50.7
69 LLM-QAT 8-8-4 4.65 30.7 81.2 81.6 50.1 81.1 73.6 78.5 55.7 55.7 69.7
70 RTN 8-8-8 4.86 30.7 82.2 81.2 49.4 81.9 75.6 79.6 57.4 58.2 70.7
71 SmoothQuant 8-8-8 4.86 30.7 82.5 82.3 50.2 82.8 75.9 80.3 56.9 57.8 71.1
72 LLM-QAT 8-8-8 4.86 30.7 82.2 81.3 51.0 82.3 75.0 80.2 57.0 57.2 70.8
73 RTN 8-8-16 5.29 30.7 82.3 81.6 50.2 81.7 75.9 79.7 56.7 59.0 70.9
74 SmoothQuant 8-8-16 5.29 30.7 82.8 81.9 50.3 82.7 76.3 80.2 57.7 58.4 71.3
75 LLM-QAT 8-8-16 5.29 30.7 82.4 81.4 50.3 82.5 76.0 80.0 57.2 56.8 70.8

are quantized to less than 8-bits, PTQ methods re-317

sult in accuracy loss, whereas LLM-QAT holds318

up much better. For example in the 8-8-4 setting,319

30B LLM-QAT achieves an average zero-shot accu-320

racy of 69.7, compared to 50.7 with SmoothQuant321

(Table 1, rows 68-69). The difference is smaller 322

in the 4-8-8 setting, however LLM-QAT still out- 323

performs the best PTQ method (RTN in this case) 324

by 1.4 points (rows 55, 57). In the 4-8-4 setting, 325

where both weights and the KV cache are quantized 326
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Table 2: Perplexity evaluation results on WikiText (Merity et al., 2016) and C4 (Raffel et al., 2020)
Perplexity Perplexity Perplexity

#Bits Method C4 (↓) Wiki2 (↓) Method C4 (↓) Wiki2 (↓) Method C4 (↓) Wiki2 (↓)
1 16-16-16 LLaMA-7B 7.2 10.4 LLaMA-13B 6.7 9.7 LLaMA-30B 6.0 7.0
2 4-8-4 RTN 55.1 151.4 RTN 25.0 103.6 RTN 8.2 8.9
3 4-8-4 SmoothQuant 81.1 163.6 SmoothQuant 26.0 60.1 SmoothQuant 10.6 12.0
4 4-8-4 LLM-QAT 8.6 11.6 LLM-QAT 7.6 10.2 LLM-QAT 7.3 7.7
5 4-8-8 RTN 8.4 13.9 RTN 7.3 12.5 RTN 7.4 8.2
6 4-8-8 SmoothQuant 9.1 13.7 SmoothQuant 8.8 12.5 SmoothQuant 8.7 9.8
7 4-8-8 LLM-QAT 7.5 11.2 LLM-QAT 6.8 10.0 LLM-QAT 6.9 7.5
8 4-6-16 RTN 10.5 20.0 RTN 11.3 32.7 RTN 11.4 15.4
9 4-6-16 SmoothQuant 9.9 14.7 SmoothQuant 9.1 13.6 SmoothQuant 8.7 12.5
10 4-6-16 LLM-QAT 7.7 10.8 LLM-QAT 7.1 10.5 LLM-QAT 7.3 7.9
11 4-8-16 RTN 8.6 14.0 RTN 7.5 12.5 RTN 7.4 8.2
12 4-8-16 SmoothQuant 9.1 13.7 SmoothQuant 8.7 12.6 SmoothQuant 8.7 9.8
13 4-8-16 LLM-QAT 7.4 10.9 LLM-QAT 6.8 10.0 LLM-QAT 6.9 7.5
14 4-16-16 RTN 8.5 14.4 RTN 7.3 11.9 RTN 7.0 7.7
15 4-16-16 GPTQ 8.4 17.4 GPTQ 6.8 10.7 GPTQ 6.2 7.9
16 4-16-16 LLM-QAT 7.4 10.9 LLM-QAT 6.5 9.6 LLM-QAT 6.5 7.3
17 8-8-4 RTN 42.1 105.1 RTN 15.4 43.4 RTN 7.0 7.8
18 8-8-4 SmoothQuant 30.8 77.9 SmoothQuant 13.9 40.9 SmoothQuant 6.7 7.5
19 8-8-4 LLM-QAT 7.6 10.2 LLM-QAT 7.5 11.3 LLM-QAT 6.8 7.4
20 8-8-8 RTN 7.1 10.7 RTN 6.6 10.0 RTN 6.3 7.3
21 8-8-8 SmoothQuant 7.0 10.5 SmoothQuant 6.5 9.8 SmoothQuant 6.1 7.1
22 8-8-8 LLM-QAT 7.0 10.3 LLM-QAT 7.0 9.4 LLM-QAT 6.3 7.1
23 8-8-16 RTN 7.3 10.7 RTN 6.8 10.1 RTN 6.3 7.3
24 8-8-16 SmoothQuant 7.0 10.5 SmoothQuant 6.5 9.7 SmoothQuant 6.1 7.1
25 8-8-16 LLM-QAT 7.0 10.3 LLM-QAT 6.5 9.5 LLM-QAT 6.3 7.1

