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Figure 1: OnePoseViaGen. (Left) From a single anchor image, we generate a textured 3D model
that lacks real-world scale and pose. Our coarse-to-fine alignment resolves this challenge, and
optional domain-randomized fine-tuning further boosts robustness. (Right) While prior methods
(Oryon, LoFTR, Gedi) largely fail in this one-shot setting, our approach achieves dramatic gains
(ADD 81.3, ADD-S 93.1), enabling reliable 6D pose estimation where baselines break down.

Abstract: Estimating the 6D pose of arbitrary unseen objects from a single ref-
erence image is critical for robotics operating in the long-tail of real-world in-
stances. However, this setting is notoriously challenging: 3D models are rarely
available, single-view reconstructions lack metric scale, and domain gaps be-
tween generated models and real-world images undermine robustness. We pro-
pose OnePoseViaGen, a pipeline that tackles these challenges through two key
components. First, a coarse-to-fine alignment module jointly refines scale and
pose by combining multi-view feature matching with render-and-compare refine-
ment. Second, a text-guided generative domain randomization strategy diversi-
fies textures, enabling effective fine-tuning of pose estimators with synthetic data.
Together, these steps allow high-fidelity single-view 3D generation to support re-
liable one-shot 6D pose estimation. On challenging benchmarks (YCBInEOAT,
Toyota-Light, LM-O), OnePoseViaGen achieves state-of-the-art performance far
surpassing prior approaches. We further demonstrate robust dexterous grasping
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with a real robot hand, validating the practicality of our method in real-world ma-
nipulation. Project page: https://gzwsama.github.io/OnePoseviaGen.github.io/
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1 Introduction

Robots operating in the open world must interact with an endless long-tail of novel objects—ranging
from an unseen tool on a factory line to an ad-hoc household item in daily life. At the core of this
capability lies 6D object pose estimation, the recovery of an object’s precise 3D position t and
orientation R. However, this task remains notoriously difficult in realistic settings: pre-scanned
CAD models are rarely available, multi-view capture is impractical, and single-view reconstruc-
tions suffer from scale ambiguity. Consequently, reliable one-shot 6D pose estimation from a single
image has long been deemed nearly impossible, despite its central role in simulation [1–3], track-
ing [4], reconstruction [5–19], and downstream robotic applications such as manipulation [20–45],
navigation [46, 47], autonomous control [48, 49] and teleoperation [50, 51]. While VLA models
and generalist policies [52–61] excel in broad skills such as folding or bussing, they often fail in
precision-critical operations—for example, inserting a charging plug—where sub-centimeter errors
lead to task failure. Accurate 6D pose estimation is thus indispensable for reliable robotics.

Most state-of-the-art 6D pose estimation methods are learning-based and can be classified into three
categories: instance-level [62–65], category-level [66–71], and category-agnostic [72–75]. While
instance-level methods achieve high accuracy, they are restricted to objects with rich texture in the
training set, limiting their use in long tail applications. Category-level methods generalize better
within known categories but still struggle with unseen object classes. Recent advances in category-
agnostic methods focus on pose estimation for unseen objects using render&compare strategies [74,
76], feature matching [73, 77], or both [72], achieving high precision. However, these methods
depend on 3D models, which are not trivial to acquire in most scenarios.

To tackle the lack of object models, recent work in model-free pose estimation explores methods
that avoid reliance on explicit textured 3D models. These approaches use reference images and have
shown promising results, with some employing partial matching for relative pose estimation [78–80]
or multiple images to reconstruct the object [74, 81]. However, many still require multi-view inputs
or prior camera-to-object pose knowledge [72, 80], limiting their effectiveness when only a single
image is available but robust 6D pose estimation is needed.

To address these challenges, we propose OnePoseViaGen, a novel model-free method for 6D ob-
ject pose estimation. Building on single-image 3D generation techniques [82–84], we extend
Hi3DGen [82] with image-conditioned generation to reconstruct textured 3D object models from
a single RGB-D image. Since such reconstructions are scale-normalized, we introduce a coarse-
to-fine strategy that jointly refines object scale and 6D pose for accurate alignment. By integrating
the refined model with advanced pose estimation frameworks [74], our method achieves robustness
under heavy occlusion, complex lighting, and large viewpoint variations. We evaluate OnePoseVia-
Gen on standard benchmarks (YCBInEOAT, Toyota-Light, LM-O) and a new annotated in-the-wild
dataset, and further demonstrate its effectiveness in dexterous grasping tasks. Results show that our
method significantly outperforms state-of-the-art approaches for unseen objects. Our contributions
are summarized as follows:

• Generative pipeline for one-shot 6D pose. We introduce the first pipeline that integrates
single-view 3D generation into both training and inference for one-shot 6D pose and scale
estimation, proving that generative modeling can directly benefit pose estimation.

• Coarse-to-fine metric alignment. We design a coarse-to-fine alignment module that
jointly refines pose and metric scale via 2D–3D feature matching and render-and-compare
refinement, enabling accurate metric-scale alignment from a single image.
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• Text-guided generative domain randomization. We propose a text-driven augmentation
strategy that generates diverse, structurally consistent 3D variants. Rendering these mod-
els under randomized conditions yields a large-scale synthetic dataset, which bridges the
domain gap between generated models and real-world objects.

• State-of-the-art performance and real-world validation. Our method establishes new
state-of-the-art results on three challenging 6D pose benchmarks and a newly collected in-
the-wild dataset. We further demonstrate its effectiveness in dexterous robotic grasping,
validating robustness and practicality in real-world manipulation.

2 Related Works

2.1 6D Pose Estimation

The field of 6D pose estimation has been extensively explored through both model-based and model-
free approaches, each addressing the challenge of localizing objects in 3D space with varying strate-
gies [72–74, 76, 85–89]. Model-based methods typically rely on CAD models or 3D representations
for pose estimation. For instance, MegaPose [76] employs a render&compare strategy to refine
poses of novel objects using synthetic views of CAD models. Similarly, FoundPose [73] leverages
foundation features [90–92] from self-supervised vision models to establish 2D-3D correspondences
between RGB images and pre-rendered templates, demonstrating robust generalization without
task-specific training. FS6D [75] extends this domain by addressing few-shot pose estimation, intro-
ducing a dense prototype matching framework and a large-scale photorealistic dataset (ShapeNet6D)
to enhance generalization. In contrast, model-free approaches aim to reduce reliance on explicit
3D models. Wang et al. [86]designed loss functions for specific symmetry types. OnePose
[88] and its successor, OnePose++ [93], eliminate the need for CAD models by reconstructing
sparse or semi-dense object models from RGB videos, enabling real-time pose estimation even for
low-textured objects. GigaPose [72] achieves fast and accurate pose estimation by leveraging dis-
criminative templates and patch correspondences, offering significant speedups while maintaining
robustness to segmentation errors. FoundationPose [74] further advances the field by proposing a
unified framework that supports both model-based and model-free setups, utilizing neural implicit
representations for novel view synthesis when CAD models are unavailable. Gen6D [87] introduces
a generalizable model-free approach that predicts poses of unseen objects using only posed RGB
images. Despite these advancements, existing methods are limited to textured objects and require
costly retraining for novel instances. In this work, we propose a novel model-free approach that
leverages textured 3D model generation to achieve accurate pose estimation without prior 3D data.

