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ABSTRACT

Systematic literature reviews are essential for science but remain labor-intensive.
To benchmark and improve automation, we introduce SciLitBench, a new dataset
of 42,980 curated abstracts, 2,311 full texts, and TODOXXX structured data ele-
ments (e.g. study-level metadata, PICO entities, outcome measures, and evidence)
annotated and labeled for inclusion decisions and knowledge reasoning. Across
22 open-source large language models (LLMs), we uncover general design prin-
ciples that make automation reliable under recall-skewed objectives (F2). First,
we observe clear scaling and prompt-design effects: explicit inclusion/exclusion
prompting improves accuracy by up to +29%, while adding researcher “thought
traces” yields a +28% gain. Second, we show that reliability under full-text
screening depends sharply on the interaction between context length and model
capacity. Motivated by this, we introduce a token-length–aware routing system
that surpasses ensembles of strongest models (F2 = 0.949 vs 0.938). Finally,
we demonstrate a human-in-the-loop, rubric-guided extraction workflow that sep-
arate field extraction from guideline adherence checking to align model outputs
with domain standards given researcher feedback. Together, our benchmark and
findings establish scaling, prompt design, thought traces, and adaptive routing as
key principles for reliable, researcher-aligned automation of systematic reviews.

1 INTRODUCTION

Systematic literature reviews are central to scientific process: they synthesize evidence across stud-
ies, establish consensus on contested topics, clarify conceptual boundaries, and chart promising
directions for future research. Meta-analyses of medical interventions, for instance, have shaped
public health policy on smoking, nutrition, and preventive care, underscoring how reviews can ac-
celerate scientific progress and improve societal outcomes (Hackshaw et al., 1997; Mozaffarian
et al., 2006; Cholesterol Treatment Trialists’ (CTT) Collaboration et al., 2010; Ntais & Talias, 2024;
Office of the Surgeon General (US) & Office on Smoking and Health (US), 2004). The demand for
such syntheses has grown rapidly: despite a slow and labor-intensive effort, the number of published
literature reviews has risen dramatically in recent years, reflecting both their impact and the need
for tools that can keep pace with the expanding scientific record beyond human curation capacity
(Hoffmann et al., 2021; Smela et al., 2023).

Why automation, and why now? Conducting a high-quality review involves multi-stage decision-
making – search and retrieval, title/abstract screening, full-text screening, and structured data ex-
traction – each demanding careful, consistent judgment across thousands of records. The resulting
time and cost burdens create real bottlenecks for science. Meanwhile, AI capabilities are evolving
quickly, inviting us to modernize review pipelines without compromising rigor.

The recent rise of LLMs has transformed the landscape of AI research and captured the public
imagination. These models are trained on a vast corpora of text and exhibit emergent capabili-
ties that go beyond simple pattern recognition. Since the release of ChatGPT based on GPT-3.5,
progress has been remarkably fast in a wide variety of fronts (Maslej et al., 2025; Ho et al., 2024).
New generations of reasoning models, such as o1 and other state-of-the-art systems (OpenAI et al.,
2024; DeepSeek-AI et al., 2025), now excel on benchmarks requiring multi-step structured problem-
solving, and even achieved Olympic gold medals in math and programming (OpenAI et al., 2025).
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Figure 1: SciLitBench. The dataset is curated on the topic of the use of AI to assist literature reviews. With a
librarian-optimized search query, we retrieved 42,980 peer-reviewed publication records from three databases:
PubMed (PM), Semantic Scholar (SS), and Scopus (SC). The “+” indicates the number of positive labels.

As such, LLMs are naturally well-suited for the task of literature review automation. They encode
extensive background knowledge and have been exposed to scientific literature during pretraining;
they are naturally adept at working with textual data and, with the steady increase of context window
sizes, are now capable of processing entire papers in a single pass. At the same time, the rate
of factual errors and hallucinations has decreased in the strongest models, suggesting that these
systems can be utilized to reliably automate the tasks involved in literature reviews (Muhlgay et al.,
2024; Wei et al., 2024a;b). Harnessing LLMs for review automation therefore represents a critical
step toward ensuring that the pace of evidence synthesis can match the pace of discovery.

What’s missing in the current landscape? Prior academic work typically tackles a single stage
(e.g., title/abstract screening, full-text screening, or extraction), often on small datasets with limited
evaluation scope. Recent studies probe prompting or ensembling but still lack breadth and unified
protocols. Complementing these are commercial tools (e.g., general “AI review assistants”) whose
methods and evaluations are opaque. Together, these leave open crucial questions: Which design
choices actually make LLMs reliable collaborators? How do capacity and context length interact?
What evaluation protocols should the community standardize on?

Our approach. We introduce SciLitBench, a benchmark suite and open artifact release aimed at
both evaluating and improving LLM-powered automation across the review pipeline. Starting from
42,980 retrieved records, we annotate 2,000 titles/abstracts and 200 full texts with inclusion labels
and reasoning/rationales. We evaluate 22 open-source LLMs across three key stages – title/abstract
screening, full-text screening, and data extraction – while deriving general design principles (e.g.,
explicit inclusion/exclusion prompting, scaling, few-shot learning, chain-of-thought, thought traces,
and length-aware routing) for making them reliable collaborators. In abstract and full-text screening
we emphasize recall with F2 (while also reporting precision/recall), reflecting the real-world priority
of minimizing false exclusions in early stages. We carry best-performing systems forward to full-
text screening and then to extraction, quantifying workload savings and reliability throughout. We
then semi-automate the label curation for the full 43k publication records and 2,311 available full-
text PDFs to create 45,291 binary labels and TODOXXX multi-class labels as a multi-task dataset
and benchmark (Fig. 1. We also release codes, prompts, outputs, scoring scripts, and guidelines to
maximize reproducibility and community uptake. We have four key contributions:

1. A multi-stage, open benchmark for review automation (SciLitBench), with frozen splits
and documented protocols spanning abstract screening, full-text decisions, and extraction.

