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ABSTRACT

Image codecs are typically optimized to trade-off bitrate vs. distortion metrics. At
low bitrates, this leads to compression artefacts which are easily perceptible, even
when training with perceptual or adversarial losses. To improve image quality and
remove dependency on the bitrate we propose to decode with iterative diffusion
models. We condition the decoding process on a vector-quantized image repre-
sentation, as well as a global image description to provide additional context. We
dub our model “PerCo” for “perceptual compression”, and compare it to state-
of-the-art codecs at rates from 0.1 down to 0.003 bits per pixel. The latter rate
is more than an order of magnitude smaller than those considered in most prior
work, compressing a 512×768 Kodak image with less than 153 bytes. Despite
this ultra-low bitrate, our approach maintains the ability to reconstruct realistic im-
ages. We find that our model leads to reconstructions with state-of-the-art visual
quality as measured by FID and KID. As predicted by rate-distortion-perception
theory, visual quality is less dependent on the bitrate than previous methods.

1 INTRODUCTION

Traditional image and video codecs are optimized for the rate-distortion function (Shannon, 1948),
which minimizes the expected size of the data under a distortion constraint such as mean-squared
error. Recent research has developed neural image compression methods that surpass handcrafted
image compression codecs in terms of rate-distortion performance (Ballé et al., 2017; Ballé et al.,
2018; Cheng et al., 2020; He et al., 2022a). However, optimization for the rate-distortion function
comes at a cost of “realism”, where realism is mathematically related to the statistical fidelity or
f -divergence between the compressed image distribution and the true image distribution (Blau &
Michaeli, 2018; 2019). The typical qualitative manifestation of unrealistic images is blurring.

Generative modeling compensates for artefacts such as blurring by introducing a divergence
term (Agustsson et al., 2019; Mentzer et al., 2020; Muckley et al., 2023), typically in the form
of an adversarial discriminator loss, which improves human-perceptual performance (Mentzer et al.,
2020). Such codecs are called “generative compression” codecs, and are evaluated in terms of the
rate-distortion-realism tradeoff (Blau & Michaeli, 2019). A further result of rate-distortion-realism
theory is the theoretical possibility of a perfect realism codec, i.e., a codec with no f -divergence,
and zero FID across all rates, with no more than twofold increase in mean-squared error from the
rate-distortion optimal codec. This result motivates research on perfect realism codecs, where orig-
inal and reconstruction are different from each other, but it is not possible to tell which is which.
Such codecs are particularly interesting for extremely low bitrate settings, where existing codecs
introduce severe artefacts that are easily perceptible, see Fig. 1. So far, the primary effort towards
building such a codec was the work of Theis et al. (2022), who demonstrated lower FID scores than
HiFiC (Mentzer et al., 2020) via a combination of a pretrained variational diffusion model and re-
verse channel coding. However, computational constraints prohibited application to images larger
than 64×64 pixels.

In this paper we make further progress towards perfect-realism codecs. Similar to Theis et al. (2022),
we leverage a pretrained text-to-image diffusion model; however, rather than using the diffusion
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Original Text-Sketch, 0.0281 bpp VTM, 0.0242 bpp MS-ILLM, 0.0065 bpp PerCo (ours), 0.0032 bpp

Figure 1: Kodak images compressed with the diffusion-based Text-Sketch approach PICS (Lei et al.,
2023), the hand-crafted codec VTM (vtm), MS-ILLM (Muckley et al., 2023) which leverages an
adversarial loss, and with PerCo (ours). Taking the lowest available bitrate for each method.

model for compression directly, we use it as a decoder in a VQ-VAE-like autoencoder. The (ap-
proximate) log-likelihood loss of diffusion models offers an alternative to the use of distortions such
as MSE or LPIPS used to train most neural compression models that make strong assumptions on
the conditonal distribution on images given the latents which are inappropriate at low bitrates, and
lead to compression artefacts. For decoding, we sample from the conditional diffusion model, which
allows us to obtain a set of reconstructions that reflect the uncertainty about the original source im-
age. We augment the quantized image representation with a global image description that captures
the high-level semantic information of the image. To this end, we use an automatically generated
textual image description, e.g. using BLIP (Li et al., 2023). Alternatively, this can take the form
of a global image feature extracted from a pre-trained image backbone. We demonstrate that this
high-level information is helpful for compression performance at extremely low rates. Our work
is closely related to that of Lei et al. (2023), who explored text-conditioned diffusion decoders for
image compression, and the only prior work that we are aware of that considers the same ultra-low
bitrates as we do. In contrast, their work uses (automatically generated) binary contour maps as a
spatial conditioning signal which carry little detail on colors and textures, and leads to reconstruc-
tions that are not faithful to the original. Experimentally we observe significantly improved FID and
KID scores compared to competing methods. Moreover, we find that FID and KID are much more
stable across bitrates than other methods, which aligns with our goal of image compression with
perfect realism.

In sum, our contributions are as follows:
• We develop a novel diffusion model called PerCo for image compression that is conditioned

on both a vector-quantized latent image representation and a textual image description.
• We obtain realistic reconstructions at bitrates as low as 0.003 bits per pixel, significantly

improving over previous work, see Figure 1.
• We obtain state-of-the-art FID and KID performance on the MS-COCO 30k dataset; and

observe no significant degradation of FID when reducing the bitrate.