2.2 3D Model Generation

The generation of high-fidelity 3D models from 2D inputs has emerged as a critical area of
research [82, 94–102], with significant implications for applications such as 6D pose estimation.
Hi3DGen [82] introduces a novel framework that leverages normal maps as an intermediate repre-
sentation to bridge the gap between 2D images and detailed 3D geometry. By decoupling low- and
high-frequency image patterns through noise injection and dual-stream training, Hi3DGen achieves
superior fidelity in reproducing fine-grained geometric details, outperforming existing methods in
generating high-quality 3D models. Similarly, TRELLIS [95] presents a scalable approach to 3D
generation by integrating sparse 3D grids with dense multiview visual features, enabling versatile
decoding into formats like Radiance Fields, 3D Gaussians, and meshes. Rapid 3D Model Gen-
eration highlights the potential of AR/VR devices as intuitive tools for 3D modeling, introducing
Deep3DVRSketch [96], which enables novice users to create detailed 3D models from simple
sketches efficiently. VP3D [97] enhances text-to-3D generation by incorporating 2D visual prompts,
improving visual fidelity and texture detail through explicit visual appearance guidance. IT3D [98]
further refines this process by synthesizing multi-view images explicitly, tackling issues like
over-saturation and inadequate detailing via a Diffusion-GAN dual training strategy. Cycle3D [99]
presents a unified framework that cyclically utilizes 2D diffusion and 3D reconstruction modules to
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ensure high-quality and consistent 3D content generation. StyleTex [100] focuses on style-guided
texture generation for 3D models, employing a diffusion-model-based approach to harmonize tex-
tures with reference images and text descriptions. Consistent3D [101] addresses inconsistencies in
text-to-3D generation by exploring deterministic sampling priors through ODE trajectory sampling,
ensuring more reliable and high-fidelity outputs. However, these methods generate normalized mod-
els with scale mismatches to real-world objects, leading to errors in downstream pose estimation.
Our OnePoseViaGen introduces a coarse-to-fine strategy that jointly refines the scale and 6D pose
of generated models, enabling accurate recovery of real-world object dimensions and scene poses.

3 Method

3.1 Problem Formulation

As illustrated in Fig. 2, let IA (top-left corner) and IQ (top-right) denote an RGB-D anchor image
and a query image, respectively. Our task is to estimate the relative rigid transformation TA→Q ∈
SE(3) that maps the pose of a target object from the anchor image coordinate system to that of
the query image. Since generated models are scale-normalized, we additionally determine a scaling
factor s based on IA to calibrate the model to real-world scale. Formally, TA→Q = [R | t]. The
core challenge lies in achieving robust pose estimation when the query image may capture the same
object under significantly different conditions. Our method thus needs to extract invariant geometric
features and establish reliable correspondences despite such appearance changes.
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Figure 2: Overview of OnePoseViaGen. Given an anchor RGB-D image IA, we generate a tex-
tured 3D model ON via our normal-guided generative pipeline. To ground ON in real-world metrics,
we align it with IA via multi-view feature matching and render&compare framework. For a query
image IQ, we apply a render&compare&selection pipeline [74]. Finally, the relative transformation
TA→Q is computed. To enhance generalization, we introduce a text-prompt-based diversification
strategy for training data, bridging the domain gap between generated models and real objects.

3.2 Approach Overview

Fig. 2 outlines our OnePoseViaGen pipeline. Given an RGB-D anchor image IA (top-left of Fig. 2)
of a novel object—for which no pre-existing 3D model exists—our key challenge is to enable 6D
pose estimation from a single view. To address this, we first generate a textured 3D model with
standardized orientation/scale from IA using Hi3DGen[82] in single-view 3D generation (Sec. 3.3).
Critical to grounding this model in the real world, our coarse-to-fine alignment module (Sec. 3.4)
jointly recovers the object’s metric scale and 6D pose in IA. With this metric-calibrated model, we
estimate the object’s pose in any query RGB-D image IQ (top-right of Fig. 2) using the aligned
model and a robust pose estimation framework. The final relative transformation TA→Q is then
computed from the absolute poses in both views.
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To bridge the domain gap between generated models and real-world images, we introduce a
text-guided generative augmentation strategy (Sec. 3.5). This generates structurally consistent
but texture-diverse 3D variants, which are rendered under randomized conditions (lighting, back-
grounds, occlusions) to create a large synthetic dataset. This dataset enables fine-tuning of pose
estimation components, significantly boosting robustness—validated in our experiments (Sec. 4).

3.3 Normal-guided 3D Textured Mesh Generation

Motivation. Estimating the 6D pose of novel objects typically requires a 3D model, which is of-
ten unavailable. While multi-view reconstruction can generate models from multiple images with
known poses [74, 75, 87, 93], this is not feasible in our one-shot setting. Neural implicit repre-
sentations can also generate 3D geometry but often require time-consuming optimization for each
object [103–105]. To overcome these limitations and enable pose estimation from a single view,
our first step is to generate a textured 3D object model directly from the input anchor image IA.
Leveraging recent advances in single-view generative 3D modeling allows us to quickly obtain a
plausible 3D representation without the need for multi-view data or lengthy per-object optimization.

Standardized Textured Mesh Geneartion with Normal and Image conditions. As depicted in
the “3D Textured Mesh Generation” step in Fig. 2, we generate high-fidelity textured meshes from
a single image based on a modified version of Hi3DGen [82]. Initially, segmentation is used to crop
the input anchor image to minimize background noise’s impact on the model generation process.
Subsequently, the processed image Icropped

A undergoes an off-the-shelf image-to-normal estimation
to produce a normal map X . The normal maps X and the original cropped image Icropped

A are then
fed into the 3D generation model. This process ensures geometric consistency and visual detail.

Finally, we obtain a standardized textured object model ON in an object-centric coordinate system.
This model ON serves as the basis for subsequent alignment step to match real-world dimensions,
as outlined in Sec. 3.4. We further visualize several examples of these generated models in Ap-
pendix. D, demonstrating the fidelity and diversity achieved.

3.4 Coarse to Fine Object Alignment and Pose Estimation
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Figure 3: Overview of Coarse-to-fine Alignment Process.

