
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REGION-AWARE INSTANCE CONSISTENCY LEARNING
FOR APEX-FREE MICRO-EXPRESSION RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Micro-expression Recognition (MER) is challenging due to the subtle motion.
Existing methods heavily rely on the onset/apex pair to capture the most discrim-
inative motion clues. This paradigm struggles with labor-intensive apex anno-
tation and effective utilization of data. In this paper, we propose a novel apex-
free paradigm for MER that eliminates the need for expensive apex annotations
while effectively capturing subtle motion dynamics. Our key insight is that frames
within the sequence exhibit spatially consistent and intensity varied motion cues
relative to the onset frame. Motivated by this, our method treats each sequence as
a set of multiple onset/near-median motion instances. To fully exploit weaker mo-
tion information conveyed by these diverse instances, our framework introduces
an Instance Region Consistency (IRC) module that enforces visual attention con-
sistency on similar facial activation regions across different instances within the
same set. Furthermore, we present a Multi-Region Discovery (MRD) module
with self-supervised learning to expand attention on more subtle activation re-
gions which are typically neglected. Extensive experiments on four public micro-
expression datasets demonstrate that our proposed approach surpasses state-of-
the-art methods without using any apex frame annotations.

1 INTRODUCTION

Micro-expressions (MEs) are transient and involuntary facial movements reflecting genuine emo-
tions that individuals attempt to conceal (Ben et al., 2021). Owing to this property, the ME recog-
nition (MER) task has demonstrated crucial potential in various applications, e.g., lie detection
(O’sullivan et al., 2009) and mental health assessment (Endres & Laidlaw, 2009). Despite recent
progress, MER remains challenging since MEs cover facial activation regions with imperceptible
intensity and brief duration.

Existing MER methods typically regard the motion between the onset and apex frames as the funda-
mental cue of representing subtle ME movements. The motion is commonly estimated using optical
flow or deep learning-based methods, followed by a well-designed classification model that maps the
input motion to emotion labels. Although the apex frame captures the most obvious motion cues for
classification, accurately identifying the apex frame requires human coders to scan the ME sequence
frame-by-frame manually, which is time-consuming and demands expert knowledge. Moreover, due
to the difficulty in collecting and annotating ME data, the amount of data in current ME datasets is
relatively small. Therefore, relying solely on onset/apex pairs not only limits practical usage of
ME data, but also increases the risk of overfitting to specific facial activation regions. While recent
self-supervised methods like AVF-MAE++ (Wu et al., 2025) have been proposed to learn general fa-
cial representation to mitigate overfitting, they typically require pre-training on external large-scale
datasets, incurring substantial computational costs. Therefore, learning robust and general represen-
tations directly from small-scale ME datasets remains an open and challenging problem.

In this paper, we rethink the necessity of apex frames and propose an apex-free paradigm with
Region-aware Instance Consistency Learning (Ra-ICL) for MER. Our empirical observations reveal
that the effective motion information is not exclusively contained in the apex frame. As shown in
Figure 1, we find that frames within the sequence exhibit motion patterns that share consistent spatial
activation regions compared to the onset frame, while the motion intensity across these activation
regions varies over time. This combination of spatial stability and intensity variation motivates us
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Figure 1: A ME sequence can be treated as a
set of motion instances from multiple onset/near-
median frame pairs without apex annotations.
These instances exhibit consistent spatial activa-
tion regions with weaker but diverse motion cues.

to treat alternative pairs (e.g., onset vs. near-
median) as carriers of weaker yet valid mo-
tion cues. Specifically, we propose to form
instance sets composed of multiple motion in-
stances from onset/near-median pairs for each
sequence, rather than only one onset/apex pair.

To leverage diverse but weaker motion infor-
mation delivered by these instances, we in-
troduce an Instance Region Consistency (IRC)
module to effectively capture subtle motion dy-
namics. This module is built on the observa-
tion that instances within the same set share
the same emotion label and tend to activate
similar facial activation regions. We randomly
sample two instances to form a positive pair
for each sequence and feed them through a
Siamese network, obtaining their respective at-
tention heatmaps via class activation mapping
(Zhou et al., 2016). We then enforce visual at-
tention consistency (Guo et al., 2019) between the two attention heatmaps to encourage the model
to focus on similar facial activation regions across different instances. Due to the inherently low
activation intensity of certain regions in MEs, attention heatmaps are prone to focus on prominent
areas and neglect these subtle yet important regions. To address this issue, we further propose a
Multi-Region Discovery (MRD) module inspired by recent advances in self-supervised facial repre-
sentation learning (Gao & Patras, 2024). The MRD module uses a set of learnable facial queries to
discover more subtle but meaningful facial regions in a self-supervised manner. Consequently, the
attention of the model is expanded to encompass more subtle motion patterns.

To summarize, our main contributions are as follows:

• We rethink the necessity of apex frames and propose a novel framework Ra-ICL for apex-free
MER. The ME sequence is represented by a set of multiple motion instances instead of a single
onset/apex motion instance.

• We propose an IRC module to effectively capture subtle motion cues by enforcing visual attention
consistency across different motion instances from the same set.

• To further enhance the perception of subtle activation regions, we present a MRD module to
discover more meaningful facial regions with self-supervised learning, preventing decisions from
localized activation regions.

• Extensive experiments on four public ME datasets demonstrate the effectiveness of the proposed
method.