2 RELATED WORK

Neural image compression codecs. Ballé et al. (2017) demonstrated that an end-to-end neural
image compression codec could outperform the classical JPEG codec in terms of rate-distortion per-
formance. Ballé et al. (2018) enhance this approach by conditioning the latent on a “hyperprior” that
encodes high-level information in the image, greatly improving performance. Follow-up works im-
proved the latent conditioning mechanism (Minnen et al., 2018; Minnen & Singh, 2020; Cheng et al.,
2020; He et al., 2022a). Optimization for rate-distortion alone leads to distributional mismatch be-
tween the compressed image distribution and the natural image distribution (Blau & Michaeli, 2018;
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2019). Agustsson et al. (2019) and Mentzer et al. (2020) added an adversarial loss term and demon-
strated its usefulness for human perception. Similarly He et al. (2022b) builds upon ELIC (He et al.,
2022a) by adding perceptual losses including adversarial ones. Follow-up works have improved the
discriminator architecture (Muckley et al., 2023), decode-time realism guidance (Agustsson et al.,
2023), or investigated alternative autoencoders with discrete entropy models (El-Nouby et al., 2023).
Xu et al. (2023) introduce the notion of conditional perceptual quality, where perceptual quality is
dependent on side information. Our work is related to this, as the global textual or visual represen-
tation on which we condition the decoder can be seen as a form of side information.

Diffusion models. Ho et al. (2020) improved the original diffusion probabilistic model (Sohl-
Dickstein et al., 2015) that gave it impressive performance on image generation benchmarks. Dhari-
wal & Nichol (2021) demonstrated superior performance to GANs for image generation with clas-
sifier guidance, while Kingma et al. (2021) improved diffusion model likelihood estimation. Condi-
tioning diffusion models on large text-encoder networks enables these models to generate realistic
images from natural language prompts (Nichol et al., 2022; Saharia et al., 2022), and defining the
diffusion process in an autoencoder latent space reduces the computational cost of the diffusion pro-
cess. In our work we build upon large-scale pretrained text-conditioned diffusion models to benefit
from the image generation capabilities embedded in them.

Diffusion generative compressors. Ho et al. (2020) considered compression with diffusion models
and reverse channel coding and the corresponding rate-distortion performance, but reported only
experiments on 32×32 CIFAR-10 images and MSE distortion. Theis et al. (2022) demonstrated
that the reverse channel coding approach gave FID numbers superior to HiFiC for 64×64 ImageNet
images. Saharia et al. (2022) introduced a super-resolution diffusion model that removed artefacts
from JPEG images. Ghouse et al. (2023) developed a complete version of a residual diffusion codec
with images of high quality for a suite of codecs. Hoogeboom et al. (2023) showed similar results
using a neural autoencoder baseline codec, and using a separate diffusion model that does not require
any additional bits to refine the reconstruction. Yang & Mandt (2023) developed an alternative
approach, where a hyperprior-based neural encoder was trained jointly with a diffusion decoder, also
showing improved performance to HiFiC. In Pan et al. (2022), they optimize a textual embedding on
top of a pretrained text-to-image diffusion model. They also design a compression guidance method
used at each denoising step to better reconstruct images. Lei et al. (2023) leverage text-conditioned
diffusion models for image compression at very low bitrates, using prompt inversion to encode the
image into text, and adding spatial detail via compressed binary contour maps. Our work is similar,
but we replace computationally costly prompt inversion (Wen et al., 2023) with fast feed-forward
image captioning (Li et al., 2023), and replace binary contour maps which carry little appearance
information with end-to-end learned vector-quantized image features.

3 PERCEPTUAL COMPRESSION WITH A DIFFUSION DECODER

3.1 OVERALL FRAMEWORK

The foundation of most lossy compression lies in rate-distortion theory (Shannon, 1948), which
quantifies the balance between the bitrate needed to transmit a signal vs. the distortion of the signal.
Let us assume an input signal x, with its corresponding quantized representation z and reconstruc-
tion x̂(z). Neural compression is commonly achieved via the minimization of a training objective
formulated as a linear combination of a rate and a distortion term:

LRD = EPx [EPz|xLR(z) + λLD(x̂(z),x)], (1)
where Px is the data distribution and Pz|x is the posterior distribution of the quantized codes. The
rate term LR(z) estimates the bitrate either by means of scalar quantization and a continuous entropy
model (Ballé et al., 2017), or using vector-quantization in combination with discrete entropy mod-
els (El-Nouby et al., 2023). For simplicity, in PerCo, we employ vector-quantization combined with
a uniform entropy model leading to a constant rate controlled through two hyper-parameters: the
number of elements that are quantized, and the codebook size. Therefore, the rate LR can be consid-
ered fixed when training our models and can be dropped from the optimization formulation. Next,
we introduce a new formulation of the distortion term, LD, enabling the integration of a pre-trained
diffusion model, thereby achieving a higher level of perceptual quality. Our aim with this formu-
lation is to leverage a large pre-trained diffusion model as a robust image prior, enabling realistic
image reconstruction even at extremely low bitrates.
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Figure 2: Overview of PerCo. The LDM encoder maps an RGB image into the latent space of the
diffusion model. The “hyper encoder” then maps the image to a hyper-latent with smaller spatial
resolution, which is then vector-quantized and represented as a bitstream using uniform coding.
The image captioning model generates a textual description of the input image, which is losslessly
compressed, and processed by a text encoder to condition the diffusion model. The diffusion model
reconstructs the input image in its latent space conditioned on the output of the text encoder and the
hyper encoder. Finally, the LDM decoder maps the latent reconstruction back to RGB pixel space.

