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Abstract

Dual encoder (DE) models, where a pair of matching query and document are
embedded into similar vector representations, are widely used in information
retrieval due to their simplicity and scalability. However, the Euclidean geometry
of the embedding space limits the expressive power of DEs, which may compromise
their quality. This paper investigates such limitations in the context of hierarchical
retrieval (HR), where the document set has a hierarchical structure and the matching
documents for a query are all of its ancestors. We first prove that DEs are feasible
for HR as long as the embedding dimension is linear in the depth of the hierarchy
and logarithmic in the number of documents. Then we study the problem of learning
such embeddings in a standard retrieval setup where DEs are trained on samples
of matching query and document pairs. Our experiments reveal a lost-in-the-long-
distance phenomenon, where retrieval accuracy degrades for documents further
away in the hierarchy. To address this, we introduce a pretrain-finetune recipe
that significantly improves long-distance retrieval without sacrificing performance
on closer documents. We experiment on a realistic hierarchy from WordNet
for retrieving documents at various levels of abstraction, and show that pretrain-
finetune boosts the recall on long-distance pairs from 19% to 76%. Finally, we
demonstrate that our method improves retrieval of relevant products on a shopping
queries dataset.

1 Introduction

Information retrieval [23] is the task of finding the most relevant documents within a large database
in response to a user query. Dual Encoder (DE) is one of the most popular modeling architectures
for information retrieval due to their simplicity and scalability. It functions by encoding each query
and each document by a vector representation, e.g., by using a deep neural network [16, 9, 36]. Then,
similarity between a query and a document is calculated using their Euclidean distance or inner
product, enabling scalable retrieval through approximate nearest neighbor search [19, 17, 10].

This paper considers Hierarchical Retrieval (HR), a particular case of information retrieval where
the set of documents is organized into a (hidden) hierarchical structure. To motivate our retrieval
task on a hierarchy, consider the keyword targeting problem in online advertising where ad platforms
aim to display ads based on the relevance of the associated keywords to a user’s query. While many
notions of relevance exist, a particularly important case, known as Phrase Match [2, 1, 4], defines
relevant keywords as those that are semantically more general than the user’s query. This definition
motivates the modeling of advertiser keywords as a hierarchy, where higher level keywords are
semantically more general than the lower level keywords (see Figure 1 Left). Then, Phrase Match
may be expressed as the problem of retrieving not only the keyword that matches exactly the meaning
of a user query, but also all those at a higher level in the hierarchy. Motivated by Phrase Match, we
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Figure 1: (Left) A illustrative example of a document set that forms a hierarchy. Given a query, e.g.
“Kid’s sandals”, the goal is to retrieve all its ancestors in the hierarchy. (Middle) An abstraction of
this hierarchy using a DAG where the edges are represented as solid arrows. For each node u of the
graph, the goal of Hierarchical Retrieval (HR) is to retrieve all v such that v is reachable from u.
(Right) The lost-in-the-long-distance phenomenon of a Dual Encoders (DEs) trained for HR on the
WordNet DAG. Documents further away from the query in the hierarchy are more difficult to retrieve.
We introduce a pretrain-finetune recipe to drastically improve long-distance retrieval.

define HR as the retrieval problem on a hierarchy that can be described by a direct acyclic graph
(DAG, see Figure 1 Middle). Then, the goal is to retrieve, for each node u, all nodes v reachable from
u with a directed path. In particular, we assume that the DAG is unobserved, which is the typical case
in information retrieval where the model is learned on a data set of matching query-document pairs.
Why is Hierarchical Retrieval hard? DEs solve information retrieval tasks by finding embeddings
such that a relevant document is closer in distance to the query than an irrelevant one. For HR, this
distance measure needs to be asymmetric. For example, if “Kid’s sandals” is the query then “Sandals”
is considered a relevant keyword, but the inverse is not true: if “Sandals” is the query then “Kid’s
sandals” is not a relevant keyword. This makes asymmetric DE a natural choice, where the same
node is embedded differently by a query encoder Q() and a document encoder D().

However, asymmetric DEs can still be limited for HR due to the properties of the Euclidean geometry
[21]. To illustrate this, consider the query “Kid’s sandals” for which a DE needs to place the two
document embeddings D(“Sandals”) and D(“Kid’s shoes”) in close proximity to each other, since
they need to be both close to Q(“Kid’s sandals”). On the other hand, for the query “Kid’s running
shoes”, a DE needs to place the aforementioned two document embeddings far apart since only one of
them is close to Q(“Kid’s running shoes”). This apparent inconsistency leads to the critical question:

Q1: Does there exist Dual Encoders that solve Hierarchical Retrieval?

We will provide an affirmative answer to Q1, establishing the feasibility of DEs for HR.

Nonetheless, the existence of such DEs does not mean that they can be learned from data. In practice,
the following question is of great importance:

Q2: Can we learn (from train data) Dual Encoders that solve Hierarchical Retrieval?

We show through experimental evidence that if the embedding dimension of DE is sufficiently high,
then the answer to Q2 is positive as well. This result justifies DE as a feasible architecture for HR.
Lost in the long distance? While the answer to Q2 is positive with a high embedding dimension,
practical retrieval systems have memory and latency requirement hence a low embedding dimension
is desirable and critical. Towards improving the practice of DEs for HR, we examine cases where
learned embeddings fail due to an insufficient embedding dimension, and discover an intriguing
lost-in-the-long-distance phenomenon. This phenomenon states that documents further away from
the query in the underlying hierarchy are more difficult to retrieve, hence compromises the quality of
the retrieval (see Figure 1 Right). To mitigate this, we introduce a pretrain-finetune recipe, where a
pretrained DE is finetuned on a dataset focusing solely on long-distance pairs. Such a recipe enhances
the practicality of DEs for HR by improving long-distance retrieval capabilities.

We summarize the contribution of this paper as follows.