2. Comprehensive evaluation of 22 LLMs with standardized prompts and metrics, revealing
robust gains from explicit inclusion/exclusion prompting and researcher thought traces.

3. Reliability test at long context that shows a performance interaction between model capac-
ity and document length, motivating a token-length–aware routing strategy that surpasses
strong static ensembles under recall-centric objectives.

4. Human-in-the-loop extraction workflow with a rubric-guided collaborator/checker pattern
to align outputs with researcher standards and operationalize trustworthy principles.

Unlike proprietary tools, SciLitBench prioritizes open methods and verifiable evaluation. Our ap-
proach prioritizes transparency: frozen splits, versioned prompts, outputs, and evaluation scripts are
released to enable direct replication and leaderboard-style comparisons. We explicitly report recall-
skewed screening (F2), strict format adherence for structured outputs, and workload/cost curves, pro-
viding LLM-centric diagnostics that complement existing resources and proprietary systems while
anchoring automation research in open, verifiable science. By systematically documenting where
models succeed and fail, we aim to ground practical adoption in shared, inspectable evidence and
provide a stable foundation for iterative improvement by the community.
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Benchmark Domain Stages Long Rats. Task Size

SciLitBench (ours) SR TA+FT+Ext ✓ ✓ Bin + Struct 43k TA; 2k FT
SYNERGY De Bruin et al. (2023) SR TA ✗ ✗ Bin 169k recs / 26 SRs
Evidence Inference DeYoung et al. (2020) RCTs FT (effect) ✓ ✓ Cls (ICO) 7k query–doc inst.
EBM-NLP (PICO) (Nye et al., 2018) RCT abs. Ext (P/I/O) ✗ ( spans ) NER 5k abs.

MS2 (DeYoung et al., 2021) Med SRs Summ. (MD) ✓ ✗ Summ. 470k docs; 20k sums
BioASQ (Tsatsaronis et al., 2015) Biomed IR/QA IR+QA ( snips ) ✓ IR+QA Yearly batches
PubMedQA (Jin et al., 2019) Biomed abs. QA (YNM) ✗ ✗ QA 1k labels / 211k auto

Table 1: SciLitBench in context. SciLitBench uniquely spans three SR stages on long PDFs with inclusion
rationales and an LLM-centric protocol (recall-skewed F2, strict format adherence, and length-aware routing).
(SR: systematic reviews; TA: title/abstract screening; FT: full-text screening/decision; Ext: structured extrac-
tion; Long: long documents (full-text PDFs); Rats.: released human rationales; Bin: binary include/exclude;
Struct: structured fields; ICO: Intervention versus a Comparator for a specific Outcome; Summ.: summariza-
tion; MD: multi-document; YNM: yes/no/maybe; RCT: random controlled trials; IR: information retrieval.)

2 RELATED WORK

AI and LLMs for literature reviews. A growing body of academic work has explored how AI
methods can automate parts of the literature review pipeline. Studies often focus on singular tasks
such as title/abstract screening, full-text screening, or data extraction (Tran et al., 2023; Jensen
et al., 2014; Li & Kanoulas, 2019; Przybyła et al., 2018; Li et al., 2024; Gao & Zhang, 2015;
Ferracane et al., 2016). More recent work tests LLMs for prompt tuning, ensembling, or similar
design choices (Homiar et al., 2025; Igoli et al., 2024; Kılıç et al., 2024; Huotala et al., 2024;
Iacus et al., 2025; Sanghera et al., 2024), but typically with small datasets and limited evaluation
scope. These LLM studies most remain single-stage case studies on abstract-only corpora, often
without rationale release, long-PDF inputs, recall-skewed metrics (F2), strict output-format checks,
or workload/cost reporting. As context windows expand, capacity–length interactions and format
adherence emerge as primary failure modes; few benchmarks explicitly analyze these factors or
standardize evaluation around document length and structured-output contracts.

Complementary to these experimental studies, survey papers summarize the role of LLMs in litera-
ture review automation (Scherbakov et al., 2025; Zhuang et al., 2025; Galli et al., 2025). However,
many reviews have been conducted without automation at all, and those using AI rarely analyze
the methodological details of what designs succeed or fail. As a result, these papers provide broad
overviews but not concrete insights into the design principles necessary for reliable automation.

Datasets and benchmarks. Several widely used datasets target subtasks relevant to evidence
synthesis rather than the end-to-end review workflow. SYNERGY provides high-quality in-
clude/exclude labels for title/abstract screening across multiple topics, enabling screening simu-
lations but not full-text judgments or extraction (De Bruin et al., 2023). EBM-NLP frames struc-
tured extraction as PICO span labeling from random controlled trials (RCT) abstracts (Population,
Intervention, Outcome) (Nye et al., 2018). Evidence Inference evaluates full-text effect direction
(increase/decrease/no-effect) with evidence sentences, but not systematic review (SR) inclusion de-
cisions or schema-level extraction (DeYoung et al., 2020). MS2 focuses on multi-document summa-
rization linking SRs to constituent trials (DeYoung et al., 2021). Biomedical IR/QA resources such
as BioASQ and PubMedQA benchmark retrieval, snippet-grounded QA, and abstract-level decision
QA, respectively (Tsatsaronis et al., 2015; Jin et al., 2019). These resources are invaluable, yet they
do not jointly evaluate screening → full-text decision → structured extraction under long-document
inputs or LLM-specific reliability criteria. Table 1 summarizes these contrasts.