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) approximate a data distribution by
gradually denoising a unit Gaussian random variable. This is achieved by training a denoising
function to reverse a diffusion process that takes an initial sample, denoted as x0, from the data
distribution and adds small Gaussian noise over a large number of steps. In practice, a noise estima-
tor ϵθ(xt, t,z) implemented as a neural network is trained to denoise input data points at timesteps
t ∈ [0, T ], where xt =

√
αtx0+

√
1− αtϵ is a corrupted version of the original data point x0 with

Gaussian noise ϵ. The scalar αt fixes the noise strength, varying from α0≃1 for no noise to αT ≃0
for pure Gaussian noise. Finally, z is an optional condition, such as a text-prompt in text-to-image
models. In our case, z is the quantized representation of the input image. Once the noise estimator is
trained, the model can generate samples by drawing xT ∼ N (0, I), and applying iterative denoising
for t= T, . . . , 1. To reduce the computational cost, we use a latent diffusion model (LDM) where
the variables xt are defined in the latent space of an autoencoder.

We formulate our distortion loss within the probabilistic diffusion framework. For every the diffu-
sion step t, we compute an estimation x̂t−1 of xt−1 from z and xt and minimize its error:

Lt
Diff = EPxEPz,xt|x

∥xt−1 − x̂t−1(xt, z)
∥∥2
2
. (2)

Up to a multiplicative constant, this loss can be rewritten as

Lt
Diff ∝ EPxEPz,xt|x E

ϵ∼N (0,1)
∥ϵ− ϵθ(xt, z, t)∥22. (3)

We obtain the final loss by taking the expectation of Eq. (3) w.r.t. the steps t, and use v prediction
objective of Salimans & Ho (2022), which is more stable during training. The loss can be augmented
with any image-level loss such as LPIPS (Zhang et al., 2018) to improve perceptual image similarity.

3.2 ENCODING LOCAL AND GLOBAL CONTEXT

We encode the input image as z = (zl, zg), where zl and zg carry complementary local and global
context, respectively. The overall structure of our compression scheme is illustrated in Figure 2.

Local spatial encoding. We encode the input image into a quantized tensor proceeding in three
stages. First, we employ the LDM encoder E(·) to achieve a first dimension reduction. Assuming
an input image of resolution 512×512, we obtain a feature map of dimension 4×64×64. Second,
we add a lightweight “hyper encoder” H composed of several convolutional layers to project the
LDM features to a lower spatial resolution tensor Hs. The spatial resolution, h×w, of Hs is chosen
according to the target bitrate. Third, we proceed to quantization of Hs to obtain zl via vector-
quantization. As in VQ-VAE (van den Oord et al., 2017; Razavi et al., 2019), each of the h×w
vectors hs in Hs is mapped to an element in a codebook learned using the vector quantization loss:

LVQ = Ehs

[
∥sg(hs)− zq∥22 + ∥sg(zq)− hs∥22

]
, (4)
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where sg(.) is the stop-gradient operation, and zq is the mapping of hs to its closest codebook entry.
For better codebook usage, we follow Yu et al. (2022) and set the output of the hyper encoder to
be relatively low dimensional: 32 in our case. We also found it beneficial to replace the codebook
loss by exponential moving average on the codebooks and thus the first term in Eq. (4) is no longer
used. The quantized encoder output is then upsampled to 64×64 resolution, to be channel-wise
concatenated to the input of the noise estimation network of the diffusion model. The hyper-network
is trained end-to-end while finetuning the diffusion model. For simplicity, we opt for uniform coding
to map the quantized latents to a bitstream. Using log2 V bits to encode each element in the h×w
sized hyper latent encoding, where V is the codebook size, results in a total of hw log2 V bits.

Global encoding with image captioning. While zl can accurately encode local information, our ex-
periments show that relying on zl alone leads to unsatisfying realism. Therefore, we add a global en-
coding of the image zg which provides additional context. For this purpose, we use an off-the-shelf
state-of-the-art image captioning model, such as BLIP-2 (Li et al., 2023) or IDEFICS (Laurançon
et al., 2023), which we keep fixed when training our model. Note that user-generated captions can
also be used, as explored in our experiments. Similar to Lei et al. (2023), we losslessly compress the
caption using Lempel-Ziv coding as implemented in the zlib library (zli) to obtain zg . Alternatively,
we also explore the use of global image features extracted using an image backbone network.

Decoding with a diffusion model. The quantized local image features in zl are fed to the denoising
U-Net of the diffusion model via concatenation with the latent features xt of the current time step.
To adapt to this change of dimension, we extend the kernel of the first convolutional layer of the
U-Net by adding a number of channels that corresponds to the channel dimension of zl which is
randomly initialized. The global encoding zg is losslessly decoded and passed to the diffusion
model through cross-attention layers of the pre-trained diffusion model.

Furthermore, we found it beneficial to use classifier-free guidance (Ho & Salimans, 2021), which
we apply at inference time for the text conditioning zg , i.e. we contrast conditioning on local featues
zl alone vs. conditioning on both zl and zg . This leads to the noise estimate:

ϵ̂θ = ϵθ(xt, (zl, ∅), t) + λs

(
ϵθ(xt, (zl, zg), t)− ϵθ(xt, (zl, ∅), t)

)
, (5)

where λs is the guidance scale. We empirically found λs = 3 to work well. To enable classifier-free
guidance, we train PerCo by dropping the text-conditioning in 10% of the training iterations. When
dropping the text-conditioning we use a constant learned text-embedding instead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We base our model off a text-conditioned latent diffusion model, with
latent space provided by a convolutional autoencoder and diffusion model with an architecture sim-
ilar to GLIDE (Nichol et al., 2022). The model is pre-trained on a proprietary dataset consisting of
around 300M image-caption pairs. We also experiment with an image-conditioned model. We use
BLIP-2 (Li et al., 2023) to obtain image captions for conditioning the decoder, and limit the maxi-
mum caption length to 32 tokens. The hyper encoder consists of nine residual convolutional blocks,
and includes a number of downsampling layers depending on the spatial map resolution selected for
the target bitrate. In total, the hyper encoder contains between 4M and 8M parameters. During all
our experiments, the autoencoder weights are frozen. We train the hyper encoder and finetune the
diffusion model on OpenImages (Kuznetsova et al., 2020), similar to Lei et al. (2023) and Muckley
et al. (2023). We use random 512×512 crops, and instead of finetuning the full U-Net we found it
beneficial to only finetune the linear layers present of the diffusion model, representing around 15%
of all weights.