• Dual Encoders are feasible for Hierarchical Retrieval. We formally establish that asymmetric
DEs are feasible for solving HR. Specifically, with a constructive algorithm that maps an arbitrary
DAG to a set of asymmetric embeddings, we prove that such embeddings solve the associated HR
task with a high probability. This holds as long as the dimension of the embedding space is larger
than a threshold determined by the underlying hierarchy (Section 3).
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• Dual Encoders can be learned from training data to solve Hierarchical Retrieval. The con-
structive algorithm above requires the DAG as input. On the other hand, information retrieval tasks
often do not directly provide the DAG but require learning embeddings from a training dataset of
matching query-document pairs. Next, we conduct an experimental study of this learning problem,
starting from a synthetic tree-structured hierarchies for gaining insights. We verify that the learned
DEs successfully solve HR with a sufficiently high embedding dimension (Section 4).

• A Pretrain-Finetune recipe improves the training of Dual Encoders for Hierarchical Re-
trieval. We reveal the lost-in-the-long-distance phenomenon under a toy setup with a synthetic
tree-structured hierarchy. Critically, we show that the standard approach based on rebalancing the
sampling of short vs. long distance pairs in the training dataset fails to solve the problem. This
highlights the importance of our pretrain-finetune recipe, where a pretrained DE further finetuned
on long-distance pairs gains enhanced long-distance retrieval capabilities without compromising
the quality on short-distance documents (Section 5). Finally, the effectiveness of this recipe extends
beyond the toy setup to real datasets, including 1) WordNet, a large lexical database of English,
and 2) ESCI, a shopping queries dataset (Section 6).

1.1 Related Work
Graph embedding. Graph embedding broadly refers to methods that learn a set of node embeddings
that preserves certain properties of the graph [35]. While Euclidean embedding is a natural choice, the
symmetric nature of the distance metric makes it problematic for handling graphs with directed edges,
such as DAGs. To address the issue, numerous works have explored ideas going beyond Euclidean
embeddings, e.g., by representing each node with a geometric region [31, 32, 11, 29] or a probability
distribution [33, 6]. These ideas may be coupled with non-Euclidean metrics [24, 30, 14] to better
model the hierarchical structures. However, such embedding models are not suited for retrieval due
to a lack of an efficient nearest neighbor search that hinders their applicability to large scale data.
Another work more related to ours is [25], where asymmetric embeddings are used to capture the
asymmetry and transitivity of the DAG. However, the focus of [25] is on computing embeddings on a
given graph. In contrast, retrieval applications often do not have access to the underlying graph, and
embeddings are learned from a dataset of matching query-document pairs.

Pretrain-finetune. The paradigm of pretraining and finetuning, where a model is first trained
on a large, general-purpose dataset then adapted to downstream tasks with a finetuning procedure,
is a cornerstone of modern machine learning [13, 27, 7]. For information retrieval, this paradigm
demonstrates effectiveness for improved DE quality, particularly for sparse or noisy downstream
data [8]. Our pretraining-finetuning recipe adapts this paradigm by treating the retrieval of long-
distance matches as a downstream task, which we demonstrate to be effective in addressing the
loss-in-the-long-distance challenge in HR.

2 Problem Setup

Hierarchical Retrieval (HR). LetQ = {qi}ni=1 be a collection of n queries and D = {xj}mj=1 be
a collection of m documents, respectively. For each i ∈ {1, . . . , n}, let S(qi) ⊆ D be the set that
contains all documents that are the most relevant to the query qi. The goal of information retrieval is
to return a ranked list of the documents in D for each qi, with the top ones being those in S(qi).

This paper considers HR, a particular case of information retrieval where the document set is
associated with a hierarchy. Let us assume that each query has an exact match document, e.g., for a
query “Sandals for kids”, the document “Kid’s sandals” from the document set illustrated in Figure 1
is considered an exact match. Then, the relevant document set S(qi) contains both its exact match
and all its descendants in the hierarchy. Formally, HR is defined as follows.
Definition 2.1 (Hierarchical Retrieval (HR)). Assume that there is a directed acyclic graph (DAG),
denoted as G = (V, E), associated with the document set D, i.e., with V = D and E ⊆ V × V . Also,
assume that there is a E : Q → D, where E(qi) is referred to as the exact match to qi. Then, HR
refers to information retrieval with the relevant documents given by S(qi) = {x ∈ D : x is reachable
from E(qi)} for each i ∈ {1, . . . , n}.
Dual Encoders (DEs). DEs are embedding models that map the query and document to the
same embedding space, where the inner product may be used to measure relevance. A DE is
composed of a query encoder, denoted as fq(·,θq) : Q → Rd, and a document encoder, denoted as
fx(·,θx) : D → Rd, where θq and θx are parameters to be learned from data.
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Following standard practice in information retrieval, we assume that the HR training dataset is com-
posed of matching query-document pairs. That is, there is a collection of pairs {(q(k), x(k))}Nk=1 ⊆
Q×D that satisfies x(k) ∈ S(q(k)) for each k = 1, . . . , N . The parameters θq and θx of a DE may
be learned from minimizing the following softmax loss on the training dataset:

L(θq,θx) =
1

N

N∑
k=1

CE

(
σ

(
D(θx)> · fq(q(k),θq)

T

)
, 1k

)
, (1)

where
D(θx) =

[
fx(x(1),θx), . . . , fx(x(N),θx)

]
∈ Rd×N (2)

is a matrix containing all document embeddings as columns. In above, 1k ∈ RN is a vector with the
k-th entry being 1 and all other entries being 0, and T is a hyper-parameter that is fixed to be 20 in all
our experiments. CE means the cross-entropy loss and σ() represents the softmax function.

Our ultimate objective is to understand whether a DE from optimizing Equation (1) solves the HR
problem. The answer will necessarily depend on multiple factors including the specificity of G, the
architecture of fq(·,θq) and fx(·,θx), and the optimization algorithm, etc, signficantly complicating
the study. In the following, we start with a study of the geometry of HR which is agnostic to the
choice of model architecture and optimization procedure.

3 The Geometry of Dual Encoders for Hierarchical Retrieval

This section studies the following problem: Is there a collection of query and document embeddings
that solves the HR? An affirmative answer to this question asserts the existence of embeddings that
solve HR, which is a necessary condition for the minimizer of Equation (1) to solve HR.

To answer this question, we start with considering the special case when the embedding dimension d
is as large as the size m of the document set. Here, one may simply take xj = 1j as the embedding
for each xj . Subsequently, we set the query embedding for each qj as qi =

∑
j∈S(qi) xj . It can be

verified that 〈qi,xj〉 take a value 1 if j ∈ S(qi), and 0 otherwise, i.e., these embeddings solve HR.