Positioning of SciLitBench. SciLitBench addresses these limitations by providing, to our knowl-
edge, the largest curated public dataset and protocol suite that spans three stages of the SR
pipeline on long-document inputs: starting from 42,980 retrieved records, we release annotated
titles/abstracts and full texts with inclusion labels and human-readable rationales. We conduct a
comprehensive evaluation of 22 open-source LLMs across title/abstract screening, full-text screen-
ing, and schema-guided extraction. Beyond metrics, we distill design principles: explicit inclu-
sion/exclusion prompting, researcher thought-traces, and length-aware routing that captures ca-
pacity–length interactions–not systematically studied in prior work. For extraction, where open-
endedness complicates evaluation, we propose a collaborator–checker workflow: (i) co-design
guidelines with an LLM and the human researcher; (ii) separate extraction from guideline-adherence
checking, improving reliability and aligning outputs with researcher preferences.
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3 SCILITBENCH: TASKS, DATA, AND EVALUATION PROTOCOL

Here we specify SciLitBench as a reusable protocol: task schemas and I/O contracts (Sec. 3.1),
dataset curation and frozen splits (Sec. 3.2), evaluation metrics (Sec. 3.3), baseline LLMs and infer-
ence settings (Sec. 3.4). Later sections instantiate the protocol per stage with results and ablations.

3.1 TASKS AND INPUT/OUTPUT CONTRACTS

Notation. Let D be the corpus of candidate records returned from a predefined search strategy. For
document d ∈ D, let td be the title, ad the abstract, and fd the full text (potentially a long PDF).
Let yd ∈ {include,exclude} be the gold screening label and rd a human-provided rationale
(quoted evidence + brief note).

Stage A – Title/Abstract screening (TA). Input: (td, ad). Output: ŷd ∈ {include,exclude}
and optional r̂d. Contract: single binary decision; if rationales are requested, r̂d must contain a short
quote from ad and a one-sentence reason.

Stage B – Full-text screening (FT). Input: fd (long-document). Output: ŷd and optional r̂d. Con-
tract: same decision space as TA; when rationales are requested, r̂d must cite page/section anchors
or verbatim spans.

Stage C – Structured extraction (Ext). Input: fd for documents with yd = include.
Output: a JSON object conforming to a public schema S (e.g., fields for Popula-
tion/Intervention/Comparator/Outcome, study design, n, effect size, etc.). Contract: strict schema
adherence (all required keys present; values meeting type/format constraints such as numeric for-
mats and controlled vocabularies).

Format-adherence (Reliability) checks. For stages requesting rationales or structured outputs, we
enforce a deterministic validator V (regex + JSON schema). For stages requesting binary outputs,
we enforce V (regex). Predictions failing V are counted as invalid and scored as errors.

3.2 DATASET AND FROZEN SPLITS

We begin from 42,980 retrieved records using a fixed multi-database search using a librarian-
optimized query (Appx. A). After de-duplication, eligibility screening, and full text retrieval, we
annotate and publish frozen splits with stable identifiers:1:

TA set: 2,000 title/abstract items with yd and rd (quote+reason), with splits dev/train/test:
100/100/1800. The best performing system is used to automatically label the rest 40,980 ti-
tle/abstract items with sample validation. The dev set is used for few-shot examples.

FT set: 200 full texts with yd and rd (evidence spans + notes), with splits dev/train/test:
10/100/90. The best performing system is used to automatically label the rest 2,111 full-text items
with sample validation. The dev set is used for few-shot examples.

3.3 EVALUATION METRICS

Screening (TA/FT). Our primary metric is F2, the recall-skewed Fβ = (1 +

β2) Precision·Recall
β2·Precision+Recall with β=2. We also report Precision, Recall, and confusion matrices.

Because early-stage false negatives are costly, F2 is the model-selection metric for screening.

Reliability Rate (format adherence). For any stage with output constraints, Rel. Rate = 1 −
#{predictions failing V}

#{predictions} . Invalid predictions are scored as errors for task metrics (binary: treated as wrong
class; extraction: zero credit for affected fields).

Structured extraction. We evaluate at three granularities: (i) Exact-match per field, (ii) Schema-
match allowing benign normalization (e.g., whitespace, unit aliases), and (iii) Record completeness
(fraction of required fields filled and valid).

1We release DOIs/PMIDs and hash-based IDs; PDFs are redistributed only where licensing permits.
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m Figure 2: Scaling of title/abstract
screening performance by model size.
F2 scores are shown for 22 open-source
LLMs across families and parameter
scales. A clear scaling law emerges,
with smaller models (<20B) generally
performing poorly, while larger mod-
els achieve substantially higher reliabil-
ity. Notably, reasoning-oriented vari-
ants (e.g., Qwen3, gpt-oss) attain strong
performance despite moderate size.