Datasets. For evaluation, we use the Kodak dataset (Franzen, 1999) as well as MS-COCO 30k. On
COCO we evaluate at resolution 256×256 by selecting the same images from the 2014 validation
set (Lin et al., 2014) as Hoogeboom et al. (2023) and Agustsson et al. (2023). We evaluate at
resolution 512×512 on the 2017 training set (Caesar et al., 2018), which is the same resolution used
for evaluation by Lei et al. (2023), and use captions and label maps for some metrics.

Metrics. To quantify image quality we use FID (Heusel et al., 2017) and KID (Bińkowski et al.,
2018), which match feature distributions between sets of original images and their reconstructions.
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Figure 3: Evaluation of PerCo and other image compression codecs on Kodak and MS-COCO 30k.

We measure distortion using MS-SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018). In
App. B.1 we also report PSNR, but find these low-level distortion metrics to be less meaningful for
low rates, see Fig. 14. Therefore we include other more semantic-level metrics. We compute the
CLIP score to measure global alignment of reconstructed samples with ground truth captions (Hes-
sel et al., 2021). Unless otherwise specified, we condition our model on captions generated by
BLIP2, which are different from the ground-truth captions used to compute the CLIP score. Second,
we adopt the mean Intersection over Union (mIoU) metric to measure the local semantic preserva-
tion, see e.g. Sushko et al. (2022). In this case, we pass reconstructed images through a pre-trained
semantic segmentation model, and compare the predicted semantic maps to the ground truth ones.
We take the pretrained ViT-Adapter segmentation network (Chen et al., 2023), which was trained on
the COCO train split. For Kodak we only report LPIPS and MS-SSIM, as the dataset is too small
(24 images) to reliably compute FID and KID, and does not come with semantic annotations.

Baselines. We include representative codecs from several families. VTM is a state-of-the-art hand-
crafted codec used in the VVC video codec (vtm). Among neural compressors using adversarial
losses, we include MS-ILLM (Muckley et al., 2023) which improves over HiFiC (Mentzer et al.,
2020) using an adversarial loss based on multi-class classification. For HiFiC we include their
model with the lowest available bitrate, and add MS-PatchGAN, which is a close reproduction of
HiFiC by Muckley et al. (2023). We compare to multi-realism approach of Agustsson et al. (2023),
at their lowest bitrate with the best realism. Text-Sketch (Lei et al., 2023) is the only prior work we
are aware of that evaluates image compression at bitrates below 0.01, it is based on text-conditioned
diffusion models. We include two other recent diffusion-based approaches: DIRAC (Ghouse et al.,
2023) and HFD/DDPM (Hoogeboom et al., 2023).

4.2 MAIN RESULTS
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Figure 4: Evaluation on
COCO at 256×256 res.

Comparison to state-of-the-art methods. In Fig. 3 we compare our
results to state-of-the-art codecs. We observe that PerCo (ours) yields
significantly lower (better) FID and KID compared to other approaches
at lower bitrates (<0.04 bpp), and that our FID and KID curves are much
flatter, indicating a decoupling of realism and bitrate that is not seen for
other methods. For the semantics-related CLIP and mIoU metrics we
also obtain consistent improvements over all other methods, in particular
at low rates. For LPIPS, PerCo is better than Text-Sketch and VTM, but
somewhat worse than other approaches for rates >0.01 bpp. Similarly,
for MS-SSIM we improve over Text-Sketch, but are worse than other
methods. However, as we illustrate in Figs. 10 and 14 in App. B.2, such similarity metrics are not
necessarily meaningful at low bitrates, as they do not capture realism.
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Original MS-ILLM, 0.0065 bpp Text-Sketch, PIC, 0.0025 bpp PerCo (ours), 0.0032 bpp

Original MS-ILLM, 0.013 bpp Text-Sketch, PICS, 0.028 bpp PerCo (ours), 0.011 bpp

Figure 5: Comparing PerCo on images from the Kodak dataset to MS-ILLM (Muckley et al., 2023)
which leverages an adversarial loss, and the diffusion-based Text-sketch approach (Lei et al., 2023)
conditioned on a text only (top, PIC, 0.0025 bpp) and text + sketch (bottom, PICS, 0.028 bpp).
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Figure 6: Reconstruction sampled of a Kodak image at 0.003 and 0.011 bpp. Best viewed zoomed.

In Fig. 4 we compare to HFD/DDPM (using their lowest bitrates: 0.107 and 0.175 bpp) on FID on
MS-COCO 30k at 256×256 resolution, as used in their paper. We also include MS-ILLM and the
multi-realism approach of Agustsson et al. (2023). We find that PerCo yields best FID for both rates.

Qualitative comparisons. We provide qualitative comparisons of PerCo to baselines in Fig. 1 and
Fig. 5. PerCo yields reconstructions of higher quality with less artefacts, more faithful colors, and
realistic details. VTM and MS-ILLM reconstructions are blurry and/or blocky, while Text-Sketch
strongly deviates from the originals in color. When using text-only conditioning for Text-Sketch
(PIC, 0.0025 bpp), it is not able to achieve spatial alignment, by lack of local image encoding.