Algorithm 1 A constructive algorithm for Hierarchical Retrieval

1: Input: A query set Q = {qi}ni=1, a document set D = {xj}mj=1, and relevant document sets
{S(qi) ⊆ D}ni=1.

2: Sample {x̂j}mj=1 ⊆ Rd i.i.d. from the standard Gaussian distribution.

3: For each j, take xj =
x̂j

‖x̂j‖2 .

4: For each i, take qi = q̂i

‖q̂i‖2 , where q̂i =
∑
j∈S(qi) x̂j .

5: Output: Query embeddings {qi}ni=1 and document embeddings {xj}mj=1.

The construction above is feasible only when the embedding dimension d is allowed to be very large.
Towards deriving a tighter bound, we consider another construction where the document embeddings
are drawn from a Gaussian distribution, in lieu of the one-hot embeddings, see Algorithm 1. We will
use that random embeddings are with a high probability sufficiently uncorrelated to each other to
show that this construction provides a solution to HR with a much relaxed requirement on d. This is
stated formally below.

Theorem 3.1. Consider the HR problem in Definition 2.1, and fix any ε ∈ (0, 1/2). Assume that the
hierarchy G satisfies |S(qi)| ≤ s,∀i ∈ [n] for some integer s. Then there exists a dimension d with

d = O(max{s logm, 1/ε2 logm}), (3)
a threshold1 r, and a collection of embeddings {qi}ni=1, {xj}mj=1 ⊂ Rd, such that for all i ∈ [n] and
j ∈ [m] the following holds:

• Case 1: If dj ∈ S(qi), then 〈qi,xj〉 ≥ r + ε.

• Case 2: If dj /∈ S(qi), then 〈qi,xj〉 ≤ r − ε.

1This is a universal threshold r that separates the matching documents from no-matching ones for all queries.
In practice, it is often sufficient to have a query-dependent threshold.
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(a) Varying H for W = 2 (b) Varying W for H = 4

Figure 2: Comparing learned (i.e., from optimizing Equation (1)) vs handcrafted (i.e., from running
Algorithm 1) DEs for a HR task defined on a W,H-tree. For each (H,W ) pair, we experiment with
an increasing sequence of embedding dimensions d until the retrieval is successful, and report that
dimension on the y-axis. Successful retrieval means that recall is above 95% on the evaluation set.
Dotted lines are least squares fittings of the Handcrafted.

Moreover, the vectors {qi}ni=1, {xj}mj=1 can be constructed to satisfy these properties in time Õ(md+
nsd) with high probability.

Theorem 3.1 asserts that the required embedding dimension is on the order specified in Equation (3).
This order is logarithmic in m, implying that a small dimension can be sufficient for handling a
large document set. For a fixed ε and m, this order is linear in s, the maximum number of relevant
documents per query, which in practice is usually much smaller than m. For instance, when G is
a perfect tree with edges pointing from each child node to its parent node, s becomes the number
of levels of the tree and is on the order of log(m); plugging this into Equation (3) we obtain
M = O((logm)2), which again scales benignly with m. Finally, Equation (3) is independent of n,
the number of queries. This is because the theorem only requires us to handle a subset of queries
{qi}i∈T , T ⊆ {1, . . . , n} for which their relevant document sets are distinct from each other, i.e.,
S(qi) 6= S(qj),∀{i, j} ⊆ T and i 6= j. For HR, the size of such a T is upper bounded by m
according to Definition 2.1.

The construction procedure in Algorithm 1 requires knowing the sets {S(qi)}i=1,...,m. In practice,
these sets are often not directly observed. Instead, it is often the case that the training dataset is
composed of a set of matching query-document pairs, see Section 2. Hence, while Theorem 3.1
establishes the correctness of such embeddings, Algorithm 1 may not be applicable in practice.
Instead, the embeddings are often learned by optimizing a proper training loss such as Equation (1).
Understanding if such learned embeddings solve the HR problem is the subject of the next section.

Comparing Theorem 3.1 with Prior Work [15]. Our Theorem 3.1 relates to [15] which also
establishes logarithmic bounds on embedding dimensions. However, [15] addresses a different
problem. The focus of [15] is multi-label classification, for which their Theorem 2.1 establishes
a bound for representing the multi-label set. In contrast, our Theorem 3.1 specifically addresses
HR, proving the existence of asymmetric query and document embeddings in Euclidean space that
satisfy the specific ancestor-retrieval property. That being said, [15]’s result may be applied to HR
by associating their multi-label set with a hierarchy. With this specification, their result states the
following (informally):

There is a dimension d = O(s logm) such that for dj ∈ S(qi), it has
〈qi,xj〉 > 2/3, and for dj /∈ S(qi), it has 〈qi,xj〉 < 1/3.

Comparing to this result which has a fixed gap of 1/3 between matching and no-matching pairs, ours
in Theorem 3.1 holds for an arbitrary gap of 2ε, hence is more general.

4 Towards Learning Dual Encoders for Hierarchical Retrieval
This section studies whether learned DEs from optimizing Equation (1) can solve HR. To understand
the effect of depth and size of the hierarchy, this section focuses on synthetic, tree-structured
hierarchies. Experiments on real hierarchies from practical data are provided in Section 6.

A toy setup. We consider perfect trees, where each non-leaf node has the same number child nodes
and all tree leaf nodes are at the same level. A perfect tree is described by two parameters, namely
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(a) Regular sampling of train data (b) Re-balanced train data (c) Pretraining-finetuning

Figure 3: Recall on query-document pairs at varying distances ∈ {0, 1, 2} (denoted as qd dist in the
legend). We train DEs with d = 3 dimensional embeddings via optimizing Equation (1) on a tree
with H = 4 and W = 5. (a) Regular training data. The recall for (q, x) pairs with distances 1 and 2
are low. (b) Re-balanced training data, where (q, x) pairs with a distance of 1 or 2 are up-sampled.
The recall for such pairs are significantly improved at the cost of a drastic decrease in recall for pairs
with distance 0. (c) Pretrain on regular data for 10k steps then finetune on long distance pairs for
another 10k steps. Recalls at all distances are close to 100% near 15k steps. In particular, the overall
recall (i.e., averaged over the 3 distances) improves to 97%, compared to 66% in (a) and 70% in (b).

the number of child nodes for each non-leaf node (i.e., the width W ), and the number of levels (i.e.,
the height H). We use H,W -tree to refer to a perfect tree with width W and height H .