to 4 bits, all PTQ methods produce poor results,327

whereas LLM-QAT achieves 69.9, only trailing328

the full precision model by 1.5 points on average.329

LLM-QAT also works reasonably well for 6-bit330

activation quantization. While this setting might331

not be currently practical due to lack of hardware332

support, it’s a promising data point for sub-8-bit333

computation for LLMs.334

One important question for practitioners is335

whether to use a small model at full precision,336

or a larger quantized model of similar inference337

cost. While the exact trade-offs can vary based on338

several factors, we can make several recommen-339

dations based on our results. First, 8-bit quantiza-340

tion should be preferred over smaller full precision341

models, and PTQ methods are sufficient for this342

case. An 8-8-8 30B quantized model outperforms343

a 13B model of similar size, and should have lower344

latency and higher throughput in practice. This345

also holds for an 8-bit 13B model compared with a346

16-bit 7B model. Furthermore, 4-bit models quan-347

tized using LLM-QAT should be preferred over348

8-bit models of similar size. For instance a 4-8-4349

LLM-QAT 30B outperforms an 8-bit LLaMA-13B,350

and a 4-8-8 LLM-QAT 13B is better than an 8-351

bit LLaMA-7B. As a result, we recommend 4-bit352

LLM-QAT models for the best efficiency-accuracy353

tradeoff.354

3.3 Ablation355

We conduct the ablation study regarding the data356

choice, quantization methods, and knowledge dis-357

tillation methods in Sections 3.3.1, 3.3.2 and 3.3.3,358

respectively. We report both the perplexity scores 359

on WikiText2 (Merity et al., 2016)/C4 (Raffel et al., 360

2020) datasets and the performance on zero-shot 361

common sense reasoning tasks. 362

3.3.1 Data Choice 363

In Table 3, we observe that WikiText (Merity et al., 364

2016), which is constructed using text extracted 365

from Wikipedia, does not encompass all the infor- 366

mation utilized during pre-training. Consequently, 367

a model fine-tuned solely on WikiText tends to 368

overfit on this specific dataset and struggles to gen- 369

eralize well to other datasets. On the other hand, the 370

Crawled Corpus (C4) dataset (Raffel et al., 2020) 371

comprises hundreds of gigabytes of clean English 372

text collected from the web. Fine-tuning the model 373

on C4 yields reasonable transfer accuracy when 374

evaluated on the WikiText dataset. However, it ex- 375

hibits poor accuracy when tasked with zero-shot 376

inference tasks. More comprehensive comparison 377

can be found in appendix. 378

Compared to the existing data, the model fine- 379

tuned on generated data demonstrates superior gen- 380

eralizability, particularly in zero-shot tasks. More- 381

over, the data generated through sampling from 382

the distribution exhibits greater diversity compared 383

to the data generated without sampling. This en- 384

hanced diversity leads to significantly improved 385

performance across all tasks. 386

3.3.2 Quantization Function 387

We compare the no-clipping quantization method 388

with clipping-based methods in Table 4. Follow- 389
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Table 3: Effects of the finetuning data to the performance in downstream tasks. We use 4-bit weight 6-bit activation
LLaMA-7B for the experiments. We test three strategies for data generation. Generated data1 refers to always
picking the top-1 candidate without sampling. Generated data2 refers to sampling the next token from the distribution.
Generated data3 refers to first 3~5 tokens are generated with deterministic selection while the rest are stochastically
sampled from the distribution.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Finetuning Data (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.7 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Wiki2 10.1 5.5 46.9 74.3 45.2 72.4 65.7 67.2 45.0 47.8 58.1
3 Wiki103 9.6 5.2 45.9 74.4 46.4 71.4 66.1 67.5 46.3 49.8 58.5
4 C4 7.8 11.3 61.7 77.7 48.8 73.2 67.2 67.8 43.6 52.2 61.5
6 Generated data1 8.0 11.4 60.0 77.1 48.1 72.3 65.7 67.4 44.2 49.8 60.6
7 Generated data2 7.7 11.5 70.9 76.1 47.9 72.2 66.9 69.3 46.4 53.6 62.9
8 Generated data3 7.7 10.8 72.9 76.8 47.9 72.4 68.3 68.8 44.2 53.2 63.1

ing the practice in previous works (Liu et al.,390

2022b, 2023), we use StatsQ (Liu et al., 2022a), a391

statistically-calculated scaling factor for clipping-392

based weight quantization and LSQ (Esser et al.,393

2019), the learnable scaling factor for clipping-394

based activation quantization. However, our395

findings indicate that these two state-of-the-art396

clipping-based quantization methods do not sur-397

pass the performance achieved by the MinMax non-398

clipping method. This observation reinforces the399

argument that preserving the outliers is critical to400

the performance of large language models.401

Furthermore, we observe that for LLaMA mod-402

els, the activations and weights exhibit predomi-403

nantly symmetric distributions, which makes using404

symmetric quantizers the best choice. It is impor-405

tant to note, however, that this conclusion may not406

hold true for other large language models, espe-407

cially those incorporating GeLU layers.408

3.3.3 Knowledge Distillation409

Table 5 shows that different knowledge distillation410

methods have a significant impact on the final ac-411

curacy of fine-tuned models. Notably, utilizing the412

next token alone as the label is sub-optimal due to413

the inherent randomness and noise introduced by414

sampling from a distribution of candidates during415

the generation process. In contrast, logit distilla-416

tion, which utilizes the complete logit distribution417

prediction from the teacher model, leads to supe-418

rior performance of fine-tuned models compared to419

label-based training approaches. Interestingly, we420

have observed that incorporating attention distilla-421

tion or hidden layer distillation actually hampers422

the performance. Consequently, we exclusively423

employ logit distillation in all our experiments.424

3.4 Training Cost Analysis425

We use NVIDIA A100-PG509 40GB for data gen-426

eration. On average, it takes 36 seconds to generate427

GPU days

Figure 4: Total computation cost over 5 million infer-
ences.