4.3 ABLATIONS

Diversity in reconstructions. With our model, reconstructions are sampled from a conditional
diffusion model. Ideally, the conditional distribution concentrates all mass perfectly on the original
input image. In practice, this does not happen due to limited model capacity, training data, and
bitrate. In particular, we expect that at lower bitrates —where there is less information about the
original sample— the conditional distribution would have more variance, and we expect to observe
more diversity among the samples. The reconstruction at two bitrates in Fig. 6 confirm this.

Conditioning modalities. In Fig. 7, we evaluate PerCo using each conditioning modality separately
(textual or spatial), to analyze the contribution of each. We compare BLIP-2 (Li et al., 2023) to
generate captions (default) to using IDEFICS (Laurançon et al., 2023) which produces more detailed
descriptions, and ground-truth (GT) captions. When not using descriptive captions, we consider
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Figure 7: Ablation of conditioning on local features and/or different captions. See text for detail.

Table 1: Ablations of classifier-free guidance forms (left), and impact of conditional diffusion
model and quantization on reconstruction abilities (right). All models at 0.0112 bpp, except for
LDM autoencoder and PerCo w/o quantization which use single precision for non-quantized latents.

Guidance type ↓FID ↓LPIPS ↑SSIM ↑mIoU ↑CLIP

None 7.89 0.40 0.58 30.84 28.36
Text and spatial 13.84 0.41 0.58 32.26 28.87
PerCo: Text only 4.42 0.39 0.58 46.64 29.05

Method ↓FID ↓LPIPS ↑SSIM ↑mIoU ↑CLIP

LDM autoencoder 0.67 0.07 0.92 51.04 30.19
PerCo w/o quant. 0.68 0.07 0.92 51.03 30.18
PerCo (0.012 bpp) 4.42 0.39 0.58 46.64 29.05

conditioning on a learned textual embedding that is constant across images. We also tried using an
empty text or on a fixed generic text —“A high quality photograph.”— for all images, and observed
similar or slightly worse performance as the learned text embedding setting.

The model using the constant text embedding (PerCo w/ only Spatial Encoding) performs signif-
icantly worse than the other models in terms of FID and CLIP score. For the LPIPS and mIoU
metrics, which rely on the alignment of the original and reconstructed images, the results are com-
parable to other models. This can be attributed to the fact that accurate alignment is primarily
achieved through local feature conditioning, which remains unchanged in this model. Consistently,
we also notice that when using textual condition only (blue, orange, and red square), the perfor-
mance in terms of LPIPS and mIoU is worse than for the models that use spatial conditioning, while
the CLIP scores are in line with the models using both textual and spatial conditioning. Both types of
conditioning contribute to improving FID, and the text-only conditioned models perform in between
the models with only spatial conditioning and those with both types of conditioning.

Between models using captions from BLIP (blue curves) and IDEFICS (orange curves) in combi-
nation with spatial conditioning, we observe similar FID scores and somewhat better CLIP scores
for the more detailed IDEFICS captions. In terms of LPIPS and mIoU we find that the models with
BLIP captions perform better, which is largely due to bitrate required to encode the longer captions:
leaving out the textual encoding cost, both models perform very similarly. Overall, using ground-
truth captions (GT, red curves) yields similar results as using BLIP, while BLIP and IDEFICS yield
slightly better mIoU and CLIP scores. As COCO contains five GT captions per image, we ensure
that when conditioning on a GT caption, a different one is used to compute the CLIP score.

Classifier-free guidance. In Tab. 1 (left), we compare three options regarding classifier-free guid-
ance (CFG) in our model (i) not using CFG, (ii) applying CFG on the text and spatial feature maps,
i.e. contrasting full conditioning to no conditioning (we use an constant learned text embedding,
and fixed all-zeros feature maps for local conditioning), and (iii) applying CFG to text-conditioning
only, i.e. always conditioning on the spatial feature map. We find that best results are obtained when
CFG is applied to textual conditioning only, which yields significantly better FID and mIoU metrics.

Impact of autoencoder and quantization. To assess to which extent performance is bounded by
the LDM autoencoder or the use of limited bitrate, we compare PerCo to the LDM encoder/decoder
reconstruction and to PerCo trained without quantization in Tab. 1 (right). We observe that the LDM
autoencoder significantly improves all metrics, and that PerCo trained without quantization obtains
roughly the same performance as the autoencoder. This shows that PerCo is a strong conditional
model, and that its performance is mainly bounded by the quantization module which throttles the
bitrate of the image encoding, but could also lead to suboptimal training through noisy gradients.
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Figure 8: Evolution of FID, LPIPS, MS-SSIM and CLIP scores depending on the number of denois-
ing steps for different bitrates. In all cases the model has been trained using 50 denoising steps.

Number of timesteps as a tradeoff between perception and distortion. In Figure 8, we show how
FID, LPIPS, MS-SSIM and CLIP scores vary when we change the number of denoising steps. We do
the evaluation for seven different bitrates, ranging from 0.0032 to 0.1263 bpp. First, we notice that
for higher bitrates, the metrics are quite constant across the number of timesteps, which means that
the model has less uncertainty about the image to reconstruct and obtains optimal performance after
only few denoising steps. Secondly, we observe a tradeoff between distortion and realism for lower
bitrates. Indeed, when the number of timesteps is small, FID is worse, but MS-SSIM is optimal,
while this phenomenon reverses when increasing the number of denoising steps.