2 RELATED WORKS

Motion Features for Micro-expressions. In early works for MER, several texture-based feature de-
scriptors were carefully designed to extract spatio-temporal features of ME motion, including LBP-
TOP (Zhao & Pietikainen, 2007), HOG (Li et al., 2017), etc. Recently, researchers have adopted
optical flow to characterize subtle facial muscle deformation of MEs. Optical flow serves as a ro-
bust representation of pixel-level inter-frame motion, effectively capturing both the magnitude and
direction of motion. Some variants of optical flow were further proposed to offer more effective and
robust motion features, such as MDMO (Liu et al., 2015) and Bi-WOOF (Liong et al., 2018). Since
the apex frame reaches the maximum intensity of the ME motion, the optical flow between the onset
and apex frames was typically utilized to represent observable ME motion features.

Deep Networks for Micro-expression Recognition. Existing methods typically leverage deep neu-
ral networks to extract emotion-relevant information from motion features between onset and apex
frames. OFF-ApexNet (Gan et al., 2019) and Dual-Inception (Zhou et al., 2019) fed horizontal
and vertical optical flow into a two-stream convolutional neural network (CNN) for feature en-
hancement, while STSTNet (Liong et al., 2019) further computed optical strain to form the triple
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Figure 2: The framework of the proposed Ra-ICL. Given an input sequence, we generates multiple
optical flow instances to form an instance set using onset/near-median frame pairs. The Instance Re-
gion Consistency (IRC) module takes random instance pairs from the instance set as input to learn
effective motion information from weak yet valid motion cues, which enforces attention consistency
on similar activation regions. A Multi-Region Discovery (MRD) module is further utilized to dis-
cover meaningful facial regions in a self-supervised manner, thus enhancing perception on subtle
activation regions. Note that some intermediate results in MRD are omitted for brevity.

stream of a shallow 3D-CNN. In addition to CNN-based methods, Zhang et al. (2022a) first pro-
posed a purely Transformer-based (Vaswani et al., 2017) framework SLSTT that composed of a
Vision Transformer (Dosovitskiy et al., 2020) and a LSTM. Furthermore, MFDAN (Cai et al., 2024)
introduced an additional RGB branch to construct a two-stream network (Simonyan & Zisserman,
2014), collaboratively modeling spatio-temporal features to enhance feature representation learning.
Although these methods have achieved promising progress, they still rely on costly apex annotations
to extract effective motion clues, which limits the effective utilization of ME data. To address this
issue, we treat a ME sequence as a set of onset/near-median motion instances, which eliminates the
need for apex annotations.

Self-supervision for Micro-expression Recognition. To alleviate data scarcity in ME research,
numerous studies adopted external knowledge to improve the performance of MER models by self-
supervised pre-training. SelfME (Fan et al., 2023) and SODA4MER (Zhang et al., 2025a) finetuned
a first order motion model (Siarohin et al., 2019) pre-trained on the VoxCeleb dataset (Nagrani
et al., 2017) to achieve self-supervised motion learning. Since the release of the large-scale ME
dataset CAS(ME)3 (Li et al., 2022), some studies have applied additional ME frames or depth infor-
mation to construct self-supervised learning models. Nguyen et al. (Nguyen et al., 2023) proposed
Micron-BERT, which is pre-trained on CAS(ME)3 with specially designed modules to detect micro-
movements. Li et al. (Li et al., 2025) adopted RGB and depth modalities for self-supervised con-
trastive pre-training, followed by fine-tuning on downstream MER tasks. Unlike these works, FRL-
DGT (Zhai et al., 2023) introduced a displacement generation module that samples sufficient addi-
tional random frame pairs from the dataset to train the model in a self-supervised manner, thereby
avoiding reliance on additional datasets. Similar to FRL-DGT, we do not rely on additional datasets
but instead sample sufficient random instance pairs from data augmentation caused by the multiple
instances representation. Through joint training of IRC and MRD modules, our method enforces the
model to focus on subtle facial activation regions with diverse instance pairs as input.

3 PROPOSED METHOD

The framework of the proposed Ra-ICL is illustrated in Figure 2. Ra-ICL consists of three parts, i.e.,
Multiple Instances Representation (MIR), Instance Region Consistency (IRC) module, and Multi-
Region Discovery (MRD) module. The MIR provides motion features for each ME sequence in the
form of optical flow instance sets. The IRC module then takes random instance pairs as input to
extract subtle motion information by enforcing attention consistency between instance pairs. Mean-
while, the MRD module uses a set of facial queries to discover meaningful facial regions, which
constrains the attention on more activation regions with low intensity.
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(a) Full sampling with all frames.                                         (b) Random sampling.                              (c) Uniform sampling.

(d) Middle sampling including the apex frame.            (e) Middle sampling within the decay stage.            (f) Middle sampling within the activation stage.

Sampled frames          Unsampled frames

apex offset

Figure 3: Different sampling strategies for Multiple Instances Representation.

3.1 MULTIPLE INSTANCES REPRESENTATION

The Multiple Instances Representation (MIR) forms the foundation of Ra-ICL, avoiding the need for
apex annotations and enabling data augmentation. As shown in Figure 3, a complete ME movement
can be divided into two stages: activation stage from onset to apex, and decay stage from apex to
offset. During this process, the approximate spatial extent of facial activation regions (i.e., action
units) remains consistent across the temporal domain, differing only in intensity. Therefore, frames
other than the apex frame in a ME sequence also carry valid motion information with relatively
lower intensity. Without using apex frame annotations, a ME sequence can be represented as a set
of optical flow instances from the onset frame to arbitrary intra-sequence frames (see Figure 3(a)).
These instances share similar facial activation regions, but vary in intensity.