Motivation. Although
Sec. 3.3 provides a 3D shape
ON , it is in a normalized space,
not matching the real object’s
scale and pose in IA. For
accurate metric-space 6D pose
estimation, determining the
correct scale and aligning the
model with the observed object
in the 3D scene is essential.
This alignment is challenging
due to discrepancies between
the idealized model and noisy,
partial observations from IA.
To address this, we propose
a multi-stage coarse-to-fine
alignment strategy, illustrated
in Fig. 3.

Coarse Alignment via Multi-view Feature Matching and PnP solving. In coarse stage, we
render object ON from n spherical viewpoints using camera intrinsics K. SuperPoint [106] features
are extracted and matched via SuperGlue [107] between each rendered view oi and IA, and the view
with the most matches is selected. Matched 2D point pairs (p′i ∈ R2, pi ∈ R2) (from the rendered
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view and IA, respectively) are lifted to 3D points (P′
i ∈ R3,Pi ∈ R3) in the object’s normalized

coordinate system and the camera coordinate system using depth information from the rendered
view and IA: P′N

i = 1
d′
i
·K−1 · [p′N

i , 1]⊤, PN
i = 1

di
·K−1 · [pN

i , 1]⊤. Subsequently, we apply
the Perspective-n-Point (PnP) algorithm [108] on P′

i and their corresponding 2D projections pi in
image oi to estimate an initial 6-DoF pose, with scale ambiguity.

Then, we transform normalized model point P′
i into the same camera coordinate system: P̂i =

RP′
i + t. Ideally, P̂i and corresponding camera-space points Pi represent the same 3D point, dif-

fering only by a global scale factor α > 0, where α denotes the scaling factor from the origin of the
camera coordinate system along the viewing direction: PN

i = αP̂i.

To estimate α, we minimize the following least-squares objective: L2 =
∑

i

∥∥∥αP̂i −PN
i

∥∥∥2 . This
leads to a single-variable optimization problem: minα L2, which yields the optimal α. And due to
the scale consistency property of similarity transformations, the final model’s scale remains invariant
to the choice of scaling center. This α also serves as the desired scale factor s, defined with respect
to the model center as the origin. Based on this optimization, we obtain a coarse estimate of the

object’s pose Tcoarse
ON→A =

[
R αt
0 1

]
. and scaling factor s = α. Since the process is iterative, we also

express the transformation incrementally: ∆Tcoarse
ON→A =

[
∆R α∆t
0 1

]
, ∆s = α.

Fine Alignment and Pose Estimation via Render-and-Compare Refinement. The coarse align-
ment provides a reasonable initial pose and scale, but inaccuracies due to feature noise and model
imperfections necessitate further refinement. We iteratively refine the pose and scale using a strategy
that combines render&compare refinement with the coarse alignment’s scale optimization. Starting
with the coarse estimate Tcoarse

ON→A and scale s, we refine the estimation using the network adapted
from FoundationPose [74] to predict incremental pose updates ∆R ∈ SO(3) and ∆t based on the
difference between a rendering of the model at the current pose and the observed object in IA. The
pose is updated as t+ = t+∆t, R+ = ∆R⊗R, where ⊗ denotes update on SO(3). Crucially, after
each pose update, we re-run the feature matching and scale optimization from the coarse stage using
the current pose estimation to refine the scale s. This iterative process, alternating between pose
refinement and scale optimization, continues until convergence or a maximum number of iterations
is reached. This yields a metric-scale 3D model OM =

∏iter
i ∆siON and its accurate 6D pose

TOM→A relative to the anchor image frame IA. The effectiveness of this coarse-to-fine approach,
particularly the fine alignment stage, is demonstrated in the ablation study (Sec. 4.4).

For estimating the poses in query images IQ (illustrated in Fig. 2), we utilize the derived metric-scale
model OM . We employ a render&compare&selection strategy from FoundationPose [74]. The
resulting 6D pose relative to the camera frame in query image IQ is denoted as TOM→Q. Finally, as
shown in Fig. 2, the relative transformation between the anchor and query views, is computed using
the estimated absolute poses:

TA→Q = (TOM→A)
−1 ·TOM→Q. (1)

The quantitative results showcasing the accuracy of our 6D pose estimation are presented in Table 1,
Table 2, and Table 3 in Sec. 4.

3.5 Text-Guided Texture Diversification

Motivation. The 3D model ON generated in Sec. 3.3 captures shape and initial texture, but repre-
sents only a single instance. It lacks variation in appearance and geometry found in real-world ob-
jects, limiting its generalization under diverse environmental conditions (e.g., lighting, occlusion).
Training robust pose estimators requires large, diverse datasets, which are costly to collect manually.
To bridge the gap between generated models and real-world objects and facilitate effective training,
we propose generating a diverse set of plausible object variations.
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Texture Diversification with Structure-Aware Text-to-3D. As illustrated in the ”Generative Do-
main Randomization” step in Fig. 2, we use the text-guided 3D generation model Trellis [84], taking
the initial model ON and text prompts as input (Appendix. A). The model generates variants with di-
verse textures, styles, or minor geometric changes while preserving core structure. We render these
models under randomized viewpoints, lighting and occlusions using Blender, forming a large-scale
synthetic dataset for fine-tuning the render-and-compare network (Sec. 3.4). The method improves
the pose generation model on the long-tail category through diverse texture synthesis. Incorporating
category-level training data enables the pose estimation module to significantly improve its perfor-
mance—particularly on objects that were previously challenging, or when the occluded side appears
in query images. As a result, the overall generalization capability of the pose estimation module is
notably enhanced. As shown in Table 4, this significantly improves pose estimation performance.

4 Experimental Results
Table 1: Comparison with SOTA on the YCBInEOAT Dataset.

Oryon [79] LoFTR [78] Gedi [109] Any6D [110] Ours

Modality RGB-D & Language RGB-D Depth RGB-D RGB-D
Metrics ADD-S(↑) ADD(↑) ADD-S(↑) ADD(↑) ADD-S(↑) ADD(↑) ADD-S(↑) ADD(↑) ADD-S(↑) ADD(↑)

sugar box1 44.0 0.0 47.3 0.0 95.6 0.0 96.7 14.3 93.71 75.63
sugar box yalehand0 34.7 3.0 41.6 0.0 82.2 6.9 89.1 75.2 94.59 87.12
mustard0 48.6 0.0 47.3 20.3 100 0.0 100 23 96.98 70.00
mustard easy 00 02 36.2 0.0 23.2 0.0 78.3 0.0 78.3 53.6 85.58 70.12
bleach0 10.4 0.0 55.2 0.0 74.6 0.0 98.5 68.7 95.84 92.41
bleach hard 00 03 chaitanya 24.4 6.7 60 15.6 66.7 62.2 73.3 51.1 94.39 91.35
tomato soup can yalehand0 32.8 0.0 10.7 0.0 60.3 0.0 70.2 0.0 88.77 77.72
cracker box reorient 13.2 0.0 26.3 0.0 97.4 0.0 100 60.5 96.34 79.40
cracker box yalehand0 15.0 0.0 22.6 0.0 89.5 0.0 97.7 63.9 91.64 87.64

MEAN 28.8 1.1 37.1 4.0 82.7 7.7 89.3 45.6 93.10 81.27

Table 2: Comparison on the TOYL Dataset.