Conditioning on global image features. Besides the text-conditioned model described above and
used in most experiments (PerCo), we also experimented with a model conditioned on image embed-
dings extracted from an image backbone network (PerCo-Image). While we use lossless Lempel-Ziv
coding to compress the captions for the text-conditioned model, we use product quantization (Jégou
et al., 2011) for lossy compression of the image embeddings. We divide the embeddings into M
subvectors and quantize each subvector using a separate codebook with V elements. We empiri-
cally found that we achieve similar performance compared to training with non-quantized image
embeddings with M = 16 and V = 1024. For 512×512 images, the bitrate obtained for the image
embeddings is 0.00061 bpp, which is 3.5× lower than the bitrate of 0.00219 bpp for BLIP image
captions. From the results in Fig. 3, we observe that the model with global image embeddings
obtains competitive results, but has slightly worse pairwise image reconstruction metrics at high
bitrates in terms of LPIPS and MS-SSIM on Kodak and MS-COCO 30k.

5 CONCLUSION

We proposed PerCo, an image compression model that combines a VQ-VAE-like encoder with a
diffusion-based decoder, and includes an second conditioning stream based on textual image de-
scriptions. The iterative diffusion decoder allows for more realistic reconstructions, in particular at
very low bitrates, as compared to feed-forward decoders used in previous work, even when trained
with perceptual and adversarial losses. With our work we make step towards perfect realism codecs:
we observe realistic reconstructions at bitrates as low as 0.003 bits per pixel, a bitrate regime that to
our knowledge is explored in only one prior work (Lei et al., 2023). We find that semantics-driven
metrics such as CLIP score and mIoU are improved overall and in particular for low rates, and FID
and KID are dramatically improved at low bitrates and much more stable across different bitrates.

Limitations. In this study we focused on medium sized images up to 768×512 resolution, similar
to prior work on diffusion-based methods (Theis et al., 2022; Lei et al., 2023) that evaluated on
64×64 and 512×512 images, respectively. Extension to higher resolutions can possibly be achieved
using a patch-based approach, see e.g. Hoogeboom et al. (2023). PerCo exhibits somewhat poorer
reconstruction performance in terms MS-SSIM, PSNR and LPIPS (the latter for rates >0.01), than
existing approaches. This seems at least in part to be due to limitations of the LDM autoencoder,
see App. B.2. It is also probably explained by the tradeoff existing between distortion and percep-
tion (Blau & Michaeli, 2019). We leave detailed study of these two points to future work.
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A EXPERIMENTAL DETAILS

Evaluation of third-party models. Where possible we reported evaluation metrics reported in
the original papers. For Text-Sketch Lei et al. (2023), we used the publicly released checkpoints,
and used them for evaluation with the provided code. Note that Text-Sketch resized all images at
resolution 512 for evaluation on the DIV2K and CLIC 2021 datasets, which makes the compar-
ison with other baselines not immediate. We prefer to evaluate on original images instead, and
for that purpose used the Kodak dataset which is commonly used to evaluate image compression
models, and contains images of 512×768 pixels. We also evaluate on the MS-COCO 2014 valida-
tion set, which is less commonly used, but which offers ground truth semantic segmentation maps
and descriptive captions which enable evaluation with the semantics oriented mIoU and CLIP score
metrics. For MS-ILLM and MS-PatchGAN (Muckley et al., 2023), checkpoints for models trained
at additional low bitrates were obtained from the authors through personal communication. For
HFD/DDPM (Hoogeboom et al., 2023), DIRAC (Ghouse et al., 2023) and Multi-Realism (Agusts-
son et al., 2023), we obtained the numbers shown in their paper through personal communication,
as there are no available github. To evaluate VTM, we followed same the procedure as described by
Muckley et al. (2023) in appendix B of their paper. For HifiC (Mentzer et al., 2020), we took the
checkpoints available from their github.1

Additional implementation details. We take a pretrained latent diffusion model doing text-to-
image generation that contains 1.4B parameters. We fix the weights of the LDM autoencoder and
finetune 15% of the diffusion model weights. We train our hyper-encoder for 5 epochs with AdamW
optimizer at a peak learning rate of 1e-4 and a weight decay of 0.01, and a batch size of 160. We
apply linear warmup for the first 10k training iterations. For bitrates higher that 0.05, we found it
beneficial to add a LPIPS loss in image space to reconstruct more faithfully images. As this loss
requires to backpropagate gradients through the LDM decoder (even though the LDM decoder is
frozen), it is more memory intensive and we had to decrease the batch size to 40. For the vector
quantization module, we used the vector-quantize-pytorch library.2

To finetune our latent diffusion model we used a grid of 50 timesteps. At inference time, we use 20
denoising steps to obtain good performance for the lowest bitrates. For bitrates of 0.05 and higher,
we use five denoising steps as this is enough to obtain optimal performance, see Fig. 8 from the
main paper. Besides, we sample images with DDIM deterministic sampling schedule, i.e. by fixing
σt = 0 for all t ∈ [0, T ], where T is the number of denoising steps, see Song et al. (2021).

When testing different textual conditioning modalities (either BLIP or IDEFICS) in our ablation
study in Fig. 7, the conditioning used at inference time is also used when training the models. When
using human-specified captions, we use PerCo trained on BLIP captions, as there are no ground-truth
captions for the OpenImagesv6 dataset we used to train our model.