Given an H,W -tree, we consider a HR problem where both the query set Q and the document set D
have a one-to-one correspondence to the set of all nodes of the tree2. Then, the hierarchy associated
with D is naturally described by a DAG with edges pointing from each child node to its parent node.
Hence, the relevant document set S(q) for a query q ∈ Q contains the document that corresponds to
the same node in the tree as q, as well as all nodes reachable from it. We consider solving this HR
problem by a lookup-table DE, a standard choice for studying embedding models [12, 26, 5]. In such
a DE, the encoders fq and fx are lookup tables with one embedding associated with each q ∈ Q and
x ∈ D, respectively.

We sample training data using the following procedure. First, a query q is sampled by drawing a
node with equal probabilities from all nodes of the tree. Then, we obtain a matching document to q
by sampling a node with equal probabilities from the set of all of its matching documents. Training
is conducted by optimizing Equation (1) with gradient descent. Evaluation is conducted on data
sampled using the same procedure described above. We use the standard recall metric, which is the
percentage of (q, x) pairs in the evaluation set for which x is one of the k documents that have the
largest inner product score with q, with k = |S(q)| being the total number of relevant documents for
q. We are interested in the smallest embedding dimension (i.e., d) sufficient for a successful retrieval.
To obtain this dimension, for each (H,W ), we experiment with an increasing sequence of d and
terminate the process when the evaluation recall metric is >95%.

Results. In Figure 2, we report the dimension d needed for a successful retrieval as a function of
(H,W ). Towards that, we vary H for a fixed W = 2 on the left, and vary W for a fixed H = 4 on
the right. Both cases show that a reasonably large d is sufficient even for H up to 10 and W up to 30.

We further compare such learned embeddings with handcrafted ones from Algorithm 1. From
Theorem 3.1, the handcrafted embeddings solve HR with d = O(s logm). For H,W -trees, we have
s = H , m = O(WH−1), which gives d = O(H2 logW ). This aligns well with our simulation
results which we report in Figure 2. For example, in Figure 2a, we perform a line fitting in the
log-log space and obtain a slope of 2.29, whereas the slope derived from d = O(H2 logW ) is 2. In
Figure 2b, we perform a line fitting in the space of log(W ) and obtains a slope of 16.5, whereas the
slope derived from d = O(H2 logW ) is 16. Finally, Figure 2 shows that that learned embeddings
achieve successful retrieval with a much smaller d compared to our handcrafted embeddings.

5 Improving Dual Encoders for Hierarchical Retrieval

With the establishment that standard training of DEs solves HR, this section takes one step further
and asks the following practical question: Can we improve our training algorithm to minimize the
dimension required for solving HR? We approach this by examining the failure cases of learned

2Excluding the root node since if it were included then all queries should trivially retrieve it.
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embeddings from standard training when the dimension is insufficient. This leads us to discover a
common failure case called the lost-in-the-long-distance phenomenon. In addressing this issue, we
present a pretrain-finetune recipe that leads to an improved retrieval quality.

5.1 Lost-in-the-Long-Distance

We again consider HR on a H,W -tree as described in Section 4, but focus on a particular case where
standard training of DE fails to retrieve relevant documents. In particular, we consider the case of
H = 4, W = 5, and d = 3. Towards understanding this failure case, we introduce the notion of
distance between a matching pair (q, x), defined as the difference between the level of the tree nodes
corresponding to q and x. For example, a distance of 0 means that q and x correspond to the same
node, and a distance of 1 means that x corresponds to the parent node of q.

For the tree withH = 4, W = 5, any query that corresponds to a leaf node has 3 matching documents
with distance 0, 1, and 2, respectively (recall that the root node does not correspond to any query
/ document). We evaluate recall for query-document pairs at these three distances separately, and
report results in Figure 3a. It can be seen that the learned embeddings achieve almost perfect retrieval
for pairs with a distance 0, but do not work well for pairs with distance 1 and 2. We refer to the
phenomenon that matching documents at longer distances to the query tend to be lost in retrieval as
lost-in-the-long-distance.

Failure of re-balanced sampling. A tempting approach to alleviate lost-in-the-long-distance is
to re-balance the training set, so that more pairs of longer distances are included. To test this, we
consider two sampling distributions:

• Regular sampling which refers to the sampling procedure described in Section 4. For H = 4,
W = 5, distances 0, 1, and 2 pairs are sampled with probabilities 38%, 35%, and 27%, respectively.

• Heavy-Tail sampling, where pairs with distances 0, 1, and 2 are sampled with probabilities 0%,
50%, and 50%, respectively.

By mixing regular and heavy-tail sampling with a ratio of p : 1− p, we may create training datasets
with a controllable ratio between short and long distance pairs. In Figure 3b we report the result with
p = 0.03. It can be seen that the recall for pairs with distance 1 and 2 are significantly improved
and reaches a level of beyond 80% towards the end of training. However, this comes at the cost of a
significant recall degradation on distance 0 pairs. Finally, this tradeoff cannot be fixed by tuning p, as
illustrated in Figure 6 (see Appendix) which contains further results with varying p in {0.01, 0.1, 0.3}.

5.2 Main Algorithm: A Pretrain-Finetune Recipe

We introduce a pretrain-finetune recipe to address the challenge of lost-in-the-long-distance. This
approach simply means that the DE is first pretrained on a standard training set, then finetuned on a
long-distance dataset. Notably, the finetuning stage requires long-distance data only and does not
require tuning the ratio of short vs long distance pairs as a hyperparameter.