Methods AR(↑) MSSD(↑) MSPD(↑) VSD(↑)

SIFT[111] 30.3 39.6 44.1 7.3
Obj. Mat. [112] 9.8 13.0 14.0 2.4
Oryon [79] 34.1 42.9 45.5 13.9
Any6D [110] 43.3 55.8 58.4 15.8
Ours 55.7 67.0 65.1 35.1

Table 3: Comparison on the LINEMOD Oc-
clusion (LM-O) Dataset.

Methods AR(↑) MSSD(↑) MSPD(↑) VSD(↑)

GigaPose [72] 17.5 35.8 9.0 7.6
Any6D [110] 28.6 36.1 32.0 17.6
Ours 74.8 79.5 84.9 60.0

4.1 Datasets and Setup

Public datasets. We evaluated our method without the proposed fine-tuning (Sec. 3.5) to ensure fair-
ness on three public datasets: YCBInEOAT [113] (robotic interaction), Toyota-Light (TOYL) [114]
(challenging lighting), and LINEMOD Occlusion (LM-O) [115] (occluded, textureless).

Real-world evaluation. We performed two experiments in real-world settings: (1) 6D pose esti-
mation for uncommon objects by generating synthetic training data via our domain randomization
pipeline and testing on a calibrated real set (built based on [114]), and (2) robotic manipulation tasks,
establishing grasping setups using a ROKAE robot arm equipped with an XHAND1 dexterous hand,
and two AgileX PiPERs, and measuring success rates against baselines.

4.2 Comparison with the State of the Art

Quantitative results. Following the evaluation settings of Any6D [110], we align the relative
pose estimate TA→Q according to Eq. (1). Our approach is primarily compared against recent
state-of-the-art methods, including Any6D [110], Gedi [109], LoFTR [78], and Oryon [79]. On
YCBInEOAT, anchor images are sampled from DexYCB [116]. As shown in Table 1, our method
achieves significantly better robustness. Notably, on challenging objects such as {sugar box1,
mustard0, tomato soup can yalehand0}, previous methods achieved very low ADD scores (e.g.,
Any6D: 14.3%, 23%, 0.0%), while our method consistently performs well (75.63%, 70.00%,
77.72%), achieving a mean ADD of 81.27. For TOYL (Table 2) and LM-O (Table 3), we report
BOP benchmark metrics. Our method shows consistent improvements across all evaluation criteria.

4.3 Experimenting in Robotic Manipulation
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Input Image Aligned Model 6D Pose Estimation

Figure 4: Qualitative results of robot manipulation.
The left column is the anchor images, the middle column
shows the generated models, and the right part shows the
pose estimation results during robot manipulation.

To validate the practical applicability
and robustness of our method, we con-
ducted two real-world robotic manipula-
tion tasks using 6D pose estimates as the
perception input (See Appendix.D for de-
tails). (1) Pick-and-place: A dexterous
hand mounted on a robot arm performs
grasping. This task is challenging due to
heavy occlusions during grasp. (2) Dual-
arm manipulation: (pick, handoff, place):
This involves coordinated control, object
instability during transfer, and dynamic
occlusions. We tested both tasks on 15
objects over 30 trials each, comparing our method with SRT3D [94] and DeepAC [117]. As shown
in Fig. 4, our method achieved a success rate of 73.3% (Table 5), demonstrating strong performance
in complex, real-world scenarios.

Table 4: Ablation Study.

Dataset TYOL Dataset [114] Annotated Real-World Dataset

Method
w/

align
w/o

coarse align
w/o

fine align
w/o

align
w/ diversified

finetuning
w/ naive

finetuning
w/o

finetuning

AR(↑) 55.7 54.2 32.9 0.0 52.4 11.4 12.6
CD(↓) 0.72 0.94 1.05 38.47 – – –

Table 5: Real-world
evaluation.

Methods Success Rate(↑)

SRT3D [94] 6.7
DeepAC [117] 16.7
Ours 73.3

4.4 Ablation Study

Module Criticality Analysis. We conducted ablation studies on our object alignment method. As
shown in Table 4, the full method achieves effective alignment. Removing the coarse alignment
stage (w/o coarse align) led to a 1.5-point drop in AR and a 0.22 increase in CD. In contrast,
removing the fine alignment stage (w/o fine align) caused a much larger degradation: AR decreased
by 22.8 points and CD increased by 0.33. These results confirm that both stages contribute to
performance, with fine alignment playing a particularly critical role in achieving high-quality results.

Efficacy of Synthetic Data Fine-Tuning. As shown in Table 4, we evaluate the impact
of our text-guided generative augmentation on model fine-tuning on an annotated real-world
dataset(Appendix. E). “Native fine-tuning” uses only the initial generated model, while “diversi-
fied fine-tuning” leverages texture-variant models from our generative strategy (Sec. 3.5). The lat-
ter yields a dramatic improvement: Average Recall (AR) jumps from 12.6% (no fine-tuning) to
52.4%—far outperforming native fine-tuning (11.4%). This confirms that our synthetic data, by
diversifying textures while preserving structural consistency, effectively bridges the domain gap be-
tween generated models and real-world images. Critically, this strategy requires only one reference
image per novel object, eliminating the need for costly labeled datasets—making it uniquely practi-
cal for real-world deployment. More details can be seen in Appendix. C.

5 Conclusion

We introduced OnePoseViaGen, a novel approach for one-shot 6D pose estimation of unseen ob-
jects without requiring 3D models. Our method leverages single-view 3D generation and introduces
a coarse-to-fine alignment strategy to simultaneously recover the object’s metric scale and 6D pose
using multi-view feature matching and refinement iteratively. To enhance robustness, we employ
text-guided generative domain randomization to create diverse synthetic training data, effectively
bridging the gap between generated models and real objects. Extensive evaluations on challenging
benchmarks (YCBINEOAT, TOYL, LM-O) demonstrate state-of-the-art performance, significantly
outperforming prior methods, especially under occlusion and varying illumination. Successful real-
world robotic grasping experiments further validate the practical applicability of our system. OnePo-
seViaGen represents a significant step towards versatile, data-efficient pose estimation.
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5.1 Limitations

Although OnePoseViaGen achieves promising results across various datasets and real-world robotic
experiments, it still faces challenges in handling deformable or articulated objects. In such cases,
changes in object shape can lead to inaccurate 6D pose estimation. Future work will focus on
incorporating test-time training into the inference pipeline, enabling continuous refinement of object
geometry and accurate pose estimation for deformable objects. This direction aims to fully leverage
the flexibility and generalization power of generative models in 6D pose estimation tasks.
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Appendix

This appendix is organized as follows. In section A, we describe how carefully crafted text prompts
guide the generation of diverse 3D models using Trellis [84], emphasizing the impact of linguistic
variation on visual diversity. Section B details the construction of our synthetic training dataset,
including the scene setup and statistical distributions across object pose, visibility, and distance.
In section C, we report additional experimental results, including per-dataset performance analysis,
failure mode characterization, and discussions of robustness across challenging conditions. In sec-
tion D introduces a complete pipeline for constructing a ground-truth dataset for unseen objects in
real-world scenes, encompassing scene acquisition, 3D reconstruction, coordinate alignment, and
mask generation. Together, these components provide comprehensive support for evaluating our
method in both synthetic and real-world conditions.