one example with a generation length up to 2048, 428

using a batch size of 1. We use 16 A100 GPUs for 429

data generation and it allows us to generate 100k 430

training examples in ~2.5 days. For fine-tuning, it 431

takes ~0.7 days ~0.8 days, and ~1.9 days to fine- 432

tune the 7B-model and, 13B model and 30B model, 433

respectively, with 8 A100 80G GPUs and batch size 434

1 per GPU on 100k generated examples. This train- 435

ing cost is substantially larger than PTQ, which 436

takes 0.1 days to train. However these costs are all 437

insignificant when amortized over the cost of infer- 438

ence over millions of requests. For instance, over 439

5 million inferences, a full precision 30B model 440

would take 4280 A100 GPU days, while PTQ 8-8- 441

8 would take 2743 days, and a comparable accu- 442

racy 4-8-8 LLM-QAT model would take 586 days1. 443

These costs are pictured in Figure 4. 444

4 Related Works 445

Quantization Neural network quantization is 446

proved to be a valuable tool in compressing model 447

18-bit weight 8-bit activation quantization results in
1.56x speedup, and 4-bit weight 8-bit activation quantization
achieves 7.3x speedup according to Xiao et al. (2022); Bai
et al. (2022)
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Table 4: Ablation study on the effects of the quantization methods on LLaMA-7B model. The quantization level is
set to 4-bit weight and 8-bit activation.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Weight Activation (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.7 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Clipping Clipping 9.0 11.9 64.9 66.8 43.6 63.5 56.1 51.0 31.4 33.8 51.4
3 MinMax Clipping 9.4 12.8 63.5 62.4 42.4 61.2 52.9 45.6 29.6 33.8 48.9
4 Clipping MinMax 8.2 11.0 71.7 75.1 43.7 69.5 58.9 62.6 35.2 37.8 56.8
5 MinMax MinMax 7.4 10.9 74.8 77.8 48.6 73.6 69.0 69.7 45.8 55.8 64.4
6 Asym Asym 7.3 10.4 75.0 78.4 48.0 73.9 69.3 71.9 45.7 52.6 64.3
7 Sym Asym 7.4 11.0 72.7 77.9 48.8 73.3 67.9 69.2 45.2 56.0 63.9
8 Asym Sym 7.4 10.9 73.3 78.4 48.0 73.9 68.9 71.4 46.4 54.0 64.3
9 Sym Sym 7.4 10.9 74.8 77.8 48.6 73.6 69.0 69.7 45.8 55.8 64.4

Table 5: Ablation study on the knowledge distillation choices on LLaMA-7B model with generated data. The
quantization level is set to 4-bit weight and 6-bit activation.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Method (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.4 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Label 8.1 11.9 69.4 77.3 48.7 72.1 67.1 67.6 45.4 51.4 62.4
3 Label + Attention 8.8 18.6 70.2 75.3 47.6 68.9 67.2 65.6 42.6 51.2 61.1
4 Label + Hidden 10.9 16.2 61.0 53.5 41.1 32.6 50.2 25.8 23.1 25.0 37.7
5 Label + Logits 7.8 11.0 70.8 77.3 48.3 72.5 66.7 68.2 46.5 55.4 63.2
6 Logits 7.7 10.8 72.9 76.8 47.9 72.4 68.3 68.8 44.2 53.2 63.1
7 Logits + Attention 7.9 12.2 73.2 74.6 47.2 69.1 65.1 64.8 42.1 52.8 61.1
8 Logits + Hidden 22.3 52.6 38.0 50.4 38.6 25.6 50.5 26.3 24.3 25.8 34.9
9 Logits + Hidden + Attention 21.9 46.0 55.0 47.8 39.0 33.4 48.5 29.7 26.4 25.8 38.2

size and reducing storage consumption. Classic448

quantization methods, such as MinMax quantiza-449

tion (Jacob et al., 2018; Krishnamoorthi, 2018),450

Learned step-size quantization (Esser et al., 2019),451

PACT (Choi et al., 2018), N2UQ (Liu et al., 2022a)452

and etc, have primarily been developed for convolu-453

tional neural networks. While several recent works454

have explored language model compression, they455

are mostly focused on smaller models (Zafrir et al.,456

2019; Fan et al., 2020; Shen et al., 2020b; Zadeh457

et al., 2020; Bai et al., 2021; Qin et al., 2021; Liu458

et al., 2022b) like BERT (Devlin et al., 2019) or459

BART (Lewis et al., 2019). For large language mod-460

els (LLMs), the available quantization methods are461

mostly limited to post-training quantization (Xiao462

et al., 2022; Yao et al., 2022; Frantar et al., 2022;463

Sheng et al., 2023a), due to the lack of accessible464

training data or the prohibitive resource require-465

ments for fine-tuning on the entire pre-training466

dataset. To the best of our knowledge, no previ-467

ous work has addressed the specific challenge of468

quantization-aware training for LLMs. The com-469

pression capabilities of state-of-the-art PTQ meth-470

ods are confined to W8A8 (Xiao et al., 2022) or471

W4A16 (Frantar et al., 2022). A recent work intro-472

duced floating-point quantization to enable W4A8473

quantization (Wu et al., 2023), however, this ap-474

proach necessitates or hardware customization for475

floating-point computation. In contrast, LLM-QAT476

attains a level of accuracy on par with full-precision477

models with simple W4A8 integer quantization.478

Data generation Data generation for QAT remains479

a relatively unexplored field of research. While 480

there are several works in the vision domain fine- 481

tuning student networks (Yin et al., 2020; Liu et al., 482

2022c; Cai et al., 2020) using noise to data genera- 483

tion from pre-trained teacher models, these meth- 484

ods mainly focus on image data. In language 485

domain, a few previous work use human-defined 486

prompts to elicit responses from GPT models for 487

fine-tuning. For example, Vicuna (Zheng et al., 488

2023) utilized user-uploaded ShareGPT data for 489

instruction fine-tuning, while Alpaca (Taori et al., 490

2023) relied on predefined human prompts with 491

careful balance in each category to ensure diversity. 492

In contrast, our methods eliminates the need for 493

human prompts or user data. A single random ini- 494

tial token allows LLMs to autonomously generate 495

data suitable for QAT finetuning. To the best of our 496

knowledge, this is not studied in existing literature. 497

5 Conclusion and Limitations 498

We proposed data-free quantization-aware training 499

for LLMs and showed accurate, 4-bit quantization 500

is possible using this technique. Given the general- 501

ity of the training-data-agnostic distillation method, 502

and the growing cost of LLM deployments, we ex- 503

pect our method to have wide applicability. For 504

instance, the method could also be used for models 505

trained in several stages, e.g. with instruction tun- 506

ing or reinforcement learning (Ouyang et al., 2022). 507

We leave this investigation to future work. 508
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A Appendix758

A.1 Few-shot Evaluation Results759

Table 6 presents the few-shot performance of the quantized model on the MMLU (Hendrycks et al., 2020)760

and TriviaQA (Joshi et al., 2017) benchmarks.761

Table 6: 5-shot few-shot exact match performance on the TriviaQA dataset (Joshi et al., 2017) and 5-shot accuracy
on Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al., 2020).