We conduct an experiment with pretraining and finetuning using data from regular and heavy-tail
sampling, respectively, and report the results in Figure 3c. We observe that in the finetuning stage,
the retrieval quality for pairs with distance 1 and 2 quickly improves and reaches nearly 100% at
15,000 train step. Notably, at this point the recall for distance 0 pairs remains close to 100%, and
the overall recall (i.e., averaged over pairs of all distances) is 97%, far exceeding the regular data
sampling (which has 66% recall) or re-balanced data sampling (which has 70% near 17000 steps).
Finally, after 15,000 steps the quality of distance 0 pairs starts to decline. This is expected since the
finetuning stage does not have any training data with distance 0. However, this quality degradation
does not compromise the practicality of our approach since one can apply early stopping during the
finetuning stage by monitoring the model quality on a validation set.

Discussion on data requirement. In applying the pretrain-finetune recipe, a practical question is
how to construct the long-distance dataset for finetuning when the underlying hierarchy, and thus
the query-document distances, is unobserved as is typical in many retrieval applications. The key
point is that our recipe does not require precise path lengths or knowledge of the full DAG. Instead,
it only requires a practical proxy for distance that can be used to partition the training data into
short-distance and long-distance subsets. This proxy is often readily available from the data or the
problem definition itself. For instance, in our shopping dataset experiment (see Section 6), we treat
Exact query-product matches as the short-distance set for pretraining and Substitute matches as
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Table 1: Quality of DE for HR on WordNet. Regular sampling refers to first sampling a query then a
document uniformly at random from the set of all matching documents. Rebalanced means a mixture
of data from regular sampling with a proportion p and a heavy-tail data of proportion 1− p where
long-distance pairs are upsampled proportionally to their distance. Pretrain-finetune (ours) refers to
first pretraining on regular sampling data then finetuning on heavy-tail data. Quality is measured by
averaged recall on a test set. Our method (i.e., pretrain-finetune) enables good retrieval quality for
query-document pairs at all distances.

Query-document distance

Method 0 1 2 3 4 5 6 7 8 Min Overall

Embedding dimension = 16:
Regular sampling 100.0 62.8 46.6 33.9 20.9 11.9 7.2 2.9 1.0 1.0 43.0
Pretrain-finetune (Ours) 100.0 57.1 46.4 47.9 50.2 53.6 53.1 47.3 32.0 32.0 60.1

Embedding dimension = 32:
Regular sampling 100.0 90.8 79.2 62.3 46.4 31.8 20.1 14.8 8.4 8.4 61.8
Pretrain-finetune (Ours) 100.0 77.3 76.5 80.4 83.5 84.2 84.3 80.1 67.3 67.3 87.3

Embedding dimension = 64:
Regular sampling 100.0 93.9 86.9 76.8 60.2 46.8 36.1 28.8 19.4 19.4 71.4
Rebalanced (p=0.01) 0.6 46.9 69.7 67.2 56.3 44.7 39.4 34.9 36.6 0.6 41.8
Rebalanced (p=0.03) 2.8 49.6 69.4 64.2 52.1 43.2 37.7 31.8 32.7 2.8 40.7
Pretrain-finetune (Ours) 100.0 90.8 91.6 92.7 92.6 91.8 90.9 87.3 75.7 75.7 92.3

the long-distance set for finetuning. In other scenarios, this partition could be based on whether a
document is a direct parent versus a more remote ancestor in a known but partial hierarchy. Finally,
human annotation can be another viable path towards obtaining such a dataset, which is a significantly
easier task than annotating the full DAG. This flexibility allows our pretrain-finetune recipe to be
applied in a wide range of practical settings where the full hierarchy is not explicitly given.

Finally, our recipe implicitly assumes that there is sufficient short-distance data to learn a meaningful
initial representation during pretraining. If this data is extremely sparse, pretraining may be ineffective,
and a mixed training approach might indeed perform better.

6 Experiments on Real Data

In this section, we experiment with the pretrain-finetune recipe on two real datasets, namely WordNet
and ESCI. On WordNet, which is a large lexical database of English, our method improves the
retrieval of hypernyms that are several levels more general than the query. On ESCI, which is a
shopping queries dataset where each query has both exact matching products and substitute products,
our method enables a single DE to retrieve both categories at a higher recall.

6.1 WordNet Experiments

WordNet [22] is a large lexical database of English where the nouns, verbs, adjectives, and adverbs
are grouped into synsets that represent synonyms. The set of synsets is equipped with a binary
hypernym relation, e.g., “chair” is the hypernym of “armchair”. This relation may be described by a
DAG with nodes corresponding to synsets and edges pointing from a synset to its hypernym synset.

In our experiments, we use the 82,115 noun synsets as our document set D. We take the query set
Q to be the same as D. For each query q ∈ Q, the matching documents S(q) include itself, its
hypernyms, and hypernyms of all hypernyms, etc. For example, matching documents for the query
“cat” include “cat”, “feline”, “carnivore”, “placental”, etc. In practice, we make a slight modification
to this definition by restricting to (q, d) pairs with a distance of at most 8. Here, the distance between
two synsets is defined as the length of the shortest path that connects them in the hypernym DAG.

Unless specified otherwise, we use the following regular sampling procedure to generate training and
evaluation data. First, a query q is sampled uniformly at random among all 82,115 synsets. Then, a
document is sampled uniformly at random from the set of all matching documents to q.

Lost-in-the-long-distance. We train a lookup-table DE by optimizing Equation (1) using SGD for
50k iterations on 10M matching pairs from regular sampling. We use learning rate 0.5, momentum
0.9, and batch size 4096. To evaluate the learned DE, we use the recall metric defined as the
percentage of (q, x) pairs for which x is one of the k documents that have the largest inner product
score with q, with k = |S(q)|. We use a validation set of size 10k to pick the best checkpoint. Then,
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Table 2: Spearman correlation score ρ on Hyperlex for DE trained on WordNet. We used 5-
dimensional embeddings to be consistent with prior work. Our method (i.e., pretrain-finetune)
obtains the best correlation score.

Method OrderEmb
[34]

WN-Basic
[34]

WN-Euclidean
[24]

Regular sampling Pretrain-
finetune (ours)

ρ 0.195 0.240 0.389 0.350 0.415

we report in Table 1 the recall computed on a test set of size 10k, including an overall recall that is
averaged over all pairs in the test set, and recall on slices with different query-document distances
(i.e., 0, 1, ..., 8). For a varying dimension of the embedding space in {16, 32, 64}, we observe that
quality degrades rapidly as a function of the distance between the query and document. A similar
qualitative behavior is also observed in [18].