We use the clean-fid library to compute FID and KID.3. For CLIP score, we compute image and text
embeddings with the CLIP backbone ViT-B/32. LPIPS is calculated using the original github4, and
MS-SSIM from the FAIR Neural Compression library.5

Details on the bitrates used to evaluate our models. To achieve a specific target bitrate, we take
into account the average bitrates required to encode the textual conditioning, and then set the spatial
grid size and vocabulary size of the local conditioning accordingly. More specifically, for COCO at
resolution 512×512, the average textual bpp for BLIP is 0.00219, while it is 0.00622 for IDEFICS,
and 0.00271 for ground truth captions. For Kodak at resolution 768×512, it is 0.00141 with BLIP and
0.00415 bpp with IDEFICS. In the experiments, we select the spatial size and codebook dimension
of the quantization module to adjust the spatial encoding bitrate depending on the targeted total
bitrate. We found that codebooks with less than 64 elements were detrimental to the training, so
we only used larger codebooks. Table 3 lists the bpp for the spatial coding for the configurations
we used to proeuce the results in our experiments. For the ablation study in Fig. 7 we used other

1https://github.com/tensorflow/compression/tree/master/models/hific
2https://github.com/lucidrains/vector-quantize-pytorch
3https://github.com/GaParmar/clean-fid
4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/facebookresearch/NeuralCompression
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combinations of spatial grid size and vocabulary size for the tested variants to approximately match
the bitrates of our default PerCo model.

Inference Speed. We run benchmarking on A100 gpus using 20 denoising steps, and 5 denoising
steps for bitrates higher than 0.05 bits per pixel. We compute the runtime for all the Kodak images
at resolution 512x768 and provide the average time in seconds with its standard deviation. The
encoding complexity of PerCo is quite similar to adversarial-based compression methods such as
MS-ILLM and HifiC (which has the same architecture as MS-ILLM). Encoding with Text-Sketch
(PIC/PICS) is orders of magnitude slower because it is optimizing a text embedding for each image.
The decoding complexity of PerCo using 20 denoising steps (bitrates below 0.05 bpp) is comparable
to that of Text-Sketch (PIC) and about 8 times faster than Text-Sketch (PICS), because PICS is
conditioning on sketches which takes time to decompress. When using only five denoising steps,
the decoding complexity drops rouhgly by a factor four, showing that the decoding is dominated
by evaluations of the denoising network. Compared to HiFiC and MS-ILLM, the PerCo decoder
using 5 denoising steps is about eight times slower, and when using 20 steps this becomes a factor
32. Please note that the running time of VTM is computed on CPU, so it may explain the longer
runtime. About the diffusion-based models DIRAC and HFD/DDPM, we couldn’t evaluate their
models as there is no available codebase, but we found some evaluations in DIRAC paper about
decoding time. They report a decoding time which is about four times slower than what they report
for HifiC, which also shows that diffusion-based methods are slower than adversarial-based ones.

Table 2: Encoding and Decoding Speed (in seconds).
Model Encoding Speed (in sec.) Decoding Speed (in sec.)
VTM 16.892 ± 7.574 0.135 ± 0.002
MS-ILLM 0.084 ± 0.021 0.080 ± 0.007
Text-Sketch (PIC) 163.070 ± 0.380 2.725 ± 0.012
Text-Sketch (PICS) 190.231 ± 2.476 19.288 ± 0.251

PerCo - 5 denoising steps 0.080 ± 0.018 0.665 ± 0.009
PerCo - 20 denoising steps 0.080 ± 0.018 2.551 ± 0.018

The average decoding times for the 24 images of Kodak dataset are 0.67 secs. and 2.54 secs. when
decoding with 5 and 20 steps, respectively. Timings is performed when decoding one image at a
time.

Table 3: Summary of the different combinations of spatial grid size and codebook size used for
spatial encoding of 512×512 images.

Spatial size Codebook size Spatial bpp

64×64
256 0.1250
64 0.0937

32×32
8196 0.0507
256 0.0313

16×16 1024 0.0098

8×8
1024 0.0024
256 0.0019

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 QUANTITATIVE RESULTS

In Figure 9, we complete Figure 3 from the main paper with the PSNR metric computed on Kodak
and COCO. We observe that PerCo yields consistently better (higher) PSNR than Text-Sketch, but
also consistently worse (lower) than MS-ILLM. To understand the reason behind this relatively low
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Figure 9: PSNR on Kodak and MS-COCO30k

PSNR, we also include the PSNR of our LDM autoencoder (black horizontal line), which does not
involve quantization. Interestingly, we observe that the LDM autoencoder achieves a PSNR perfor-
mance comparable to MS-ILLM at a bitrate of 0.08 and VTM at a bitrate of 0.04. The PSNR of the
LDM autoencoder presumably explains the lower PSNR performance we observe with PerCo across
different bitrates. To gain further insights into this behavior, we visually inspect the reconstruction
for a Kodak image in Figure 10. From the example, the LDM autoencoder seems to preserve more
relevant detail and texture than the MS-ILLM reconstruction, despite the lower PSNR.

In Figure 11, we provide an ablation on the addition of the LPIPS loss, which shows that it leads to
small improvements for both LPIPS and FID at higher bitrates.

In Figure 16, we provide evaluation on an additional global image similarity metric that consists in
computing CLIP scores with a cosine similarity between CLIP image embeddings of original and
reconstructed images, instead of cosine similarity between text captions and reconstructed images.
This is motivated by the fact that we noticed that CLIP text score was saturating at high bitrates,
as it reaches the upper bound of 30.4 when computed on real images instead of reconstructed ones,
while CLIP image score threshold is 1 when evaluated on real images which is higher than what is
obtained at high bitrates for all the baselines.

B.2 QUALITATIVE RESULTS

Ablations on text. In this ablation study, we conduct a detailed analysis to comprehend the effects
of employing text as a global embedding. In Figure 12, we present qualitative examples across two
bitrates, where we manipulate the conditioning text. At lower bitrates for the spatial conditioning
(first and second rows), we observe that textual conditioning has a significant influence on the recon-
structed image. It can even alter the semantics of the scene, such as transforming a lighthouse into
a castle (second row, third column). Furthermore, we note the positive impact of text conditioning,
as image quality substantially deteriorates when text is not used (first row, second column). Con-
versely, when the bitrate of the local encoding is higher (last row), we notice that text has minimal
influence on the reconstructed image.