zero-shot few-shot 2 few-shot 5

model model size basic incl incl+excl basic incl incl+excl basic incl incl+excl

Gemma3 12b 0.179 0.212 0.257 0.188 0.219 0.317 0.329 0.307 0.339
Gemma3 27b 0.253 0.293 0.421 0.227 0.249 0.324 0.359 0.330 0.428
Gemma3 4b 0.148 0.186 0.157 0.129 0.136 0.146 0.154 0.151 0.164
gpt-oss 120b 0.686 0.681 0.697 0.687 0.684 0.675 0.674 0.659 0.686
gpt-oss 20b 0.620 0.655 0.628 0.644 0.658 0.679 0.677 0.694 0.686
Llama3 70b 0.268 0.213 0.287 0.322 0.390 0.472 0.315 0.410 0.466
Llama3.1 70b 0.421 0.598 0.755 0.395 0.577 0.751+ 0.302 0.531 0.749++

Llama3.1 8b 0.295 0.535 0.609 0.210 0.456 0.646 0.459 0.534 0.588
Llama3.2 1b 0.115 0.195 0.186 0.174 0.181 0.197 0.128 0.132 0.148
Llama3.2 3b 0.327 0.579 0.564 0.292 0.335 0.410 0.318 0.299 0.430
Llama3.3 70b 0.251 0.497 0.786∗ 0.238 0.384 0.717+++ 0.228 0.464 0.735+

Llama3 70b 0.438 0.567 0.679 0.283 0.358 0.570 0.288 0.471 0.698
Llama3 8b 0.178 0.360 0.452 0.205 0.312 0.476 0.310 0.377 0.542
Llama4 16x17b 0.345 0.478 0.482 0.431 0.620 0.737 0.556 0.625 0.669
Mistral 123b 0.637 0.610 0.606 0.766∗ 0.671 0.570 0.728 0.638 0.614
Phi3.5 3.8b 0.000 0.000 0.000 0.000 0.000 0.000 0.065 0.043 0.041
Phi3 14b 0.206 0.217 0.246 0.179 0.355 0.477 0.207 0.271 0.295
Phi3 3.8b 0.023 0.076 0.077 0.147 0.164 0.245 0.192 0.217 0.258
Qwen3 14b 0.761∗ 0.720 0.749 0.739+ 0.753 0.736 0.749 0.756∗ 0.736
Qwen3 30b 0.706 0.567 0.565 0.726+ 0.760∗ 0.712 0.734 0.734 0.751
Qwen3 32b 0.657 0.682 0.668 0.754 0.704 0.728 0.706 0.726 0.740
Qwen3 8b 0.666 0.646 0.665 0.686 0.660 0.667 0.638 0.665 0.725

strong pool (ts=3) 0.808 (precision: 0.551, recall: 0.915)
lenient pool (tl=9) 0.803 (precision: 0.512, recall: 0.936)
comb. pool (ts = 3, tl = 4) 0.655 (precision: 0.275, recall: 1.000)

Table 2: Systematic evaluation in title/abstract screening. We report F2 (recall-weighted F -score) for
each model across prompting and few-shot configurations. From single-model results, we select the top five
configurations to form a strong pool (marked ∗) and build a majority-vote ensemble (predict “include” if at least
ts of 5 vote yes). To prioritize high recall, we also form a lenient pool (marked +) of the ten best configurations
with recall = 1.0 and test majority-vote thresholds tl. We further evaluate a combined ensemble that predicts
“include” if either pool crosses its threshold. For these three ensemble variants we report F2, precision, and
recall, and select the best system subject to recall = 1.0 for curation.

3.4 BASELINE LLMS AND INFERENCE SETTINGS

We standardize two families: 1) Open LLMs: 22 open-source models spanning small/medium/large
capacities and varying context windows and parameter scales: Llama (Touvron et al., 2023), GPT-
OSS (Agarwal et al., 2025), Gemma (Team et al., 2024), Qwen (Bai et al., 2023), Mistral (Jiang
et al., 2024), and Phi (Abdin et al., 2024). Decoding is standardized (temp, top-p). Each model is
queried in zero-shot and few-shot conditions under different prompting strategies. Performance is
measured on the held-out evaluation set. Prompts are versioned and frozen per stage. and 2) En-
sembles/Routing: We include (i) best single model, (ii) static majority or weighted score ensembles,
and (iii) a token-length–aware router that adapt ensemble weighting given the document.

Unless stated otherwise: temperature = 0, top-p=0.9, max tokens set to avoid truncation of required
outputs, with retries on format failure (max 1 retry with stricter system prompt). For long documents
(fd), we pass full text up to the model’s context limit. Full prompts are included in Appx. B.

4 STAGE A – TITLE/ABSTRACT SCREENING (TA)

Problem definition and inputs. Given (td, ad) for each record d, the model outputs a binary deci-
sion ŷd ∈ {include,exclude} and, when requested, a short rationale r̂d (quote + one-sentence
reason). Evaluation uses the TA dev/train/test splits in Sec. 3.2. Metrics and validators
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zero-shot few-shot

model model size one-step two-step no thought traces thought traces

basic strict unstruct. CoT few-shot 2 few-shot 4 few-shot 2 few-shot 4

Gemma3 12b 0.513 0.611 0.694+ 0.758+ 0.580 0.568 0.636 0.565
Gemma3 27b 0.670 0.708 0.660 0.758 0.619 0.515 0.670 0.606
Gemma3 4b 0.180 0.476 0.528 0.595+ 0.586 0.636 0.524 0.524
gpt-oss 120b 0.684 0.729 0.123 0.040 0.038 0.000 0.258 0.312
gpt-oss 20b 0.852∗ 0.862∗ 0.824 0.882∗ 0.677 0.684 0.824 0.872∗