Figure 4: Distribution of regular sam-
pling and heavy-tail data over varying
query-document distances on WordNet.

Rebalanced data sampling is insufficient. The lost-in-
the-long-distance phenomenon may be attributed to the
distribution of data from regular sampling, which is bi-
ased towards pairs with short distances (see Figure 4). A
natural choice is to use a heavy-tail sampling of the train-
ing dataset, which works as follows. First, a query q is
sampled uniformly at random from all synsets. Then, the
matching document for q is sampled with a probability
proportional to the distance between the document and q.

We create a rebalanced dataset where each batch has p×
4096 pairs from regular sampling and (1−p)×4096 from
heavy-tailed data. Results with p = 0.01 or p = 0.03 for
embedding dimension 64 are reported in Table 1. It can
be seen that rebalanced data improves the retrieval quality on long distance pairs but at the cost of
compromising quality on short distance pairs, aligning with the observation in Section 5.

Our pretrain-finetune recipe offers a solution. We pretrain the DE on data from normal sampling,
then finetune on the heavy-tail dataset. During finetuning, we reduce the learning rate to 1,000 times
smaller and increase the temperature in Equation (1) from 20 to 500; an ablation study on these two
hyper-parameters is provided in Appendix E. In both of the two stages, we pick the best checkpoint
on the validation set. The results in Table 1 demonstrate a significant retrieval quality improvement
for long distance document, leading to much higher overall recall. We further provide an example of
the retrieved documents for selected queries in Table 3. These examples show that regular sampling
tends to miss the long distance pairs and the pretrain-finetune recipe fixes many such errors.

Hypernymy evaluation. We supplement our evaluation by using HyperLex [34], a dataset for
evaluating how well a model captures the hyponymy-hypernymy relation between concept pairs.
Here, we evaluate our DE models learned on WordNet using regular sampling as well as the pretrain-
finetune recipe. We also compare with results from previous papers and report the results in Table 2.
This result confirms the effectiveness of the pretrain-finetune recipe.

6.2 Experiment on ESCI Shopping Dataset

ESCI [28] is a public Amazon search dataset, containing 2.6 million manually labeled query-product
relevance judgements in four categories, namely, Exact, Substitute, Complement, and Irrelevant.
For our experiment, we focus on Exact, where the product is relevant for the query and satisfies all
query specifications, and Substitute where the product is somewhat relevant and fails to fulfill some
aspects of the query. We consider the task of retrieving, given a user query, both Exact and Substitute
documents by a DE3.

Training and evaluation data. ESCI comes with a train vs test data splitting. We take the Exact
and Substitute pairs from the train split as our training sets, denoted as Etrain and Strain, respectively.

3This task may not fit exactly the HR problem definition. However, the similarity to HR is that a Substitute
match may be considered as having a longer distance to the query than an Exact match, leading to the same
lost-in-long-distance challenge as HR.
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(a) Results on Exact (b) Results on Substitute

Figure 5: Quality of Exact (left) and Substitute (right) retrieval on the ESCI dataset using a single
DE. By first pretraining on Exact then finetuning on Substitute matches, our pretrain-finetune recipe
performs better than naively joint training on Exact and Substitute matches.

Etrain and Strain contain 1.3 million and 0.4 million matches, respectively. We sample 5k Exact and 2k
Substitute pairs from the test split for evaluating our model. These two sets are denoted as Etest and
Stest, respectively. To evaluate our model, we use

Recall@k =
#{(q, d) ∈ T | d is among the top-k matches for q}

|T |
, (4)

where T is either Etest or Stest. In words, it is the percentage of (q, x) pairs in the set T with the
property that the inner product score between q and x is among the k largest ones across all x ∈ D.
Here, D is all products provided as part of ESCI and has a size of approximately 1 million.

We use the SentencePiece tokenizer, Transformers for the encoder models in DE, and the Lazy Adam
optimizer [3]. Details are provided in Appendix B.

Methods and Results. A naive approach for this task is Joint Training, where DE is trained on the
union of Etrain and Strain. We compare this with our pretrain-finetune recipe, where a DE is pretrained
on Etrain then finetuned on Strain. The results are presented in Figure 5 on Exact matches (Left)
and Substitute matches (Right). It shows that the pretrain-finetune recipe performs better than joint
training in terms of recall@k for varying values of k ∈ {100, 1000, 10000}.

7 Conclusion
This paper studies the theory and practice of dual encoders (DE) for hierarchical retrieval (HR),
the task where the document set is organized into a hierarchy. Through a geometric analysis, we
first validated rigorously that DEs are capable of solving the HR problem despite the constraints
from the Euclidean geometry. We then demonstrated through experiments that such DEs can be
found in practice via standard DE training. Towards improving the practical performance of DE, we
introduced a pretrain-finetune recipe which addresses the challenge associated with long-distance
pairs. Finally, the effectiveness of this recipe is verified on real datasets including WordNet and ESCI
shopping queries.
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A Proof of Theorem 3.1

We now present the proof that our construction of embeddings solves the dual encoder embedding
construction task. In what follows, we write a = x± y to indicate the containment a ∈ [x− y, x+ y],
and we assume n = m without loss of generality.

Proof of Theorem 3.1. We begin by drawing standard Gaussian vectors x1, . . . , xn ∼ N (0, Id) ∈ Rd
(we will later normalize them). Next, we set qi = 1√

|Si|

∑
j∈Si

xj (here we abuse notation and think

of Si ⊂ [m] to be the corresponding indices). Note that, by stability of Gaussian random variables
and independence of the xj’s, it follows that each coordinate of qi is distributed independently as a
standard normal distributed (i.e. N (0, 1)). By standard χ2 concentration (e.g. Lemma 1 [20]), for
any single Gaussian vector g and value λ > 0, if g ∼ N (0, Id) is a vector of i.i.d. standard Gaussian
variables, we have |‖g‖22− d| ≤ 2

√
dλ+ 2λ with probability at least 1− 2 · 2−λ. Setting λ = 4 log n

and taking d = Ω(log n) with a sufficiently large constant, we have

Pr
[∣∣‖g‖22 − d∣∣ ≤ 5

√
d log n

]
≥ 1− n−4

We can thus condition on ‖xi‖22 = d ± 5
√
d log n and ‖qi‖22 = d ± 5

√
d log n occurring for all

i ∈ [n], which holds with probability at least 1− 2n−3 by a union bound over the 2n vectors. Call
this event E1.