MMLU
Humanities STEM Social Sciences Other Average TriviaQA

Method #Bits Size (GB) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 12.6 33.5 30.6 38.4 39.1 35.2 57.0
2 RTN 4-8-4 3.5 23.9 26.8 26.5 24.4 25.2 0.3
3 SmoothQuant 4-8-4 3.5 24.3 27.5 26.2 24.6 25.5 3.9
4 LLM-QAT 4-8-4 3.5 25.6 24.3 24.0 27.8 25.5 42.6
5 RTN 4-8-8 3.5 30.1 25.6 27.5 32.5 29.1 44.5
6 SmoothQuant 4-8-8 3.5 27.1 28.9 28.0 31.9 28.7 39.6
7 LLM-QAT 4-8-8 3.5 30.0 27.4 28.4 34.2 30.0 50.8
8 RTN 4-6-16 3.5 27.0 26.0 25.8 27.0 26.5 36.0
9 SmoothQuant 4-6-16 3.5 26.2 27.0 27.5 29.9 27.5 36.2
10 LLM-QAT 4-6-16 3.5 28.9 27.3 31.6 33.0 30.0 49.0
11 RTN 4-8-16 3.5 30.2 25.9 26.8 32.0 28.9 44.9
12 SmoothQuant 4-8-16 3.5 26.9 28.6 29.6 32.0 29.0 40.0
13 LLM-QAT 4-8-16 3.5 30.3 28.1 30.3 34.5 30.8 50.8
14 RTN 8-8-4 6.5 24.2 27.3 25.8 24.5 25.3 14.8
15 SmoothQuant 8-8-4 6.5 24.4 26.4 25.6 24.2 25.1 32.8
16 LLM-QAT 8-8-4 6.5 28.3 25.5 28.7 30.4 28.2 46.2
17 RTN 8-8-8 6.5 34.3 31.9 38.5 40.5 36.1 56.6
18 SmoothQuant 8-8-8 6.5 33.2 31.5 38.5 38.9 35.3 56.7
19 LLM-QAT 8-8-8 6.5 32.9 29.7 37.9 37.9 34.4 56.1
20 RTN 8-8-16 6.5 34.4 31.8 39.3 39.9 36.1 56.6
21 SmoothQuant 8-8-16 6.5 33.0 30.5 38.7 38.8 35.0 56.8
22 LLM-QAT 8-8-16 6.5 32.2 29.4 37.0 37.6 33.8 56.1
23 LLaMA-13B 16-16-16 24.2 44.4 36.2 54.3 53.3 46.7 63.7
24 RTN 4-8-4 6.5 25.5 24.9 24.3 26.5 25.3 22.2
25 SmoothQuant 4-8-4 6.5 25.6 22.8 23.4 26.4 24.7 32.7
26 LLM-QAT 4-8-4 6.5 29.4 28.5 31.9 35.8 31.1 54.3
27 RTN 4-8-8 6.5 38.3 32.7 45.3 46.4 40.4 57.9
28 SmoothQuant 4-8-8 6.5 30.9 28.6 33.4 37.1 32.3 46.6
29 LLM-QAT 4-8-8 6.5 38.7 32.8 47.1 47.7 41.2 59.3
30 RTN 4-6-16 6.5 28.5 27.8 29.5 32.0 29.3 39.6
31 SmoothQuant 4-6-16 6.5 30.3 29.6 33.5 37.1 32.4 44.8
32 LLM-QAT 4-6-16 6.5 37.4 33.4 45.1 46.0 40.1 57.7
33 RTN 4-8-16 6.5 38.7 32.6 45.2 45.8 40.3 57.9
34 SmoothQuant 4-8-16 6.5 30.3 27.8 34.3 37.5 32.2 46.6
35 LLM-QAT 4-8-16 6.5 40.1 32.4 47.6 48.0 41.8 59.8
36 RTN 8-8-4 12.4 27.8 26.2 27.0 29.6 27.6 44.3
37 SmoothQuant 8-8-4 12.4 27.8 28.1 28.6 32.3 29.1 49.6
38 LLM-QAT 8-8-4 12.4 34.1 29.3 38.7 40.7 35.5 58.8
39 RTN 8-8-8 12.4 44.2 35.6 52.2 52.5 45.9 62.9
40 SmoothQuant 8-8-8 12.4 44.5 36.1 53.5 53.3 46.6 63.4
41 LLM-QAT 8-8-8 12.4 43.5 36.1 52.6 52.5 45.8 63.3
42 RTN 8-8-16 12.4 44.3 34.9 51.7 53.0 45.7 63.1
43 SmoothQuant 8-8-16 12.4 44.5 36.4 53.7 53.4 46.7 63.4
44 LLM-QAT 8-8-16 12.4 43.6 36.1 53.8 53.2 46.3 63.4
23 LLaMA-30B 16-16-16 60.6 55.8 46.0 66.7 63.4 57.8 69.9
46 RTN 4-8-4 15.7 24.4 26.2 27.2 26.4 25.9 19.2
47 SmoothQuant 4-8-4 15.7 23.9 27.5 23.2 24.1 24.6 7.5
48 LLM-QAT 4-8-4 15.7 47.6 40.4 55.9 54.5 49.3 63.5
49 RTN 4-8-8 15.7 51.0 43.6 62.2 60.6 53.9 66.8
50 SmoothQuant 4-8-8 15.7 35.2 35.1 46.9 45.2 40.0 57.9
51 LLM-QAT 4-8-8 15.7 52.2 44.3 61.4 61.0 54.4 65.9
52 RTN 4-6-16 15.7 29.5 31.3 32.1 36.2 32.0 39.3
53 SmoothQuant 4-6-16 15.7 31.6 34.3 43.4 42.3 37.2 56.7
54 LLM-QAT 4-6-16 15.7 47.7 41.7 58.9 57.5 51.0 64.2
55 RTN 4-8-16 15.7 50.9 44.0 62.8 61.3 54.2 67.1
56 SmoothQuant 4-8-16 15.7 35.6 36.2 48.6 45.7 40.8 58.5
57 LLM-QAT 4-8-16 15.7 52.8 44.4 63.6 61.2 55.1 67.1
58 RTN 8-8-4 30.7 26.1 27.6 28.6 29.0 27.6 30.2
59 SmoothQuant 8-8-4 30.7 27.9 29.1 31.7 33.1 30.1 38.9
60 LLM-QAT 8-8-4 30.7 49.7 42.2 60.8 59.7 52.7 67.9
61 RTN 8-8-8 30.7 55.6 45.8 66.3 63.4 57.5 70.4
62 SmoothQuant 8-8-8 30.7 56.0 46.0 67.3 64.1 58.0 70.2
63 LLM-QAT 8-8-8 30.7 56.5 47.7 66.9 64.2 58.5 69.4
64 RTN 8-8-16 30.7 56.3 45.6 66.8 63.7 57.8 70.3
65 SmoothQuant 8-8-16 30.7 56.0 46.7 67.5 63.8 58.2 70.3
66 LLM-QAT 8-8-16 30.7 54.9 45.9 66.7 63.6 57.4 70.0
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Table 7: Zero-shot performance on Common Sense Reasoning tasks for quantizing LLaMA-v2 Model.
Size BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method #Bits (GB) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-v2-7B 16-16-16 12.6 75.0 51.2 77.5 78.8 48.2 75.9 59.4 69.7 67.0
2 RTN 4-8-4 3.5 65.6 41.5 60.2 71.3 44.9 65.0 45.6 60.3 56.8
3 SmoothQuant 4-8-4 3.5 65.4 41.9 63.1 72.4 43.1 64.9 43.0 56.3 56.3
4 LLM-QAT 4-8-4 3.5 66.6 42.7 65.3 73.4 44.3 65.1 49.0 60.8 58.4
5 RTN 4-8-8 3.5 69.8 45.6 64.6 76.5 47.0 71.8 52.4 66.4 61.8
6 SmoothQuant 4-8-8 3.5 69.1 46.6 68.0 77.2 44.8 70.1 51.2 67.1 61.8
7 LLM-QAT 4-8-8 3.5 69.8 47.5 71.1 76.5 46.8 71.2 53.0 67.5 62.9
8 RTN 4-8-16 3.5 69.4 47.1 63.8 76.7 47.0 71.8 53.2 66.4 61.9
9 SmoothQuant 4-8-16 3.5 69.2 47.3 65.6 77.2 44.9 70.3 50.2 66.4 61.4
10 LLM-QAT 4-8-16 3.5 70.7 47.0 70.7 76.6 47.4 71.4 54.8 68.2 63.3
11 RTN 4-16-16 3.5 70.2 47.4 64.7 76.8 47.1 72.5 54.0 66.9 62.5
12 SmoothQuant 4-16-16 3.5 68.8 45.6 67.2 77.6 44.8 70.2 51.8 65.9 61.5
13 LLM-QAT 4-16-16 3.5 71.2 48.2 71.4 76.8 47.1 72.1 54.6 67.5 63.6
14 RTN 8-8-4 6.5 72.6 49.7 73.0 75.7 48.5 73.0 54.6 66.5 64.2
15 SmoothQuant 8-8-4 6.5 74.6 46.4 73.1 77.3 48.5 74.0 55.8 68.1 64.7
16 LLM-QAT 8-8-4 6.5 72.7 47.9 70.6 77.2 48.3 72.3 57.5 66.0 64.1
17 RTN 8-8-8 6.5 75.5 49.9 75.4 78.4 48.8 75.8 57.2 69.6 66.3
18 SmoothQuant 8-8-8 6.5 74.7 49.7 76.7 78.6 48.4 76.0 58.4 69.1 66.5
19 LLM-QAT 8-8-8 6.5 74.5 50.0 74.7 79.2 48.5 75.2 57.7 69.3 66.1
20 RTN 8-8-16 6.5 75.5 50.3 76.3 79.1 48.8 75.6 59.4 69.3 66.8
21 SmoothQuant 8-8-16 6.5 74.7 50.3 77.0 78.9 47.8 75.9 58.4 69.7 66.6
22 LLM-QAT 8-8-16 6.5 75.0 50.5 74.5 79.1 48.4 75.3 57.3 69.7 66.2