A Text Prompts and Model Output Diversity

As described in Section 3.5, we employ Trellis [84] to generate diverse textures. To this end, we use
a prompt to instruct the VLM to produce suitable input prompts for Trellis:

Prompt: Given the image of a [OBJECT], generate a detailed and realistic prompt for a 3D modeling
system to create diverse variants of this object. The prompt should request: A series of unique but
plausible 3D models. Variations in design style (e.g., minimalist, industrial, futuristic, ergonomic).
Inclusion of all essential functional components visible in the image. Use of realistic materials (e.g.,
matte plastic, brushed metal) with subtle imperfections for authenticity. Distinct color schemes with
aesthetic and functional considerations (e.g., color-coded controls). Practicality and usability in real-
world scenarios. Format the output as a natural-language instruction starting with ”Generate...”.

We then input the models generated based on an anchor image into our pipeline, resulting in the
models shown in Fig. 5. It is evident that the generated models exhibit a rich diversity of textures,
which helps further narrow the domain gap between the training dataset and real-world objects in
the subsequent step of dataset generation. The experimental results validate the effectiveness of this
approach, as discussed in the main text.

Figure 5: Diversified Models. This figure showcases the results of two types of diversified texture
generation. For each object, the original model is displayed on the right, while the model with
diversified textures is shown on the left. It can be observed that our proposed method, which utilizes
text prompts to promote texture diversity, is capable of generating rich and varied surface textures.
This contributes to the enhancement and diversification of training dataset generation.

B Statistical Distribution of the Training Dataset

The method for constructing a training dataset. First, we apply the method described in Sec.
3.5 to perform diversified texture generation on existing object models using text prompts, thereby
creating 100 differently textured models as shown in Fig. 5, These models are then fed into the
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Figure 6: Generated training dataset. This figure illustrates the dataset generated using our
diversified texture models. It is evident that our generated dataset encompasses a rich variety of
backgrounds, object poses, occlusion relationships, and lighting conditions. This contributes to
narrowing the domain gap between the training dataset and real-world scenarios.

BlenderProc [118] rendering pipeline. For each synthetic scene, an initial model and three ran-
domly selected diversified texture models are chosen as training targets; simultaneously, ten objects
are randomly picked from the BOP dataset [114] to act as occluders, and a background environment
is constructed by selecting a random texture map from the CCTextures. Subsequently, 100 camera
positions are randomly determined with each camera oriented towards the geometric center of these
14 objects (4 targets + 10 occluders), incorporating eccentric noise into the camera positions while
also introducing random perturbations to the rotation angles around their Z-axis to simulate varia-
tions in real-world shooting conditions. Through this process, we have constructed a large-scale,
highly varied synthetic training dataset. Fig. 6 provides examples from this dataset, illustrating its
rich variety of lighting conditions, degrees of occlusion, and object scales (distances from the cam-
era), significantly enhancing the robustness and accuracy of the model in pose estimation tasks, as
discussed in the main text.

The object pose distribution of the training dataset. We present the distributions of Azimuth,
Elevation, Object Distance, and Visibility in the final generated dataset, as shown in Fig. 7. From
these distributions, it is evident that our dataset exhibits a high degree of diversity in both azimuth
and elevation angles, covering a wide range of horizontal and vertical orientations of objects relative
to the camera. In terms of object distance, the dataset includes samples ranging from close-up to far-
field scenarios, simulating the variation in depth at which objects may appear in real-world settings.
Regarding visibility, due to the inclusion of occluders and randomized scene layouts, the extent
of visible object regions varies significantly across images, resulting in diverse levels of occlusion.
Taken together, the multi-dimensional diversity in our dataset closely mimics the complexity of real-
world camera-captured scenes. This design choice effectively enhances the generalization capability
and robustness of model training.

C Fine-tuning Details

When comparing with other one-shot methods, we did not fine-tune our model to ensure a fair
comparison, making the evaluation valid under the same settings. In cases of object with long tail
distribution where fine-tuning is desired, generating a diversified models takes around 10 minutes on
an A800 GPU, while generating the training dataset requires approximately 10 minutes on an L20
GPU. As shown in Fig. 8, the fine-tuning stage, with training a single LoRA module, takes about
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Figure 7: Distribution Analysis of Training Dataset. Top-left: Distribution of Azimuth angles for
objects within the generated dataset; Top-right: Distribution of Elevation angles for objects; Bottom-
left: Distribution of object distances from the camera; Bottom-right: Distribution of the proportion
of object area visibility; These plots demonstrate that the constructed training dataset encompasses
a rich diversity of poses and occlusion scenarios, underpinning its comprehensive variability and
realism.

51 minutes to achieve 90% of highest AR on an single L20 GPU with 48GB of memory. Compared
to redesigning the method from scratch, this fine-tuning process is computationally efficient and the
time cost is acceptable in practice.

The detailed information of all modules in One-2-3-Pose is summarized in Table 6. Specifically, the
Hi3DGen module is fine-tuned by concatenating the texture features with the original feature vec-
tors. The Pose Generation module of FoundationPose is fine-tuned using the domain randomization
strategy described in Section 3.5.

Table 6: Overview of modules and their properties.

Module Name Input Output Is Fine-tuned?

Hi3DGen Segmented anchor image Normalized 3D mesh ✓

SuperPoint RGB templates and segmented anchor
image

Detected 2D keypoints
with descriptors ✗

SuperGlue Extracted 2D keypoints and descriptors Matched 2D-2D corre-
spondences ✗

PnP Matched 2D-3D point correspondences
and camera intrinsics

Estimated object pose (ro-
tation R and translation
t)

✗

Scale Optimiza-
tion

3D model points in object coordinates
and corresponding camera-space points Scale factor s ✗

FoundationPose Anchor image with segmentation mask
and template under coarse pose Refined object pose ✓

Trellis Normalized 3D mesh and text-based
prompt for texture generation

Texture-diversified 3D
model ✗

D Additional experiments

Metrics. We assess performance using the metrics defined by the BOP challenge, specifically fo-
cusing on Average Recall (AR) for Visual Surface Discrepancy (VSD), Maximum Symmetry-aware
Surface Distance (MSSD), and Maximum Symmetry-aware Projection Distance (MSPD) [114].
These metrics offer complementary insights into pose accuracy by evaluating recall rates across
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Figure 8: Finetune Performance with Time.