Let E be the edge set of the HR problem, namely, (i, j) ∈ E iff j ∈ Si. To further analyze the
construction, first define the event E2 that for all (i, j) /∈ E, we have |〈qi, xj〉| ≤ 100

√
d log n. Also

define the event E3 that for all (i, j) ∈ E we have |〈
∑
t∈Si\j xt, xj〉| < 100

√
ds log n.

We first analyze Pr [E2]. If (i, j) /∈ E, then qi and xj are independent Gaussian vectors, thus by
Gaussian stability we have

|〈qi, xj〉| ∼ |g| · ‖xj‖2 ≤ |g|
√
d

(
1 + 5

√
log(n)

d

)1/2

≤ |g|
√
d(1 + 1

100 )

where g ∼ N (0, 1) and we took d = Ω(log n). Via the density function of a Gaussian, we have
Pr
[
|g| · ‖xj‖2 > 100

√
d log n

]
< 1/n4. Thus, by a union bound over at most n2 pairs, we have

Pr [E2] > 1−1/n2. For E3, note that for any i ∈ [n] with j ∈ Si, the vector
∑
t∈Si\j xt is distributed

likeN (0,
√
|Si| − 1 ·Id); namely each coordinate is i.i.d. Gaussian distributed with variance |Si|−1.

Thus ∣∣∣∣∣∣
〈 ∑
t∈Si\j

xt, xj

〉∣∣∣∣∣∣ ∼√|Si| − 1 · |g| · ‖xj‖2 < |g|
√
sd(1 + 1

100 )

where again g ∼ N (0, 1). Following the same argument as above yields Pr [E3] > 1− n−2.

In what follows, let γ = 10 · max{s, 1
ε2 }, and set the dimension d = Cγ log n for

a sufficiently large constant C. Conditioned on E1, E2, E3, we claim that the vectors
q1/‖q1‖2, . . . , qn/‖qn‖2, x1/‖x1‖2, . . . , xn/‖xn‖2 satisfy the desired properties with threshold
r = 1

4
√
γ . For case one, if j ∈ Si we have〈

qi
‖qi‖2

,
xj
‖xj‖2

〉
=

1

‖qi‖2‖xj‖2
√
|Si|

‖xj‖22 +

〈 ∑
t∈Si\j

xt, xj

〉
≥ 2

3d
√
γ

(
2

3
d− 100

√
ds log n

)
>

4

9
√
γ
− 200

3
·
√

log n

d

≥ 1

3
√
γ

(5)
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(a) p = 0.01 (b) p = 0.1 (c) p = 0.3

Figure 6: Effect of re-balanced training data with a varying ratio p between the regular and the
heavy-tail data on retrieval quality.

Table 3: Retrieved synsets for selected queries with 64-dimensional embeddings. For each of the
three queries considered here, we list the relevant documents in the row “Groundtruth” with an
ascending order in their distance to the query. For “Regular sampling” and “Pretrain-finetune”, we
list top-k documents in an ascending order of k. Documents retrieved but not in the groundtruth are
underscored.

Query = “cat”
Groundtruth cat feline carnivore placental mammal vertebrate chordate animal organism
Regular sampling cat feline carnivore placental mammal wildcat domestic cat vertebrate canine
Pretrain-finetune cat feline chordate vertebrate animal placental mammal carnivore wildcat

Query = “recliner”
Groundtruth recliner armchair chair seat furniture furnishing instrumentality artifact whole
Regular sampling recliner armchair seat chair furnishing furniture article ware toy dog
Pretrain-finetune recliner armchair seat chair furnishing furniture instrumentality artifact cleaning pad

Query = “motorist”
Groundtruth motorist driver operator causal agent physical entity
Regular sampling motorist operator driver floridian foe
Pretrain-finetune motorist operator driver physical entity causal agent

Where we used the bounds on d. Next, for case two, when j /∈ Si, using the events E1, E2, we have

∣∣∣∣〈 qi
‖qi‖2

,
xj
‖xj‖2

〉∣∣∣∣ < 1

‖qi‖2‖xj‖2
|〈qi, xj〉| ≤

3

2d
100
√
d log n =

150√
Cγ
≤ r/2 (6)

Where we took C > (2 · 4 · 150)2, which completes the proof as r/2 < r − ε. Finally, note for
runtime, one needs only generate O(m) d-dimensional Gaussian vectors, and then compute each qi
which takes Õ(sd) time each, thus the total time is Õ(md+ nsd) as desired.

B Implementation Details on ESCI Dataset

Here we provide additional details for experiments on ESCI. We use the SentencePiece model to
tokenize the queries and products which are fed to standard 8-layer Transformers as the architecture
for the encoder models in DE. For the Transformer, we use model dimension 512, 8 attention heads,
two-layer MLP with GELU activation and a hidden dimension of 4096 as the feedforward network.
The output embeddings from the Transformer are mean-pooled and projected to 128 dimensions,
followed by a normalization to the unit `2 sphere as the final embedding. The model is trained with
the Lazy Adam optimizer [3] with a warmup stage of 2000 steps to a learning rate of 1e-4, followed
by a linear decay to 1e-6 at step 50000.

C Additional Experiments for the Toy Setup in Section 4

In Figure 6, we provide additional results complementing Figure 3b. These results reconfirm that
rebalanced sampling cannot effectively solve the lost-in-the-long-distance issue.
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Figure 7: Retrieval quality at varying query-document distances on WordNet, using hyperbolic
embeddings of dimension 16. The peak performance is a recall of 45.4% obtained at step 49. This
recall is higher than that with the Euclidean embeddings of the same dimension with standard training,
which is at 43.0% (see Table 1), demonstrating the superiority of hyperbolic spaces. Nonetheless, it
is worse compared to our pretrain-finetune recipe, which has a recall of 60.1%.