Considering the computational cost of optical flow, the number of sampled frames N must be limited
rather than using all frames. Compared to random sampling (see Figure 3(b)) and uniform sampling
(see Figure 3(c)), middle sampling avoids low-intensity frames typically located at both ends of the
sequence. As shown in Figure 3(d), under ideal conditions, the middle sampling window covers the
apex frame. When the apex frame falls outside the window, the entire sampling range lies either
within the activation stage or the decay stage, as illustrated in Figure 3(e)(f). In such cases, although
frames with higher motion intensity are not captured, it avoids sampling frames near the sequence
boundaries where the motion magnitude is close to zero. Based on the middle sampling, the amount
of motion instances is expanded from a single onset/apex pair to multiple onset/near-median pairs.

For a ME sequence, we sample N consecutive frames from the middle part of the sequence. Then
we obtain N optical flow feature maps using the onset and the sampled N frames by the TV-L1
method (Sánchez Pérez et al., 2013). The optical flow field On between the onset frame and the n-th
frame can be expressed as the combination of the horizontal field un and the vertical field vn:

On = {(un(x, y), vn(x, y))}, (1)

where x = 1, 2, ..., H , y = 1, 2, ...,W , (x, y) represents the pixel position, H and W are the height
and width of the image. Moreover, following previous works (Xu et al., 2022; Cai et al., 2024), the
optical strain is further combined as the third channel to form a three-dimensional tensor similar to
a RGB image. Optical strain ϵn is defined as the first-order derivative of the optical flow field On.
The final optical flow map In ∈ RH×W×3 can be expressed as:

In = [un, vn, ϵn]. (2)
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3.2 INSTANCE REGION CONSISTENCY LEARNING

Based on MIR, we aim to learn subtle motion dynamics from motion diversity. Given a batch of
ME sequences, we randomly sample two distinct optical flow instances Ip and Iq to form sufficient
random instance pairs for each sequence. In this way, instances with lower intensity are systemati-
cally paired with multiple instances with higher intensity in a large pool of instance pairs. We adopt
the Siamese network as BYOL (Grill et al., 2020), consisting of two branches: the online network
Eθ and the target network Eξ. Both networks have the same residual structure (He et al., 2016),
but the target parameters ξ are updated with an exponential moving average (EMA) of the online
parameters θ given a target decay rate τ ∈ [0, 1] :

ξ = τξ + (1− τ)θ. (3)
Based on spatial consistency of motion cues, the Siamese structure learns to identify invariant acti-
vation regions from diverse instance pairs. Meanwhile, activation regions with weaker motion can
be effectively identified from the guidance of instances with higher intensity. Firstly, both instances
Ip and Iq are fed into the online network Eθ and the target network Eξ. We denote Tθ and Tξ as
random data transforms (e.g., color jitter and Gaussian blur) applied to Eθ and Eξ, respectively. In
the following sections, we consider the situation where Ip is processed by Eθ and Iq is processed
by Eξ. The spatial consistency requires the attention on activation regions for Ip in Eθ aligned
with that of Iq in Eξ, which can be realized by flip semantic consistency (Guo et al., 2019; Zhang
et al., 2022b). Specifically, the attention region for image classification is flipped horizontally if the
original image is flipped horizontally. Therefore, Tξ performs a certain horizontal flipping on Iq .

As a result, Iθ = Tθ(Ip) and Iξ = Tξ(Iq) are then processed by Eθ and Eξ separately to generate
feature maps. The feature maps are extracted from the last convolutional layer, denoted as Fe ∈
RC×H×W with e ∈ {θ, ξ}, where C,H,W are the number of channels, height and width of the
feature map, respectively. A subsequent global average pooling (GAP) is performed on Fθ and get
features fθ ∈ RC×1×1. The pooled features are further resized to f ′

θ ∈ RC and put through the fully
connected (FC) layer with weights W ∈ RL×C to compute the classification loss:

Lcls = − log

(
eWy·f ′

θ∑L
j=1 e

Wj ·f ′
θ

)
, (4)

where Wy is the y-th weight from the FC layer, y is the given ground truth label, and L is the
number of labels. Meanwhile, the attention regions of the input instance can be derived as attention
heatmaps Mj(x, y) ∈ RH×W by Class Activation Mapping (CAM) (Zhou et al., 2016) to indicate
the relevance of spatial location (x, y) for a predicted class j. Formally, the mapping is computed
through a weighted combination of feature maps over different channels:

Mj(x, y) =

C∑
c=1

W(j, c)Fc(x, y), (5)

where Fc(x, y) represents the activation value at spatial position (x, y) of the c-th channel, C denotes
the total number of feature maps, and W(j, c) signifies the weight coefficient corresponding to
class j for the FC layer. We compute attention heatmaps Mθ and Mξ for Eθ and Eξ according
to equation 5. Finally, attention consistency loss using the mean square difference is utilized to
minimize the distance between Mθ and Flip(Mξ):

Lacl =
1

LHW

L∑
j=1

∥Mθj − Flip(Mξj)∥2 , (6)

where Mθj and Mξj indicate the attention heatmaps for Iθ and Iξ respectively with label j. Through
joint optimization of Lcls and Lacl, the Siamese network learns to associate facial activation regions
with corresponding emotion labels.