Table 8: Explore 4-bit weight 4-bit activation quantization with LLM-QAT.
BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method #Bits (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 RTN 4-4-16 51.3 49.8 36.9 26.2 47.9 25.7 24.5 31.2 36.7
3 SmoothQuant 4-4-16 54.1 62.8 41.8 41.5 52.6 50.6 32.9 36.4 46.6
4 LLM-QAT 4-4-16 57.9 47.5 39.9 25.8 47.6 27.2 25.8 29.4 37.6
5 LLM-QAT + SmoothQuant 4-4-16 63.5 64.3 41.8 55.6 52.9 50.3 30.2 35.0 49.2
6 LLM-QAT + group-wise quant (4 channel per group) 4-4-16 65.5 74.0 47.7 68.1 65.4 66.5 43.9 52.4 60.4
7 LLM-QAT + group-wise quant (1 channel per group) 4-4-16 69.1 75.5 47.4 70.5 66.9 67.6 46.8 50.2 61.7
8 RTN 4-4-4 50.2 50.5 37.1 26.0 49.6 26.1 24.4 28.6 36.6
9 SmoothQuant 4-4-4 49.1 49.8 39.1 27.4 48.0 30.4 25.8 29.2 37.4
10 LLM-QAT 4-4-4 61.3 51.5 39.2 31.1 51.9 27.9 23.9 29.4 39.5
11 LLM-QAT + SmoothQuant 4-4-4 62.4 55.9 40.9 47.8 50.6 35.5 26.4 34.6 44.3
12 LLM-QAT + group-wise quant (4 channel per group) 4-4-4 60.3 66.3 45.4 56.8 57.1 54.9 34.1 38.6 51.7
13 LLM-QAT + group-wise quant (1 channel per group) 4-4-4 67.9 74.2 46.6 66.8 59.4 63.9 41.3 48.8 58.6