Llama3 70b 0.037 0.000 0.100 0.189 0.144 0.198 0.097 0.053
Llama3.1 70b 0.676 0.664 0.743+ 0.758+ 0.441 0.000 0.660 0.698
Llama3.1 8b 0.688 0.636 0.673 0.658+ 0.583 0.000 0.625 0.538
Llama3.2 1b 0.000 0.385 0.330 0.230 0.110 0.000 0.357 0.537
Llama3.2 3b 0.491 0.496 0.676+ 0.652 0.602 0.458 0.512 0.507
Llama3.3 70b 0.625 0.591 0.676 0.765 0.664++ 0.654 0.688 0.699
Llama3 70b 0.280 0.244 0.673 0.693 0.700 0.700 0.700 0.677
Llama3 8b 0.195 0.296 0.532 0.474 0.612 0.612 0.571 0.561
Llama4 16x17b 0.038 0.081 0.294 0.424 0.361 0.353 0.361 0.412
Mistral 123b 0.533 0.533 0.735 0.526 - - - -
Phi3.5 3.8b 0.000 0.000 0.204 0.248 0.323 0.323 0.269 0.266
Phi3 14b 0.091 0.465 0.556 0.747 0.517 0.503 0.517 0.551
Phi3 3.8b 0.236 0.128 0.152 0.449 0.510 0.510 0.433 0.462
Qwen3 14b 0.714 0.815 0.781 0.798 0.305 0.349 0.292 0.292
Qwen3 30b 0.698 0.595 0.739 0.739 0.181 0.076 0.152 0.152
Qwen3 32b 0.824 0.824 0.798 0.833 0.539 0.426 0.395 0.491
Qwen3 8b 0.862∗ 0.815 0.814 0.781+ 0.333 0.285 0.268 0.254

strong pool (ts=5) 0.938 (precision: 0.750, recall: 1.000)
lenient pool (tl=10) 0.904 (precision: 0.652, recall: 1.000)
comb. pool (ts = 5, tl = 10) 0.882 (precision: 0.600, recall: 1.000)
routing ensemble 0.949 (precision: 0.789, recall: 1.000)

Table 3: Systematic evaluation in full-text screening. We report F2 (recall-weighted F -score) for each
model across prompting and few-shot configurations. From single-model results, we select the top five config-
urations to form a strong pool (marked ∗) and build a majority-vote ensemble (predict “include” if at least ts
of 5 vote yes). To prioritize high recall, we also form a lenient pool (marked +) of the ten best configurations
with recall = 1.0 and test majority-vote thresholds tl. We further evaluate a combined ensemble that predicts
“include” if either pool crosses its threshold, and a routing ensemble that fits a logistic regression over model
weighting with bins by document context length. For these four ensemble variants we report F2, precision, and
recall, and select the best system subject to recall = 1.0 for curation.

follow Sec. 3.3; the primary selection metric is F2, which emphasizes recall over precision, though
we also track precision and recall explicitly in downstream voting systems.

In this stage we evaluate whether LLMs can reliably automate the inclusion decisions of systematic
reviews from titles and abstracts alone. We include a wide variety of model families and sizes and
investigate different prompts, few-shot, and voting mechanisms with the aim of finding the best
performance. Our selected system achieves perfect recall in our dataset while also significantly
reducing workload. Finally, this system is applied to classify the unlabeled list of papers form our
initial search, which will conform the papers selected for the next stage of the review, full-text
screening. The overall aim in this stage is twofold: (1) explore the design factors that influence
performance under abstract screening, and (2) select the best-performing system to apply at scale to
the remaining abstracts with sample validation, serving as a filtered pool for full-text screening. We
release the full 42,980 original title/abstracts, their semi-automated labels and researcher-annotated
rationales, as our first contribution to SciLitBench.

Scaling law. Table 2 reports F2 across all model configurations. A clear scaling trend emerges:
larger models consistently achieve higher F2 scores (Fig. 2). While mixture-of-experts and
reasoning-oriented variants tend to perform well even at moderate sizes, the overall regression line
shows a strong positive relationship between parameter count and reliability. This provides direct
evidence that model size is an important contributor to abstract screening performance.

Prompt tuning. We design three prompt variants to test the effect of instruction-following: (i) basic,
a generic classification query; (ii) inclusion, which explicitly asks whether the abstract meets inclu-
sion criteria; and (iii) inclusion+exclusion, which additionally requires explicit exclusion reasoning
(prompts provided in Appx. B.1. Results show substantial gains over the basic baseline: inclu-
sion prompting yields a +17.0% relative improvement, and inclusion+exclusion prompting yields
+28.8% (Fig. 3a). This establishes prompt design as a simple but powerful lever for improving
performance in review automation.

Few-shot learning. We next evaluate whether few-shot demonstrations improve performance, vary-
ing both the number of examples (2, 5) and the proportion of positive cases (0.0, 0.5, 1.0). On
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Figure 3: Effect of system prompt tuning on title/abstract screening (zero-shot) and full-text screening
(few-shot. (Left panel, a) In TA, compared to a basic classification query, prompts that explicitly reference
inclusion criteria improve performance (+17.0%) in average, while prompts requiring both inclusion and ex-
clusion reasoning yield the largest gain (+28.8%). This highlights prompt design as a key driver of reliability
in review automation. (Right panel, b) In FT, incorporating rationales (i.e. researcher “thought traces”) into
few-shot examples improves conformity with sophisticated criteria, raising average F2 from 0.309 to 0.396
(+28%). This shows that exposing models to both decisions and the reasoning behind them is a powerful lever
for improving reliability in review automation.