Table 7: Processing Stages and Time Consumption

Stage Submodule Time Cost (s)
Model Generation Model Generation 9.10

Model Export 12.84

Scale Recovery Coarse Alignment 0.75
(1 Round) Fine Alignment 0.23

Pose Estimation Pose Generation 0.88
(FoundationPose) Pose Selection 0.42

various thresholds. This comprehensive evaluation approach ensures a thorough assessment of al-
gorithmic performance in diverse scenarios, reflecting different aspects of precision and robustness
in pose estimation.

Performance Analysis on the LM-O Dataset. The LM-O dataset [115] comprises 12 objects,
predominantly distinguished by their lack of texture and frequent occlusion. Performance met-
rics for each object are summarized in Table 8, where τ denotes the misalignment tolerance. As
shown in Fig. 9, performance degrades when the target object occupies a small region in the image.
Nonetheless, the method still achieves relatively robust results under such challenging conditions.
As observed in Table 8, the model exhibits stable pose estimation across most categories when the
translational error threshold exceeds 0.15, indicating consistent precision and reliability in 6D pose
estimation. However, the “ape” category shows notably lower accuracy, primarily due to its minimal
textural information and ambiguous geometry. These characteristics result in a mismatch between
the reconstructed and ground-truth models, which in turn hampers accurate model alignment and
pose estimation. Despite this limitation, as illustrated in Fig. 11, the proposed method demon-
strates strong and consistent performance across the majority of object categories, highlighting its
generalization capability under diverse shape and textural conditions in real-world 6D object pose
estimation tasks.

Table 8: Detailed Metrics on the LM-O Dataset.

Metrics object avg
ape can cat driller duck eggbox glue holepunch

MSPD 79.6 93.7 80.8 82.1 84.4 86.0 77.9 91.5 84.9
MSSD 64.8 92.6 71.2 85.8 72.9 80.1 75.8 87.9 79.6
VSD 37.5 75.5 57.7 71.2 66.1 56.6 51.9 58.2 60.0
AR 60.6 87.3 69.9 79.7 74.5 74.2 68.5 79.2 74.8
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Figure 9: Visualization of Metrics on the LM-O Dataset. Left: Illustration of the MSPD metric
variation with respect to the visible size of objects in pixels. Middle: Demonstration of the MSSD
metric variation according to the object size in meters. Right: Presentation of the VSD metric
variation with respect to τ (denoting the misalignment tolerance) and object size. These graphs
effectively capture the metrics’ dependencies on object visibility, size, and alignment tolerance,
providing insights into their varying influences under different conditions.

Figure 10: Performance in LM-O dataset. In each image, the red, green, and blue lines represent
the x, y, and z axes of the model, respectively, while the pink line shows the rendered contour under
the estimated pose. By comparing the rendered contour with the ground-truth outline of the object,
it is evident that our method is highly robust, performing well across various objects and under
different occlusion scenarios.

Performance Analysis on the TOYL Dataset. The TOYL [114] test dataset contains 21 objects,
primarily distinguished by complex lighting conditions and the fact that most objects are positioned
relatively far from the camera. Performance metrics for each object are summarized in Table 9. As
illustrated in Fig. 12, performance declines when the target occupies only a small portion of the
image, which is often due to the considerable distance from the camera. This makes texture the pri-
mary discriminative cue for pose estimation, as the objects’ high symmetry reduces the effectiveness
of other features. Despite these challenges, the model exhibits relatively stable performance across
most object categories when the translational error threshold exceeds 0.15, indicating consistent be-
havior under varying conditions. As shown in Table 9, the method faces notable difficulties with
objects numbered 04 and 18. Their high symmetry restricts reliable orientation estimation to sur-
face texture cues alone, often leading to mismatches when the opposite side of the object is visible.
Nevertheless, for the majority of other objects, the proposed method achieves stable and accurate
pose estimation, demonstrating strong robustness and adaptability even when objects are positioned
at significant distances from the camera.
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Figure 11: Comparison Between Original and Generated Models on LM-O dataset. The first
row displays the original object models, while the second row shows the generated models under the
same pose. The third row presents a bottom-view comparison of the generated models. As can be
seen, the generated models exhibit high quality and closely resemble the original objects in terms of
texture and structure, demonstrating the effectiveness of our generation and scale recovery approach.

Figure 12: Visualization of Metrics on the TYOL Dataset. Left: Illustration of the MSPD metric
variation with respect to the visible size of objects in pixels. Middle: Demonstration of the MSSD
metric variation according to the object size in meters. Right: Presentation of the VSD metric
variation with respect to τ (denoting the misalignment tolerance) and object size. These graphs
effectively capture the metrics’ dependencies on object visibility, size, and alignment tolerance,
providing insights into their varying influences under different conditions.

Failure modes. As shown in Fig. 15 and Fig. 16, the proposed method exhibits performance
limitations in scenarios involving severe occlusion, strong motion blur, as well as objects with low
texture and high symmetry.

More details about the real-world experiments. The primary perception system for both tasks
relied on Intel RealSense cameras, providing RGB and depth information at a resolution of 640×480
and a frame rate of 30 Hz. For Task 1 (ROKAE Pick-and-Place), the camera was fixed next to
the robotic arm, approximately 0.5 meter above the center of the manipulation area, angled at 15
degrees from the vertical. For Task 2 (Dual-Arm AgileX PiPER Manipulation), an eye-in-hand
camera on each arm, offers close-up views beneficial for fine manipulation, whereas a fixed external
camera provides a broader view. All cameras were calibrated prior to the experiments using standard
procedures to ensure accurate spatial information.

Task 1: Pick-and-Place with ROKAE Arm and XHAND1 This task evaluated the ability of a
ROKAE collaborative robot arm equipped with an XHAND1 dexterous hand to pick up a variety of
objects from a starting location and place them accurately at a designated target pose.

1. Hardware Configuration.
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Table 9: Detailed Metrics on the TOYL Dataset.