A.2 Zero-shot Reasoning Performance on LLaMA-v2 762

We conducted experiments on the LLaMA-v2 structure (Touvron et al., 2023b), and the results in Table 7 763

consolidate the claim that LLM-QAT consistently enhances the performance of quantized models in ultra 764

low-bit settings 765

A.3 Exploring the Limits: 4-bit Weight 4-bit Activation Quantization 766

We further explore the lower-bit quantization of 4-bit weight and 4-bit activation (W4A4). The results 767

show that the W4A4 quantization is challenging for LLMs. Post-training quantization sees ∼ 30 points 768

degradation. Adding LLM-QAT together with smoothquant can recover 12.5 points and 7.7 points for 769

W4A4KV16 and W4A4KV4 settings, respectively. 770

Furthermore, we delved into the potential of combining the group-wise quantization (Shen et al., 2020a; 771

Sheng et al., 2023a) with LLM-QAT. The results in Table 8 unveiled that group-wise quantization with 1- 772

channel per group managed to achieve less than 8 points accuracy drop on the W4A4KV4 setup compared 773

to full-precision, which was infeasible in any of the previous works. Nevertheless, it is important to note 774

that implementing this group-wise quantization method may necessitate specialized kernel design to fully 775

realize its potential for actual speedup (Shen et al., 2020a; Cai et al., 2020). 776

A.4 Detailed Data Choice Comparison 777

Table 9 provides a comprehensive comparison on the impact of different fine-tuning data to the quantized 778

models zero-shot performance. Quantized models fine-tuned on the WikiText103 (Merity et al., 2016) and 779

C4 (Raffel et al., 2020) datasets exhibit sub-optimal generalization capabilities in zero-shot reasoning 780

tasks. In comparison, RedPajama (Computer, 2023), a dataset constructed using similar llama pre-training 781

dataset combinations, demonstrates satisfactory zero-shot generalization ability of the corresponding 782
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Table 9: Impact of fine-tuning data to zero-shot performance of quantized models.
BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

#Bits Fine-tuning Data (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
5

4-8-4
Wiki103 65.6 74.3 45.0 65.8 66.9 67.4 47.6 52.5 60.6

6 C4 71.2 77.8 47.5 73.3 64.1 68.4 44.5 51.0 62.2
7 RedPajama 74.4 77.9 48.4 72.0 65.9 69.4 46.4 51.6 63.3
8 Generated data 73.7 77.3 47.9 71.9 66.4 69.0 46.5 51.6 63.0
9

4-8-8
Wiki103 69.1 75.3 46.1 67.5 67.5 67.7 45.5 53.3 61.5

10 C4 74.0 79.5 48.7 75.4 68.5 68.6 44.3 52.9 64.0
11 RedPajama 75.9 77.6 47.7 73.3 69.1 70.5 47.8 53.3 64.4
12 Generated data 74.6 78.5 49.4 74.0 69.0 71.5 47.0 54.0 64.8
1

4-6-16
Wiki103 69.0 74.4 45.1 65.0 66.2 67.0 45.5 47.7 60.0

2 C4 71.8 77.6 47.1 73.4 69.0 68.2 44.1 51.2 62.8
3 RedPajama 74.1 77.2 46.9 71.9 67.3 67.3 44.3 48.2 62.2
4 Generated data 73.9 77.7 48.2 72.3 66.3 68.8 45.3 52.0 63.0
13

4-8-16
Wiki103 67.7 75.3 45.6 66.9 67.2 68.1 46.0 55.9 61.6

14 C4 73.5 79.2 48.9 75.3 68.8 70.0 45.2 54.7 64.5
15 RedPajama 75.8 77.7 48.4 73.3 68.7 70.8 47.7 53.9 64.5
16 Generated data 74.5 78.5 49.2 74.0 67.1 71.6 47.4 54.6 64.6
17

4-16-16
Wiki103 76.3 75.3 45.2 66.4 67.3 68.3 46.0 51.8 62.0

18 C4 75.3 79.6 48.1 75.5 69.0 69.7 44.7 53.7 64.4
19 RedPajama 77.1 78.0 48.6 73.4 69.8 69.8 46.9 54.7 64.8
20 Generated data 73.9 78.8 49.1 74.0 68.6 71.7 48.2 54.4 64.8
21

8-8-4
Wiki103 69.1 75.1 45.9 66.6 66.7 71.2 46.7 57.0 62.3

22 C4 73.5 78.2 48.8 74.9 67.7 71.0 45.7 51.4 63.9
23 RedPajama 73.6 78.5 47.9 73.5 68.8 70.7 47.2 50.0 63.8
24 Generated data 75.3 78.0 48.0 73.5 66.7 71.2 47.6 51.6 64.0
25

8-8-8
Wiki103 71.0 76.4 46.1 68.9 68.7 70.4 46.7 53.7 62.7

26 C4 74.9 79.6 48.4 77.4 70.9 71.9 45.9 55.1 65.5
27 RedPajama 76.8 79.2 47.9 75.0 69.8 70.9 47.5 52.3 64.9
28 Generated data 76.1 78.9 48.7 75.4 70.4 72.9 48.7 55.4 65.8
29

8-8-16
Wiki103 71.4 76.3 47.1 67.8 68.9 71.3 46.7 52.5 62.7

30 C4 75.1 79.4 48.3 77.6 70.9 72.0 46.3 54.3 65.5
31 RedPajama 76.8 79.1 48.2 75.2 70.8 71.2 47.2 54.5 65.4
32 Generated data 76.3 79.0 48.9 75.7 70.4 72.5 47.3 55.6 65.7

fine-tuned models. It is important to acknowledge that constructing such a dataset is labor-intensive783

and may require substantial human efforts for data curation, or the pretraining data may not be readily784

available. On the other hand, data synthesis proves to be a more accessible approach, yielding comparable785

or even higher accuracy in fine-tuned quantized models.786

A.5 Evaluation Benchmarks787

A.5.1 Zero-shot Common Sense Reasoning tasks788

BoolQ (Clark et al., 2019) is a reading comprehension dataset of naturally occurring yes/no questions.789