Figure 4: Voting mechanisms improves performance. Among both the strong pool (left panel) and lenient
pool (right panel), the F2 follows an inverted-U pattern: at low thresholds (ts = 1, tl = 1) nearly all candidate
papers are included, while at high thresholds (ts = 5, tl = 10) the voting becomes too restrictive. A balanced
threshold of ts = 3 and tl = 9 achieves the best trade-off, yielding F2 = 0.808 and 0.803, respectively, higher
than both their respective baselines (0.766 and 0.646) and the best single models (0.786 and 0.749).

aggregate, few-shot performance does not exceed the zero-shot baseline (see Appx. C). Nonethe-
less, this experiment proves valuable: several of the later-selected best performing models achieves
their strongest results in few-shot settings, indicating that while not consistently helpful, examples
can be critical for extracting peak performance from certain models.

Voting mechanisms. Finally, we investigate whether ensembling models through majority voting
can improve screening. We define two pools: a strong pool of the top five models ranked by F2,
and a lenient pool of the top ten models ranked by recall (with minimum precision of 0.2). For each
pool, we vary the threshold required for a positive decision (which we refer to as tstrong and tlenient
respectively. Results reveal distinct patterns (Figures 4). In the strong pool, performance follows an
inverted-U curve: thresholds of 1 or 5 lead to poor trade-offs, but a threshold of 3 maximizes F2

at 0.808, outperforming both the average baseline (0.766) and the single best model (0.786). In the
lenient pool, performance steadily increases with threshold, peaking at F2 = 0.803 at threshold 9,
again above both the baseline (0.646) and best single model (0.749).

For downstream application to the 40,980-paper test set, we select a combined configuration of
ts = 3, tl = 4, which achieves perfect recall (1.000) at precision 0.275 (F2 = 0.655). This setup
ensures no relevant paper is missed, while reducing workload to 90.5% relative to manual review.2

5 STAGE B – FULL-TEXT SCREENING (FT)

Problem definition and inputs. For each candidate d that passes TA, the input is the long doc-
ument fd (PDF text with page/section anchors). The model outputs a binary decision ŷd ∈
{include,exclude} and, when requested, a rationale r̂d consisting of one or more verba-
tim evidence spans with page/section references plus a brief note. We evaluate on the FT
dev/train/test splits (Sec. 3.2). Metrics and validators follow Sec. 3.3; the primary se-
lection metric is F2 and the Reliability Rate checks format adherence of rationales (page indices
present; spans quoted from fd; note length ≤ N tokens).

2Workload reduction is TN/N , from N = 1,800, n+ = 47, recall = 1.0 ⇒ TP= 47, FN= 0. From
precision = 0.275, FP≈ 124, hence TN= 1,629, giving WR = 1629/1800 ≈ 0.905.
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Figure 5: Model capacity and reliabil-
ity in FT. Reliability rate depends jointly
on parameter count and context win-
dow. Models with sufficient scale and
long contexts achieve near-perfect reli-
ability (e.g., gpt-oss-20B, Qwen3-32B,
Llama3.3-70B). In contrast, models with
large context windows but insufficient
parameters (e.g., Gemma3-4B) or with
high capacity but limited context (e.g.,
Llama3-70b) perform poorly. These
results motivate a two-step prompting
scheme to enforce consistent outputs.

Building on the results from abstract screening, the next set of experiments investigate whether
LLMs can extend their capabilities to automate full-text inclusion decisions. This stage introduces
distinct challenges: longer contexts, more complex reasoning, and the need for stricter adherence to
output formats. We evaluate the same model families under these conditions, focusing on the design
factors that govern reliability and performance. In particular, we examine how context length and
parameter count interact to determine consistent yes/no outputs, whether Chain-of-Thought (CoT)
reasoning and incorporating researcher “thought traces” can guide alignment with nuanced criteria,
and how adaptive routing strategies can exploit heterogeneity across models. The overall aim in this
stage is to identify the principles that enable dependable full-text screening and to determine the
configurations that achieve the strongest results on our benchmark.

Each entry contains the processed full text, a binary inclusion label, and (importantly) quotes and
reasoning justifying the label. These rationales not only increase transparency of annotation but also
enable conducting experiments that incorporate researcher thought traces into the LLM’s prompt.
We release the available 2,311 full-text PDFs (subject to license permits), their semi-automated
labels and researcher-annotated rationales, as part of SciLitBench.

Model capacity and reliability. A key challenge in full-text screening is output reliability: whether
the model adheres to the instruction to answer with yes/no only. We define reliability rate as the
fraction of completions in the evaluation set conforming to this format. Results reveal that both con-
text window size and parameter count jointly determine reliability (Fig. 5). Models with sufficient
capacity achieve near-perfect reliability, while those lacking either depth or context length often fall
near 0.4. This motivates the two-step prompting scheme adopted throughout this stage, in which an
auxiliary refinement model is explicitly tasked with converting responses into strict yes/no outputs.3

Chain-of-Thought (CoT) prompt. We compare an unstructured system prompt with a CoT variant
that requires the model to first reason through the inclusion criteria before outputting its decision.
The CoT approach yields a +5.6% relative gain in F2 (0.559 → 0.591), confirming that structured
reasoning can modestly improve alignment with task instructions even in constrained yes/no settings.

Researcher “thought traces”. We then test whether enriching few-shot examples with researcher
rationales (quotes from the text and explanations of inclusion/exclusion decisions) could further
guide the models. Incorporating thought traces increases F2 by 28% relative to demonstrations
without rationales (0.309 → 0.396; Fig. 3b). This result highlights an important design principle:
providing models with examples of not just decisions but the reasoning behind them substantially
improves consistency with nuanced inclusion criteria. It suggests that researcher rationales are a
powerful way to align LLM behavior with domain-specific review standards.