Metrics object avg
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

MSPD 80.1 48.5 50.5 36.8 72.1 46.9 74.2 42.2 85.1 82.2 77.8 84.6 83.1 68.9 80 72.5 59.5 31.9 74.4 65.3 54.5 55.7
MSSD 76.4 51.1 40.8 33.6 75.9 47.5 73 63.3 91.6 83.1 76.1 84.7 86.1 79.8 88.5 77.7 48.3 26 90.3 61.8 54.1 65.1
VSD 31.1 33.6 41.7 18.5 25.5 35 31.4 24.9 42.8 38.1 25.6 45.6 47.5 52.8 51.3 44.3 40.5 26.7 34.4 27.3 20.1 67.0
AR 62.5 44.4 44.3 29.6 57.8 43.1 59.5 43.5 73.2 67.8 59.8 71.6 72.2 67.2 73.3 64.8 49.4 28.2 66.4 51.5 42.9 35.2

Figure 13: Performance in TYOL dataset. In each image, the red, green, and blue lines represent
the x, y, and z axes of the model, respectively, while the pink line shows the rendered contour under
the estimated pose. By comparing the rendered contour with the ground-truth outline of the object,
it is evident that our method is highly robust, performing well across various objects and under
different occlusion scenarios.

1. ROKAE Robot Arm (×1), is designed for collaborative applications, featuring a cabinet-
free design and integrated torque sensors in each joint, promoting deployment flexibility
and safety, with 6-DoF.

2. XHAND1 Dexterous Hand (×1), has 12 active degrees of freedom and supports force con-
trol with haptic sensor feedback, allowing us to adapt to object shapes and ensure stable
grasps. The hand is equipped with five 270◦ three-dimensional encircling tactile array sen-
sors on the fingertips, providing a tactile resolution of 12× 10 per fingertip and sensing 3D
forces including tangential components (X and Y). Joint sensors provide position, velocity,
temperature, and current (torque) information.

The XHAND1 was mechanically attached to the ROKAE arm’s end-effector flange.

2. Task Protocol. A set of 15 diverse objects was used to evaluate the pick-and-place capabilities.
Objects were presented randomized within a 10 × 10cm2 area with orientation randomized ±15
degrees around the vertical axis. The target placement pose for each object was a plate into which
the object needed to be placed.

For the 12-DoF XHAND1, grasp planning involved a pre-defined grasp synergies. Tactile and force
feedback from the XHAND1’s sensors were used to confirm contact, and monitor grasp stability
during lift and transport, leveraging its force-position control capabilities.

An initial 6D pose estimate of the object was obtained from the perception system (detailed in the
main paper). This pose was used to determine the robot’s approach trajectory to the object and plan
the motion to the target placement location. The system operated on the assumption that this initial
pose was sufficiently accurate for grasp execution. Then we use the pose tracking methods to guide
the motion of the arm in real-time.

For each of the 15 objects, 30 pick-and-place trials were conducted. Between trials, the object was
randomized within the defined start region, and the scene was reset.

3. Success Criteria.
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Figure 14: Comparison Between Original and Generated Models on TOYL dataset. The first
row displays the original object models, while the second row shows the generated models under the
same pose. The third row presents a bottom-view comparison of the generated models. As can be
seen, the generated models exhibit high quality and closely resemble the original objects in terms of
texture and structure, demonstrating the effectiveness of our generation and scale recovery approach
in TOYL dataset.

Figure 15: Failure modes in real-world test. Left: The original image. Middle: Detection results
showing the bounding box and model’s XYZ axes. Right: Rendered model image based on the
detected pose. This visualization demonstrates that our method struggles in scenarios characterized
by high symmetry, significant occlusion, and severe motion blur. Despite these challenges, the
method shows promise in more favorable conditions, highlighting areas for potential improvement.

1. Successful Grasp: object was securely held by the XHAND1, lifted at least 5 cm clear of
the support surface, and maintained a stable grasp without slipping or being dropped during
the initial lift.

2. Successful Transport: The object was moved from the pick location to the designated target
area without any collisions with the environment or being dropped.

Figure 16: Failure modes in LMO and TOYL dataset. In each image, the red, green, and blue
lines represent the x, y, and z axes of the model, respectively, while the pink line shows the rendered
contour under the estimated pose. The top-right corner of each image displays an enlarged view of
the corresponding failure region.
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3. Successful Placement: The object was released at the target pose, the object had to remain
stable in its placed configuration for at least 3 seconds after the XHAND1 retracted, without
toppling or rolling away.

4. Overall Trial Success: A trial was deemed successful if and only if all three criteria (Grasp,
Transport, and Placement) were met.

Task 2: Dual-Arm Manipulation (Pick, Handoff, Place) with AgileX PiPERs This task involved
two AgileX PiPER robot arms collaboratively picking an object, handing it off from one arm to the
other, and then placing it at a final target location. This sequence introduces challenges related to
inter-arm coordination, synchronization, and stable object transfer.

1. Hardware Configuration.

1. AgileX PiPER Robot Arms (×2), the two PiPER arms were mounted on fixed bases, fac-
ing each other across a central workspace, 800 mm apart. Each PiPER arm was 6-DoF,
equipped with an Agilex Pika Gripper.

2. Task Protocol. Similar to Task 1, objects were presented randomized within a 10× 10cm2 area
with orientation randomized ±15 degrees around the vertical axis. Arm 1 was set as Giver, while
Arm 2 was Receiver.

A designated handoff procedure was followed. The giving arm (Arm 1) moved the object to a pre-
defined handoff region (a specific area in the shared workspace). Arm 2 approached the object in
Arm 1’s gripper with a same grasp configuration, and then the receiving arm (Arm 2) placed the
object at the table.

Arm 1 always performed the initial pick and acted as the ”giver”; Arm 2 always acted as the ”re-
ceiver” and performed the final place. Arm motions were synchronized using an event-based system
where Arm 2’s approach was triggered by Arm 1 reaching the handoff pose, and Arm 1’s release
was triggered by a confirmation signal from Arm 2 (successful grasp confirmed by force sensors).
The timing of gripper actions (Arm 2 closing, Arm 1 opening) was critical to prevent drops.

An initial 6D pose estimate of the object was used by Arm 1 for the pick. During handoff, Arm 2
relied on the known pose of Arm 1’s end-effector and visually track the object in Arm 1’s gripper
before Arm 2 grasped it. After handoff, the pose of the object was used by Arm 2 for planning the
final placement.

For each of the 15 objects, 30 pick-handoff-place trials were conducted. Scene and object reset
procedures were followed between trials.

3. Success Criteria.

1. Successful Pick (Arm 1): The object was securely grasped by Arm 1 and moved to the
designated pre-handoff pose without slipping, dropping, or collision.

2. Successful Handoff: Arm 2 securely grasped the object from Arm 1, arm 1 released the
object only after Arm 2’s grasp was confirmed via threshold met on the gripper force sensor
(5 N). The object was not dropped during the transfer from Arm 1 to Arm 2 and the object
was stable in Arm 2’s gripper after Arm 1 retracted.

3. Successful Place (Arm 2): The object was released by Arm 2 at the table, without slipping
or being dropped.

4. Overall Task Success: A trial was considered successful if and only if all three stages (Pick,
Handoff, and Place) were completed successfully.