D Comparison with Hyperbolic Embeddings on WordNet

For hierarchical relations, hyperbolic space is a popular choice for addressing the shortcomings of
the Euclidean space [24]. Unfortunately, practical large-scale retrieval systems cannot widely adopt
hyperbolic embeddings, due to a lack of an efficient approximate k-nearest neighbor search algorithms
in hyperbolic spaces. Nonetheless, for the purpose of scientifically understanding the capability of
hyperbolic geometry for solving the HR problem, here we implement hyperbolic embeddings and
perform experiments on the WordNet dataset.

Specifically, we train 16-dimensional hyperbolic embeddings on the same 10M normal sampling
data as in Section 6. Among many options for implementing hyperbolic embeddings, we use the
reparameterization form in [12], using a learning rate of 0.01. All other training details are the same
as those for Euclidean embeddings.

We evaluate the recall for query-document pairs at varying distances and report the results in Figure 7.
We see that hyperbolic embeddings struggle to obtain a good balance between pairs with short vs
long distances. Specifically, the model first learns to retrieve pairs with short distances, i.e. with
distance 0 and 2. As it starts to retrieve longer distance pairs, the quality on the short distance pairs
drops rapidly. The best overall recall (i.e., averaged over all distances) is 45.4% obtained at step 49.
This recall is better than that of a DE trained on the same data, which is 43.0% (see Table 1), showing
the superiority of embedding in hyperbolic space. However, it is still worse than our pretrain-finetune
approach, which obtains a recall of 60.1%.

E Ablation Studies for Finetuning on WordNet

In this section, we study the effect of hyper-parameters in our pretrain-finetune recipe for the WordNet
experiments presented in Section 6. In particular, the results in Table 1 are obtained with a finetuning
learning rate that is 0.001 times the one used during pretraining, and a temperature that is increased
from 20 during pretraining to 500 when finetuning. Here, we vary the choice of this learning rate
multiplier and temperature during finetuning, and present the results in Figure 8.

For varying learning rate multiplier (see Figure 8a), we observe that the recall on long distance pairs
improves as this multiplier is increased from a very small number of 1e-7 up to 1e-3. Crucially, we
observe that the recall on short distance pairs are not significantly affected, despite the fact that such
pairs are not included in the finetuning data. However, when this multiplier is further increased from
1e-3, the model performance starts to deteriorate on both short and long distance pairs.

In terms of temperature (see Figure 8b), we see that the best recall is obtained with a temperature of
around 500. Both much smaller and much larger values of temperature lead to a quality loss.
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(a) Effect of Learning Rate (b) Effect of Temperature

Figure 8: Effect of learning rate and temperature during the finetuning stage of the pretrain-finetune
recipe for HR on WordNet.

Finally, Figure 8 shows that the model quality in terms of recall is not sensitive to the choice of these
two hyper-parameters, making our method practically easy to tune.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction—(1) feasibility of dual encoders
for hierarchical retrieval, (2) empirical validation via learned embeddings, and (3) a pretrain-
finetune recipe that mitigates performance issues for long-distance pairs—are all rigorously
supported by theory and experiments detailed in the main paper (see Sections 3–6).
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations such as the dependency on embedding di-
mension for success (Section 4), the failure mode of standard training for long-distance
pairs (Section 5.1), and the risk of degrading performance on short-distance retrieval during
fine-tuning. These are acknowledged and addressed with empirical findings and mitigation
strategies.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main theoretical result (Theorem 3.1) includes all assumptions (e.g.,
bounded size of relevant document set per query) and provides a complete constructive proof
in Appendix A. The theorem is carefully motivated and used to justify design decisions in
experiments.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper includes sufficient information for reproducing its results: synthetic
data generation is described (Section 4), datasets (WordNet and ESCI) are public (Section
6), and implementation details (e.g., model architecture, optimization settings) are provided
in Appendix C. Evaluation metrics and sampling procedures are clearly explained.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not provide open access to the code.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides sufficient experimental details. Section 4 outlines the syn-
thetic setup including tree structures and sampling methods; Section 6 provides information
on WordNet and ESCI datasets. Appendix C gives model architecture, optimization settings,
tokenizer, training steps, and learning rates for ESCI experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report confidence intervals, variance, or statistical signifi-
cance tests for the experimental results. Trends and improvements (e.g., in recall) are clear
and consistent across conditions.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides a reasonable description of compute used. Section 6
and Appendix C mention model size (8-layer Transformers with 512 hidden dimensions),
batch size (4096), number of steps (up to 50k), and training procedures (e.g., learning rate
schedules). While exact hardware details (e.g., GPU model, number of GPUs) are not
specified, the scale of the experiments is modest and consistent with common academic
setups.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: The research does not involve sensitive data, human subjects, biometric infor-
mation, or real-world deployment that would invoke ethical concerns or require adherence
to a formal code of ethics. The work focuses on synthetic and public benchmark datasets
(WordNet and ESCI) for algorithmic research in retrieval.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discusses real-world applications in advertising (Phrase Match
in online ads) and product search (Amazon ESCI) where hierarchical retrieval is directly
applicable (Section 1, Section 6.2). While no dedicated “societal impact” section is included,
the implications of better retrieval systems are clearly articulated in motivating examples,
and no negative societal impacts are anticipated from this line of work.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not propose or deploy models in high-risk domains such as
healthcare, legal, financial, or safety-critical systems. The research is focused on information
retrieval using public datasets (WordNet and ESCI) and does not require safeguards for
fairness, robustness, privacy, or misuse prevention in its current scope.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in this work—WordNet and ESCI (Amazon Shopping
Queries)—are both publicly available. WordNet is distributed under a permissive license
(Princeton WordNet License), and ESCI is a publicly released benchmark dataset as noted
in [28]. These datasets are used in accordance with their respective terms, and no unlicensed
or proprietary assets are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification: This work does not introduce a new dataset, model, or benchmark. All assets
used (WordNet, ESCI, synthetic hierarchies) are pre-existing and publicly available. The
primary contributions are theoretical analysis, algorithmic design (pretrain-finetune recipe),
and empirical evaluation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any human participants, crowdsourced annotations,
interviews, surveys, or behavioral experiments.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: This study does not involve human subjects research and therefore does not
require IRB approval.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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