Reconstruction at different bitrates. In Figure 13, we show reconstructions of two MS-COCO
30k images using PerCo trained for different targeted spatial rates, ranging from 0.0046 to 0.1279
bpps. The image quality is quite stable across bitrates, while the similarity with the original images
increases with the bitrate.

Qualitative analysis of LDM autoencoder reconstruction When computing the averaged simi-
larity scores on Kodak dataset for the LDM autoencoder, we obtain 0.0775 LPIPS, 0.9131 MS-SSIM
and 25.6003 PSNR which is lower than MS-ILLM at 0.1535 bpp for all the scores and lower than
MS-ILLM at 0.0806 bpp on PSNR. In Figure 10 we show a Kodak image illustrating that. Even
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Original

MS-ILLM, 0.0806 bpp, 24.44 PSNR, 0.8547 MS-SSIM, 0.1095 LPIPS

MS-ILLM, 0.1535 bpp, 25.97 PSNR, 0.9055 MS-SSIM, 0.0771 LPIPS

LDM autoencoder, 23.17 PSNR, 0.8674 MS-SSIM, 0.0880 LPIPS

Figure 10: Qualitative comparison of reconstructions using MS-ILLM and our LDM autoencoder at
comparable PSNR of a Kodak image (left) along with two zooms (middle, and right).
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Figure 11: Ablation of adding the LPIPS loss to train the diffusion decoder.

if the LDM autoencoder produces highly detailed images, we observe that reconstruction fidelity
is somewhat worse than MS-ILLM at higher bitrates. Indeed, when looking at image details such
as the waves, we notice that MS-ILLM exhibits some blurring at 0.0806 bpp while LDM produces
sharp details for a similar PSNR. When comparing with MS-ILLM at the higher bitrate of 0.1535
bpp, we notice that the letters on the boat are less faithful for our LDM Autoencoder than MS-ILLM
with respect to the original image.

Qualitative analysis of pixelwise similarity metrics We observed that pixelwise distortion met-
rics such as PSNR, MS-SSIM and LPIPS are not very meaningful at very low bitrates, as already
pointed out by Lei et al. (2023). In the example in Figure 14, PerCo at 0.0031 bpp is 3.33 points
worse in PSNR, 0.1766 points worse in MS-SSIM and 0.085 points worse in LPIPS than MS-ILLM
at 0.0065 bpp. However, at these very low bit-rates PerCo yields a much sharper and realistic recon-
struction than MS-ILLM, and preserves most of the semantics of the scene. These examples provide
some indication that these metrics do not align well with human preference for image quality at very
low bitrates.

Additional comparisons to baselines In Figure 15, we compare PerCo at 0.1264 bpp, the highest
bitrate we trained on, to VTM, HiFiC and MS-ILLM at similar bitrates. At this bitrate, PerCo
faithfully reconstructs the original images with similarly detailed textures as HiFiC and MS-ILLM,
and fewer artifacts than VTM.
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Original No text ’A lighthouse with a white picket fence’ (BLIP)
Spatial bpp: 0.0019, Textual bpp: 0. Spatial bpp: 0.0019, Textual bpp: 0.0016

’A lighthouse’
’A house and a red safety ring

’An old castle’on a white picket fence with a lighthouse’
Spatial bpp: 0.0019, Textual bpp: 0.0010 Spatial bpp: 0.0019, Textual bpp: 0.0020 Spatial bpp: 0.0019, Textual bpp: 0.0011

No text ’A lighthouse with a white picket fence’ (BLIP) ’An old castle’
Spatial bpp: 0.1250, Textual bpp: 0. Spatial bpp: 0.1250, Textual bpp: 0.0016 Spatial bpp: 0.1250, Textual bpp: 0.0010

Figure 12: Reconstructions of a Kodak image when varying the global textual conditioning with a
spatial bpp of 0.0019 (first two rows) and 0.1250 bpp (last row). Samples with the same spatial bpp
are reconstructed from the same initial Gaussian noise from the same model.
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Original 0.0048 bpp 0.0087 bpp

0.0127 bpp 0.0536 bpp 0.1279 bpp

Original 0.0046 bpp 0.0085 bpp

0.0125 bpp 0.0534 bpp 0.1277 bpp

Figure 13: Reconstructions of two MS-COCO 30k images by PerCo at different bitrates. Textual
conditionings are “Bedroom scene with a bookcase, blue comforter and window” and “A stop sign
is mounted upside-down on it’s post”, respectively.
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Original

MS-ILLM, 0.0065 bpp, 20.54 PSNR, 0.5672 MS-SSIM, 0.5372 LPIPS

PerCo 0.0070 bpp, 18.49 PSNR, 0.4700 MS-SSIM, 0.5239 LPIPS

PerCo 0.0031 bpp, 17.21 PSNR, 0.3906 MS-SSIM, 0.6222 LPIPS

Figure 14: Qualitative comparison of reconstructions using MS-ILLM and PerCo at low bitrates
of a Kodak image (left) along with two zooms (middle, and right). MS-ILLM yields a very blurry
recontruction at this operating point with PerCo yields a more realistic reconstruction, yet PerCo
obtains a substantially lower PSNR, MS-SSIM and LPIPS.
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Original VTM (0.1552 bpp) HifiC (0.18 bpp)

MS-ILLM (0.15347 bpp) Ours (0.1265 bpp)

Original VTM (0.1552 bpp) HifiC (0.18 bpp)

MS-ILLM (0.15347 bpp) Ours (0.1264 bpp)

Figure 15: Reconstructions of Kodak images at the highest bitrate range we evaluated models on.
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Figure 16: Evaluation in terms of the CLIP image metric.
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