3.3 SELF-SUPERVISED MULTI-REGION DISCOVERY

The IRC module is guided to focus on facial activation regions related to emotional labels. However,
for a classification model, only the most discriminative regions are recognized (Wei et al., 2017), and
some weaker but important activation regions are discarded. This phenomenon leads to classification
error on the ME data with high inter-class similarity. To address this issue, we present a Multi-
Region Discovery (MRD) module to discover more meaningful facial regions for a comprehensive
decision rather than relying on localized activation regions.
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To automatically discover different facial regions, we use a set of facial queries to look up the whole
image. Specifically, following MaskFormer (Cheng et al., 2021), a Transformer decoder followed
by a MLP takes N facial queries (Query) that are learnable positional embeddings and the feature
map Fe (Key and Value) as input to predict N facial mask embeddings Qe ∈ RN×D. Each facial
mask embedding is associated with a facial region. Then we generate N corresponding heatmaps
Se ∈ RN×H×W to locate facial regions on the feature map as:

Se[m,u, v] = sim(Qe[m, :],Fdense
e [∗, u, v]), (7)

where Fdense
e ∈ RD×H×W is the dense feature map obtained by projecting Fe through the projec-

tor He, and sim(·) is the cosine similarity function. The m-th heatmap Se[m,u, v] quantifies the
relevance of the pixel (u, v) in the dense feature map Fdense

e to the m-th facial region indicated by
Qe[m, :]. To prevent heatmaps of specific facial regions from dominating, Se is normalized along
the channel dimension via Softmax, resulting in a group of probabilistic heatmaps Pe ∈ RN×H×W :

Pe[m,u, v] =
exp(Se[m,u, v])∑m
n=1 exp(Se[n, u, v])

. (8)

Each channel Pe[m, ∗, ∗] ∈ RH×W represents a 2D heatmap that highlights the m-th facial region.
Based on the spatial consistency of instance pairs, we formulate the heatmap learning process as
a deep clustering problem (Caron et al., 2020) to provide learning signals. Specifically, we treat
the N learnable facial queries as the centers of N facial region clusters. Therefore, the normalized
per-pixel cluster assignment Pe[∗, u, v] between Eθ and Eξ should keep aligned, which is measured
by the cross-entropy loss:

CE(Pξ[∗, u, v],Pθ[∗, u, v]|Ip) = −
N∑

m=1

Pξ[m,u, v] logPθ[m,u, v], (9)

where the target network provides a stable target. Notice that the equation 9 is formulated for the
scenario where Ip is processed by Eθ. We define the symmetric self-supervised alignment loss for
both augmented instances as:

Lalign =
1

HW

∑
u,v

(
CE(Pξ[∗, u, v],Pθ[∗, u, v]|Ip) + CE(Pξ[∗, u, v],Pθ[∗, u, v]|Iq)

)
. (10)

Similar to Lacl, the spatial consistency of local facial regions discovered by the MRD module should
be considered. Based on the learned heatmaps Pe, the latent representations for local facial regions
are obtained through:

hm
e = Pe[m, ∗, ∗]⊗ Fe =

1∑
u,v Pe[m,u, v]

∑
u,v

Pe[m,u, v]Fe[∗, u, v], (11)

where ⊗ denotes channel-wise Weighted Average Pooling (WAP), hm
e ∈ RC is the correspond-

ing latent representation of the m-th facial region produced with Pe[m, ∗, ∗]. The projector He is
performed on these latent representations to obtain facial embeddings:

zme = He(h
m
e ). (12)

The cosine similarity is used to measure the consistency of produced local facial regions between
Eθ and Eξ:

sim(zθ, zξ|Ip) =
1

N

N∑
m=1

sim(Gθ(z
m
θ ), zmξ )), (13)

where Gθ is the predictor on top of the projector Hθ. Similar to equation 10, equation 13 should be
computed symmetrically for both augmented instances as:

Lc = sim(zθ, zξ|Ip) + sim(zθ, zξ|Iq). (14)

3.4 OVERALL OBJECTIVE

We jointly optimize the equation 15:
L = λ1Lcls + λ2Lacl + λ3(Lalign + Lc), (15)

where λ1, λ2, λ3 are the loss weight for balancing the classification, IRC and MRD respectively.
As shown in Figure 2, both online and target networks are jointly updated during training. For
inference, only the online network is utilized for classification as with BYOL (see Appendix A.1.3).
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Table 1: Comparison with SOTA methods in terms of UF1(%) and UAR(%) under the CDE setting.
The best results are highlighted in bold, while the second-best results are marked with an underline.

Methods Composite CASME II SAMM SMIC-HS
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP (Zhao & Pietikainen, 2007) 58.82 57.85 70.26 74.29 39.54 41.02 20.00 52.80
Bi-WOOF (Liong et al., 2018) 62.96 62.27 78.05 80.26 52.11 51.39 57.27 58.29
STSTNet (Liong et al., 2019) 73.53 76.05 83.82 86.86 65.88 68.10 68.01 70.13
RCN (Xia et al., 2019) 74.32 71.90 85.12 81.23 76.01 67.15 63.26 64.41
FeatRef (Zhou et al., 2022) 78.38 78.32 89.15 88.73 73.72 71.55 70.11 70.83
SLSTT (Zhang et al., 2022a) 81.60 79.00 90.10 88.50 71.50 64.30 74.00 72.00
FRL-DGT (Zhai et al., 2023) 81.20 81.10 91.90 90.30 77.20 75.80 74.30 74.90
MFDAN (Cai et al., 2024) 84.53 86.88 91.34 93.26 78.71 81.96 68.15 70.43
HTNet (Wang et al., 2024) 86.03 84.75 95.32 95.16 81.31 81.24 80.49 79.05
MPFNet (Ma et al., 2025) 83.20 84.70 87.90 89.50 79.10 82.60 78.10 78.30
CSARNet (Zhao et al., 2025) 82.39 83.00 92.54 92.98 77.32 78.51 76.05 76.39
Ra-ICL (ours) 88.05 89.11 96.20 96.20 86.68 88.85 81.79 82.74

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conducted experiments on four public ME datasets: CASME II (Yan et al., 2014),
SAMM (Davison et al., 2016), SMIC-HS (Li et al., 2013) and CAS(ME)3 (Li et al., 2022). Appendix
A.1.1 introduces the details of datasets.