E Pipeline for Constructing a Ground Truth Real-world Dataset

Scene data acquisition and preprocessing. In this paragraph, we describe the complete pipeline
for scene data acquisition and preprocessing, which includes four key stages:
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Figure 17: Real-world Robot Manipulation Examples. We recommend that readers visit the
webpage to watch a dynamic demonstration video.

1. Deployment of AprilTags and Video Recording: To facilitate accurate camera pose cal-
culation and metric scale recovery, multiple high-contrast and easily detectable AprilT-
ags [119] are strategically placed throughout the target scene. As shown in Fig. 18,these
tags serve as known geometric reference points, significantly improving the robustness and
accuracy of the reconstruction process. A monocular camera is then used to record a video
sequence at a fixed frame rate, ensuring full coverage of the most of AprilTags from multi-
ple viewpoints.

2. Feature Matching and Sparse Reconstruction Using COLMAP: Structure-from-
Motion (SfM) [120] processing is performed using COLMAP. First, local feature descrip-
tors are extracted from each frame. These features are then matched across images, fol-
lowed by geometric verification to remove outliers. Finally, an incremental SfM algorithm
jointly optimizes both intrinsic and extrinsic camera parameters, resulting in a sparse 3D
point cloud. This sparse reconstruction provides initial geometric priors for subsequent
dense reconstruction.

3. Distortion Correction: Due to radial and tangential distortions inherent in standard cam-
era lenses, which can degrade reconstruction quality, it is essential to perform distortion
correction. The raw images are undistorted and mapped to a distortion-free coordinate sys-
tem. Simultaneously, the corresponding camera parameter files are updated to reflect this
transformation, providing more accurate input for the 3D reconstruction pipeline.

4. Scale Estimation and Point Cloud Calibration Using XRSFM: In purely vision-based
SfM pipelines, the reconstructed scene is typically only defined up to a similarity trans-
formation, lacking true metric scale. By leveraging the known physical dimensions of
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the AprilTags, the XRSFM [121] method is employed to compute the global scaling fac-
tor. This allows the sparse point cloud to be transformed from a similarity space into a
Euclidean space with real-world units, enabling downstream tasks that require metric ac-
curacy.

3D Reconstruction and Object Mesh Extraction. After metric calibration of the point cloud, we
utilize Gaussian Opacity Fields (GOF) [122] to perform neural implicit field modeling of the scene.
This method embeds sparse point cloud data into a Gaussian representation and models surface ge-
ometry through a learnable opacity field. Specifically, the point cloud is first initialized, and a set of
spatially supported Gaussian attributes is constructed. The model is then trained using radiance op-
timization combined with geometry-aware training strategies, enabling the implicit representation
of fine-grained surface details. Finally, a triangle mesh is extracted from the learned GOF repre-
sentation via marching cubes or analogous voxelization techniques, yielding a high-quality surface
reconstruction of the scene. The target object mesh is then manually segmented from the recon-
structed scene mesh for further processing.

Coordinate alignment and camera/object pose estimation. This paragraph introduces the com-
plete workflow for coordinate alignment and 6D pose estimation, including initial camera pose ini-
tialization, camera poses calculation, and per-frame object pose computation:

1. Aligning Object and Scene Meshes for Initial Camera Pose Estimation: The object
mesh is rigidly aligned with the scene mesh using ICP (Iterative Closest Point) registra-
tion algorithms. This provides the object’s absolute position within the scene. Combined
with AprilTag location information, this enables derivation of the initial camera pose TW

C0

(rotation and translation matrices in the world coordinate system) for the first frame.

2. Estimating Per-Frame Camera Poses Using COLMAP Features: Based on the camera
poses TW

Ci
output by COLMAP (relative to the sparse point cloud), and incorporating the

previously estimated metric scale, all camera poses are transformed into the unified world
coordinate system. This step establishes a reliable camera trajectory that supports accurate
object position computation.

3. Computing Object Poses Across Frames: Assuming the object remains static in the
scene, its pose in the first frame can be transformed into any other frame’s camera co-
ordinate system through a rigid transformation chain. Specifically, given the object’s pose
TW

O1
in the world coordinate system (where subscript O1 denotes the object in the first

frame and superscript W denotes the world coordinate system), and the camera poses TW
Ci

for each frame i, we can compute the object’s pose TCi

Oi
in the camera coordinate system

of frame i using the following transformation:

TCi

Oi
= (TW

Ci
)−1 ·TW

O1
(2)

Here, TW
Ci

represents the transformation matrix from the world coordinate system to the
camera coordinate system of frame i, and (TW

Ci
)−1 is its inverse, which transforms points

from the camera coordinate system back to the world coordinate system.
The 6-DoF object pose in each image frame consists of three rotational parameters (RCi

Oi
)

and three translational parameters (tCi

Oi
). These can be extracted from the transformation

matrix TCi

Oi
as follows:

TCi

Oi
=

[
RCi

Oi
tCi

Oi

0 1

]
(3)

Object mask generation and visualization details. This paragraph introduces the methodology
for generating accurate object masks and visualizing key details, which includes two main steps:
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1. Rendering Object Masks Using 3D Models and Camera Poses: Given the known 3D
mesh model of the object and the current frame’s camera parameters (intrinsic + extrinsic),
a binary object mask is rendered onto the image plane. This forward projection process
generates a foreground-background segmentation that supports downstream tasks such as
pose estimation and visibility analysis.

2. Extracting Visible Region Masks Using Segmentation Methods (e.g., SAM 2): To fur-
ther improve mask accuracy—especially under occlusion, a pre-trained instance segmenta-
tion method such as SAM 2 [123] is applied to the input images. This generates a visible
region mask highlighting only the observable parts of the object, which can be used during
training or evaluation to exclude occluded or invisible regions and improve robustness.

Figure 18: Testing dataset examples. The dataset we have constructed is showcased from various
views. It can be seen that our testing dataset includes a range of object poses, occlusion relationships,
and distances from the camera, demonstrating its richness and diversity.

Finally, we constructed the following test dataset. The dataset visualization is shown in Fig. 18,
and its distribution is illustrated in Fig. 19. These figures demonstrate that the dataset exhibits
diverse object positions and viewing angles, making it well-suited for comprehensively evaluating
the performance of the trained models.
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Figure 19: Distribution Analysis of Testing Dataset. Top-left: Distribution of Azimuth angles for
objects within the generated dataset; Top-right: Distribution of Elevation angles for objects; Bottom-
left: Distribution of object distances from the camera; Bottom-right: Distribution of the proportion
of object area visibility; These plots demonstrate that the constructed testing dataset encompasses
a rich diversity of poses and occlusion scenarios, underpinning its comprehensive variability and
realism.
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