Token-aware routing system. Motivated by the strong dependence of performance on model ca-
pacity, we design a token-aware routing system. We first select strong and lenient model pools and
partition documents into bins at 2k, 5k, and 10k tokens. For each bin, we fit a logistic regression
model to determine optimal ensemble weights. At test time, a document is assigned to the appropri-
ate bin based on its length, and the corresponding weighted voting pool produces the final decision.
This adaptive procedure surpasses static majority voting, achieving F2 = 0.949, outperforming the
best strong-pool ensemble (0.938), the best lenient-pool ensemble (0.893), and their combined pool

3To standardize runtime and avoid stack-dependent slowdowns, we cap the context used at inference. Mod-
els with native windows ≥128k are evaluated at 80k. Two large models (mistral-large-123B, gpt-oss-120B)
are further capped at 24k so that all layers remain on-GPU on our H100-80GB setup, avoiding CPU offload.
The longest prompt in our corpus is < 80k tokens, so no example is truncated. These choices trade latency for
capacity but do not alter the reliability trends reported.
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Figure 6: Human-AI collaboration workflow for data extraction guideline construction and refinement.

(0.872). The result establishes routing as an effective mechanism for exploiting heterogeneity across
models and inputs, and marks the highest observed performance in our benchmark to date.

6 STAGE C – STRUCTURED DATA EXTRACTION

Problem definition and inputs. Given an included full text fd (per TA/FT) and the public schema S,
the model must output a JSON object ẑd that strictly conforms to S (required keys, types, controlled
vocabularies). Typical fields include study design, population descriptors (age range, condition),
intervention/comparator descriptors, outcomes, sample sizes, and effect summaries. Validation is
performed by the deterministic validator V from Sec. 3.1. Metrics follow Sec. 3.3: Exact-match,
Schema-match (benign normalization), Record completeness, and Reliability Rate.

The final set of experiments address the task of data extraction, where the goal is to retrieve specific
information of interest from the papers included in the review. In our case, we focus on six fields
central to understanding how LLMs are applied to automate reviews: year, domain, review stage,
approach, metrics/outcomes, and failure modes/limitations. Unlike inclusion screening, this task is
more open-ended, since it is not always possible to predefine the categories that should be assigned
to each field (for example, deciding how to scope domains or approaches). To address this, we
adopt a collaborative workflow in which one model extracts fine-grained candidate labels while
a second model, together with the researcher, co-constructs guidelines that refine and standardize
these outputs. Although applied to a limited number of papers, this setup reveals several interesting
behaviors and produces high-quality extractions that align with researcher standards (Fig. 6).

In this collaborative researcher–AI environment, we separate the roles of two LLMs: an extractor
that proposes fine-grained labels for each field, and a collaborator that aggregates, revises, and en-
forces consistency with researcher preferences. This design allows guidelines to emerge iteratively
and ensures that extraction outputs are aligned with domain-specific criteria. The extractor first
produces candidate labels, which the collaborator then organizes into higher-level categories. The
collaborator further generates one guideline per field, which the researcher reviews and edits. At
prediction time, the collaborator is tasked with verifying whether extractor outputs conform to the
revised guidelines. All prompts, outputs, guidelines, as well as the TODOXXX multi-class labels
annotated upon the TODOXXX papers filtered by the full-text screening are released with SciLit-
Bench. (Due to space limit, we refer the reader to Appx. D for more details on this task.)

7 CONCLUSION

AI and LLMs represent one of the most transformative technologies of our time, with the potential
to reshape how scientific discovery is conducted. Literature reviews are a natural starting point: they
are central to knowledge synthesis, yet increasingly strained by the growth of the scientific record.
We believe SciLitBench establishes a key open dataset dedicated to this challenge, introducing eval-
uations and design principles that make reliable automation possible.

Our study demonstrates that systematic design choices can substantially improve the reliability of
LLMs for literature review automation. Across three key stages, several principles emerge. First,
scale matters: larger models with expanded context windows consistently yield more accurate and
reliable decisions. Second, prompting strategies are not superficial tweaks but central levers: explicit
inclusion and exclusion criteria sharpen model performance, while researcher rationales, expressed
as thought traces, provide a powerful mechanism to transfer domain expertise into model behav-
ior, ensuring adherence to nuanced criteria. Third, token-aware routing exploits heterogeneity in
both model families and input lengths, surpassing static ensembles and setting new performance
benchmarks. Finally, collaborative workflows in data extraction reveal that LLMs can not only pro-
pose candidate outputs but also co-develop guidelines with researchers, leading to extractions that
preserve rigor while reducing ambiguity.
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A SEARCH QUERY

(TITLE-ABS-KEY(
"literature review*" OR "systematic review*"
OR "scoping review*" OR "narrative review*"
OR "umbrella review*" OR "rapid review*"
OR "integrative review*" OR "evidence synthesis"
OR "meta-analysis")
AND TITLE-ABS-KEY(
"large language model*" OR "LLM" OR "LLMs" OR "nlp"
OR "natural language processing" OR "transformer*"
OR "AI" OR "artificial intelligence" OR "chatgpt"
OR "GPT-" OR "biogpt" OR "biomedgpt" OR "agrigpt"
OR "spiritualgpt" OR "lifegpt" OR "fingpt" OR "llama"
OR "llama-" OR "medllama" OR "mistral" OR "biomistral"
OR "mixtral" OR "mixtral-" OR "bard" OR "bard-"
OR "bert" OR "bert-" OR "legalbert" OR "rasonbert"
OR "finbert" OR "drbert" OR "biobert" OR "scibert"
OR "clinicalbert" OR "biomedbert" OR "mentalbert"
OR "pubmedbert" OR "claude" OR "claude-" OR "palm"
OR "palm-" OR "gemini" OR "gemini-" OR "gemma"
OR "gemma-" OR "copilot" OR "copilot-" OR "deepseek*"
OR "qwen" OR "qwen-" OR "phi" OR "phi-" OR "sciphi"
OR "scipphi" OR "falcon" OR "falcon-" OR "alpaca"
OR "alpaca-" OR "bloom" OR "bloom-" OR "grok" OR "grok-"))
AND PUBYEAR < 2026
AND NOT PUBDATETXT("July 2025" or "August 2025")