Implementation Details. The framework is implemented by Pytorch (Paszke et al., 2019). Both
online and target networks adopt randomly initialized ResNet18 (He et al., 2016) as the backbone
with target decay rate τ = 0.99. The optimizer is Adam with an initial learning rate of 0.001 and
a weight decay of 0.0001. We train the framework with a batch size of 32 and exponential learning
rate decay with the gamma of 0.9 for 100 epochs. For MIR, the number of sampled frames N is set
to 16, which is determined by the frame rate prior. For MRD, the number of facial queries is set to 8.
In equation 15, we take λ1 = λ2 = λ3 = 0.5. Appendix A.1.2 introduces the details of determining
the N of MIR, while Appendix A.2 provides relevant hyper-parameter analysis.

Table 2: Comparison with other SOTA methods in terms
of UF1 (%) and UAR (%) on the CAS(ME)3 dataset. The
best results are highlighted in bold, while the second-best
results are marked with underline.

Methods Classes UF1 UAR
STSTNet (Liong et al., 2019) 3 37.95 37.92
RCN (Xia et al., 2019) 3 39.28 38.93
FeatRef (Zhou et al., 2022) 3 34.93 34.13
µ-BERT (Nguyen et al., 2023) 3 56.04 61.25
HTNet (Wang et al., 2024) 3 57.67 54.15
Lite-Point-GCN (Zhang et al., 2025b) 3 68.19 74.12
Ra-ICL (ours) 3 75.85 74.54
Baseline (Li et al., 2022) 4 29.15 29.10
Baseline(+Depth) (Li et al., 2022) 4 30.01 29.82
µ-BERT (Nguyen et al., 2023) 4 47.18 49.13
Lite-Point-GCN (Zhang et al., 2025b) 4 47.64 53.66
Ra-ICL (ours) 4 61.03 58.48
Baseline (Li et al., 2022) 7 17.59 18.01
Baseline(+Depth) (Li et al., 2022) 7 17.73 18.29
µ-BERT (Nguyen et al., 2023) 7 32.64 32.54
Lite-Point-GCN (Zhang et al., 2025b) 7 35.64 41.59
Ra-ICL (ours) 7 44.32 43.17

Evaluation Protocols. To evaluate
the model performance on CASME
II, SAMM and SMIC-HS, we adopt
the Composite Database Evalua-
tion (CDE) (See et al., 2019) with
Leave-one-subject-out (LOSO) cross-
validation to ensure a fair comparison.
The CDE setting combines sam-
ples from CASME II, SAMM and
SMIC-HS into a composite dataset
for training. For the evaluation on
CAS(ME)3, 3-class, 4-class and
7-class evaluation with LOSO are
reported following previous works
(Li et al., 2022; Nguyen et al.,
2023). More details are displayed in
Appendix A.1.4.

Metrics. As per standard (See et al.,
2019), we adopt the Unweighted F1-
score (UF1) and Unweighted Average
Recall (UAR) to assess model perfor-
mance. Compared to Accuracy (Acc),
UF1 and UAR provide a more bal-
anced judgement on all classes.
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Table 3: Ablation study of key components of Ra-ICL. “→X” indicates replacing the corresponding
component with X. The best results are bolded, and the second-best results are underlined.

Method MIR IRC MRD Composite CASME II SAMM SMIC-HS
UF1 UAR UF1 UAR UF1 UAR UF1 UAR

M1 →Apex* × × 83.22 82.64 94.78 95.73 81.43 80.39 75.13 74.40
M2 ✓ × × 84.91 83.72 93.83 93.36 83.68 82.76 78.70 77.86
M3 →Apex* ✓ ✓ 87.61 86.89 96.18 96.49 85.60 82.33 81.45 81.18
M4 ✓ × ✓ 86.18 85.92 96.14 95.54 81.47 80.90 79.78 79.77
M5 ✓ ✓ × 85.81 85.46 95.77 95.16 82.53 79.41 79.28 79.52

M6 (ours) ✓ ✓ ✓ 88.05 89.11 96.20 96.20 86.68 88.85 81.79 82.74
M7 →Apex ✓ ✓ 87.73 88.73 97.26 98.48 85.73 87.89 80.61 81.02
M8 →Full ✓ ✓ 88.26 88.21 96.24 95.16 88.29 85.47 81.76 82.45
M9 →Random ✓ ✓ 87.89 87.87 95.42 95.45 86.36 82.91 82.09 82.62

M10 →Uniform ✓ ✓ 86.64 86.92 97.21 97.82 83.34 81.84 79.13 79.70

Apex*: Using a single onset/apex motion instance. Apex: Sampling within an apex neighborhood. Full:
Full sampling. Random: Random sampling. Uniform: Uniform sampling.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compared the proposed Ra-ICL with existing state-of-the-art (SOTA) methods under the CDE
setting. The classification results on the composite dataset, CASME II, SAMM, and SMIC-HS are
reported. As shown in Table 1, both UF1 and UAR of our framework on the composite dataset are
higher than 88.00%, surpassing the second-best method by 2.02% in UF1 and 2.23% in UAR. No-
tably, on the SAMM, our method outperforms the second-best method by 5.37% in UF1 and 6.25%
in UAR. Ra-ICL also achieves the best performance on CASME II and SMIC-HS datasets. Table 5
presents classification results on the CAS(ME)3 of Ra-ICL with SOTA methods. Ra-ICL achieves
the best performance in all evaluation settings, demonstrating substantial improvements compared
to previous approaches. It is worth mentioning that Ra-ICL does not use any apex annotations.