Each example consists of a question (Q), an excerpt from a passage (P), and an answer (A) with an790

explanation added for clarity.791

PIQA (Bisk et al., 2020), short for Physical Interaction: Question Answering, is a benchmark for792

evaluating and studying physical commonsense understanding in natural language models.793

SIQA (Sap et al., 2019) aims to measure the social and emotional intelligence of computational models794

through multiple choice question answering (QA).795

HellaSwag (Zellers et al., 2019) is a benchmark for physically situated commonsense natural language796

inference. It consists the four-way multiple-choice problems that are trivial for humans (> 95% accuracy),797

but challenging for the language models.798

WinoGrande (Sakaguchi et al., 2021) is a benchmark for commonsense reasoning. It comprises a set of799

273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models800

that rely on selectional preferences or word associations.801

ARC (Clark et al., 2018), the AI2 Reasoning Challenge, contains a collection of 7787 natural science802

questions. It is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only803

questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm.804

OBQA (Mihaylov et al., 2018) is a dataset of about 6000 questions for open book question answering.805

The task focuses on the challenge of combining a corpus of provided science facts (open book) with806

external broad common knowledge.807
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A.5.2 Few-shot Tasks 808

TriviaQA (Joshi et al., 2017) is a closed-book question answering benchmark. It contains over 650K 809

question-answer evidence triples, that are derived by combining 95K Trivia enthusiast authored question- 810

answer pairs with on average six supporting evidence documents per question. 811

MMLU (Hendrycks et al., 2020), the Massive Multitask Language Understanding(MMLU) bench- 812

mark (Hendrycks et al., 2020), consists of multiple choice questions covering various domains of knowl- 813

edge, including humanities, STEM and social sciences. 814

A.6 Generation Tasks 815

WikiText2 (Merity et al., 2016) is a collection of over 100 million tokens extracted from the set of verified 816

Good and Featured articles on Wikipedia. 817

C4 (Raffel et al., 2020), abbreviate for Colossal Clean Crawled Corpus. Common Crawl2 is a publicly- 818

available web archive that provides “web extracted text” by removing markup and other non-text content 819

from the scraped HTML files. C4 filters Common Crawl’s web-extracted text and produces a collection of 820

text that comprises clean and natural English text. 821

A.7 Generated Data from LLaMA-7B 822

In this section, we show some examples of the generated data obtained through the next token generation 823

with LLaMA-7B model. 824

\nSincerely, I\u2019m sending for your help right now.\nI\u2019m currently facing a rather
challenging situation.\nMy wife and me have been living and working in the same country
for a couple of years.\nHowever, after we\u2019ve seen a couple of movies together, we
found out that we have different tastes in movies.\nMy wife is always watching melancholy
(soporific, slow-moving) drama movies, while I prefer thrillers or action movies.\nIt would
be great if we could both keep our personal wishes, yet make sure we have something to
discuss about afterwards.\nDo you think there\u2019s a nice web site, a movie club, or so,
which helps us choose movies to watch as a couple?\nPlease, please help me out of this
situation!\nA: Thanks for asking for my help. If you can, please do watch some movies
together before choosing the movies that are really suitable for each of you.\nMovies have
different styles of story telling, and some can be slow-moving. It is up to the audience to
decide what kind of movies they want to see. You are just the same as other people who
might prefer watching some movies at home while the other one loves to watch movies at a
movie theater.\nIf there exist some websites or movie clubs, why don\u2019t you try taking
a look at it. However, it is up to you to find out which movies are suitable for your couple,
so the movie club, or the website, can only give some ideas for your reference.\nSincerely,
hope my answer could help you with your issue.\n- I am new to ALT life and have been
living here for three month. We would love to join some clubs and have asked many people
with no success. I don’t understand why some people are unwilling to help.\n- It’s always
best to ask people at the local supermarket or caf\u00e9 for any events coming up in the
area. The best way to find out is to ask.\n- I’d rather not answer at this stage.\n- I like this
place, and I’d like to stay here, but I am sure there is more to see and do, so hopefully if I
try hard enough I will be able to find out more.\n- I think it’s a bit difficult living away from
home, but having family and friends around helps a lot.\n- We’d like to play baseball, is
there any baseball or softball club, we are new to your country but quite enthusiastic.\n- We
have a large number of volunteer groups that actively help the local community, and the
local government sets up new programmes all the time."

2http://commoncrawl.org/
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In the mid-20th century, there was growing awareness that in a large number of industrial
countries the population was aging. This awareness, along with advances in social security
in many countries and a sense of urgency to avoid future generations of poor, has led to
social policy being implemented that targets the elderly. The elderly often have a special
status and enjoy particular social benefits. Such benefits include a higher age entitlement
threshold, higher pensions, early-retirement benefits, employment quotas, and free or
subsidized health care. In addition, in some countries the elderly are exempt from federal
and, in some cases, from state taxes. \n Since most governments have set limits on their
ability to pay out more in social security and health care benefits to any one group, such
benefits are generally reserved for the retired and the disabled. Accordingly, elderly care for
the mentally disabled, infirm, and cognitively impaired has taken on particular importance,
as has care for the homeless. In addition, those who are economically active can also benefit
from programs, although there is the perception that the economically active are less in need
of care assistance, because their families often take care of them. Elderly care is generally
provided on an unpaid basis, although those in need of care may have to sell their homes
because of the high cost of care.\nSee also: Economy; Old Age and Retirement Welfare
Systems; Unemployment; and Unemployment and Employment Security Systems.\nBell,
Ian R. S., The Growing Crisis of Old Age. London: Pall Mall Press, 1913.