B UNIVERSAL PROMPTS

B.1 TITLE/ABSTRACT SCREENING

Basic:

"You are an expert in AI and literature reviews. "
"Given the TITLE and ABSTRACT of a scientific paper: "
"Does this paper use AI to automate any part of the process of a
scientific review paper (of any kind)? "
"Answer with ’yes’ or ’no’ ONLY"

Inclusion:

"You are an expert in AI and literature reviews. "
"Given the TITLE and ABSTRACT of a scientific paper: "
"Does this paper use AI to automate any part of the process of a
scientific review paper (of any kind)? "
"Include it only if the paper uses AI/ML/NLP/Large Language Models
/LLMs to automate or algorithmically execute a step in evidence
synthesis of scholarly articles (e.g., search, deduplication,
title/abstract screening, full-text screening, data extraction,
risk of bias, study classification, snowballing, meta-analysis). "
"Answer with ’yes’ or ’no’ ONLY"

Inclusion + Exclusion:

"You are an expert in AI and literature reviews. "
"Given the TITLE and ABSTRACT of a scientific paper: "
"Does this paper use AI to automate any part of the process of a
scientific review paper (of any kind)? "
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"Include it only if the paper uses AI/ML/NLP/Large Language Models
/LLMs to automate or algorithmically execute a step in evidence
synthesis of scholarly articles (e.g., search, deduplication,
title/abstract screening, full-text screening, data extraction,
risk of bias, study classification, snowballing, meta-analysis). "
"Exclude: domain literature reviews not about SR automation;
literature review about the application of AI to a particular
domain; bibliometric tools (e.g., citation-intent) unless
directly used for SR steps. "
"Answer with ’yes’ or ’no’ ONLY"

B.2 FULL-TEXT SCREENING

Unstructured:

"You are an expert in AI and literature reviews.
Given the full paper text, carefully analyze the content
and discuss whether the paper uses AI to automate
any part of a scientific review process."

Chain-of-Thought:

"You are an expert in AI and literature reviews. "
"Your task is to assess whether the paper uses AI to
automate any part of a scientific review process. "
"1. First determine if the paper is conducting a
literature review of any kind. "
"2. Second, assess if the paper uses AI or other
NLP methods to automate some aspect of the review. "
"3. Finally, reach a conclusion of whether the paper
is performing a scientific review using AI or not."

C ADDITIONAL PERFORMANCE ANALYSIS

Figure 7: Effect of few-shot learning on title/abstract screening.
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Figure 8: Effect of chain-of-thought (CoT) prompting on full-text screening.
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D STRUCTURED DATA EXTRACTION

D.1 HUMAN+AI GUIDELINES

A striking observation is the strength of the collaborator’s initial draft guidelines. Without explicit
instruction, the collaborator produces not only sensible categories but also key steps for the extractor
to follow, clarifications for ambiguous cases, decision rules, practical tips, and example mappings
between identified instances and proposed categories. These features prove unexpectedly useful. For
example, the example–category mappings give the researcher a direct way to validate categorization
decisions, while the clarifications and decision rules significantly reduce ambiguity for the extractor.

The researcher then edits the guideline, pruning irrelevant elements (e.g., detailed example map-
pings), adding “none reported” values where necessary, and sharpening definitions. This step proves
crucial: fields such as domain have to be clearly scoped to substantive research areas rather than
review methodologies, while metrics requires explicit emphasis on model performance metrics, not
study-level statistics. The collaborative revision process thereby transforms a promising but uneven
draft into a precise, researcher-approved guideline.

During evaluation, the revised guidelines are provided to the extractor, while the collaborator is
tasked with monitoring that the extractor correctly follows them. A schematic overview of this pro-
cess is shown in Fig. 6 and a full example in Appx. D. Results show a consistent pattern: when ex-
traction is straightforward (e.g., year, domain), the extractor is already correct; when mistakes occur,
the collaborator reliably identifies and corrects them. For example, in the review stage field, the ex-
tractor identifies multiple stages, but the collaborator correctly filters to only those automated by AI.
In metrics/outcomes, the collaborator excludes irrelevant study-level metrics, retaining only those
evaluating the automation system. Similarly, in failure modes/limitations, the collaborator ensures
that only genuine weaknesses in the review process were kept, not background motivations cited by
authors. We encourage readers to consult the supplementary material, which contains excerpts of all
model outputs that demonstrate the corrective dynamics between extractor and collaborator LLMs.

This demonstrates a promising design principle for researcher–AI collaboration. Two elements are
key: 1) iterative co-construction of the guidelines between collaborator and researcher; 2) role sepa-
ration between an extractor generating proposals and a collaborator enforcing alignment. Together,
these yield a workflow where LLMs not only automate extraction but also learn to adapt to researcher
standards, producing outputs that meet human-level standards of sophistication and quality.
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