We attribute the superiority of Ra-ICL to its diverse motion representations and the effective ex-
ploitation of this diversity by IRC and MRD. Although previous methods adopted well-designed
classification models, their performance was still restricted by the amount of onset/apex pairs. MIR
represents the ME sequence by diverse motion instances to achieve effective utilization of ME data,
providing enough motion cues for subsequent classification models. With the ability to capture
weaker motion information, IRC and MRD learn more robust features from diverse motion cues.

4.3 ABLATION STUDY

To evaluate the contribution of MIR, IRC and MRD, we conducted the ablation study under the
CDE setting. Table 3 quantitatively demonstrates the contributions of each design compared to the
method M6 (ours) with all designs.

Multiple Instances Representation. M1 utilizes a single onset/apex instance to represent the entire
ME sequence, while M2 is based on MIR with middle sampling. M3 is similar to M1 but with IRC
and MRD. The improvement from M1 to M2 and M3 to M6 demonstrates the superiority of MIR,
indicating that the diversity of motion cues is more important than the intensity for classification.

We also conducted experiments for different sampling strategies of MIR from M7 to M10. M7
samples 16 frames from a window centered on the apex frame. M8 samples all frames within
the ME sequence. M9 and M10 perform random sampling and uniform sampling with 16 frames,
respectively. M6, M7 and M8 exhibit comparable performance, while M6 avoids using apex frames
as M7 and reduces the computational cost of optical flow as M8. Compared to M6, M7 employs a
relatively fixed sampling range, resulting in weaker motion diversity, and thus does not outperform
M6. Although M8 provides greater motion diversity, it simultaneously introduces additional noise
that may obscure the perception of subtle movements. M9 and M10 also achieve competitive results,
indicating that MIR with randorm or uniform sampling also carries diverse motion cues.

Instance Region Consistency Module. From M2 and M5, we find that IRC extracts effective subtle
motion cues from MIR. In addition, M4 relies solely on MRD to discover meaningful activation
regions in a self-supervised manner, which lacks supervision from ground-truth labels as with M6.
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Figure 4: The confusion matrices under the CDE setting.

Multi-Region Discovery Module. The comparison between M2 and M4 indicates the ability of
MRD to discover meaningful motion cues. Meanwhile, the improvement from M5 to M6 shows that
MRD is helpful in expanding the attention of the model to encompass more subtle motion patterns.

4.4 VISUALIZATION

Visualization of Confusion Matrices. Figure 4 illustrates the confusion matrices under the CDE
setting. We observe that the error primarily comes from misclassifying positive as negative. This
phenomenon may stem from the bias of the model due to the largest amount of negative data.
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Figure 5: Visualization of attention heatmaps.

Visualization of Attention Heatmaps. We con-
ducted visualizations of attention heatmaps on a
ME sequence using Grad-CAM (Selvaraju et al.,
2017), as shown in Figure 5. Each row corre-
sponds to a motion instance that shares three con-
sistent activation regions: A, B, and C. Column
(a) shows that the intensity of region C increases
from row 1 to row 3, while the intensity of regions
A and B keeps stable across three rows.

In column (b), attention heatmaps on three mo-
tion instances cover different activation regions.
As the intensity of region C increases from row 1
to row 3, the attention heatmaps gradually over-
fit to region C. In column (c), attention heatmaps
on three instances focus on the consistent region
B. This comparison indicates that IRC effectively
enforces visual attention consistency on different motion instances within the same instance set.

Although IRC remains attention on similar regions across different instances in column (c), regions
A and C are not recognized. Consequently, column (d) combines MRD into the model to discover
more meaningful regions. We observe that the model is guided to allocate more attention on regions
A and C, while keeping most attention on region B.

To further visualize precise pixel-level activation regions that contribute to classification, we fuse
Guided Backpropagation (GB) (Springenberg et al., 2014) and Grad-CAM via point-wise multipli-
cation to generate Guided Grad-CAM (Selvaraju et al., 2017). As shown in column (e), pixels in
regions A, B, and C contribute to the classification together. Appendix A.3 provides more visualiza-
tions of confusion matrices and attention heatmaps.

5 CONCLUSION

In this paper, we rethought the necessity of apex annotations and proposed an apex-free framework
Ra-ICL for MER. MIR advanced the motion feature of MEs by using an instance set instead of a
single motion instance. Based on MIR, IRC leveraged spatial consistency across motion instances to
capture effective motion cues. Meanwhile, MRD further expanded the attention on more subtle ac-
tivation regions that are easily neglected. Extensive experiments on four ME datasets demonstrated
the superiority of Ra-ICL. In the future, the effectiveness of MIR deserves further investigation to
promote practical applications of MER models.
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A APPENDIX

A.1 MORE EXPERIMENTAL DETAILS

A.1.1 DATASETS

We conducted experiments on four public ME datasets: CASME II (Yan et al., 2014), SAMM
(Davison et al., 2016), SMIC-HS (Li et al., 2013) and CAS(ME)3 (Li et al., 2022).

CASME II provides 255 samples collected from 26 subjects. These samples are classified into
five categories, including Happiness, Repression, Surprise, Disgust, and Others. Videos are at 200
frames per second (fps).

SAMM contains 159 samples from 32 participants with eight categories, including Happiness, Sur-
prise, Anger, Disgust, Sadness, Fear, Contempt, and Others. The frame rate is 200 fps.

SMIC-HS consists of 164 samples from 16 subjects classified into three categories: Positive, Neg-
ative, and Surprise. The samples are captured at 100 fps.