When my brother returned from abroad, he went with his wife to the motherland. They
had many elder brothers around there, so that we all went with them to my parents\u2019
home. I, being the youngest, went first. My brother, seeing the dowry that I brought with
me, laughed. He was very proud. \u2018This girl is from my sister; she is the same as my
sister. Why should I have her?\u2019 he said to them. But at that time my father was ill; he
lay stretched on a bed before us. \u2018This is my sister; she is my sister. I did not give her
to you; why should I allow you to kill my sister?\u2019 the father said to my brother. His
mother said, \u2018I shall put this girl\u2019s hand in your hand. When you wish to give
it away, it will be like your sister\u2019s.\u2019 My brother thought, \u2018There surely
cannot be two sisters.\u2019 I told him, \u2018The old man will die soon. I have brought
him his dowry of ten yens of silver. It is no small gift for him. If I do you the favour now,
will you not have respect for the father when he is dead and gone?

a town, and the largest inland city of the ancient Aztlan (Aztatlan, Azatlan) located near
the modern ruin of Santa Anas, Sonora, Mexico.\nAtsa was a settlement among the 13
Tamoanchan cities of the Nahua people that established their settlement in Northern Mexico
by about 1000 A.D. The city of Atsa (its people Atsatla) belonged to ẗhe twelve tribes
of Tamoanchan,̈ which may be read in the Aztec codices as T̈lascallaänd which are the
T̈lascalanp̈eoples of the 13 cities or a confederation of peoples that were among the dominant
rulers of the Valley of Mexico, and of western Mexico in general, during the pre-eminent
period of Aztec civilization.\nAtsa as well as the other Tamoancan cities of the Aztecs, is
said to be on a plain of jade and silver and to have a number of large, flat-roofed buildings.
These buildings are described as being in ruins in 1519, during Hernan Cortes’s first visit
to Mexico. Although it is not known if the Tamoancan cities were named before or after
contact with the Spaniards, it may be that the descriptions are only describing Aztec ideas
of the 13 cities by its inhabitants. Atsa is said to be located at a point where a landform
resembling a large lake (a m̈ountain)̈, was formed at some point in their past that has since
dried. It is here that it is said the Atsatla people established their community.
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This article appeared in the Ceylon Today on 24th January 2016.\nI have been an Anglican
Priest and a member of various committees in the Ceylon Evangelical Lutheran Church
(CELC) for many years. I have observed that most of the CELC clergy and Laity are
engaged in one or the other form of mission; whether as pastor, deacon, Sunday School
teacher, a member of the Christian Education Council (CEC), Church Council or its
equivalent. But do we realise the full significance of the words of the Apostle Paul in the
first Reading?\nThe readings for this Sunday continue in Paul\u2019s second letter to the
church in Corinth, where he warns the Christians against the excesses of the Eucharist.
He warns them not to drunkenness during the Eucharist. He also writes: \u201cDo not,
for the sake of food, destroy the work of God\u201d (6:12).\nThese were the words Paul
used in his letter to his beloved Church: \u201cEat anything God has created to make you
healthy.\nYou should not feel guilty about eating any of these foods, but you should not eat
them if they cause other people to stumble\u201d (Romans 14:14-23, CEB).\nIf we want
to do God\u2019s will, we will learn what pleases him. (Eph. 5:10). If we want others to
respect God\u2019s law, then we must avoid even the appearance of sin (1 Thess. 5:22). In
other words, we must seek to please God in all of our actions.\nAs Catholics we celebrate
the Holy Mass by taking communion of the Bread and Wine, in the name of the Father,
the Son and the Holy Spirit to remind us of our call to love and serve one another.\nSt.
Paul said: \u201cA little yeast spreads through the whole batch of dough\u201d (Gal. 5:9).
Christians should celebrate God\u2019s love in a special way. We are called to live for
the next generation. If we drink to excess at the Eucharist it ruins the lives of our children.
\u201cA little yeast\u201d spreads quickly through the family: an immoral step, a broken
marriage, divorce and abuse: All these are examples of the \u201clittle yeast\u201d that
destroys families.\nBut there\u2019s more. \u201cBecome sober, and stop sinning. Then
some apostle will not be wrongly accused of being responsible for sinning. Anyone who has
been stealing must steal no longer\u201d (v. 8). Our call as Christians is to lead exemplary
lives. As such, we must act in accordance with our commitment to the \u201cLove of God
and of our Neighbour\u201d. We are called to work with integrity. We are called to give to
society. If a person is addicted to any alcoholic beverage or to any other type of drug, it will
be difficult for him or her to lead a moral life.\nIt is also said that the words of the Apostle
Paul in the First Reading \u201care still being applied today\u201d!\nOur forefathers who
were the followers of John Wesley the Founder of Methodism made this famous saying
to describe a Methodist: \u2018 A Methodist will find his way home from the most God
forsaken, lawless, brutalized and degraded part of the earth, to the humble home of his
childhood or his God: To find his way when the sun sets and the sky is filled with dense
shades of night; or on the banks of the Red river, amid the solitudes of the Mexican desert,
or in the dreary solitude of the frozen wastes of the Arctic Ocean\u2026\u201d.\nIf we
ask ourselves some important question we are compelled to ask such question whether
this is true for every individual member of the churches, whether it is true for the clergy
or laity.\nThe Methodist Church in the United Kingdom, for example, is known as the
\u201cMother Church\u201d. In 2014, a survey revealed that 21% of the British public was
unaffiliated to any religion. But 50% of the people in England and Wales were prepared to
\u201ctry and become a Christian\u201d if invited, despite not going to church."

A.8 Broader Impact 825

We propose a model compression technique that reduces the memory footprint of large language models, 826

enabling their deployment on embedded devices. This technique has the potential to decrease energy con- 827

sumption for end users and lower costs for companies running language models at scale. We acknowledge 828
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the potential risks associated with the malicious use of large language models by third parties. Therefore,829

we are dedicated to maintaining the techniques we have developed to ensure responsible usage of these830

models.831
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