CAS(ME)3 part A comprises 860 samples from 100 subjects. These samples are classified into
seven categories: Happiness, Anger, Fear, Disgust, Surprise, Sadness, and Others. The frame rate is
set at 30 fps.

A.1.2 DETERMINATION OF THE NUMBER N FOR MIR

For MIR with middle sampling, we divide the ME sequence into three segments of equal length:
the initial segment, the middle segment, and the end segment. The middle segment corresponds to
the sampling window. Therefore, the number of sampled frames N (i.e., the length of the middle
segment) can vary across different ME sequences. If the length of a ME sequence is T , then the
number N can be obtained by:

N =
T

3
. (16)

To simplify the construction of instance sets, we set a unified value of N for all sequences based on
the frame rate prior of datasets. Specifically, the duration of a ME sequence is typically less than 0.5
seconds. Denote the frame rate as f , the number N should satisfy the equation 17:

N ≤ 1

3
· 0.5 · f =

f

6
(17)

Under the CDE setting, the lowest frame rate is 100 fps from the SMIC-HS dataset. Therefore,
setting N to 16 is a reasonable choice, as it ensures motion diversity while satisfying the requirement
of the equation 17. For the CAS(ME)3 dataset, although its frame rate is 30 fps, sequence lengths
vary from just a few frames to over 100 frames, which do not strictly adhere to the constraint of less
than 0.5 seconds. For consistency, we also set N to 16 on the CAS(ME)3 dataset. For all datasets,
we apply full sampling (i.e., all frames are used) on sequences containing fewer than 16 frames.

A.1.3 EXPERIMENTAL CONFIGURATIONS

All experiments were performed on a high-performance computer with 16 CPU cores, 1 NVIDIA
3090 Ti GPU card, and 32 GB memory. Both online and target networks are not pretrained. Their
parameters are randomly initialized. For inference, we choose the middle instance in an instance set
as input to the online network. The reason for selecting middle instances is similar to that of middle
sampling: to avoid using instances with excessively low motion intensity for inference.

A.1.4 EVALUATION PROTOCOLS

For CASME II, SAMM and SMIC-HS, we combine them into a composite dataset under the CDE
setting proposed by the MEGC2019 challenge (See et al., 2019) to ensure a fair comparison. This
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Table 4: Details of three datasets under the CDE setting.

Category CASME II SAMM SMIC-HS Full
Negative 88 92 70 250
Positive 32 26 51 109
Surprise 25 15 43 83

Total 145 133 164 442

Table 5: Details of 3-class, 4-class and 7-class evaluation on CAS(ME)3.

3-class 4-class 7-class

Negative 438 Negative 438

Anger 55
Fear 82

Disgust 245
Sadness 56

Positive 49 Positive 49 Happiness 49
Surprise 183 Surprise 183 Surprise 183

\ \ Others 131 Others 131
All 670 All 801 All 801

challenge aims to create a more realistic emotion recognition scenario by expanding the diver-
sity of data to support data-driven deep learning. To reduce ambiguity from different stimuli and
settings, emotion categories are simplified into three categories as those in SMIC-HS: Negative
{“Repression”, “Disgust”, “Anger”, “Sadness”, “Fear”, “Contempt”}, Positive {“Happiness”} and
Surprise {“Surprise”}. Samples of “Others” are excluded. The final distribution with a total of
442 samples under the CDE setting is shown in Table 4. These 442 samples belong to 68 subjects.
CASME II, SAMM and SMIC-HS contain 24, 28 and 16 subjects, respectively. Therefore, the
Leave-one-subject-out (LOSO) cross-validation should be repeated 68 times. In each evaluation,
each subject serves as the testing set, while the remaining subjects form the training set.

For the CAS(ME)3 dataset, the evaluation is conducted individually for a fair comparison. 3-class,
4-class and 7-class evaluation with LOSO are reported following previous works (Li et al., 2022;
Nguyen et al., 2023). The officially provided labels contain seven categories: Happiness, Anger,
Fear, Disgust, Surprise, Sadness, and Others. We conducted a 7-class evaluation on these seven
categories. Similarly, we can simplify the seven categories into four categories: Negative, Positive,
Surprise, and Others. These four categories can be used in 4-class evaluation. Furthermore, samples
labeled as “Others” can be omitted to conduct a 3-class evaluation. Details of 3-class, 4-class and
7-class evaluation are shown in Table 5. Some samples with annotation errors are excluded.

A.1.5 METRICS

To provide a more balanced judgement on all classes, we use Unweighted F1-score (UF1) and
Unweighted Average Recall (UAR) instead of the standard Accuracy (Acc). The UF1 is defined as:

F1c =
2 · TPc

2 · TPc + FPc + FNc
(18)

UF1 =
1

C

∑
c

F1c (19)

where TPc, FPc and FNc are true positives, false positives, and false negatives for class c, respec-
tively. C is the total number of classes. The UAR is defined as:

UAR =
1

C

∑
c

TPc

nc
(20)

where nc is the number of samples of the c-th class.
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Figure 6: Hyper-parameter analysis on the number of instances under the CDE setting.
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Figure 7: Hyper-parameter analysis on the number of facial queries under the CDE setting.

A.2 HYPER-PARAMETER ANALYSIS

A.2.1 INFLUENCE OF DIFFERENT NUMBERS OF INSTANCES

We conduct experiments on different numbers of motion instances. Considering that MEs are usu-
ally recorded below or equal to 200 fps, and ME sequences generally last less than 0.5 seconds,
we selected 4, 8, 12, 16, 20, and 32 as different number of instances for a sequence. When the
number of instances is fewer than 16, the middle sampling window is compressed inward. When it
exceeds 16, the window expands outward toward both ends of the sequence. If the required number
of instances exceeds the sequence length, full sampling is performed.

As shown in Figure 6, the model achieves the best performance when the number of instances is
16. When the number of instances is less than 16, the motion information becomes insufficiently
diverse, resulting in less robust features. In contrast, when the number of instances is larger than
16, the model exhibits a slight decline in overall performance. Although increased instances provide
greater motion diversity, they simultaneously introduce additional noise that may obscure the ability
of the model to perceive subtle micro-movements. Therefore, it is not appropriate to increase the
number of instances excessively, as it necessitates a careful trade-off between motion diversity and
noise introduction.

A.2.2 INFLUENCE OF DIFFERENT NUMBERS OF FACIAL QUERIES

MRD is enforced to discover distinct facial regions by different facial queries. Figure 7 shows
the effect of different numbers of facial queries. The optimal number of facial queries is 8. If the
number of facial queries is smaller, the model is at risk of failing to identify complete and meaningful
facial activation regions. Conversely, if the number of facial queries is excessively large, the model
may overfit to non-discriminative motion noise. This would impair its discriminative capability for
critical ME features.

A.2.3 INFLUENCE OF DIFFERENT LOSS WEIGHTS

The overall objective contains three loss weights λ1, λ2, λ3 for the balance of classification, IRC,
and MRD, respectively. To show the influence of these three loss weights on performance, we
evaluated them from 0.1 to 2 under the CDE setting.

Figure 8 shows that the optimal λ1 is around 0.5. When λ1 approaches zero, the guidance from
ground-truth labels reduces, resulting in a decrease in performance. As λ1 increases, classification
takes precedence, compromising the effectiveness of both IRC and MRD modules and leading to
degraded performance.
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Figure 8: Hyper-parameter analysis on λ1 under the CDE setting.
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Figure 9: Hyper-parameter analysis on λ2 under the CDE setting.
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Figure 10: Hyper-parameter analysis on λ3 under the CDE setting.
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Figure 11: The confusion matrices on the CAS(ME)3 dataset (From left to right: 3-class evaluation,
4-class evaluation, 7-class evaluation). For the 4-class evaluation, labels {0, 1, 2, 3} correspond
to {negative, positive, surprise, others}. For the 7-class evaluation, labels {0, 1, 2, 3, 4, 5, 6}
correspond to {happiness, surprise, sadness, disgust, fear, anger, others}.

Figure 9 demonstrates that the optimal value of λ2 is approximately 0.5. The performance first
increases along λ2 and then decreases. If λ2 is too small, the model will overfit to certain activation
regions. If λ2 is set larger than 0.5, the performance decreases slightly since the attention consistency
loss outweighs the classification loss.

Figure 10 illustrates that the model achieves the best performance when λ3 is equal to 0.5. When
λ3 < 0.5, the MRD module does not sufficiently constrain the model to identify more meaningful
regions. When λ3 > 0.5, it disrupts the learning process of both classification and IRC.
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A.3 VISUALIZATION

A.3.1 VISUALIZATION OF CONFUSION MATRICES

Figure 11 shows the confusion matrices of Ra-ICL on the CAS(ME)3 dataset. For the confusion
matrix with 3 categories, we find that the model performs better on the negative and surprise classes
but worse on the positive class. In the confusion matrix with four categories, we also observed that
the positive class performed poorly. This may stem from the fewest samples of the positive class
in the dataset, leading to biased model predictions. Meanwhile, the result shown in the confusion
matrix with seven categories demonstrates that the model performs better in the surprise, disgust,
and others classes. The three classes correspond to the three classes with the highest number of
samples in the CAS(ME)3 dataset.

… …

…

…

…

…

Onset Middle frames in a ME sequence

Motion 
Instances

w/ IRC
w/o MRD

w/ IRC
w/ MRD

Guided
Grad-CAM

A B

C D

Figure 12: The visualization of attention heatmaps. The first row: RGB frames of a ME sequence.
The second row: Motion instances. The third row: Attention heatmaps of the model with (w/) the
IRC module but without (w/o) the MRD module. The fourth row: Attention heatmaps of the model
with both IRC and MRD modules. The fifth row: Guided Grad-CAM of each motion instance.

A.3.2 VISUALIZATION OF ATTENTION HEATMAPS

We conducted visualizations of attention heatmaps on a ME sequence using Grad-CAM (Selvaraju
et al., 2017). Figure 12 shows a ME sequence with four facial activation regions: A, B, C, and D.
The third row illustrates the attention regions of the model when equipped with the IRC module
but without the MRD module. It is evident that the model consistently focuses on region C across
all motion instances, indicating that IRC effectively enforces visual attention consistency for all
instances within an instance set. However, without MRD, the attention region fails to cover region D.
The fourth row represents the attention regions when both IRC and MRD modules are implemented.
We observe that the model not only maintains consistent attention regions across all samples in
the set but also expands its focus to the region D. Note that A and B indicate eye movements,
which should be considered noise in this sample. In both the third and fourth rows, the attention
of the model avoids regions A and B. This demonstrates the capability of the model to effectively
distinguish between noise and subtle motions that contribute to classification. The fifth row presents
the Guided Grad-CAM (Selvaraju et al., 2017; Springenberg et al., 2014) for each motion instance.
It is illustrated that pixels in regions C and D are critical for classification.
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B THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) solely to aid and polish the writing of this paper. LLMs
were not involved in the generation of research ideas, conceptualization, research design, or ex-
perimental design. The authors take full responsibility for all content presented in this manuscript,
including any content generated or polished with the assistance of LLMs.
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